
 1 

Theopolis Monk: Envisioning a Future of A.I. Public Service 

Scott H. Hawley 

Department of Chemistry & Physics, Belmont University, Nashville TN USA 

Accepted Oct 17, 2018 for inclusion as a chapter in The Transhumanism Handbook, Newton 

Lee, ed.  (Springer, 2019).  Parts of this document have appeared in serialized form at 

SuperPositionMagazine.com. 

 

“The technician sees the nation quite differently from the political man: to the technician, 

the nation is nothing more than another sphere in which to apply the instruments he has 

developed.” —Robert Merton, Forward to the English edition of Jacques Ellul’s The 

Technological Society, 1964. 

 

Part 1: A Visit to One Future 

We begin a multi-part discussion on future uses of AI for the public good, with a bit of sci-fi 

nostalgia. 

As a young person, I was a devotee of the TV show “Buck Rogers in the 25th Century,” which 

was a science-fiction retelling of the Rip Van Winkle myth. When 20th-century Buck comes 

back to Earth after being accidentally frozen in space and cryogenically preserved (it’s not really 

explained why he’s not simply killed), he is arrested as a suspected spy and assigned a public 

defender/interrogator in the form of a disk-shaped computerized intelligence (known as a 

“Quad”) named Dr. Theopolis. 
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Readers of the Gospel of Luke and the book of Acts will notice the similarity between the name 

“Theopolis” and the addressee of these New Testament books, “most excellent Theophilos.” The 

Greek name “Theophilos” (Latinized to “Theophilus”) means “friend of God,”1 whereas 

“Theopolis” means “city of God.”2 “The City of God” is a famous work by Augustine and is 

widely regarded as “a cornerstone of Western thought.”3 It describes, among other things, how 

the decline of Roman civilization was not due to the rise of Christianity and advances the notion 

of an enduring civilization based on Christian spiritual principles. The intent of the writers of 

Buck Rogers in choosing the name “Theopolis” is unclear.4 One wonders whether the writers 

had wanted to use “Theophilus” but were told “Theopolis” was easier to say or sounded better. 

Or perhaps the connection to City of God was deliberate: in the 25th century, earth society has 

recovered from a cataclysmic “holocaust” and is principally centered in New Chicago. The new 

society is an ‘enlightened’ one: even the Alexa-like home entertainment system in the apartment 

where Buck is placed under house arrest responds to the voice command “Enlighten me.” 

 

This is why the name “Theopolis” stuck out to me. The Enlightenment, with its emphasis on 

rationality over revelation, resulted in a decline in the amount of religious practice and the 

eroding of confidence in religious doctrine. Despite the fact that religious freedom is celebrated 

in Thomas Moore’s Utopia,5 and some science fiction can take a sympathetic or at least tolerant 

view toward religion,6 sci-fi typically takes a disparaging view of ‘religious superstition,’ often 

envisioning a future society freed of religious sentiments.7 Thus I found it remarkable that a 

name with religious connotations was used for a ‘positive’ character, one who takes the form of a 

public servant. 
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The society that Buck arrives in is governed by an oligarchy of sentient artificial intelligences 

(AIs) known as the Computer Council on which Dr. Theopolis, or “Theo,” sits as a chief 

scientist. According to ComicVine, he was once a human scientist whose “mind was transferred 

into a computer prior to his death,”8 but in the actual script we are told by Dr. Elias Huer that 

Theo has been programmed by other Quads: 

 

“These Quads are not programmed by man: They've been programmed by one another 

over the generations.”9 

 

Regardless of how the intelligence got ‘in there,’ in the 25th century it is running on silicon (or 

perhaps some new substrate). People in this society felt that the AIs were more trustworthy 

and/or capable than purely human representatives. Dr. Elias continues:  

 

“You see, the mistakes that we have made in areas, well, like our environment, have been 

entirely turned over to [the Quads]. And they've saved the Earth from certain doom.”  

 

(It’s almost as if humanity longed to be under the care of a benevolent superintelligence. ;-) ) 

These recollections on Buck Rogers can serve as a springboard for discussing potential positive 

future uses of AI, human consciousness, and envisioning a future ‘enlightened’ society or ‘City 

of God.’ The key observation from Buck Rogers is that the AI entities on the Computer Council 

were more or less benevolent, and were acting as public servants — this is opposed to notions of 

SkyNet or superintelligences that leave humans behind in the dust. It represents an alternate 

narrative of the future from the dystopian visions which are prevalent in science fiction today.10 



 4 

Several sci-fi creators have recently expressed a desire to intentionally bring back a sense of 

optimism (e.g., 11), that “we need more utopias” in sci-fi today, both because of the chilling 

effect of so much doom and gloom on the human spirit and because predicting the future is a 

difficult game.12 The recollection of Buck Rogers from the early 80s showcases some optimistic 

variety in the space of speculative fiction about AI. 

 

We are already living in an era of AI public servants, as machine learning (ML) statistical 

models are increasingly applied in government, healthcare and finance. Yet concerns exist 

regarding their ability to form concepts (or “representations”) and produce decisions in ways that 

are understandable by the humans whose lives are affected by the inferences of such systems.  

 

Part 2: Their Thoughts are Not Our Thoughts 

Representations and Explainability 

The deployment of artificial intelligence (AI) systems in the public sector may be a tantalizing 

topic for science fiction, but current trends in machine learning (ML) and AI research show that 

we are a long way away from the Buck Rogers scenario described in Part 1, and even if it were 

achievable it’s not clear that the AIs would ‘think’ in a way comprehensible to humans. 

 

The present rise of large-scale AI application deployment in society has more to do with 

statistical modeling applied to vast quantities of data, rather than with emulation of human 

consciousness or thought processes. Notable pioneers of AI research such as Geoffrey Hinton 

and Judea Pearl have lamented the fact that the success of some ML and neural network models 

in producing useful results as tools for tasks such image recognition has had a disastrous13 effect 
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on the progress of AI research. This is because this success has diverted efforts away from 

developing artificial general intelligence (AGI) into mere ‘curve fitting’14 for the purposes of 

processing data. 

 

In industry, science, and government, ML has been transforming practice by allowing tracking 

and prediction of user choices,15 discerning imagery from telescopes16 and medical devices,17 of 

controlling experiments,18 detecting gravitational waves,19 fighting sex trafficking,20 

and...honestly this list could go on for pages. Nearly every aspect of society is becoming ‘AI-

ified.’ As AI expert Andrew Ng points out, “AI is the new electricity,”21 in that it is having a 

revolutionary impact on society similar to the introduction of electricity. 

