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Abstract

It would be good to have a Bayesian decision theory that assesses our
decisions and thinking according to everyday standards of rationality—
standards that do not require logical omniscience (Garber 1983, Hacking
1967). To that end we develop a “fragmented” decision theory in which
a single state of mind is represented by a family of credence functions,
each associated with a distinct choice condition (Lewis 1982, Stalnaker
1984). On the resulting theory, rationality requires ordinary agents to
be logically competent and to engage in trains of thought that increase
the unification of their states of mind. But rationality does not require
ordinary agents to be logically omniscient.
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1 Standard decision theory is incomplete

Professor Moriarty has given John Watson a difficult logic prob-
lem and has arranged for a bomb to explode unless Watson gives
the correct answer by noon. Watson has never thought about
that problem before, and even experienced logicians take hours
to solve it. It is seconds before noon.

Watson is then informed that Moriarity has accidentally left the
answer to the problem on a note attached to the back of the bomb.
Watson’s options are to look at the note or to give an answer of
his choice without looking at the note. Is it rationally permissible
for Watson to look at the note?

The answer is elementary: it is rationally permissible.
Someone might object that only a logically omniscient agent could be

fully rational, and therefore that Watson is required to be certain of the
correct answer to the logic puzzle (and to give that answer). Even so, we
hope the objector would agree that there is a sense in which, given Watson’s
limited cognitive abilities, it is rational, reasonable, or smart for Watson look
at the note.1,2

Unfortunately, standard Bayesian decision theory (as it is usually applied)
fails to deliver any sense in which it is rationally permissible for Watson
to look at the note. For it represents the degrees of belief of an agent as a
probability function satisfying the standard probability axioms. And on the
usual way of applying these axioms to a case like Watson’s, they entail that
Watson assigns probability 1 to every logical truth, including the solution
to Moriarity’s logic problem.3 But if Watson is certain of the solution from

1The Watson case is structurally similar to the “bet my house” case from Christensen
(2007, 8–9). For arguments that seek to differentiate between “ordinary standards of ra-
tionality” (according to which logical omniscience is not required) and “ideal standards”
(according to which it is), see Smithies (2015).

2Compare: even an objective Bayesian who counts some prior probability functions as
irrational might have use for a decision theory that says what decisions are rational, given a
particular (perhaps irrational) prior.

3For important early discussions of how the assumption that logical truths gets proba-
bility 1 makes trouble for decision theory, see Savage (1967, 308) and Hacking (1967). For
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the start, the small effort required to look at the note would offer no gain.
It would therefore follow from the rule of maximizing utility that it is not
rationally permissible for him to look at the note.

The above example shows that standard Bayesian decision theory is
incomplete. Can we develop a decision theory that correctly assesses the
behavior of agents like Watson, who satisfy everyday standards of rationality
without being logically omniscient?4 And can we model the logical and
mathematical thinking of such agents?

2 Rationality requires at least partial coherence

Getting a decision theory for agents who fail to be logically omniscient
might seem simple: just remove the assumption of logical omniscience from
decision theory! To do that, one might (1) take credence functions to be
defined over an appropriate set of fine-grained entities (which we will for

more recent discussions, see for example Easwaran (2011, §2.2), Seidenfeld et al. (2012), and
Dogramaci (2018b).

There are many varieties of Bayesianism and many decision theories, and hence many
theories that are reasonable candidates for the name “standard Bayesian decision theory”.
Bayesian frameworks such as Earman (1992) and Kaplan (1996) take the objects of probability
to be sentences, and adopt axioms that entail that logical truths get probability 1. Other
frameworks take the objects of probability to be the members of an algebra of propositions
(which are often taken to be sets of elementary possibilities) and assign probability 1 to
necessary propositions (Jeffrey 1965, Joyce 1999, Lewis 1981, Savage 1954). On the standard
way of applying such frameworks to the case of Watson, what determines what Watson
should do is his opinion on the solution to the puzzle. On the sentential approach, sentences
that express the solution to the puzzle are logical truths, and hence are always assigned
probability 1. On the propositional approach, any proposition expressing the solution to the
puzzle is a necessary truth, and hence is always assigned probability 1.

4We take this challenge to be an interesting part (though not the only part) of what
is sometimes called the “problem of logical omniscience” (Hintikka 1975). Much of the
existing work on the problem of logical omniscience does not address the topic of the present
paper: the problem of giving a probabilistic decision theory for logically non-omniscient
agents. Instead, much work focuses on adapting Kripke models for all-or-nothing belief or
knowledge to accommodate omniscience failures. On the connection between the problem
of logical omniscience in the all-or-nothing belief and probabilistic belief contexts, see Cozic
(2006, 56). For a survey of approaches to the problem of logical omniscience, see Halpern
and Pucella (2011). Works that address probabilistic versions of the problem of logical
omniscience include Dogramaci (2018b), Gaifman (2004), Garber (1983), Hacking (1967),
Hoek (2019), Lipman (1999), Parikh (2008), Pettigrew (2020), Seidenfeld et al. (2012), Skipper
and Bjerring (2020).
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the moment assume to be sentences), but (2) refrain from imposing the usual
coherence requirements (such as the requirement that logically equivalent
sentences get the same credence).5

There are a few theoretical questions that need to be answered in order
to get this approach off the ground (see Appendix A). But suppose for the
sake of argument that they have been addressed and that we have a decision
theory according to which imperfect agents like Watson have incoherent
credence functions. In such a framework, Watson might have low credence
in a sentence that expresses the solution to Moriarity’s logic puzzle, even
if that sentence is a logical truth. If so, we get the desired result that it is
rational for Watson to look at the note.

Still there would be something missing. For although everyday standards
of rationality allow for some failures of logical omniscience, not just anything
goes. For example, assuming Watson understands the logical connectives,
it would be irrational for him to assign more credence to “it is sunny and
windy” than to “it’s sunny”. And the same would go for assignments
that violate other obvious logical entailments. But were we to discard the
standard probabilistic coherence assumptions altogether, nothing would rule
out such assignments.6

A bit of terminology: For q a (perhaps incoherent) credence function that
assigns a real number to each sentence of an appropriate language, say that q
respects an entailment from A to B when q(A) ≤ q(B).7 The above discussion
suggests that some entailments—call them the “obvious” ones—are such

5Prior work in this spirit includes Caie (2013), Dogramaci (2018a,b), Gaifman (2004),
Hacking (1967), Staffel (2015), Zynda (1996). Related work that allows for incoherent
previsions (betting rates) defined over a space of elementary possibilities includes Schervish
et al. (2003), Seidenfeld et al. (2012).

6Works recognizing the need for coherence requirements on agents that fall short of full
coherence include Hacking (1967), Gaifman (2004), Bjerring (2013), Jago (2014), Elga and
Rayo (2017), Dogramaci (2018b), and Skipper and Bjerring (2020). The papers by Bjerring,
Jago, Skipper and Bjerring, and our own earlier work also include variants of the argument
below, which shows that it’s hard to respect obvious entailments without respecting all
entailments.

7We use “q” rather than “P” to emphasize that q is defined over sentences rather than
propositions, and that q is not assumed to satisfy the ordinary coherence axioms. Later in
the paper we will work with probability functions defined over propositions understood as
sets of possible worlds and will use “P” to refer to such functions.

3



that all rational agents have credence functions that respect them. So what
seems to be needed is a way of requiring a credence function to respect all
obvious entailments without requiring it to respect any non-obvious ones.

Unfortunately, there is no such way.
To see why, let 〈A1, A2, . . ., An〉 be any chain of entailments (sequence

of sentences, each of which entails the next). Then if a credence function q
respects each successive entailment in the chain, it also respects the one-step
entailment from A1 to An. (Proof: by the transitivity of the less-than relation
amongst real numbers, q(A1) ≤ q(A2) ≤ · · · ≤ q(An) entails q(A1) ≤
q(An).)

