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Using medical images to evaluate disease severity and change over time is a routine and important task in clinical decision making.
Grading systems are often used, but are unreliable as domain experts disagree on disease severity category thresholds. These
discrete categories also do not reflect the underlying continuous spectrum of disease severity. To address these issues, we
developed a convolutional Siamese neural network approach to evaluate disease severity at single time points and change
between longitudinal patient visits on a continuous spectrum. We demonstrate this in two medical imaging domains: retinopathy
of prematurity (ROP) in retinal photographs and osteoarthritis in knee radiographs. Our patient cohorts consist of 4861 images from
870 patients in the Imaging and Informatics in Retinopathy of Prematurity (i-ROP) cohort study and 10,012 images from 3021
patients in the Multicenter Osteoarthritis Study (MOST), both of which feature longitudinal imaging data. Multiple expert clinician
raters ranked 100 retinal images and 100 knee radiographs from excluded test sets for severity of ROP and osteoarthritis,
respectively. The Siamese neural network output for each image in comparison to a pool of normal reference images correlates
with disease severity rank (o = 0.87 for ROP and p = 0.89 for osteoarthritis), both within and between the clinical grading
categories. Thus, this output can represent the continuous spectrum of disease severity at any single time point. The difference in
these outputs can be used to show change over time. Alternatively, paired images from the same patient at two time points can be
directly compared using the Siamese neural network, resulting in an additional continuous measure of change between images.
Importantly, our approach does not require manual localization of the pathology of interest and requires only a binary label for
training (same versus different). The location of disease and site of change detected by the algorithm can be visualized using an
occlusion sensitivity map-based approach. For a longitudinal binary change detection task, our Siamese neural networks achieve
test set receiving operator characteristic area under the curves (AUCs) of up to 0.90 in evaluating ROP or knee osteoarthritis change,
depending on the change detection strategy. The overall performance on this binary task is similar compared to a conventional
convolutional deep-neural network trained for multi-class classification. Our results demonstrate that convolutional Siamese neural
networks can be a powerful tool for evaluating the continuous spectrum of disease severity and change in medical imaging.
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INTRODUCTION

The evaluation of disease severity and change over time on
medical images are important and routine tasks. For example,
vascular changes in retinopathy of prematurity (ROP) can be an
important biomarker of disease progression and response to
therapy'~. For many types of pathologies, the disease process can
have a wide continuous spectrum of severities, which can change
over time. However, these grades of disease severity are usually
binned into ordinal classes (e.g., normal, mild, moderate, severe),
and changes within these ordinal classes may not be appreciated.
This is further confounded by the substantial variability in the
interpretation of classes by domain experts, which can lead to
changes in clinical management®“. Thus, grading disease severity
and evaluating change on a continuous spectrum has the
potential to add value to patient care and clinical research.
Deep learning is a powerful approach for automating tasks
within medical imaging®®. However, most of the published
literature has focused on the prediction of absolute labels, with

binning of patient images into discrete categories. Predicting the
absolute class labels for two images and comparing them is one
approach to evaluating disease severity and change, but
granularity beyond the discrete class labels is lost. Thus, this
strategy does not reflect the true continuous spectrum of change®.
The lack of reliable standard image labels is also a barrier to the
training and evaluation of these algorithms”.

Evaluating the difference between imaging studies can be
reformulated as a distance metric-learning problem?®. In this
subfield of machine learning, algorithms have been developed to
evaluate the similarity (or dissimilarity) of data. One approach to
evaluating the similarity between two images is the Siamese
neural network, which was initially developed to verify the
authenticity of credit card signatures®. Prior healthcare-related
studies have used Siamese neural networks to evaluate patient
similarity in the electronic health record'® and to help predict
symptom trajectories in Alzheimer's patients using data from
multiple time points''. While neither of these studies used actual
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Fig. 1 Schematics of Siamese neural network approaches for
evaluating disease severity and change on a continuous spec-
trum. a Schematic of the Siamese neural network architecture,
which takes two images as inputs and outputs the Euclidean
distance between the two images (i.e., a measure of similarity).
b Schematic of evaluating a single image for disease severity on a
continuous spectrum. ¢ Schematic of two approaches for evaluating
longitudinal images for disease severity on a continuous spectrum.
D,, refers to the Euclidean distance.
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images as inputs, the Siamese neural network inputs can consist of
paired images, with each image passed through an identical deep-
convolutional subnetwork. This type of algorithm can be trained
using a contrastive loss function'?. A measure of image similarity
can be obtained by calculating the Euclidean distance between
the twinned subnetwork outputs (schematic in Fig. 1a). In
principle, the larger the Euclidean distance, the larger the
difference between the images with respect to the image features
for which the network is training. Thus, we hypothesized that the
continuous spectrum of disease severity and change in medical
imaging can be abstracted to the Euclidean distance calculated
from a Siamese neural network.