 

Few would claim that these ML applications are ‘truly intelligent.’ They are perhaps weakly 

intelligent in that the systems involved can only ‘learn’22 specific tasks. (The appropriateness of 

the “I” in “AI” is debated in many ways and goes back to the 1950s; it is beyond the scope of 

this article, but see the excellent review by UC Berkeley’s Michael Jordan.23) Nevertheless, these 

systems are capable of making powerful predictions and decisions in domains such as medical 

diagnosis24 and video games,25 predictions which sometimes far exceed the capabilities of the top 

humans and competing computer programs in the world.26 

 

Even given their power, the basis upon which ML systems achieve their results — e.g. why a 

neural network might have made a particular decision — is often shrouded in the obscurity of 

million-dimensional parameter spaces and ‘inhumanly’ large matrix calculations. This has 

prompted the European Union, in their recent passage of the General Data Protection Regulation 
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(GDPR, the reason for all those ‘New Privacy Policy’ emails that flooded your inbox in early 

summer 2018) to include a section of regulations which require that all model predictions be 

‘explainable.’27 

 

The question of how AI systems such as neural networks best represent the essences of the data 

they operate upon is the topic of one of the most prestigious machine learning conferences, 

known as the International Conference on Learning Representations (ICLR), which explains 

itself in the following terms: 

 

“The rapidly developing field of deep learning is concerned with questions surrounding 

how we can best learn meaningful and useful representations of data.”28 

 

While in the case of natural language processing (NLP), the representations of words — so-

called “word embeddings” — may give rise to groupings of words according to their shared 

conceptual content,29 some other forms of data such as audio typically yield internal 

representations with “bases” that do not obviously correspond to any human-recognizable 

features.30 Even for image processing, progress in understanding feature representation has taken 

significant strides forward in recent years31 but still remains a subject requiring much more 

scholarly attention. 

 

Even systems which are designed to closely model (and exploit) human behavior, such as 

advertising systems32 or the victorious poker-playing AI bot “Libratus,”33 rely on internal data 

representations which are not necessarily coincident with those of humans. (Aside: this has 
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echoes of Alvin Plantinga’s evolutionary argument against Darwinism, that selecting for 

advantageous behaviors does not select for true beliefs.34) 

 

A possible hope for human-like, explainable representations and decisions may lie in some 

approaches to so-called AGI which rely on simulating human thought processes. Those trying to 

create ‘truly intelligent’ AGI models, ones which emulate a greater range of human cognitive 

activity, see one key criterion to be consciousness, which requires such things as awareness.35 

Other criteria include contextual adaptation and constructing explanatory models,36 goal-

setting,37 and for some, even understanding morality and ethics.38 It is an assumption among 

many metaphysical naturalists that the brain is ‘computable’39 (though there is prominent 

dissent40), and thus, so the story goes, once humans’ capacity for simulating artificial life 

progresses beyond simulating nematode worms,41 it is only a matter of time before all human 

cognitive functions can be emulated. This view has prominent detractors, being at odds with 

many religious and secular scholars, who take a view of the mind-body duality that is 

incompatible with metaphysical naturalism. At present, it is not obvious to this author whether 

the simulation of human thought processes is the same thing as (i.e., is isomorphic to) the 

creation of humans “in silicon.” 

 

It is worth noting that representations are memory-limited. Thus AIs with access to more 

memory can be more sophisticated than those with less. (Note: While it’s true that any Turing-

complete42 system can perform any computation, Turing-completeness assumes infinite memory, 

which real computing systems do not possess.) A system with more storage capacity than the 

human brain could necessarily be making use of representations which are beyond the grasp of 
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humans. We see this at the end of the movie “Her,” when the machine intelligence declines to try 

to explain to the human protagonist what interactions between AIs are like.43 (Micah Redding, 

President of the Christian Transhumanist Association, has remarked that this “reminds me of 

angels in the biblical story, whose names are ‘too wonderful for you to know.’44) 

 

The implications of this (i.e., that representative power scales with available memory and could 

exceed that of humans) raises questions such as: 

• What would it mean to be governed (or care-taken) by AIs that can think ‘high above’ 

our thoughts, by means of their heightened capacity for representation? 

• How could their decisions be ‘explainable’? 

• What if this situation nevertheless resulted in a compellingly powerful public good? 

• What sorts of unforeseen ‘failure modes’ might exist? 

 

Even without AGI, such questions are immediately relevant in the present. The entire field of 

“SystemsML” is dedicated to exploring the interactions and possibilities (and failures) in the 

large-scale deployment of machine learning applications.45 These issues are currently being 

investigated by many top researchers in institutes and companies around the world. Given that 

‘we’ haven’t yet managed to even produce self-driving cars capable of earning public trust, 

further discussion of AI governance may be premature and vulnerable to rampant speculation 

unhinged from any algorithmic basis. Yet the potential for great good or great harm merits 

careful exploration of these issues. One key to issues of explainability and trust is the current 

topic of “transparency” in the design of AI agents,46 a topic we will revisit in a later part of this 

series. 
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Before we do that, we'll need to clear up some confusion about the idea of trying to use machines 

to absolve humans of our need (and/or responsibility) to work together to address problems in 

society and the environment.  

 

Part 3: The Hypothesis is Probably Wrong 

“We got this guy Not Sure…and…he’s gonna fix everything.” — Idiocracy47 

In Part 1, we reflected on a set of hopes for “benevolent” AI governance as seen in the science 

fiction TV series Buck Rogers in the 25th Century. Humanity, having brought themselves to near 

ruin with wars and ecological disasters, decided to turn over the care of their society to a 

Computer Council, whose decisions saved humanity and the planet from “certain doom.”  

 

 In Part 2, we looked ‘under the hood’ at how the representations that AI systems employ in their 

decision making can be very different from what humans find intuitive, and how the requirement 

that algorithmic decisions be “explainable” is manifesting in legislation such as the General Data 

Protection Regulation (GDPR) of the European Union.  