This observation leads to trouble because, on any interesting way of
spelling out “obvious”, chaining together obvious entailments can result
in a non-obvious one. For example, many proofs and mathematical calcu-
lations lead to non-obvious conclusions by way of obvious steps. Moral:
there is no way to require a credence function to simultaneously respect all
obvious entailments without also requiring it to respect some non-obvious
entailments.

So a challenge remains: how can we require that an agent’s credences
reflect logical competence without requiring the agent to be logically omni-
scient?

In the next few sections we develop an answer to this challenge. The
crucial move will be to drop the assumption that a subject’s decision-theoretic
state is represented by a single credence function. We will instead adopt
fragmented decision theory, according to which an agent at a time may have
multiple credence functions.8 Let us explain.

8We do not claim that fragmented decision theory is the only attractive way out of the
dilemma—just that it is one approach worth investigating. A salient alternative approach
(fruitfully developed in Skipper and Bjerring (2020, §3)): don’t posit fragmentation, but
instead impose novel constraints on how an agent’s credence function changes over time.
Articulating the relevant constraints requires a substantial bit of theorizing since (as we have
seen) simply discarding the coherence conditions does not produce a theory that imposes
strong enough logical competence constraints. But that is not intended as a criticism. Indeed,
our own proposal could be adapted to develop adequate constraints for a dynamic account.
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3 A decision-theoretic state can be represented by multiple credence functions

Fragmented decision theory is based on the idea—pioneered by Lewis (1982,
436) and Stalnaker (1984, Chapter 5)—that the across-the-board notion of
information possession should be replaced with a notion of information
accessible relative to a condition.

To see how this idea might be motivated, note that information can
be represented in a way that makes it accessible for some purposes, but
inaccessible for others (Stalnaker 1991, 437–438). Consider, for example, a
pair of crossword-puzzle solvers trying to fill in the blanks below to complete
a word of English:

M T

The first puzzlist fills in just the right letters. The second scratches his head
and leaves the puzzle blank. Suppose further that each puzzlist knows that
dreamt is a word of English, and knows how to spell it. Indeed, each puzzlist
realizes from the start that dreamt is a word of English that ends in MT.9

So why is one puzzlist disposed to fill in the blanks with DREA, while
the other is disposed to gnash his teeth, curse, and fill in nothing?

We suggest that both puzzlists possess the information they need to fill
in the blanks, but that the conditions relative to which they have access to
this information are different. Let D be the set of worlds in which dreamt
is a word of English spelled D-R-E-A-M-T. Both puzzlists have access to D
for the purpose of using “dreamt” in a written essay. And they both have
access to D for the purpose of answering the question “Is ‘dreamt’ a word of
English ending in MT?”. But for the purpose of filling in the blanks in “

M T”, only the first puzzlist has access to D.
So if we’d like to represent the difference between the two puzzlists,

our representation of each of them need not specify what information he
possesses, period. It can instead say what information he or she has access

9Similar examples include the “deny” example in Powers (1978, 341), the factoring
example from Stalnaker (1991, 438), the “Do geese see god?” example from Crimmins (1992,
246), and the “Iceman” example from Egan (2008, 51).
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to for what purposes.10,11

For example, we might represent the struggling puzzlist’s decision-
theoretic state (in the context of her efforts to solve the crossword puzzle)
with the following sort of table, which we shall call an access table:12

10In an illuminating paper on the role of the organization of memory in human reasoning,
Cherniak (1983, 166) notes that creatures with mental organizations anything like ours
constantly face a hard computational problem: quickly accessing memories relevant to their
current situation. Cherniak convincingly argues that there is therefore a practical need for
a small short-term memory store that supports fast—but not exhaustive—searching and
consistency checking. It is to be expected that the heuristics underlying such searches will
operate differently in different circumstances, and hence that different information will
be accessible in different circumstances. Indeed, the necessity for heuristics that narrow
memory searches was already recognized by Hume: “as the production of all the ideas to
which [a] name may be applied, is in most cases impossible, we abridge that work by a
more partial consideration, and find but few inconveniences to arise in our reasoning from
that abridgement” (Hume 1738, 21, as cited in Cherniak 1983, 176).

11In representing the decision-theoretic state of an agent using access tables, we do not
mean to propose that the structure of an access table maps in any direct way to an agent’s
mental representations. Instead we remain neutral on the psychological realization of the
states we model, just as a proponent of classical Bayesianism might remain neutral on the
psychological realization of credence functions. For further discussion, see Elga and Rayo
Forthcoming.

12The suggestion in Stalnaker (1984) that logical omniscience failures can be understood
in terms of fragmented belief states was the core motivation for the present model. Braddon-
Mitchell and Jackson (2007, 199–200) also uses fragmented coarse-grained belief states to
accommodate failures of logical omniscience. Yalcin (2008, Ch. 3), Yalcin (2015), Yalcin
(2016), and Hoek (2019) develop that same suggestion, proposing elegant models on which
all-or-nothing belief is relative to questions, understood as partitions of logical space. The
treatment of logical omniscience failures in those works uses privileged partitions to repre-
sent which propositions are accessible to an agent, and so differs from the present treatment.
(See especially Yalcin (2016, n. 26).) Egan (2008) endorses a treatment of fragmented cre-
dences similar to the present one and interestingly suggests that mental fragmentation
might be practically indispensable for agents with perceptual belief forming mechanisms
anything like human ones—mechanisms that are less than perfectly reliable but which
nevertheless produce immediate belief in certain circumstances. For more recent discussion
of fragmented mental states, see the essays collected in Borgoni et al. (forthcoming).
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Choice condition Accessible information

working on puzzle,
dreamt salient

P1

working on puzzle,
dreamt not salient

P2

[more conditions] [information accessible rela-
tive to those conditions]

Each row of an access table consists of a type of choice condition together
with an associated probability function.13 Each probability function, denoted
with a subscripted “P”, is assumed to be coherent and defined on sets of
possible worlds. (In contrast, the functions denoted by “q” in section 2 were
not assumed to be coherent and were defined on sentences.)

In the struggling puzzlist’s access table, P1 is a probability function that
assigns high credence to the set of worlds in which dreamt is a word of
English spelled D-R-E-A-M-T, and P2 is a credence function that assigns
low credence to that set. Accordingly, the table reflects that the puzzlist’s
dispositions factor into two natural components: one component associated
with situations in which the word “dreamt” has been made salient, and
another in which it has not.14

13What settles which choice conditions figure in a subject’s access table? A satisfactory
answer would in normal cases deliver a set of choice conditions that strikes a good balance
between two competing requirements: (1) the choice conditions are fine-grained enough
to capture as many of the subject’s rational dispositions as possible (on an everyday un-
derstanding of rationality that does not require logical omniscience); and (2) the choice
conditions are coarse-grained enough to ensure that the resulting access table delivers
a reasonably systematic description of the subject’s rational dispositions. For the worry
that if choice conditions are individuated to finely, an access table might become a mere
laundry-list of overly specific dispositions (and so fail to provide useful explanations of
behavior), see Norby (2014, §2), Hoek (2019, 137–139), Quilty-Dunn and Mandelbaum (2018,
2358–2359). For further discussion, see Elga and Rayo (Forthcoming).