In this study, we use two data sets that contain medical images
for patients followed longitudinally, annotated with ordinal
classifications of disease severity. These include retinal photo-
graphs evaluating ROP (from the Imaging and Informatics in
Retinopathy of Prematurity (i-ROP) cohort study'®, 4861 images
from 870 patients) and knee radiographs evaluating osteoarthritis
(from the Multicenter Osteoarthritis Study (MOST), 10,012 images
from 3021 patients). ROP is a leading cause of childhood blindness
globally, and management strategies depend on the diagnosis of
plus disease, a ROP classification, and its precursor, pre-plus
disease via fundoscopic examination'*'®. Knee osteoarthritis is a
common cause of morbidity worldwide and can be diagnosed by
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radiography, which also can help identify which patients may
benefit from surgery'®. Automated diagnosis and classification of
both of these diseases have been reported using deep-learning
approaches'*", but the change of disease severity (which is often
more granular than the disease classification) is also relevant to
clinical decision making. In this study, we use a Siamese neural
network approach to represent the continuous spectra of disease
severity and longitudinal change on retinal photographs for ROP
and on knee radiographs for osteoarthritis.

RESULTS

Siamese neural network outputs correlate with disease severity on
a continuous spectrum

A convolutional Siamese neural network was built using two
identical ResNet-101'® subnetworks, with a contrastive loss
function (schematic in Fig. 1a; see Methods for details)'?. The
Siamese neural network architecture was applied in two clinical
use cases involving ordinal categories of disease severity that can
change over time, first for ROP and second for knee osteoarthritis.
In the first case, each input image was a retinal photograph for a
single eye, with the retinal vessels segmented using a previously
published algorithm>. In the second case, most knee radiographs
contained bilateral knees; thus, we cropped the images for the
individual left and right knees using a previously published
algorithm'?, which were then used for the input images. In both
cases, we trained the Siamese neural network on paired images
(from any patient in the training set), with the binary label of
change or no change in disease severity category. A validation set
was used to select the best model. There is no overlap in patients
between the training, validation, and test sets, as the data sets had
been randomly partitioned to contain 80%, 10%, and 10% of
patients, respectively.

We tested the trained networks on a 100-image subset of the
ROP test set and a 100-image subset of the knee osteoarthritis test
set, which were both annotated by multiple expert clinicians for
disease severity ranking. The disease severity ranking was based
on a previously published method that incorporates the expert
comparison labels of all image pair possibilities (i.e., less versus
more severe disease)?’. For ROP, we used a prevnouslg published
disease severity ranking on the 100-image subset'”. For knee
osteoarthritis, three radiologists (two feIIowship-tralned muscu-
loskeletal radiologists and one senior radiology resident) manually
annotated the subset to generate a disease severity ranking. The
top five images with the least severe disease (i.e., most normal)
were used as anchor images to which all the other images were
compared using the Siamese neural network (schematic in Fig.
1b). For each image, the median of the Euclidean distances
relative to the anchor images was calculated.

This median Euclidean distance correlates with disease severity
rank for both ROP (p = 0.87) (Fig. 2a) and knee osteoarthritis (o =
0.89) (Fig. 2e). In the case of ROP, there is a very shallow slope for
images categorized as normal, as compared to the images
categorized as pre-plus or plus disease (Fig. 2a). Within these
discrete disease categories, there is also a correlation between the
Euclidean distance and disease severity rank (o =0.41, 0.36, and
0.60 for normal, pre-plus, and plus disease, respectively). Similarly,
in the case of knee osteoarthritis, there is a correlation between
the Euclidean distance and disease severity rank within the
discrete disease categories (o = 0.65, 0.41, 0.51, 0.45, and 0.56 for
Kellgren-Lawrence (KL) grades 0, 1, 2, 3, and 4, respectively). These
findings show how the Euclidean distance of the Siamese neural
network can provide a representation of disease severity on a
continuous spectrum, more granular than the ordinal disease
categories. This can be contrasted with the discrete output of a
conventional deep-convolutional neural network, trained for
multi-class classification (Fig. 2b, f).
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In the absence of disease severity ranking labels, for any given
image, a Siamese neural network median Euclidean distance can
also be calculated relative to a pool of randomly sampled “normal”
images (schematic in Fig. 1b). This median Euclidean distance