 

Implicit in the hopes of Part 1 and the concerns of Part 2 is a suggestion that it is the machines 

themselves who will be responsible for making the decisions. Currently, we see this as 

essentially the case in some fields, as algorithms determine who will get healthcare48 or bank 

loans,49 and even civil liberties in China such as who is allowed to book airline flights.50 

This bears asking the question, are the machines truly the ones doing the deciding, or are they 

merely ‘advising’ the humans who truly make the decisions? The answer is “Yes”: both of these 
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cases are currently happening. Humans being advised by algorithms is the norm, however, in the 

financial sector, a large class of stock trades are entirely automated, with companies agreeing to 

be legally bound by the trading decisions of their algorithms. The speed at which the trading 

algorithms can operate is both their key strength for earning money —spawning the entire field 

of “High Frequency Trading” 51— and yet their key weakness for human oversight, as in the 

“Flash Crash” of 2010 brought about by trading algorithms run amok.52 The issue of speed has 

been identified as a key issue for the oversight of a multitude of AI systems; in the words of the 

promoters of the Speed conference on AI Safety, “When an algorithm acts so much faster than 

any human can react, familiar forms of oversight become infeasible.”53 In the coming 

technological future of self-driving cars, passengers will be subject to the decisions of the driving 

algorithms. This is not the same as legal accountability. The outcomes of automated decision 

making are still the responsibility of humans, whether as individuals or corporations. Recently it 

has been debated whether to recognize AIs as legal persons,54 and ethicists such as Joanna 

Bryson and others have spoken out strongly against doing so,55 noting that the responsibility for 

the actions of such systems should be retained by the corporations manufacturing the systems: 

“attributing responsibility to the actual responsible legal agents — the companies and individuals 

that build, own, and/or operate AI,”56 not merely the individual human owners of a product.  

 

The responsibility of developers to steward their AI creations has been a concern since nearly the 

inception of AI. This is not in the sense of Frankenstein whereby the creator is obliged toward 

some sentient creature;57 there are interesting theological reflections on such a situation58 but 

they are well outside the scope of our current discussion. In fact, with respect to conceptions of 

AI for the foreseeable future, Bryson has stated forcefully that, because AIs are not persons and 
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should not be regarded as such, “We are therefore obliged not to build AI we are obliged to.”59 

Rather, the type of responsibility we speak of is the need for AI developers to be mindful of the 

intended and unintended uses of their creations, to consider the impact of their work. Norbert 

Wiener, creator of the field of cybernetics on which modern machine learning is based, also 

wrote extensively about ethical concerns, indeed he is regarded as the founder of the field of 

Computer and Information Ethics.60 His deep concerns about the ethical issues likely to arise 

from computer and information technology are developed in his 1950 book The Human Use of 

Human Beings61 in which he foretells the coming of a second industrial revolution, an age of 

automation with “enormous potential for good and for evil.” Joseph Weizenbaum, creator of the 

famous ELIZA computer program,62 the first chatbot, was outspoken on the topic of social 

responsibility both in printed form63 and in interviews. He shared that a turning point for him 

came when he reflected on the “behavior of German academics during the Hitler time”64 who 

devoted their efforts to scientific work without sufficient regard for the ends to which their 

research was applied. Weizenbaum’s remarks were taken up by Kate Crawford in her recent 

“Just an Engineer: The Politics of AI” address for DeepMind’s “You and AI” lecture series at the 

Royal Society in London,65 voicing a concern over the “risk of being so seduced by the potential 

of AI that we would essentially forget or ignore its deep political ramifications.” This need for 

responsible reflection and stewardship is particularly acute for AI systems which are intended to 

be used in social and political contexts. Noteworthy examples of this include police use of 

predictive algorithms66 and facial recognition,67 immigration control,68 and the dystopian scope 

of China’s Social Credit System,69 as well as the scandal of election propaganda-tampering made 

possible by Facebook data employed by Cambridge Analytica.70 
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It must be emphasized that most of these applications are seen by their creators as addressing a 

public need, and are thus being employed in the service of public good. The catchphrase “AI for 

Good” is now ubiquitous, forming the titles of major United Nations Global Summits,71 

foundations,72 numerous internet articles and blogs, and trackable on Twitter via the 

“#AIForGood” hashtag. The phrase’s widespread use makes it difficult to interpret; most who 

use the phrase are likely to view autonomous weapons systems as not in the interest of public 

good, whereas fostering sustainable environmental practices would be good. Yet one sees 

conflicting claims about whether AI systems could facilitate “unbiased”73 decision-making 

versus (more numerous) demonstrations of AIs becoming essentially platforms for promoting 

existing bias.74,75 One can find many optimistic projections for the use of AI for helping with the 

environment76,77,78 which include improving the efficiency of industrial process to reduce 

consumption, providing better climate modeling, preventing pollution, improving agriculture and 

streamlining food distribution. 

 

These are worthy goals, however, many rest on the assumption that the societal problems we 

face with regard to the law, to the environment and other significant areas result from a lack of 

intelligence and/or data, and perhaps also a lack of “morality.” The application of AI toward the 

solution of these problems amounts to a hypothesis that these problems admit a technical 

solution. This hypothesis is probably wrong, but to see why we should give some attention to 

why this hypothesis seems so compelling. The increasing automatization of the workplace (e.g., 

see the Weizenbaum interview for interesting insights on the development of automated bank 

tellers, ca. 198079) and the ever-growing list of announcements of human-level performance by 

AIs at a host of structured, well-defined tasks demonstrate that many challenges do admit such 
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technical solutions. A large class of these announcements in recent years involves the playing of 

games, whether they be video games, board games, card games or more abstract conceptions 

from the field of Game Theory. 

 

Game Theory has been used to model and inform both individual and collective decision-making 

and is important enough to merit political science courses dedicated to its application.80 One 

famous example of individual decision-making is the Prisoner’s Dilemma, which astronomer 

Carl Sagan extended to suggest as a foundation for morality.81 In the case of collective action, 

the Nobel-prize-winning work of John Nash (popularized in the film “A Beautiful Mind”) 

provided a framework for defining fixed points, known as “Nash equilibria” in competitive 

games. Nash proved that these equilibria exist in any finite game82 (i.e. games involving a finite 

number of players, each with a finite number of choices), such if the choices of all the other 

players are known, then no rational player will benefit by changing his or her choice. In addition 

to existence, there are algorithms that guarantee finding these equilibria,83 but they are not 

guaranteed to be unique and may not be optimal in the sense of being in the best interest of all 

players collectively, nor are they necessarily attainable for players with limited resources.84 The 

outcomes of such games can sometimes lead to paradoxical conclusions that policy-makers learn 

to take into account,85 however the particular outcomes depend strongly on the weighting of the 

relative rewards built into the game, and care must be taken before applying the results of one set 

of assumed weights to real-world situations.86 Apart from the general applicability of one 

particular solution, significant other limitations exist, such as the fact that game theory models 

are necessarily reductionistic and fail to capture complex interactions, and that human beings do 
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not behave as entirely rational agents. Noted economist and game theorist Ariel Rubinstein 

cautions,  

“For example, some contend that the Euro Bloc crisis is like the games called Prisoner’s 

Dilemma, Chicken or Diner’s Dilemma. The crisis indeed includes characteristics that are 

reminiscent of each of these situations. But such statements include nothing more 

profound than saying that the euro crisis is like a Greek tragedy. In my view, game theory 

is a collection of fables and proverbs. Implementing a model from game theory is just as 

likely as implementing a fable…I would not appoint a game theorist to be a strategic 

advisor.”87 

It is simply not evident that all societal interactions can be meaningfully reduced to games 

between a constant number of non-resource-bound rational players, and thus the application of 

game-playing — whether played by economists, mathematicians or AIs — while informative, 

does not provide a complete “technical solution.” 