14The above treatment has been simplified in several respects:
First, a more realistic access table would include choice conditions specific enough to

represent other respects in which Watson’s decision theoretic state is fragmented.
Second, in a fuller treatment we would simultaneously consider fragmented credences

and fragmented values. In particular, each row of an access table might consist of a type
of choice condition and a pair 〈P, V〉 of a probability function and a value function. This
would allow for fragmented values in addition to fragmented credences, and also would
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Can we assess the actions of a fragmented subject for rationality? Stal-
naker (1984, 85) suggests that we can: “All of my actions may be rational in
that they are directed toward desired ends and guided by coherent concep-
tions of the way things are even if there is no single conception of the way
things are that guides them all.” Stalnaker’s idea is that even if an agent’s
belief state is incoherent, it can be thought of as a composite of individually
coherent components. On this way of thinking, we can assess an action for
rationality relative to a particular component.

For example, the puzzlist’s decision-theoretic state does not deliver a
single coherent conception of the way things are. But each row of her access
table does correspond to such a conception. So we can characterize actions
that are rational for her (and for other fragmented agents) as follows:

FRAGMENTED CHOICE RULE A subject in choice condition c should act so as
to maximize expected utility relative to Pc, where Pc is the probability
function associated with c in the subject’s access table.15

This rule generalizes the standard rule of utility maximization since it co-
incides with that rule in the special case of a perfectly coherent agent—an
agent whose access table has only one row.

4 Logical competence is a global feature of access tables

With this as our background, let us return to the challenge raised in section 2.
The challenge was to find a way of requiring an agent to respect all obvious

allow for hybrid fragmented states that mix together the two types of fragmentation.
Third, in a more sophisticated version of the proposal each entry in the second column

of an access table would be a set of 〈P, V〉 pairs. That would allow for agents who have
imprecise or indeterminate probabilities and values.

Fourth, we do not claim that the above table would be suitable for representing the
puzzlist’s decision-theoretic state in arbitrary contexts. For all we have argued here, different
theoretical contexts might call for different access tables. We remain neutral on the question
of whether these different tables could be consolidated into a single “super table”.

15The exact manner in which a probability function and a value function determine
expected utilities for options depends on the flavor of (standard) decision theory that
one uses as a base. Leading options include causal decision theory (Gibbard and Harper
1978, Joyce 1999, Lewis 1981, Savage 1954, Stalnaker 1981) and evidential decision theory
(Ahmed 2014, Jeffrey 1965). Since disputes between such theories and their competitors are
orthogonal to present concerns, we remain neutral here.
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logical entailments without requiring her to respect non-obvious ones. Now,
if an agent’s decision-theoretic state is represented by a single credence
function, then the natural way to require the agent to respect an entailment
is to require her (unique) credence function to respect it. As we saw in §2,
this approach runs into trouble because forcing a single credence function to
simultaneously respect all obvious entailments also forces it to respect many
non-obvious ones.

But if an agent’s decision-theoretic state is represented by multiple cre-
dence functions—if it is represented by an access table—then another ap-
proach becomes available. One can require the agent to respect an entailment
by requiring her access table to respect that entailment at an appropriate row.

Recall that in an access table, each row contains a (fully coherent) proba-
bility function. Such probability functions must respect set-theoretic connec-
tions between propositions, understood as sets of possible worlds. But they
need not assign probabilities to the truth of sentences in a way that respects
logical entailments among those sentences. That is because there are possible
worlds at which the connectives fail to satisfy the standard truth tables.16

Consider, for example, the entailment from “S&W” to “S”. (Here and
below we let “S” mean that it is sunny and “W” mean that it is windy.)
Logically competent agents should respect this entailment. To do so, it is
enough that they possess some logical information: that any world in which
“S&W” is true is also a world at which “S” is true. But logically competent
agents need not be required to have access to such information relative to all
conditions—only some. Which ones? A natural answer: conditions in which
“S” and “W” are salient.

These considerations suggest a general requirement for logically compe-
tent agents: relative to a choice condition, the agent’s information should
include all obvious entailments among sentences that are built directly from
sentences salient at that condition.

On the resulting picture, one cannot be logically competent unless every

16For appeals to semantically deviant worlds in modeling mathematical belief, see Stal-
naker (1984, Ch. 5), Stalnaker (1986). For critical discussions of such appeals, see Field
(1986b), Field (1978, 34–35), Field (1986a), Soames (2009), Speaks (2006, 448–450), Williamson
(2016, n. 1).
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obvious entailment is reflected in one’s access table. But logical competence
does not thereby collapse into logical omniscience. That is because a compe-
tent agent’s logical information will typically be distributed throughout her
access table, with different batches of information accessible in different cir-
cumstances. Logical competence is thus a global feature of the agent’s entire
access table rather than a local feature of any particular credence function.

A similar point can be made about mathematical competence. Consider
Gottlob Frege, shortly before he read Russell’s fateful letter informing him
of the inconsistency of his mathematical system (Russell 1902). On the one
hand, we want to be able to say that Frege understood his own mathematical
vocabulary, along with the background logic. On the other hand, we want to
do justice to the fact that he did not realize his system entailed a contradiction.

One natural approach is to model Frege as respecting every obvious
entailment that is warranted by his axioms and rules of inference, while
failing to respect certain non-obvious entailments (including the entailment
Russell discovered). As we have seen, there is no way of satisfying both of
these conditions at once if we represent his decision-theoretic state using a
single credence function. But if we represent his decision-theoretic state as an
access table, we can model his understanding of the relevant mathematical
vocabulary as a global feature of that table, with different batches of semantic
information distributed across different rows. For example, we can model
Frege so that the crucial information highlighted by Russell’s letter—that
Frege’s Basic Law V entails Russell’s (blatantly inconsistent) instance—is
only accessible relative to choice conditions in which that instance is salient.

(But isn’t this an overly linguistic approach to logical and mathematical
ignorance? For example, didn’t Frege have mistaken beliefs about the nature
of extensions, not just mistaken beliefs about language? Furthermore, how
does an agent’s access table connect to what the agent believes and under-
stands? To avoid digressing, we address these questions in Appendix B.)

5 Local Booleanism models Boolean competence

This section gives a simple realization of the picture of logical and mathe-
matical competence outlined in the preceding section. We make two sim-
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plifications. First, we restrict our attention to the special case of Boolean
entailments: entailments guaranteed by the meanings of the Boolean con-
nectives. Second, we let an entailment count as “obvious” in a given choice
condition if it is guaranteed by the meanings of the Boolean connectives
as they apply to sentences that are salient in that condition. For example,
take a condition in which “S” and “W” are both salient. Relative to such a
condition, the entailment from “S&W” to “S” counts as obvious because it is
guaranteed by the meaning of “&”, as it applies to “S” and “W”.

Given these simplifications, it is natural to impose the following require-
ment on agents who understand the Boolean connectives: relative to each
choice condition, the available information should include that the Boolean
connectives behave standardly with respect to sentences salient at that con-
dition.

To state the requirement precisely, assume that each agent has an obvious-
ness function: a function O that assigns to each choice condition c the logical
informationOc that is available as obvious to the agent in c.17 We capture the
fact that Oc is available as obvious at c by assuming that Pc(Oc) = 1, where
Pc is the probability function corresponding to c in the agent’s access table.
We then say that O is locally Boolean just in case, for each choice condition
c, Oc entails that the logical connectives behave standardly with respect to
every sentence that is salient in c.18

This allows us to express the following constraint on logical competence:

CONNECTIVES When an agent understands the Boolean connectives, her

17In other words, for each choice condition c: Oc is the set of possible worlds compatible
with whatever logical information is available as obvious to the agent relative to c.

18For the Boolean connectives to behave standardly with respect some sentences is for the
following conditions hold whenever A and B are among those sentences:

B0 > is true,

B1 p¬Aq is true iff A is not true,

B2 pA ∨ Bq is true iff either A or B is true,

B3 pA&Bq is true iff both A and B are true.