correlates  with

the ordinal

disease severity category,

as

Scripps Research Translational Institute

demonstrated in the separate test sets for ROP (0 =0.69, N =
528) (Fig. 2¢) and knee osteoarthritis (o = 0.87, N = 1908) (Fig. 29).
The location of the disease on the image can be visualized using
an occlusion sensitivity map-based approach (illustrative examples
in Fig. 2d, h).
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Fig. 2 Siamese neural network outputs can be used to represent a continuous spectrum of disease severity. a Scatterplot shows the
median Euclidean distance versus consensus disease severity rank for 100 retinal photographs ranked by experts for severity of retinopathy of
prematurity (plus disease classification). The five retinal photographs with the least severe disease (i.e., most normal) were used as the anchor
images to which all the other images were compared. b Scatterplot shows the output of a conventional neural network trained for multi-class
classification of plus disease severity. y-axis 0, 1, and 2 indicate ordinal plus disease severity grades, corresponding to normal, pre-plus, and
plus disease. ¢ Boxplot* shows the median Euclidean distance calculated in relation to ten randomly sampled “normal” images, separated by
plus disease classification. d lllustrative example of an occlusion sensitivity map for visualization of salient areas of the image. e Scatterplot
shows the median Euclidean distance versus consensus disease severity rank for 100 knee radiographs ranked by experts for severity of knee
osteoarthritis (KL grade). The five knee radiographs with the least severe disease (i.e.,, most normal) were used as the anchor image to which all
the other images were compared. f Scatterplot shows the output of a conventional neural network trained for multi-class classification of KL
grade. g Boxplot* shows the median Euclidean distance calculated in relation to ten randomly sampled “normal” images versus the KL grade.
h lllustrative example of an occlusion sensitivity map for visualization of salient areas of the image. *Boxplot boxes indicate the median and

interquartile range (IQR), with whiskers extending to points within 1.5 IQRs of the IQR boundaries.

Siamese neural network outputs correlate with longitudinal
change in disease severity

The median Euclidean distance calculated relative to a pool of
randomly sampled “normal” images can also be used to assess the
change in disease severity over time, by subtracting the calculated
Euclidean distance at one time point from another (schematic in
Fig. 1c). We created longitudinal image comparison test sets,
featuring paired images from two different points in time for each
test patient. In these test sets, there is a correlation between the
size of the Euclidean distance difference and the change in
disease severity grade for both ROP (p =0.72) (Fig. 3a) and knee
osteoarthritis (o =0.44) (Fig. 4a). For 38 longitudinal test
comparisons of retinae with a plus disease classification change
of >1 ordinal class, 36 (95%) showed a Euclidean distance
difference >0. Conversely, for five test comparisons with a plus
disease classification change of < -1, 4 (80%) showed a Euclidean
distance difference <0. For 176 longitudinal test comparisons of
knees with a KL grade change of >1, 145 (82%) showed a
Euclidean distance difference >0. For 52 test comparisons with a
KL change grade of =2, 51 (98%) showed a Euclidean distance
difference >0. These findings show that the Euclidean distance
difference usually maintains the rank order in severity between
longitudinal images, while also accounting for the direction of
change. KL grade monotonically increases, so evaluation of a
negative KL grade change is precluded.

An alternative approach to evaluating change between two
images from the same patient acquired at different time points is
to directly compare the images using the Siamese neural network,
calculating the pairwise Euclidean distance between the two
images (schematic in Fig. 1c). While this approach loses the
directionality of change in severity that the prior approach shows,
the only images required are the two images being compared. In
the longitudinal comparison test sets, there is a correlation
between the size of the pairwise Euclidean distance and the
magnitude of change in disease severity grade for both ROP (p =
0.74) (Fig. 3b) and knee osteoarthritis (o = 0.55) (Fig. 4b). Using
this direct comparison approach, the location of change between
the two images can be visualized using an occlusion sensitivity
map-based approach (illustrative examples in Figs. 3d and 4d).