 

What of the earlier claim that AIs have (so far) only demonstrated success at “structured, well-

defined tasks”? Could one not argue that the current AI explosion is precisely due to the ability 

of ML systems to solve difficult, even ‘intractable,’ problems and complete tasks which humans 

find hard to fully specify — tasks including image classifications, artistic style transfer,88 turning 

shoes into handbags,89 and advanced locomotion,90 to name a few? Is it inconceivable that, given 

the power of advancing ML systems to form representations and make predictions using vast 

datasets, they could find “connections” and “solutions” which have eluded the grasp of human 

historians, political theorists, economists, etc.? This is why the word “probably” is included in 

the phrase “the hypothesis is probably wrong,” because recent history has shown that negative 
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pronouncements about the features and capabilities of AI have a tendency to be superseded with 

actual demonstrations of such features and capabilities; generally such gaffes proceed as, “Well 

an AI could never do X,” or “AIs don’t do Y,” to be followed by someone developing an AI that 

does X, or pulling up a reference showing that AIs are doing Y as of last year. However, there is 

a difference between caution about negative predictions for the future, and the expression of a 

hope that someday, somehow AI systems will solve the world’s problems.  

 

Such a hope in the salvific power of a higher intelligence shares features with non-technical, 

non-scientific outlooks, notably religious outlooks such as the eschatological hopes of 

Christianity. With Christianity, however, there exists at least a set of historical events, rational 

philosophical arguments and personal experience which, at least in the minds of believers, 

constitute sufficient evidence to warrant such hopes, and although the characteristics of the 

Savior are (almost by definition) not fully specified, they are enumerated through textual 

testimony, and these are characteristics which would warrant entrusting the care of one’s life and 

affairs with. In contrast, the vagueness of the hope for future AI saviors has more in common 

with the “Three Point Plan to Fix Everything” expressed by the U.S. President in the movie 

“Idiocracy”: 

 

“Number one, we got this guy, [named] Not Sure. 

Number two, he's got a higher I.Q. than any man alive. 

And number three, he's gonna fix everything.”91 
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These hopes for AI ‘total solutions’ amount to a variant of the “technological solutionism” 

decried by Evgeny Morozov in his 2014 book, To Save Everything, Click Here: The Folly of 

Technological Solutionism,92 which includes the jacket-summary, “Technology,… can be a force 

for improvement—but only if we keep solutionism in check and learn to appreciate the 

imperfections of liberal democracy.”  The arrival of intelligent machines that somehow resolve 

long-standing societal conundrums and conflicts amounts to a new twist on the notion of deus ex 

machina, which historically is taken to imply a lack of continuity or precedent, and rightly 

contains a pejorative connotation implying a lack of warrant. 

 

This lack of warrant in a belief of a technological solution has its seeds in the very assumption it 

is intended to address: that the problems of society result from lack of intelligence. With respect 

to environmental concerns, this is contradicted by the observations and conclusions of the former 

dean of the Yale School of Forestry & Environmental Studies and administrator of the United 

Nations Development Programme, Gus Speth:  

 

“I used to think that top environmental problems were biodiversity loss, ecosystem 

collapse and climate change. I thought that thirty years of good science could address 

these problems. I was wrong. The top environmental problems are selfishness, greed and 

apathy, and to deal with these we need a cultural and spiritual transformation. And we 

scientists don’t know how to do that.”93 

 



 17 

Erle Ellis, director of the Laboratory for Anthropogenic Landscape Ecology expressed a similar 

doubt regarding the lack of intelligence and/or data as fundamental causes of ecological 

challenges in his essay “Science Alone Won’t Save the Earth. People Have to Do That”:  

 

“But no amount of scientific evidence, enlightened rational thought or innovative 

technology can resolve entirely the social and environmental trade-offs necessary to meet 

the aspirations of a wonderfully diverse humanity — at least not without creating even 

greater problems in the future.”94  

 

Kate Crawford, in her aforementioned talk to the Royal Society, emphasized that even the details 

of developing applications of AI systems affecting the public involve implementation choices 

which “are ultimately political decisions.”95 Thus we see the use of AI for a more just and 

harmonious society as requiring human oversight, not as obviating it. And rather than seeing AI 

resolve human disputes, data scientist Richard Sargeant predicts that “Because of the power of 

AI…there will be rows. Those rows will involve money, guns and lawyers.”96 

 

To sum up: Despite amazing success of algorithmic decision making in a variety of simplified 

domains, well-informed AI ethicists maintain that the responsibility for those decisions must 

remain attached to humans. Having a ML system able to make sense of vast quantities of data 

does not seem to offer a way to circumvent the necessary “cultural and spiritual” and “political” 

involvement of humans in the exercise of government because the assumption that the political, 

environmental and ethical challenges of our world result from lack of intellect or data is 

incorrect, and the hypothesis that these problems admit a technical solution is self-contradictory 
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(because the technical solutions require human political activity for design and oversight). The 

desire for such a relief from these human communal conflict-resolution processes amounts to a 

form of hope akin to religious eschatology, which may be warranted for adherents of faith, but is 

inconsistent with the trajectory of technical developments in ML applications. Thus, we are left 

with AI as a tool for humans: We may make better decisions by means of it, but it is we who will 

be making them; abdicating to machines is essentially impossible.  

 

All this is not to say that AI can’t be used by people for many powerful public goods — and 

evils! As Zynep Tufecki famously remarked. “Let me say: too many worry about what AI—as if 

some independent entity—will do to us. Too few people worry what power will do with AI.”97 

In the next section, we highlight some of these uses for AI in service to secular society as well as 

to the church as a class of applications I will term “AI monks.”  