> is a zero-place connective that is true as a matter of logic. It is included here for technical
convenience and could be replaced by a tautology whose truth is available as obvious to the
subject with respect to any choice condition.
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obviousness function should be locally Boolean.

In this (admittedly simple) model, we have arrived at a precisely specified
requirement of logical competence that falls short of logical omniscience.

6 Local Booleanism is equivalent to local sentential coherence

(This semi-technical section may be skipped without loss of continuity.)
Imposing CONNECTIVES falls short of requiring full logical omniscience.

But what exactly does it require? And how does that requirement relate to
more familiar axioms for probabilistic coherence?

It is useful to start by considering “global” versions of these questions.
Say that an obviousness function O is globally Boolean if for each choice
condition c, Oc contains only worlds at which the Boolean connectives
behave standardly with respect to all sentences.

How severe a constraint is the requirement that an agent’s obviousness
function is globally Boolean? The answer is: extremely severe. The following
can be shown: an obviousness function O is globally Boolean iff every
agent with O has a globally sententially coherent access table (Corollary 1,
Appendix C).

Definition: A probability function P is globally sententially coherent
iff it satisfies the following conditions for any sentences A, B, X:

S0 P[>] = 1,

S1 P[¬A] = 1− P[A],

S2 P[A ∨ B] = P[A] + P[B]− P[A&B],

S3 P[X] ≤ P[B] if X |= B.

Definition: An access table {Pc} is globally sententially coherent iff Pc

is globally sententially coherent for any choice condition c.

Notation: For any sentence A, [A] is the proposition that A is true.

Quotation marks and double brackets are omitted to improve
readability. For instance, we write “Pc[It is sunny]” instead of
“Pc([“It is sunny”])”.
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Global sentential coherence amounts to logical omniscience. In the
present setup, it is equivalent to standard sentence-based axiomatizations of
probability theory (Proposition 1, Appendix C). Agents who are sententially
coherent immediately recognize any Boolean connection given any prompt.

Now return to our original question: How severe a constraint is the
requirement that an agent’s obviousness function is locally Boolean? The
answer is: moderately severe. The following can be shown: an obviousness
function O is locally Boolean iff every agent with O has a locally sententially
coherent access table (Proposition 2, Appendix C).19,20

Definition: For c a choice condition, a probability function Pc is
locally sententially coherent iff it satisfies S0–S3 for all sentences A, B
that are salient at c, and all X equal to pA&Bq or pB&Aq.

Definition: An access table {Pc} is locally sententially coherent iff Pc is
locally sententially coherent for any choice condition c.

In contrast to global sentential coherence, local sentential coherence does
not entail logical omniscience. Instead it amounts to restricted logical com-
petence. Agents who are locally sententially coherent respect simple Boolean
connections when given the right prompt.

19The notion of local sentential coherence was inspired by the “locally coherent views”
characterized in Gaifman (2004).

20Since local sentential coherence is a fairly demanding requirement, the above result
shows that locally Booleanness is, too. We learned this from Sinan Dogramaci, who illus-
trated it with the following beautiful example. Suppose that an agent is playing poker and
realizes that a card is to be dealt from a shuffled standard deck. In the agent’s present choice
condition (c), the only salient sentences are A (“The card is an ace”) and H (“The card is a
heart”). If the agent’s access table is locally sententially coherent, then S2 guarantees that
Pc[A ∨ H] = Pc[A] + Pc[H]− Pc[A&H]. But this is a fairly demanding requirement. Indeed,
in many evaluative contexts we’d count it as rationally permissible for an agent to have
Pc[A] = 4/52, Pc[H] = 13/52, and Pc[A&H] = 1/52 even if Pc[A ∨ H] differs from 16/52.

This example displays a limitation of the above toy model. A more realistic implementa-
tion of the proposal in section 4 would employ a notion of obviousness that better matched
the cognitive capabilities of the agent in question. In the case of ordinary humans, we
expect the details to be too messy and idiosyncratic to admit of a concise mathematical
characterization. We also expect that no single characterization of obviousness will serve
all theoretical purposes: different standards of rationality will be appropriate in different
discussions.
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7 Logical thought is conditionalization on logical information

The paper so far has aimed to develop a decision theory suitable for logically
limited agents. Access tables represent such agents’ credences, FRAGMENTED

CHOICE RULE gives a criterion for rational action, and CONNECTIVES requires
such agents to recognize some (but not all) logical connections. But logically
limited agents also think. Our next and final goal is to sketch a simple
Bayesian model of logical thought.

Start with an example: an agent comes to recognize the truth of a par-
ticular tautology by thought alone. How might we model such a cognitive
accomplishment using the above framework?

There are actually two questions here: First, how can a particular train
of thought be modeled as a sequence of changes to an access table? Second,
what constrains which train of thought a rational subject engages in? Here is
a proof-of-concept proposal to address the first question:

FRAGMENTED INFERENCE Each agent starts out with a given access table
and an obviousness function, O. Whenever she encounters a new
choice condition c, logical information Oc becomes broadly accessible:
each probability function in her access table conditionalizes on Oc.21

When applied to the case of logical inference, one might apply this idea
by saying that each step in a chain of thought renders a particular set of
sentences salient. Attending to those sentences makes a batch of logical
information available to the subject going forward. Successive batches of
information combine to produce increasingly powerful logical insights as
the chain of thought continues.

For example, suppose that Moriarty has hatched a plan to take advan-
tage of Watson’s rather ordinary intellect. He has arranged for one of his

21In other words: for every choice condition d, Pd(·) is replaced by Pd(·|Oc). It is worth
emphasizing that the present proposal is no more than a toy model. For example, to avoid
conditionalizing on propositions with probability 0 we assume that for any choice conditions
c and d, Pd(Oc) > 0. We also restrict attention to the case of an agent with a perfect memory
since the present model contains no mechanism for information loss. (This restriction is for
simplicity—the model is congenial to relaxing the perfect memory assumption. We explore
this in separate work.) In addition, a more general model would probably need to say that
not all rows of an access table conditionalize on new logical information.
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associates to offer Watson a bet on a fiendishly complicated sentence:

((S&¬W) ∨ S)&(¬(W&S)&((S&W) ∨W)).

Watson is informed that the bet would cost him just £5, and would pay
him £100 if the complicated sentence is true. In fact, the sentence is a con-
tradiction, but it would be too demanding to require Watson to see this
immediately.

Watson must decide whether to take the bet. Initially Watson thinks that
the sentence might well be true. His access table at each row relevant to
the current decision assigns a not-very-low probability to the truth of the
sentence. That is compatible with Watson’s satisfying CONNECTIVES, since
CONNECTIVES only enforces highly limited local constraints at each choice
condition. (We present a model to illustrate this in Appendix D.)

Moriarty hopes that Watson will make a snap decision and immediately
pay for the (losing) bet. But Watson instead decides to mull things over. His
first step is to analyze the leftmost conjunction in Moriarty’s sentence. In the
model, this is captured by having Watson start out at a choice condition c1 at
which “S” and “¬W” are salient. According to FRAGMENTED INFERENCE,
each row of his access table then conditionalizes on Oc1 , which entails:
“S&¬W” is true exactly when “S” and “¬W” are both true.