Both the Euclidean distance difference (in relation to a pool of
“normal” images) and pairwise Euclidean distance approaches for
evaluating longitudinal change between images can be useful for
tracking change over multiple time points (illustrative examples in
Figs. 3c and 4c).

Performance on binary change detection tasks

We further evaluated the performance of the Siamese neural
network for binary change detection tasks, using the longitudinal
change comparison test set. For the ROP data, we tested the
detection of binary change between normal and abnormal (pre-
plus or plus disease) retinal photographs. For the knee osteoarthritis
data, we tested the detection of binary change between normal to
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minimal disease (KL grades 0 or 1) and mild to severe disease (KL
grades 2, 3, or 4). Receiver operator characteristic curves and
precision-recall curves were generated using either the Euclidean
distance difference or the pairwise Euclidean distance as the
continuous prediction score. The binary change thresholds were
determined by Youden's J statistic on the validation set. The
network trained for ROP achieved an AUC of 0.81 (95% Cl 0.77-0.84)
with Cohen’s kappa 0.64 (95% Cl 0.58-0.68) and an AUC of 0.90
(95% Cl 0.88-0.92) with Cohen’s kappa 0.66 (95% Cl 0.61-0.71)
using the Euclidean distance difference or pairwise Euclidean
distance for prediction, respectively (Fig. 3e, f). The network trained
for knee osteoarthritis achieved an AUC of 0.90 (95% Cl 0.86-0.83)
with Cohen'’s kappa 0.47 (95% Cl 0.40-0.54) and an AUC of 0.88
(95% Cl 0.84-0.92) with Cohen’s kappa 041 (95% Cl 0.35-0.48),
using the Euclidean distance difference or pairwise Euclidean
distance for prediction, respectively (Fig. 4e, f). Precision-recall
curves are also shown in these figures. Performance using either the
Euclidean distance difference or the pairwise Euclidean distance for
the continuous prediction score was similar.

The performance on these binary change detection tasks was
compared to a conventional convolutional neural network (using
the same underlying ResNet-101 architecture as the Siamese neural
network), trained using cross-entropy loss for multi-class classifica-
tion of the ordinal disease categories. For the binary change
detection tasks, change was determined using the maximum
probability label assigned by the neural network. For ROP, the
conventional neural network achieved a linear Kappa of 0.61 (95%
Cl 0.55-0.66). For knee osteoarthritis, the conventional neural
network achieved a linear Kappa of 0.46 (95% Cl 0.39-0.54). Given
the overlap in the 95% confidence intervals with the Siamese neural
network determined Kappa values, the performance of the Siamese
neural network on a binary change detection task is similar
compared to a conventional classification network.

DISCUSSION

We leveraged a Siamese neural network architecture to evaluate
disease severity and change on a continuous spectrum, as
illustrated in two applications within ophthalmology and radi-
ology. The Euclidean distance between the final fully connected
layers of the twinned Siamese neural network subnetworks can be
used to provide a meaningful measures of disease severity relative
to normal cases or other time points in the same patient, which
supports our hypothesis. Importantly, we show that continuous
disease severity and change evaluation can be performed without
specific localization of the pathology of interest (such as abnormal
joint space narrowing or tortuous vessels), requiring only image-
level annotation. In addition, only binary comparison labels are
required to train the network (i.e., same versus different). The work
shown has potential application to any disease that involves a
continuous spectrum of severity, with particular utility in
conditions where patients are imaged at multiple time points.