 

Part 4: Servant and Sword 

Or, Uses of AI: The Good, the Bad, and the Holy 

In exploring the potential use of AI for public service, we have veered from the purely 

speculative narrative of an AI-governed utopia (in Part 1), to concerns about how such systems 

might be making their decisions (in Part 2), to a resignation that humans probably will not be 

removable from the process of government, and instead find AI to be a powerful tool to be used 

by humans (in Part 3). And even though we’ve already covered many possible uses of AI, and 

the daily news continually updates us with new ones, in this section we will cover an overview of 

various “public” applications of AI with perhaps a different structure than is often provided: The 

Good, the Bad, and the Holy.  
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A. What Isn’t AI? 

Before we go into that, it is finally worth talking about what we mean by the term “artificial 

intelligence.” Why wait until the fourth installment to define terms? Because this particular term 

is so difficult to pin down that it’s often not worth trying. As I argue in a separate essay,98 trying 

to answer the question “What is AI?” leads one into multiple difficulties which I will briefly 

summarize here: 

1. Too Many Definitions. There are a variety of definitions which different people 

employ, from the minimal “doing the right thing at the right time,” to nothing short of 

artificial general intelligence (AGI) where all human cognitive tasks are emulated to 

arbitrary satisfaction. One particularly insightful definition is on the level of folklore: 

“AI is machines doing what we used to think only humans could do.” 

2. The New Normal. The collection of applications regarded to be AI is ever changing, 

making the term a moving target and trying to define it amounts to chasing after the 

wind. On the one hand, applications which used to be regarded as AI when they were 

new, become regarded merely as automated tasks as they become “reified” into the 

background of “The New Normal” operations of our lives, and thus part of the list of AI 

applications decreases over time. On the other hand, methods and techniques which 

have been around for centuries — such as curve-fitting — are now regarded as AI; as 

“AI hype” grows, it seems that “everything is AI” and the list of AI tasks and methods is 

thus increasing.  

3. Anthropomorphism. A final, insurmountable hurdle is the challenge of 

anthropomorphism, the unavoidable human tendency to ascribe human faculties and/or 
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intentions to entities in the world (whether animals, machines, or forces of nature). This 

amounts to a cognitive bias leading one to overestimate AIs’ human-like capabilities, an 

error known as “overidentification.”99 

 

A host of the devices we use every day contain “artificial intelligence” endowed to them by 

human engineers to improve upon previous devices which required greater user setup, tuning 

and/or intervention. For example, computer peripherals and expansion cards used to require 

manual configuration by the user such as the setting of jumpers or DIP switches on circuit 

boards, but this was obviated by the rise “Plug and Play” standards for peripherals and busses100 

and network hardware101 which automate the allocation (or “negotiation”) of resources and 

protocols between devices. Another example: The cars we drive are largely drive-by-wire 

devices with computer systems designed to adaptively adjust the car’s performance, expertise 

programmed-in. Programmed-in expertise “used to count” as AI in the minds of some but tended 

to vary from application to application. The 2018 “AI in Education” conference in London saw 

posters and workshops showcasing computer systems that lacked evidence of learning or 

adaptivity, and were merely tutor-style quiz programs,102 and yet these were regarded to be “AI” 

in the eyes of the peer-review conference organizers, presumably because the tasks the programs 

performed were similar to (some of) the work of human tutors. 

 

The point of this discussion is that when we intend to speak of “uses of AI” it is worthwhile to 

consider that we are already using many “AI” systems that we simply don’t regard as such, 

because the tasks they perform are “solved” and their deeds “reified” into what we consider to be 

“normal” for our current technological experience. Furthermore, if by “uses of AI” we simply 
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mean regression or classification inferences based on curve-fitting to large datasets, we could 

just as easily (and with greater specificity) say “uses of statistics” instead. The intent here is not 

to limit the use of the term “AI” as only referring to fictitious sentient machines, but to be 

cognizant of the multifaceted, subjective and mercurial applicability that the term carries. 

 

“What isn’t AI?” isn’t necessarily any clearer of a question than “What is AI?” I used the phrase 

simply to note that in the current hour, with the bounds of “AI” extending outward via hype, and 

the prior examples of AI fading into the background via reification, we do well to be aware of 

our terminological surroundings.  

 

B. The Good 

As noted earlier, the list of wonderful things AI systems are being used for in public service is 

growing so large and so quickly (almost as quickly as the number of societies, conference 

institutes and companies dedicated to “AI for Good”) that citing any examples seems to be 

pedantic on the one hand and myopic on the other. Nevertheless, here are just a few that may 

pique interest: 

1. Saving the Coral.103 Dr. Emma Kennedy led a team conducting imaging surveys of 

Pacific reefs and used image classification (AI) models to “vastly improve the efficiency 

of” analyzing the image to discern which reefs were healthy and which were not. Data 

from this work will be used to target specific reefs areas for protection and enhanced 

conservation efforts. The use of image classifiers to speed the analysis of scientific data is 

advancing many other fields as well, notably astronomy.104 
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2. Stopping Sex Traffickers.105 Nashville machine learning (ML) powerhouse Digital 

Reasoning developed their Spotlight software in collaboration with the Thorn non-profit 

agency funded by actor Ashton Kutcher, to track and identify patterns consistent with 

human slavery so that law enforcement could intervene. According to Fast Company in 

March 2018, “The system has helped find a reported 6,000 trafficking victims, including 

2,000 children, in a 12-month period, and will soon be available in Europe and 

Canada.”106 

3. Medical Applications(?). In recent years, numerous claims have surfaced of AI systems 

outperforming doctors at various tasks, such as diagnosing conditions such as skin 

cancer,107 pneumonia,108 and fungal infections,109 as well as predicting the risk of heart 

attacks110 — sufficient to spawn an official “AI vs. Doctors” scoreboard at the IEEE 

Spectrum website.111 But some of these results have come into question. The pneumonia 

study that used the “CheXNet” software was trained on an inconsistent dataset and made 

claims exceeding what the results actually showed.112 In another famous example, IBM’s 

Watson AI system was promoted by its creators as a way to deliver personalized cancer 

treatment protocols,113 but when it was revealed that the system performed much worse 

than advertised,114 IBM went quiet and its stock price began to sink. There are great 

opportunities for beneficial medical applications of AI; one can hope that these setbacks 

encourage responsible claims of what such systems can do. Meanwhile, some of the 

greatest inroads for successful medical AI applications involve not diagnosis or image 

analysis, but rather natural language processing (NLP): processing records, generating 

insurance codes, and scanning notes from doctors and nurses to look for red flags.115  
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C. The Bad 

Hollywood has given us plenty of ‘evil’ AI characters to ponder —there are lists of them.116 

These are sentient artificial general intelligences (AGI) which exist only in the realm of fiction. 