Now that Watson has a grip on “S&¬W”, he attempts to analyze “(S&¬W) ∨ S”.
In the model, this is captured by having Watson turn to a choice condition
c2 at which “S&¬W” and “S” are salient. After further conditionalizing
on Oc2 , each row of Watson’s access table now also includes the following
information: “(S&¬W) ∨ S” is true exactly when “S” is.22

Watson continues in this way, successively attending to various subsen-
tences. At each step, the rows of his access table conditionalize on the bit of
information made available at that step. The cumulative result is that each
row conditionalizes on a sequenceOc1 ,Oc2 , . . . ,Ocn of batches of information
whose conjunction entails that Moriarty’s sentence is false. So at the end of

22By saying that a row “includes” some information we mean that the probability function
associate with that row assigns probability 1 to the set of worlds at which that information
obtains.
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the process, each row of Watson’s access table assigns probability 0 to the
truth of Moriarty’s sentence.

Watson declines the bet.

8 Rational thought is a series of utility-maximizing choices of what to think about
next

We are partway through sketching a Bayesian model of logical thought. As
noted above, giving such a model required answering two questions: First,
how can a particular train of thought be modeled as a sequence of changes
to an access table? Second, what constrains which train of thought a rational
subject engages in? We addressed the first question in the preceding section.
Now turn to the second.

Consider Watson’s state of mind right after he is offered Moriarty’s bet.
It might seem that Watson’s options are just to accept the bet or to reject
it. But Watson has an additional option: to mull things over. And we can
apply the rule of expected utility maximization to evaluate that option’s
choiceworthiness.23

That observation leaves it open what exactly Watson will or should think
about. But we can go further. We can more finely individuate Watson’s
thinking-options. We can say that for certain parts of Moriarity’s sentence,
Watson has the option of attending to just those parts.24 For example, here
is one of Watson’s initial options: attend to just “S” and “¬W”. That is
the option he in fact chooses. Was that choice—the choice to first attend to
those subsentences—rational? No additional apparatus is needed to answer
that question. We can simply treat Watson’s choice of what to think about
as a choice like any other—rational if and only if it satisfies FRAGMENTED

CHOICE RULE (relative to the choice condition Watson is in before he makes

23Compare to Hoek (2019, 130–132), I. J. Good (1968, 93–94), Savage (1967, 308), Pettigrew
(2020, §6.2).

24Compare: “some actions might be totally mental or computational. For example,
some actions might control what an agent chooses to think about, or where it focuses its
attention.” (Sutton and Barto 2018, 55) For work on “rational meta-reasoning”, see for
example Matheson (1968), Hay et al. (2012), Lieder and Griffiths (2019), Russell and Wefald
(1991), Griffiths et al. (2019).
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the choice).
What sort of considerations influence the rationality of thinking a par-

ticular thought? Here is an example to convey the flavor of how the model
operates.

Suppose that Watson is midway through his train of thought—he has
so far attended to only a few subsentences of Moriarity’s complex sentence.
He now has many options. For example, he could focus his attention on a
particular “fresh” formula of the sentence—a formula he had not previously
attended to. Alternatively, he could attend to a formula he attended to a few
moments ago. He could even focus on a sweet childhood memory. Which
option maximizes Watson’s expected utility? As in any decision situation,
the answer depends on Watson’s probability function relative to his current
choice condition. Suppose that this function takes it to be highly likely that
attending to the fresh formula will bring new logical insights but focusing on
an old formula or the sweet memory will not. Then, assuming that Watson
sufficiently values money, the option that maximizes his expected utility
is to attend to a fresh formula. If Watson continues in this way to make
utility-maximizing choices—including choices of what to think about—he
will eventually figure out that the complicated sentence is contradictory and
foil Moriarty’s plot.
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Appendices

A Decision theory with incoherent credence functions

In §2 we considered the suggestion that incoherent credences—credences
that violate the probability axioms—might deliver a decision theory for
logically ignorant subjects. We breezily hinted at how to construct such a
theory: “Just remove the assumption of logical omniscience from decision
theory”.

In fact, matters are not quite so straightforward. For once the coherence
conditions are dropped, there are certain theoretical choices that need to be
made, and it is not obvious whether they can be made in a principled way.
Let us explain.

Assume that credences are assigned to propositions. When propositions
are modelled as sets of possible worlds, one immediately gets the result
that necessarily equivalent propositions get the same credence. So theorists
interested in incoherent credences have often chosen to work with a more
fine-grained conception of proposition. There are many different ways of
spelling out the details (De Bona and Staffel 2017, Gaifman 1988, Garber
1983, Hacking 1967, Zynda 1996, 196–197), but for concreteness we consider
below an approach based on distributions of truth values (Williams 2016).
Similar points would apply to other fine-grained conceptions of proposition.

Let a distribution be an assignment of truth-values to a finite set of sen-
tences and letW be the set of all such distributions.25 Assume, further, that
each subject has a credence function r that is a probability function over that
set of worlds and a value function v that assigns a real number to each world.
For any sets X, Y of worlds such that r(Y) > 0, we follow standard practice
and let r(X|Y) = r(XY)/r(X) be the conditional probability of X given Y
and let V(Y) = Σw∈Wv(w)r(w|Y) be the expected value of Y.

Credences and values are so far defined for propositions understood

25Note that many of the members ofW might be thought of as impossible worlds. Elliott
(2019) convincingly argues that theories based on probability distributions over spaces
that include such worlds are under strong pressure to say that most propositions are
inexpressible.
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as sets of distributions. But they can be defined for sentences as well. For
any sentence A, let [A] be the proposition that A is true. Then for any
sentences A, B we can write r[A] for r([A]), r[A|B] for r([A]|[B]), and V[A]

for V([A]).26

Can a decision theory be constructed that assumes that agents have
incoherent credence functions of this kind? Anyone constructing such a view
faces two important decision points.

First, suppose that an agent has an incoherent credence function r. What
choice rule determines which options are rational for that agent to select? A
natural answer is: the options that maximize expected values relative to r
(or some causal quantity computed relative to r—but set such complications
aside here). It is natural in this framework to associate each option with a
sentence. But care must be taken in deciding which sentence to select. That is
because when the subject is in a choice situation, there exist many sentences
that might describe each of her options.

Suppose, for example, that the subject must press a piano key with her
left hand and that using the ring finger to do so is one of her options. The
theorist might choose to represent that option using either of the following
sentences:

• “use second finger from left”

• “use fourth finger from right”

Which, if any, of these sentences should she use to calculate expected utility?
And on what grounds? Note that the difference might matter a great deal,
since there is no guarantee that

V[“use second finger from left”] = V[“use fourth finger from right”].

Second, a proponent of the view we are considering also needs a way
of accounting for rational credal updates. Consider a subject with credence
function r and let rE be the subject’s updated credence function after receiv-
ing some new evidence. From a Bayesian perspective, we would like it to

26Here we follow Williams (2018, 2016).
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be the case that rE[A] is equal to r[A|E], where E is a sentence capturing the
new evidence. But care must be taken in deciding which sentence to select.
That is because there exist many sentences that might capture a given batch
of evidence.

Suppose, for example, that an ordinary subject who knows nothing about
the weather walks outside on a sunny and windy day. The theorist might
represent the subject’s weather-related evidence using either “sunny and
windy” or “windy and sunny” (or some more complicated variant).

But which sentence? And on what grounds? Again, the difference might
matter a great deal, since there is no guarantee that

r[ · |“sunny and windy”] = r[ · |“windy and sunny”].

We do not claim or even hint that these questions are unanswerable, but
only insist that a decision theory based on incoherent credence functions
must answer them somehow.

B Access tables and propositional attitudes

How should one understand the relationship between an agent’s proposi-
tional attitudes and her access table? The following answer is tempting:27

ROW CONFIDENCE An agent is confident in a claim if and only if some row
of her access table assigns high probability to that claim.

Unfortunately, this straightforward answer leads to the wrong results.
For example, it entails that a puzzlist with the access table of section 3
is confident not just in the claim that dreamt is a word of English spelled
D-R-E-A-M-T, but also in the negation of that claim.