Scripps Research Translational Institute
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Fig. 3 Siamese neural network outputs can be used to represent a continuous spectrum of longitudinal change in disease severity, as
illustrated with retinopathy of prematurity (plus disease classification). a Boxplot* shows the median Euclidean distance difference
between two different time points versus the longitudinal change in plus disease grade. b Boxplot* shows the pairwise Euclidean distance
from direct comparison of two images versus the magnitude of longitudinal change in plus disease grade. ¢ Demonstrative examples of
longitudinal tracking of disease severity using Euclidean distances on retinal photographs. The number of weeks annotating the photographs
indicate the neonatal post menstrual age. In each image, the top right inset number is the pairwise Euclidean distance between that image
and the baseline image. The bottom right inset number is the median Euclidean distance relative to a pool of ten “normal” images.
d lllustrative example of an occlusion sensitivity map for visualization of salient areas of longitudinal change between two images from the
same patient (using pairwise Euclidean distance). e ROC and precision-recall curves for the evaluation of plus disease change from normal to
pre-plus or plus disease on a separate test set, using the median Euclidean distance difference as the continuous metric for change. f ROC and
precision-recall curves for the evaluation of plus disease change from normal to pre-plus or plus disease on a separate test set, using the
pairwise Euclidean distance as the continuous metric for change. *Boxplot boxes indicate the median and interquartile range (IQR), with
whiskers extending to points within 1.5 IQRs of the IQR boundaries.

The discrete binning of disease classes is human-engineered As an alternative to discrete clinical grading schemes like these or
and the underlying biology of disease is usually more accurately the non-standard ordinal designations assigned frequently in
described as a spectrum®. In addition, previous work has shown clinical practice (e.g., mild, moderate, severe), we envision a future
that there is substantial intra- and inter-expert variability in the where continuous disease severity scores can be used to assess
annotation of both plus disease classification and KL grade*?'*%, disease severity and track change over time in a more consistent
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Fig. 4 Siamese neural network outputs can be used to represent a continuous spectrum of longitudinal change in disease severity, as
illustrated with knee osteoarthritis (KL grade). a Boxplot* shows the median Euclidean distance difference between two different time
points versus the longitudinal change in KL grade. b Boxplot* shows the pairwise Euclidean distance from direct comparison of two images
versus the magnitude of longitudinal change in KL grade. ¢ Demonstrative examples of longitudinal tracking of disease severity using
Euclidean distances on knee radiographs. In each image, the top right inset number is the pairwise Euclidean distance between that image
and the baseline image. The bottom right inset number is the median Euclidean distance relative to a pool of ten “normal” images.
d lllustrative example of an occlusion sensitivity map for visualization of salient areas of longitudinal change between two images from the
same patient (using pairwise Euclidean distance). e ROC and precision-recall curves for the evaluation of plus disease change from normal to
pre-plus or plus disease on a separate test set, using the median Euclidean distance difference as the continuous metric for change. f ROC and
precision-recall curves for the evaluation of plus disease change from normal to pre-plus or plus disease on a separate test set, using the
pairwise Euclidean distance as the continuous metric for change. *Boxplot boxes indicate the median and interquartile range (IQR), with
whiskers extending to points within 1.5 IQRs of the IQR boundaries.

fashion. This could be helpful in both routine clinical care and
clinical research. Previous work on KL grade classification using
deep learning has explored the utility of using a continuous metric
for performance evaluation (regression loss) to improve model
accuracy??, but that classification system ultimately results in the
prediction of ordinal disease grades. Our Siamese neural network
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approach, using measures derived from the Euclidean distance
output, provides a potentially generalizable solution for creating
continuous disease severity grading scales for medical images.
An interesting property of the Siamese neural network is that the
model requires only binary comparison labels for training, but still
implicitly learns the magnitude of difference in disease severity

Scripps Research Translational Institute



between the two input images. This can decrease the annotation
burden for clinical experts annotating training data, as annotating a
binary difference between two images is usually an easier task than
categorizing the disease severity on a single image. As interrater
reliability has been shown to be higher for disease severity rankings
than the classification of ordinal disease categories?’, this approach
could also decrease the noise in training labels, which could
potentially reduce the amount of data needed to train the model.

A potential concern regarding the output of a Siamese neural
network for evaluating differences between two images is that,
instead of learning disease severity features, the network is learning
features related to other patient differences or image technique.
Training these algorithms using between-patient comparisons helps
to mitigate the impact of such confounders. For example, in Fig. 2a, e,
each different patient image is compared to a pool of “normal”
images. If the network primarily learned features related to other
patient differences or image technique, the median Euclidean
distance would be randomly distributed in relation to expert disease
severity rank. However, we found a strong correlation, showing that
the network is indeed learning to represent disease severity. The
occlusion sensitivity maps further illustrate that the algorithms focus
on relevant disease image features.