The problem with this is that plenty of other real and immediate threat vectors exist, and the 

over-attention to AGI serves as a distraction from these. As Andrew Ng publicly complained,  

 

“AI+ethics is important, but has been partly hijacked by the AGI (artificial general 

intelligence) hype. Let's cut out the AGI nonsense and spend more time on the urgent 

problems: Job loss/stagnant wages, undermining democracy, discrimination/bias, wealth 

inequality.”117  

 

This is echoed in the call by Zeynep Tufecki: “let’s have realistic nightmares”118 about 

technological dangers. One such realistic nightmare is the use of AI by humans who may have 

selfish, nefarious or repressive goals, and may be regarded as weaponized AI. Here we should 

revisit the words of Tufekci that appeared in Part 2: 

 

“Let me say: too many worry about what AI—as if some independent entity—will do to 

us. Too few people worry what power will do with AI.”119 

 

Here are a few people who have worried about this: 

1. Classification as Power. At SXSW 2017, Kate Crawford gave an excellent speech on 

the history of oppressive use of classification technology by governments,120 such as the 

Nazis’ use of Hollerith machines to label and track ‘undesirable’ or ‘suspect’ groups. In 
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the past such programs were limited by their inaccuracy and inefficiency, but modern ML 

methods offer a vast performance ‘improvement’ that could dramatically increase the 

power and pervasiveness of such applications. In the Royal Society address mentioned 

earlier,121 she quoted Jamaican-born British intellectual Stuart Hall as once saying 

“systems of classification are themselves objects of power.”122 She then connected these 

earlier applications with current efforts in China to identify ‘criminality’ of people based 

on their photographs,123 a direct modern update of the (discredited) ‘sciences’ of 

physiognomy and phrenology. She concluded that using AI in this way “seems like 

repeating the errors of history…and then putting those tools into the hands of the 

powerful. We have an ethical obligation to learn the lessons of the past.”124 

2. Multiple Malicious Misuses. In February 2018, a group of 26 authors from 14 

institutions led by Miles Brundage released a 100-page advisory entitled “The Malicious 

Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation.”125 The report 

recommended practices for policymakers, researchers and engineers, including actively 

planning for misuse of AI applications, and structured these recommendations around the 

three areas of digital security, physical security, and political security. The first two are 

frequent topics among IT professionals —albeit without the AI context — however the 

third is perhaps new to many readers. Brundage et al. define political security threats to 

be  

“The use of AI to automate tasks involved in surveillance (e.g. analysing mass-

collected data), persuasion (e.g. creating targeted propaganda), and deception (e.g. 

manipulating videos) may expand threats associated with privacy invasion and 

social manipulation. We also expect novel attacks that take advantage of an 



 25 

improved capacity to analyse human behaviors, moods, and beliefs on the basis of 

available data. These concerns are most significant in the context of authoritarian 

states, but may also undermine the ability of democracies to sustain truthful 

public debates.”  

As we have already cited from various news outlets, such misuses are not mere 

potentialities. 

3. Slaughterbots. In 2017 The Future of Life Institute produced a video by Stuart 

Russell (of “Russell & Norvig,” the longtime-standard textbook for AI126) called 

“Slaughterbots”127 to draw attention to the need to oppose autonomous weapons systems 

(AWS) development, which they term “killer robots”: “weapons systems that, once 

activated, would select and fire on targets without meaningful human control.”128 In this 

video, tiny quadcopter drones endowed with shaped explosive charges are able to target 

individuals for assassination using facial recognition. The use of AI allows the drones to 

act autonomously, with two main implications: 1. the weapons system can scale to 

arbitrarily large numbers of drones — the video shows thousands being released over a 

city — and 2. the lack of communication with a central control system provides a 

measure of anonymity to the party deploying the drones. 

 

D. The Holy:  

In addition to AI systems which might serve the public at large, one might consider applications 

benefitting the church. Here I am concerned with applications of ML systems, not AGIs. 

Questions regarding the personhood of AGIs and the roles and activities available to them — 

would they have souls, could they pray, could they be ‘saved,’ could they be priests, could they 



 26 

be wiser than us, and so on — are beyond the scope of this article, but can be found in many 

other sources.129,130,131 Answers to these would be determined by the ontology ascribed to such 

entities, a discussion which is still incomplete.132 There are still other interesting topics regarding 

present-day ML systems worth investigating, which we describe briefly here. 

1. Dr. Theophilus, an AI “Monk.” For much of church history, the scholarly work of 

investigating and analyzing data of historical, demographic or theological significance 

was done by monks. In our time, one could imagine AI systems performing monk-like 

duties: investigating textual correlations in Scripture, predicting trends in missions or 

church demographics, aiding in statistical analysis of medical miracle reports, aiding in 

(or autonomously performing) translation of the Bible or other forms of Christian 

literature, or analyzing satellite images to make archaeological discoveries.133 

2. Chatbots for the Broken. London-based evangelism organization CVGlobal.co use ML 

for content recommendation (“if you liked this article, you might like”) for their “Yes He 

Is” website,134 and also have developed a “Who is Jesus” chatbot to respond to common 

questions about the person of Christ, the message of the gospels, and some typical 

questions that arise in apologetics contexts. This is essentially the same program as those 

used by major corporations such as banks135 to answer common questions about their 

organizations. One can argue over whether this removes the ‘relational’ element of 

witnessing in a ‘profane’ way; the structure of such a tool amounts to turning an “FAQ” 

page (e.g. “Got Questions about Jesus?”136) into an interactive conversational model. 

Relatedly, researchers at Vanderbilt University have gained attention for their use of ML 

to predict the risk of suicide,137 and apps exist for tracking mental and spiritual health,138 
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and thus a call for has gone out for investigating predictive models in mental and spiritual 

counseling.139 

3. Being Engaged with AI Ethics. This is more of an opportunity for engagement rather 

than a use of AI. Discussions on topics affecting society such as those described in this 

document should not be limited to only secular, non-theistic sources. There are 

significant points of commonality between Christian worldviews and others on topics 

involving affirming human dignity and agency, resisting the exploitation and oppression 

of other human beings, and showing concern for the poor and others affected 

economically by the automation afforded by AI.140,141 The world at large is interested in 

having these discussions, and persons informed by wisdom and spiritual principles are 

integral members at the table for providing ethical input. We will revisit the topic of 

foundations for ethics in Part 5. 