We would also get the wrong results if we were to substitute “every”
for “some” in ROW CONFIDENCE. For example, we would be left with

27Compare: Lewis (1996) assumes that “S knows that P iff any one of S’s compartments
knows that P”, and Stalnaker (1984, 83) relies on the premise that “what it means to say that
an agent believes that P at a certain time is that some one of the belief states the agent is in
at that time entails that P” to show that “[i]t is compatible with the pragmatic account that
the rational dispositions that a person has at one time should arise from several different
belief states”.
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the conclusion that the puzzlist fails to be confident that dreamt is a word
of English spelled D-R-E-A-M-T. But intuitively speaking, the puzzlist is
confident, it’s just that she is unable to bring the relevant information to
mind as she works on the puzzle.

In the light of this, how should we understand the relationship between
an agent’s propositional attitudes and her access table? The answer is that
access tables should not be thought of as directly corresponding to proposi-
tional attitudes. But this does not entail that there is no connection between
them. For access tables and propositional attitudes have something impor-
tant in common: they can both be used to predict a subject’s dispositions.
And this gives us a useful heuristic connecting the two:

HEURISTIC Let A be a family of propositional attitudes (a family of beliefs,
desires, fears, suspicions, etc.) rich enough to make definite predic-
tions about how a rational subject would be disposed to behave under
various circumstances. It is appropriate to ascribe A to a fragmented
subject if and only if the dispositions predicted by A are sufficiently
similar to the dispositions predicted by the subject’s access table (along
with a suitable value function, via FRAGMENTED CHOICE RULE).

Here is an example. Suppose a family propositional attitudes A includes
the belief that there is beer in the fridge. What sorts of dispositions will A
predict? Assuming there is nothing extraordinary about A—assuming it
consists of attitudes that might be used to describe an ordinary subject in an
ordinary situation—the relevant dispositions might include:

the disposition to say, in appropriate circumstances, sentences
like ‘There’s beer in my fridge’; the disposition to look in the
fridge if one wants a beer; a readiness to offer beer to a thirsty
guest; the disposition to utter silently to oneself, in appropriate
contexts, ‘There’s beer in my fridge’; an aptness to feel surprise
should one go to the fridge and find no beer; the disposition to
draw conclusions entailed by the proposition that there is beer in
the fridge e.g., that there is something in the fridge, that there is
beer in the house; and so forth. (Schwitzgebel 2002, 251)
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So, according to HEURISTIC, it is appropriate to ascribe A to a fragmented
subject only if her access table predicts dispositions of this kind.

Note that Schwitzgebel’s list includes linguistic dispositions: dispositions
whose manifestation involves the deployment of linguistic information. And
when we turn our attention from the belief that there is beer in the fridge to
logical and mathematical beliefs, linguistic dispositions can be expected to
play an especially prominent role. Suppose, for example, that A includes
Frege’s ill-fated belief that every concept has an extension. What sorts of
dispositions should one expect A to predict? It is easy to think of dispositions
that make essential use of linguistic information; for instance: the disposition
to utter (in appropriate circumstances) a sentence expressing the claim that
every set has an extension, and the disposition to make inferences that rely
on the truth of such sentences.28 But it is harder to come up with relevant
dispositions that do not rely on linguistic information. And the more complex
and abstract the mathematical belief, the harder it will typically be.

So: logical and mathematical beliefs tend to be tightly linked to linguistic
dispositions. But note that this does not entail that they have language as
their subject matter. Compare: the belief that there is beer in the fridge
might be associated with linguistic dispositions even though it does not have
language as its subject matter.

With this as our background, let us return to one of the questions in the
main text: Didn’t Frege have mistaken beliefs about the nature of extensions,
not just mistaken beliefs about language? For example, didn’t he mistakenly
believe that every (Fregean) concept has an extension? Answer: of course he
did! But having that belief doesn’t require any row of Frege’s access table to
assign high probability to the (empty) set of worlds in which every concept
has an extension. According to HEURISTIC, what is required is that his access
table predict the right dispositions. In this case, the relevant dispositions are
mainly linguistic, even though the subject matter of the belief in question is
not.

28Compare to Schwitzgebel (2013, 89).
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C Proofs that (local) Booleanism is equivalent to (local) sentential coherence

Let L be the set of sentences of a propositional calculus closed under &, ∨,
and ¬, and including a zero-place connective >. We use |= to express logical
implication for sentences of L .

LetW be a space of possible worlds. Assume that there is a world for
every distribution of truth values to sentences of L . More precisely: A
distribution on L is a function from L to the set of truth values {1, 0}. For δ

a distribution and A a set of sentences of L , let δ[A] be the set of worlds in
W at which each A ∈ A gets truth value δ(A) and assume thatW is such
that δ[L ] 6= ∅ for every distribution δ. In addition, let [A] be the set of
worlds at which each member of A is true (has truth value 1). For A ∈ L let
[A] = [{A}].

Let F be a sigma-algebra of subsets ofW such that for each finite A ⊆ L ,
δ[A] ∈ F . A probability function on 〈W , F 〉 is a function P that assigns a
real number to each proposition in F and satisfies the following conditions
for any X, Y ∈ F :

K1 P(X) ≥ 0,

K2 P(W) = 1,

K3 P(X ∪Y) = P(X) + P(Y) (XY = ∅).

We indicate set intersection of propositions by concatenation, so that for
example “XY” denotes the intersection of propositions X and Y.

Let C be a nonempty fixed set of choice conditions. Assume that at each
choice condition c, finitely many sentences of L are salient at c. An access
table on C is a function {Pc} that maps each choice condition c ∈ C to a
probability function Pc on 〈W , F 〉 .

An obviousness function is a map from C to the set of non-empty proposi-
tions. An obviousness function O is consistent with an access table iff for all
choice conditions c, Pc(Oc) = 1. An obviousness functionO is locally Boolean
if for all choice conditions c, Oc entails that the following conditions hold
whenever A and B are sentences salient at c:

B0 > is true,
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B1 p¬Aq is true iff A is not true,

B2 pA ∨ Bq is true iff either A or B is true,

B3 pA&Bq is true iff both A and B are true,

or equivalently:

b0 [>]Oc = Oc,

b1 [¬A]Oc = (W \ [A])Oc,

b2 [A ∨ B]Oc = ([A] ∪ [B])Oc,

b3 [A&B]Oc = [A][B]Oc.

A probability function P is globally sententially coherent iff it satisfies the
following conditions for any sentences A, B, X:

S0 P[>] = 1,

S1 P[¬A] = 1− P[A],

S2 P[A ∨ B] = P[A] + P[B]− P[A&B],

S3 P[X] ≤ P[B] if X |= B.

An access table {Pc} is globally sententially coherent iff Pc is globally senten-
tially coherent for any choice condition c.

For c a choice condition, a probability function Pc is locally sententially
coherent iff it satisfies S0–S3 for all sentences A, B that are salient at c and all X
equal to pA&Bq or pB&Aq. An access table {Pc} is locally sententially coherent
iff Pc is locally sententially coherent for any choice condition c.

In §6 we noted that S0–S3 are equivalent to standard sentence-based
axiomatizations of probability theory. The following is one such axiomatiza-
tion:29

For any sentences A, B ∈ L :

29For instance, A1–A3 are referred to as “the probability axioms” in Earman (1992, 36).
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A1 q(A) ≥ 0,

A2 q(A) = 1 if |= A,

A3 q(A ∨ B) = q(A) + q(B) if |= ¬(A&B).

Proposition 1. Let P be a probability function on 〈W , F 〉 and q : L → [0, 1] be
such that for all C ∈ L , q(C) = P[C]. Then the following are equivalent:

1. P is globally sententially coherent.

2. q satisfies A1–A3 for all A, B ∈ L .