There are several limitations to this work. First, the labels used for
training were derived from the ordinal disease severity class labels.
Future studies may incorporate labels assigned by expert compar-
isons of images for training instead. In addition to possibly improving
the performance of training, the comparison labels may be
incorporated with ordinal disease severity class labels for training
to potentially decrease the number of images that need to be
annotated®*, Second, we demonstrated the utility of this approach
for two-dimensional imaging problems, while much medical imaging
involves three-dimensional data. Future studies will need to
investigate the extensibility of this approach to volumes. Third, the
models trained in this study utilized a contrastive loss function
applied to the Euclidean distance calculated from the last fully
connected layers. Additional approaches, such as testing of the loss
function on earlier network layers or other loss functions entirely
such as the triplet loss function, margin rank loss, and other
alterations to the training methodology may further improve
performance of the models®. Other loss functions may also
incorporate more information in the labels, such as magnitude and
directionality, which could potentially further improve learning.

METHODS

The parts of the study involving neonatal retinal image data were performed
as a part of the multicenter i-ROP consortium, with approval by the Institutional
Review Board at the coordinating center (Oregon Health & Science University),
and by each of the eight participating institutions (Columbia University, Cornell
University, University of lllinois at Chicago, William Beaumont Hospital,
Children’s Hospital Los Angeles, Cedars-Sinai Medical Center, University of
Miami, and Asociaciéon para Evitar la Ceguera en México). This study was
done in accordance with the Declaration of Helsinki, and written informed
consent was previously obtained from parents of all infants enrolled. The
parts of the study involving knee radiographs used de-identified publicly
available data from the Multicenter Osteoarthritis Study (MOST).

Imaging data sets

Posterior retinal photographs evaluating ROP were acquired from the
Imaging and Informatics in Retinopathy of Prematurity (i-ROP) cohort
study'®, of which there were 4861 images from 870 untreated patients.
Separate images were acquired for each eye. These photographs were
previously classified into three clinical categories (normal, pre-plus disease,
or plus disease, in order of increasing disease severity) using a reference
standard diagnosis based on a consensus of image grading method?®®.
These patients had been imaged at varying time points as clinically
indicated, ranging from a post menstrual neonatal age of 30 to 98 weeks.
The majority of the retinal photographs were classified as normal (N=
4097), as opposed to pre-plus disease (N =635) or plus disease (N =129).
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Posteroanterior (PA) weight-bearing bilateral knee radiographs evaluat-
ing knee osteoarthritis were acquired from the Multicenter Osteoarthritis
Study (MOST), of which there were 10,012 images from 3021 patients with
longitudinal radiographic follow-up. This data set contains KL grades (0, 1,
2, 3, or 4, in order of increasing knee osteoarthritis disease severity),
assigned by expert readers to each knee. Knee images assigned the non-
standard KL grade of 1.9 in the MOST data set were omitted from this
analysis. All patients in the data set had baseline imaging data, and varying
numbers of patients were imaged again at 15, 30, 60, and 84 months. The
KL grade for each knee was distributed as follows (noting that some
images showed only one knee instead of two): 0 (N = 7704), 1 (N = 2862), 2
(N=3194), 3 (N=3558), and 4 (N=1714).

Both data sets were randomly partitioned at the patient level into
algorithm training, validation, and testing sets, containing 80%, 10%, and
10% of patients, respectively. An additional test data set of 100 retinal
photographs from 100 unique patients was also reserved from the i-ROP
cohort study (normal N = 54, pre-plus disease N = 31, plus disease N = 15).
These images had been previously compared to each other and ranked by
disease severity by a consensus of multiple expert raters®’. From the knee
osteoarthritis test set, 20 radiographs were randomly sampled from each
KL grade category, yielding 100 total images. These images were
compared to each other and ranked by disease severity by a consensus
of multiple raters (two radiologists with musculoskeletal imaging sub-
specialty training and one radiology resident), using the same method as
previously described for the retinal photographs®®. The raters were
presented with 5446 total pairwise image comparisons derived from the
100 total images (with 10% of comparisons as repeats), which were
manually annotated as the same or different.