 

E. A Tool, But Not “Just a Tool” 

In casting AI as a tool to be used by humans “for good or evil,” we shouldn’t make the mistake 

of thinking all tools are “neutral,” i.e., that they do not have intentions implied by their very 

design. As an example of this, the Future of Humanity’s information page on “AI Safety Myths” 

points out, “A heat-seeking missile has a goal.”142 Referring to our earlier list of uses: while it is 

true that stopping sex trafficking is “good” and repressing political dissidents is “bad,” both are 

examples of surveillance technology, which by its nature imposes a sacrifice of personal privacy. 

(The tradeoff between security and privacy is an age-old discussion; for now we simply note that 

AI may favor applications on the security side.) 
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Sherry Turkle of MIT chronicled the introduction of computers into various fields in the early 

1980s, and observed that those asserting that the computer was “just a tool” indicated a lack of 

reflection: “Calling the computer ‘just a tool,’ even as one asserted that tools shape thought, was 

a way of saying that a big deal was no big deal.”143 Turkle cited the famous question of architect 

Louis Kahn, asking a brick what it wants —“‘What do you want, brick?’ And brick says to you, 

‘I like an arch’”144 — and she asked the new question “What does a simulation want?” In the 

words of those she interviewed, simulations favor experimentation. The results of its use include 

a disconnect from reality (“it can tempt its users into a lack of fealty to the real”), and as a 

consequence, users must cultivate a healthy doubt of their simulations.  

  

Thus we do well to ask: What does an AI ‘want’? What forms of usage does it favor? What sorts 

of structures will it promote and/or rely on? (Keep in mind, we are referring here to modern ML 

algorithms, not fictional sentient AGIs.) We conclude this section by briefly answering each of 

these. 

0. Like any piece of software, AI wants to be used. This led to Facebook employing 

psychological engineering to generate “eyeball views” and addictive behavior,145 

including experimenting on users without their consent and without ethical oversight.146 

The more use, the more data, which fits in with the next point: 

1. An AI Wants Data. Given their statistical nature, the rise of successful ML algorithms is 

closely linked with the rise in availability of large amounts of data (to train on) made 

possible by the internet,147 rather than from improvements in the underlying algorithms. 

This even motivates some ML experts to advocate improving a model’s performance via 

getting more data rather than adjusting an algorithm.148 It may be said that ML systems 
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are data-hungry, and data-hungry algorithms make for data-hungry companies and 

governments. Thus we see the rise of tracking everything users do online for the purposes 

of mining later, and Google contracting with the healthcare system of the UK for the 

exchange of user data.149 

2. An AI Wants “Compute.” A corollary of #1. In order to ‘burn through’ gargantuan 

amounts of data, huge computational resources are required. This is the other reason for 

the rise of ML systems: significant advances in computing hardware, notably graphics 

processing units (GPUs). Thus, vast data centers and server farms have arisen, and the 

energy consumption of large-scale AI systems is an increasing environmental concern.150 

In response, Google has built dedicated processing units to reduce their energy 

footprint,151 but with the growth of GPU usage significantly outpacing Moore’s Law,152 

this energy concern isn’t going away. Some are proposing to distribute the computation 

to low-power onboard sensors,153 which is also likely to occur. Either way, “AI wants 

compute.” 

3. AI Tempts Toward ‘Magic Box’ Usage. “Give the system a bunch of inputs, and a 

bunch of labeled outputs, and let the system figure out how to map one to the other.” So 

goes the hope of many a new ML application developer, and when this works, it can be 

fun and satisfying (see, e.g., some of my own experiments154). This can be one of the 

strengths of ML systems, freeing the developer from having to understand and explicitly 

program how to map complicated inputs to outputs, allowing the “programmer” to be 

creative, such as with Rebecca Fiebrink’s Wekinator ML tool for musicians.155 But this 

can also encourage lazy usage such as the “physiognomy” applications cited by Kate 

Crawford, and biased models which accidentally discriminate against certain groups (of 
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which there too many instances to cite). As with simulation, users should cultivate a 

healthy doubt of their correlations.  

 

Finally, in terms of what other structures AI will promote and/or rely on, we should remember 

the general warnings on technological development by Christian philosopher Jacques Ellul. In 

The Technological Society, Ellul cautioned that “purposes drop out of sight and efficiency 

becomes the central concern.”156 Furthermore, Ellul noted that successful technological 

development tends to become self-serving, as we have all inherited the nature of Cain, the first 

city-builder who was also the first murderer.157 In the next section, we will relate some current 

conversations aimed at keeping AI development and government oriented toward serving people.  

 

 

Part 5: Further Fertile Fields 

Five “AI Ethics & Society” conversations to follow 

For the closing section, I have selected five areas of current conversation that I find to be 

particularly worth paying attention to. This section is not exhaustive or authoritative. 

 

A. Bias  

A popular conversation in recent years is the topic of biased machine learning models, such as 

those which associate negative connotations with certain races158 or predict employability on the 

basis of gender,159 although such occurrences are nothing new to statisticians, and have been 

equally attributed to “Big Data” as much as to AI.160 There are numerous conversations 

regarding how to “fix” bias161 or at least detect, measure and mitigate it.162 While these are 
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important and worthy efforts, one can foresee that as long as there are bad statisticians – i.e., 

people doing sloppy statistics — there will be biased models. And machine learning (ML) 

automates bad statistics (though typically not through the algorithms involved but through the 

datasets used to train the models). Thus the problem of bias is both a current topic and one which 

is likely to remain relevant for some time to come. 

 

B. Black Boxes vs. Transparency 

In Part 2 we mentioned requirements that algorithmic decisions should be “explainable,”163 as 

opposed to “opaque”164 systems which function as “black boxes.”165,166 Two main approaches 

present themselves: 

1. Probing Black Boxes. One approach is to use various methods to probe black box 

systems, by observing how they map inputs to outputs. Examples include learning the 

decision rules of systems in an explainable way (and even mimicking the existing 

system)167 and extracting “rationales”168 — short textual summaries of significant input 

data. A related approach involves mapping entire subsets at a time to predict the 

“boundaries” of possible outputs from a system, e.g. for safety prediction.169 

2. Transparency As a Design Requirement. For several years, there have been calls to 

produce systems which are transparent by design.170 Such considerations are essential for 

users to form accurate mental models of a system’s operation,171 which may be a key 

ingredient to fostering user trust.172 Further, transparent systems are essential for 

government accountability and providing a greater sense of agency for citizens.173 But 

how to actually design useful, transparent interfaces for robots174,175 and computer 

systems in general176 remains an active area of research, both in terms of the designs 
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themselves and in measuring their effects with human users — even when it comes to the 

education of data science professionals.177 One cannot simply overwhelm the user with 

data. This is particularly challenging for neural network systems, where the mapping of 

high-dimensional data exceeds the visualization capacities of humans, and even on 

simple datasets such as MNIST, dimensionality-reduction methods such as t-SNE178 and 

interactive visualizations179 can still leave one lacking a sense of clarity. This is an active 

area of research, with two particularly active efforts by the group at the University of 

Bath (Rob Wortham, Andreas Theodorou, and Joanna Bryson)180 and by Chris Olah.181 

It’s also worth mentioning the excellent video by Brett Victor on designing for 

understanding,182 although this is not particular to algorithmic decision making.  