Proof. First we assume (1) and show that (2) holds:

A1: Since P is a probability function, K1 gives us P[A] ≥ 0. So A1 follows
from the fact that q(A) = P[A].

A2: Assume |= A. Then A |= >. So by S3 P[>] ≤ P[A]. But by S1,
P[>] = 1. So P[A] ≥ 1. Since K1–K3 entail that P[A] ≤ 1, it follows
that P[A] = 1. So A2 follows from the fact that q(A) = P[A].

A3: Assume |= ¬(A&B). Then A2 guarantees that q(¬(A&B)) = 1 and
therefore P[¬(A&B)] = 1. So, by S1, we have P[A&B] = 0. So S2
entails that P[A ∨ B] = P[A] + P[B]. So A3 follows from the fact that
q(C) = P[C] for arbitrary C.

We now assume (2) and verify that (1) holds. In fact, it will be convenient to
verify that P satisfies S0–S4 for any A, B ∈ L , where

S4 P[A] = P[B] if A |= |=B.

The proofs of S0–S4 are as follows:

S0: q(>) follows from A2 since> is a tautology. So S0 follows from q(>) =
P[>].

S1: Since A ∨ ¬A is a tautology, A2 gives us q(A ∨ ¬A) = 1 and there-
fore P[A ∨ ¬A] = 1. Since ¬(A&¬A) is a tautology, A3 gives us
q(A∨¬A) = q(A) + q(¬A) and therefore P[A∨¬A] = P[A] + P[¬A].
Putting the two together gives us 1 = P[A] + P[¬A], which entails S1.
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S4: Suppose A and B are logically equivalent. Then the following are all
tautologies:

(a) ¬A ∨ (A&B) (a′) ¬(¬A&(A&B))
(b) ¬B ∨ (A&B) (b′) ¬(¬B&(A&B))

By (a), A2 entails q(¬A∨ (A&B)) = 1 and therefore P[¬A∨ (A&B)] =
1. By (a′), A3 entails q(¬A∨ (A&B)) = q(¬A)+ q(A&B) and therefore
P[¬A∨ (A&B)] = P[¬A] + P[A&B]. Putting the two together gives us
1 = P[¬A] + P[A&B] and therefore 1− P[¬A] = P[A&B], which, by
S1, is equivalent to P[A] = P[A&B]. Analogous reasoning based on (b)
and (b′) gives us P[B] = P[A&B]. So we have P[A] = P[A&B] = P[B].

S2: S4 entails P[A ∨ B] = P[(A&B) ∨ (¬A&B) ∨ (A&¬B)]. But any two
of (A&B), (¬A&B), and (A&¬B) are logically inconsistent. So A3
gives us q((A&B) ∨ (¬A&B) ∨ (A&¬B)) = q(A&B) + q(¬A&B) +
q(A&¬B) and therefore P[(A&B) ∨ (¬A&B) ∨ (A&¬B)] = P[A&B] +
P[¬A&B] + P[A&¬B]. Putting the two together gives us P[A ∨ B] =
P[A&B] + P[¬A&B] + P[A&¬B]. Adding P[A&B] to both sides and
rearranging the terms gives us: P[A ∨ B] + P[A&B] = P[A&B] +
P[A&¬B] + P[A&B] + P[¬A&B].

Now, since (A&B) is inconsistent with each of (A&¬B) and (¬A&B),
A3 yields: q((A&B) ∨ (A&¬B)) + q((A&B) ∨ (¬A&B)) = q(A&B) +
q(A&¬B)+ q(A&B)+ q(¬A&B), and therefore P[(A&B)∨ (A&¬B)]+
P[(A&B) ∨ (¬A&B)] = P[A&B] + P[A&¬B] + P[A&B] + P[¬A&B].
So bringing in the result of the previous paragraph gives us P[A ∨
B] + P[A&B] = P[(A&B)∨ (A&¬B)] + P[A&B∨ (¬A&B)]. By S4, this
gives us: P[A ∨ B] + P[A&B] = P[A] + P[B]. Rearranging terms we
have P[A ∨ B] = P[A] + P[B]− P[A&B], which is S2.

S3: S4 delivers P[B] = P[(B&X) ∨ (B&¬X)]. And since S0, S1 and S4
together give us P[(B&X)&(B&¬X)] = 0, S2 delivers P[(B&X) ∨
(B&¬X)] = P[B&X] + [B&¬X]. Putting the two together gives us
P[B] = P[B&X] + P[B&¬X]. But now suppose that X |= B. Then
X and B&X are logically equivalent. So S4 allows us to conclude
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P[B] = P[X] + P[B&¬X]. But, by K1, we have P[B&¬X] ≥ 0. So we
may conclude P[X] ≤ P[B], which is S3.

Proposition 2. An obviousness functionO is locally Boolean iff every access table
consistent with O is locally sententially coherent.

Proof. Left-to-right direction. Assume that O is locally Boolean and let
{Pc} be any access table consistent with O. We show that {Pc} is locally
sententially coherent by arguing, for an arbitrary c ∈ C, that Pc satisfies
S0–S3 with respect to any A, B that are salient at c and all X equal to pA&Bq
or pB&Aq. Pc is automatically locally sententially coherent if no sentences
are salient at c, so we assume below that some sentence A is salient at c.

S0: By b0, [>]Oc = Oc. But since O is consistent with {Pc}, we have
Pc(Oc) = 1 and therefore Pc([>]Oc) = 1. So, again using the fact that
Pc(Oc) = 1, we have Pc[>] = 1.

S1: By b1, [¬A]Oc = (W \ [A])Oc = WOc \ [A]Oc. Also, Oc = [A]Oc ∪
[¬A]Oc. So we have:

1 = Pc(Oc) (Pc is consistent with O)

= Pc([A]Oc ∪ [¬A]Oc)) (Oc = [A]Oc ∪ [¬A]Oc)

= Pc([A]Oc) + Pc([¬A]Oc)− Pc([A][¬A]Oc)

(Theorem of the probability calculus)

= Pc([A]Oc) + Pc([¬A]Oc) ([A] ∩ [¬A] = ∅)

= Pc[A] + Pc[¬A], (Pc(Oc) = 1.)

and hence Pc[¬A] = 1− Pc[A].

S2: By b2, [A ∨ B]Oc = ([A] ∪ [B])Oc and by b3 [A&B]Oc = [A][B]Oc. So
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we have

Pc([A ∨ B]Oc) = Pc(([A] ∪ [B])Oc) (b2)

= Pc([A]Oc ∪ [B]Oc))

(([A] ∪ [B])Oc = ([A]Oc ∪ [B]Oc))

= Pc([A]Oc) + Pc([B]Oc)− Pc([A][B]Oc)

(Theorem of the probability calculus)

= Pc([A]Oc) + Pc([B]Oc)− Pc([A&B]Oc) (b3)

= Pc[A] + Pc[B]− Pc[A&B] (Pc(Oc) = 1.)

S3: By b3, [A&B]Oc = [A][B]Oc ⊆ [A]Oc. So Pc([A&B]Oc) ≤ Pc([A]Oc).
Since Pc(Oc) = 1, this entails Pc[A&B] ≤ Pc[A]. Similar reasoning
shows that Pc[A&B] ≤ Pc[B].

Right-to-left direction: We must show that if every access table consistent
with an obviousness function O is locally sententially coherent, then O is
locally Boolean.

Assume that every access table consistent with O is locally sententially
coherent and suppose for contradiction that O is not locally Boolean. Then
there exists a choice condition c∗, sentences A, B salient at c∗, and X equal
to pA&Bq or pB&Aq such that at some world w∗ in Oc, at least one of the
conditions for local Booleanness fails. Let Iw∗ be the unique probability
function on 〈W , F 〉 such that Iw∗({w∗}) = 1.