Longitudinal comparison test set creation

In the test sets, patients have images from a varying numbers of time
points. Sampling all possible longitudinal image combinations would skew
the test comparisons towards patients with images from more time points.
Thus, to create longitudinal comparison test sets, we sampled the test sets
so that each unique patient knee or retina is only tested once. Given that
many fewer patients showed a longitudinal change compared to those
with no change between two images, if a combination with change was
possible, that image combination was used. If multiple combinations with
change were possible, then one of those image combinations was
randomly sampled. If no change combinations were possible, then any
image combination was randomly sampled. This approach resulted in
longitudinal comparison test sets of 123 comparisons from 65 patients for
ROP (80 with no change in plus disease classification and 43 with a
change) and 521 comparisons from 272 patients for knee osteoarthritis
(345 with no change in KL grade and 176 with a change).

Image pre-processing

Retinal photographs from the i-ROP cohort study are of variable sizes and
types; thus, they were all resized to 300 x 225 pixels (maintaining the
aspect ratio) and converted to portable network graphic (PNG) files. As the
retinal vessels are the structures of interest, we used a previously published
U-Net convolutional neural network architecture to segment the vessels,
thereby removing background variation'®. For training, images were
augmented using random rotation (range of £10° of rotation), horizontal
flipping (50% probability), random pixel crops (to 224 x 224 pixels), and
random brightness and contrast variation (range of +3%). For validation
and testing, images were center cropped (to 224 x 224 pixels). Color
images were converted to greyscale in all cases.

Knee radiographs from the MOST data set mostly contain bilateral
knees. We used a previously published machine-learning approach to
localize the knee joint areas'’, which outputted 140 x 140 mm bounding
boxes (resized to 224 x 224 pixels). All images were processed with global
contrast normalization. Left knees were vertically flipped so that all knees
would appear as right knees. For training, images were augmented using
random rotation (range of + 5° of rotation), random pixel crops (to 210 x
210 pixels), and random brightness and contrast variation (range of +5%).
For validation and testing, images were not augmented. Color images were
converted to greyscale in all cases.

Siamese neural network architecture and training strategy

Siamese neural networks take two separate images as inputs, and pass
them through identical neural subnetworks, which are joined at the
output’. A convolutional Siamese neural network was built using two
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identical ResNet-101"® subnetworks with shared weights, pre-trained on the
ImageNet data set for increased stability of training®’. ResNet-101 was
selected for its optimal performance after empirically testing ResNets-18, 34,
50, 101, and 152. The final fully connected layer of ResNet-101 was modified
to output three or five nodes from both subnetworks, for the retina and
knee algorithms, respectively (~42.5 x 10° total parameters in both models).
Given image input vectors X; and X,, the Euclidean distance D,, between the
subnetwork outputs, G,(X;) and Gu(X;), can be calculated (Dy(X1,X2) =
[|Gw(X1) — Gw(X2)]],)" The neural network parameters were trained using

the contrastive function (L =(1=Y)D2 + (Y){max(0,m — D,)}* ; Y=0if

same class (i.e, no change) and Y =1 if different class (i.e, change), and m =
margin)u. The contrastive loss function is minimized if there is a small D, for
no change and large D,, for change. The margin was empirically set to 2.0
and indicates the maximum D,, at which dissimilar paired inputs will not
contribute further to the loss, which helps to stabilize the loss function in
training. Implementation of this Siamese network architecture was
performed using the Python package PyTorch, using the Adam optimizer®®
(initial learning rate = 0.000005, 3; = 0.9, B, =0.999), batch sizes of 16 for
training and validation, and early stopping of training when the validation
loss showed no further improvement after three training epochs. The
network parameters from the model with the lowest validation loss were
saved for testing evaluation.

For both data sets, we trained a Siamese neural network on paired input
images sampled from from different patients and time points (i.e., both inter-
patient and intra-patient comparisons). Because of the class asymmetries in
the i-ROP cohort study data, we randomly sampled an equal number of
paired input retinal photographs with the same or different plus disease
classification for training and validation. Similarly, for training and validation
for the MOST data set, paired input knee joint images (localized to the knee
joint as described above) were randomly sampled for an equal distribution of
pairs with the same or different KL grade.

The number of image pairs sampled per epoch of training was
optimized empirically for both data sets, with saturation of validation loss
using 3200 and 32,000 paired comparisons for the i-ROP and MOST data
sets, respectively. The number of image pairs sampled for validation was
1600 and 6400, respectively.