One ‘hybrid’ form of the two above approaches involves providing counterfactual statements, 

such as in the example, “You were denied a loan because your annual income was £30,000. If 

your income had been £45,000, you would have been offered a loan.”183 The second statement is 

a counterfactual, and while not offering full transparency or explainability, provides at least a 

modicum of guidance. This may be a minimal prescription for rather simple algorithms, although 

for complex systems with many inputs, such statements may be difficult to formulate.  

 

C. AI Ethics Foundations 

In reading contemporary literature on the topic of “AI Ethics,” one may not frequently see people 

stating explicitly where they’re coming from, in terms of the foundations of their ethics, and 

rather one often sees the “results,” i.e. the ethical directives built upon those foundations. Joanna 

Bryson, whom we’ve cited many times, is explicit about working from a framework of 
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functionalism,184 which she applies to great effect, and reaches conclusions which are often in 

agreement with other traditions. Alternatively, philosopher Shannon Vallor (co-chair of this 

year’s AAAI/ACM conference on AI, Ethics and Society) in her book, Technology and the 

Virtues: A Philosophical Guide to a Future Worth Wanting,185 advocates the application of virtue 

ethics to matters of technological development. Virtue ethics provides a motivation toward good 

behavior on the principle of “excellence” of character, leading to the greatest thriving of the 

individual and thus of society. Drawing from the ancient traditions of Aristotelianism, 

Confucianism, and Buddhism, and religious parallels in Christian and Islamic thought, and 

western philosophical treatises such as those of Immanuel Kant and the critiques by Nietzsche, 

Vallor develops an adaptive framework that eschews rule-based pronouncements in favor of 

“technomoral flexibility,” which she defines as “a reliable and skillful disposition to modulate 

action, belief, and feeling as called for by novel, unpredictable, frustrating, or unstable 

technosocial conditions.” In the Christian tradition, Brent Waters has written on moral 

philosophy “in the emerging technoculture,”186 and while not addressing AI in particular, many 

of his critiques provide somewhat of a (to borrow some jargon from machine learning) 

“regularizing” influence enabling one to approach the hype of AI development in a calm and 

reflective manner.  

 

D. Causal Calculus 

If neural networks and their ilk are mere “correlation machines”187 akin to polynomial 

regression,188 how can we go from correlation to inferring causality? Put differently, how can we 

go from “machine learning” to “predictive analytics”?189 Turing Award winner Judea Pearl in his 

2018 book The Book of Why190 (aimed at a more popular audience than his more technical 
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Causality191) offers a set of methods termed “causal calculus” defined over Bayesian Networks 

(a term coined by Pearl).192 This book has generated many favorable reviews from within the AI 

community and has been regarded as contributing an essential ingredient toward the 

development of more powerful, human-like AI.193 In a 2018 report to the Association of 

Computing Machinery (ACM),194 Pearl highlights seven tasks which are beyond the reach of 

typical statistical learning systems but have been satisfied using causal modeling. Many further 

applications by other researchers of this method are likely to appear in the near future.  

 

E. Transformative AI 

One does not need to have fully conscious, sentient AGI in order to have AI that can still have a 

severely disruptive and possibly dangerous impact on human life on a large scale. Such systems 

will likely exhibit forms of superintelligence195 across multiple domains, in a manner not 

currently manifested in the world (i.e., not in the familiar forms of collective human action, or 

artifact-enhanced human cognition). Planning to mitigate risks associated with such outcomes 

comprises the field of AI Safety.196 In late September 2018, the Future of Humanity Institute 

released a report by Allan Dafoe entitled AI Governance: A Research Agenda in which he 

“focuses on extreme risks from advanced AI.”197 Dafoe distinguishes AI Governance from AI 

Safety by emphasizing that safety “focuses on the technical questions of how AI is built” 

whereas governance “focuses on the institutions and contexts in which AI is built and used.” In 

describing risks and making recommendations, Dafoe focuses on what he calls “transformative 

AI (TAI), understood as advanced AI that could lead to radical changes in welfare, wealth, or 

power.” Dafoe outlines an agenda for research which seems likely to be taken up by many 

interested researchers. 



 35 

 

Summary  

Starting from an optimistic view of a future utopia governed by AIs who make benevolent 

decisions in place of humans (with their tendency toward warfare and abuse of the environment), 

we have noted that AI systems are unlikely to represent the world or other concepts in ways 

which are intuitive or even explainable to humans. This carries a risk to basic civil liberties, and 

efforts to make such systems more explainable and transparent are actively being pursued. Even 

so, such systems will and simply do require human political activity in the form of 

implementation choices and auditing such as checking for bias, and thus humans will remain the 

decision-makers, as they should be. While the unlikelihood of the realization of a quasi-religious 

hope of future AI saviors may be disappointing to science fiction fans, it means, in the words of 

Christina Colclough, (Senior Policy Advisor, UNI Global Union), that we can avoid 

“technological determinism” and we can talk about and “agree on the kind of future we want.”198 

We have seen that AI is a powerful tool for good and for evil, and yet it is not “neutral”: it 

prefers large amounts of data (which may involve privacy concerns), large computing resources 

and thus large energy consumption, and may favor unreflective “magical thinking” which 

empowers sloppy statistics and biased inferences. Drawing causal inferences from the 

correlations of machine learning is problematic, but work in the area of causal modeling may 

allow for much more powerful AI systems. These powerful systems may themselves become 

transformative existential threats and will require planning for safety and governance to ensure 

that such systems favor human thriving. The conception of what constitutes human thriving is an 

active area of discussion among scholars with diverse ideological and religious backgrounds, and 
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is a fertile area for dialog between these groups, for the goal of fostering a harmonious human 

society.  
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