Conventional multi-class classification neural network training
strategy

A multi-class classification network for ordinal disease severity category
was created, sharing the same underlying ResNet-101'2 architecture as the
Siamese neural network described above. As done with the Siamese neural
network, the final fully connected layer of ResNet-101 was modified to
output three or five nodes, for the retina and knee algorithms, respectively
(~42.5% 10° total parameters in both models), to match the number of
ordinal disease severity classes. These nodes provided the input for the
softmax function. The maximum probability label was used to assign class
labels. The network parameters were trained using the cross-entropy loss
function. This network architecture was implemented using the Python
package PyTorch, using the Adam optimizer®® (initial learning rate =
0.000005, B; = 0.9, B, = 0.999), batch sizes of 16 for training and validation,
and early stopping of training when the validation loss showed no further
improvement after three training epochs.

Evaluation of single-image disease severity

To evaluate a single image for its disease severity on a continuous
spectrum, the image is compared to a pool of ten randomly sampled
“normal” images (i.e.,, normal retinal photographs and KL grade 0 knee
radiographs). Using the Siamese neural network, the Euclidean distance is
calculated for each paired input of the image of interest and the ten
“normal” images. The median of these ten Euclidean distances is
computed, which serves as the Euclidean distance used as a measure of
disease severity. For the 100-image test sets annotated by multiple experts
for disease severity ranking, a Euclidean distance is calculated from the
paired input of each image and each of the five images with the lowest
disease severity ranking. The median of these five Euclidean distances is
computed to give a measure of disease severity.

Evaluation of longitudinal disease severity change

To evaluate two images from the same patient for the change in disease
severity on a continuous spectrum, we used two approaches. First, the
Euclidean distance for each image can be calculated from the single-image
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disease severity evaluation approach described above. The difference
between these Euclidean distances can be used to represent change
between the two images. Second, a Euclidean distance can be calculated
by directly inputting the two images of interest to the Siamese neural
network. This Euclidean distance provides another representation of
change between the two images.

Neural network visualization using occlusion sensitivity

We used an occlusion sensitivity approach to visualize what areas of the
paired images were important for the determination of the Euclidean
distance®. In this approach, patches of NxN pixels (N=8 for retinal
photographs and N = 32 for knee radiographs) in both of the paired images
are occluded (patch area pixel intensities set to the mean of the patch),
which occurs iteratively across the entire image (stride length of 8 pixels).
The patch sizes were selected empirically based on the tradeoff between
spatial sensitivity and noise. For each iteration, both occluded images are
passed through the Siamese neural network and a Euclidean distance is
calculated. The difference is taken between this Euclidean distance and the
non-occluded baseline Euclidean distance. This difference increases when a
patch occludes an area in the image that is relevant to the Siamese neural
network, which can be represented as heat map. When evaluating disease
severity in a single image as described above, an occlusion sensitivity map is
generated for each comparison of the image of interest to an image from
the pooled “normal” images. The median of these occlusion sensitivity maps
is used for visualization. When evaluating longitudinal disease severity
change as described above, an occlusion sensitivity map is generated using
the two input images, which is used for visualization.

Data analysis

Associations between the Siamese neural network outputs and disease
severity ranking or ordinal disease severity class or class change were
calculated using Spearman’s rank correlation (p). For the binary change
detection tasks, receiving operator characteristic (ROC) and precision-recall
AUCs were calculated on the testing data using Euclidean distances.
Bootstrap 95% confidence intervals were calculated for each AUC. For a
binary label assignment by the Siamese neural network, a Euclidean
distance threshold is calculated by taking the Euclidean distance with the
maximum Youden's J statistic in the validation set. Linear Cohen’s Kappa
coefficients were calculated for binary change predictions, also with
bootstrap 95% confidence intervals. Data visualizations were implemented
using the Matplotlib, OpenCV, and Seaborn Python packages.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The i-ROP cohort study data for ROP is not publicly available due to patient privacy
restrictions, though potential collaborators are directed to contact the study
investigators (https://i-rop.github.io/). The MOST data set for knee osteoarthritis is
made publicly available from the MOST study investigators and can be requested
from them (http://most.ucsf.edu/).

CODE AVAILABILITY

The key code used for this study is available at https://github.com/QTIM-Lab/
SiameseChange.
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