The definition of obviousness function guarantees that Oc is a nonempty
proposition for every choice condition c. So there must be some access table{

P0
c
}

that is consistent with O. Define an access table {Pc} by stipulating
that for any c ∈ C and any proposition X:

Pc(X) =

.01P0
c (X) + .99Iw∗(X) if c = c∗,

P0
c (X) otherwise.

By construction {Pc} is an access table such that Pc∗({w∗}) > .9. Also by
construction {Pc} is consistent with O and so is locally sententially coherent.
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We know that w∗ fails to satisfy one of the Boolean connections in B0–B3
above for A, B salient at c∗ and X equal to pA&Bq or pB&Aq. But which of
B0–B3 fails? We verify that none is possible, using “p” to abbreviate “Pc∗”
and letting v be the unique distribution that obtains at w∗.

B0: Suppose v fails to satisfy B0. In other words: v(>) = 0. Since
p({w∗}) > 0.9, it follows that p[>] < 0.1, which contradicts S0.

B1: Suppose v fails to satisfy B1 for A salient at c∗. In other words: v(¬A) 6=
1− v(A). So v(A) and v(¬A) are either both 0 or both 1.

Suppose, first, that v(A) and v(¬A) are both 1. Then, since p({w∗}) >
0.9, we have p[A] > 0.9 and p[¬A] > 0.9, which contradicts S1 and
therefore our assumption that the agent’s access table is locally senten-
tially coherent.

Similarly, suppose that v(A) and v(¬A) are both 0. Then, since p({w∗}) >
0.9, we have p[A] < 0.1 and p[¬A] < 0.1, again contradicting S1.

B2: Suppose v fails to satisfy B2 for A, B salient at c. In other words:
we have v(A ∨ B) 6= max(v(A), v(B)). So either v(A ∨ B) = 1 and
v(A) = 0 = v(B), or v(A ∨ B) = 0 and at least one of v(A) and v(B) is
1.

Suppose, first, that v(A ∨ B) = 1 and v(A) = 0 = v(B). Then, since
p({w∗}) > 0.9, we have p[A ∨ B] > 0.9, p[A] < 0.1, and p[B] < 0.1.
So, by S2, we have two quantities smaller than 0.1 (i.e. p[A] and p[B])
adding up to more than 0.9, which is impossible.

Now suppose that v(A ∨ B) = 0 and at least one of v(A) and v(B)
is 1. Then, since p({w∗}) > 0.9, we have p[A ∨ B] < 0.1, and at
least one of p[A] and p[B] greater than 0.9. In fact, at most one of
p[A] and p[B] can be greater than 0.9. For suppose otherwise. By S2,
p[A ∨ B] + p[A&B] = p[A] + p[B]. But because p[A ∨ B] < 0.1, the left
hand side of the identity must be smaller than 1.1. This contradicts the
assumption that p[A] and p[B] are both greater than 0.9, which entails
that the right hand side of the identity is greater than 1.8.
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So we know that p[A∨ B] < 0.1 and that one of p[A] and p[B] is greater
than 0.9 and the other is smaller than 0.1. Given that p[A ∨ B] < 0.1,
it follows that the only way for S2 to be satisfied is for p[A&B] > 0.1.
This leads to contradiction because the salience of A and B delivers the
following instances of S3: p[A&B] ≤ p[A] and p[A&B] ≤ p[B].

B3: Suppose v fails to satisfy B3 for A, B salient at c. So either v(A&B) = 0
and v(A) = 1 = v(B), or v(A&B) = 1 and at least one of v(A) and
v(B) is 0.

Suppose, first, that v(A&B) = 0 and v(A) = 1 = v(B). Then, since
p({w∗}) > 0.9, we have p[A&B] < 0.1, p[A] > 0.9, and p[B] > 0.9. So
S2 entails that two quantities greater than 0.9 (i.e. p[A] and p[B]) add
up to a number smaller than 1.1 (i.e. the sum of p[A&B] and p[A ∨ B]),
which is impossible.

Now suppose that v(A&B) = 1 and at least one of v(A) and v(B) is 0.
Then, since p({w∗}) > 0.9, we have p[A&B] > 0.9 and we have that at
least one of p[A] and p[B] smaller than 0.1. This leads to contradiction
because the salience of A and B delivers the following instances of S3:
p[A&B] ≤ p[A] and p[A&B] ≤ p[B].

Corollary 1. An obviousness function O is globally Boolean iff every agent with
O has a globally sententially coherent access table.

Proof. The right-to-left direction is analogous to the right-to-left direction of
Proposition 2.

For the left-to-right direction, assume O is globally Boolean and let {Pc}
be globally sententially coherent. A proof analogous to the left-to-right
direction of Proposition 2 shows that Pc satisfies S0–S2 for any sentences A,
B. So it suffices to verify that condition S3 holds for any sentences X and B
such that X |= B.

Suppose X and B are such that X |= B. Then the fact that O is glob-
ally Boolean gives us [X]Oc ⊆ [B]Oc and therefore Pc([X]Oc) ≤ Pc([B]Oc).
But since O is consistent with {Pc}, we have Pc(Oc) = 1 and therefore
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Pc([X]Oc) = Pc([X]) and Pc([B]Oc) = Pc([B]). Putting all of this together
gives us Pc[X] ≤ Pc[B], which is what we wanted.

D A simple model in which CONNECTIVES is nontrivially satisfied without log-
ical omnisicence

Here is a simple model in which CONNECTIVES is compatible with a failure
of logical omnsicience with respect to Moriarty’s complicated sentence. The
setup uses the framework and notation introduced at the beginning of Ap-
pendix C. Let P be a countably additive probability measure over 〈W , F 〉
that treats the sentences in L as if their truth values were determined by
independent tosses of a fair coin. More precisely, for any distribution δ on L

and any finite set A ⊂ L of sentences, assume that P(δ[A]) = 2−#A, where
#A is the number of members of A. By Carathéodory’s Extension Theorem
there exists such a P.

Let O be the weakest locally Boolean obviousness function (i.e. the obvi-
ousness function such that for each choice condition c,Oc is the set of worlds
at which B0-B3 hold for any A and B salient at c). To enable us to use P to
define an access table, we first check that for any c, P(Oc) > 0. Take any
c and recall that the set A of sentences salient at c is assumed to be finite.
Let δ∗ be a distribution on L under which the Boolean connectives behave
standardly with respect to all sentences, so that δ∗[A] ⊆ Oc. By the definition
of P, P(δ∗[A]) = 2−#A > 0. So P(Oc) > 0. We may now define an access
table {Pc} by stipulating that for each choice condition c: Pc(·) = P(·|Oc).

Suppose that {Pc} is Watson’s access table when he first hears about
Moriarty’s offer of the bet on the fiendish sentence D:

((S&¬W) ∨ S)&(¬(W&S)&((S&W) ∨W)).

Initially Watson is in a choice condition c in which the set A of sentences
salient to him is small, and in particular does not include all of the sub-
sentences of D. If so, then Pc assigns a not-very-small probability to the
fiendish sentence’s being true. This can be verified by showing that there is
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a distribution γ such that γ(D) = 1 and γ(A) ⊆ Oc. For we then have:

Pc([D]) = P([D]|Oc) (Def. of {Pc})
= P([D]Oc)/P(Oc) (Def. of conditional probability)

≥ P([D]Oc) (P(Oc) ≤ 1)

≥ P(γ(A)Oc) ([D] ⊇ γ(A), since γ(D) = 1)

= P(γ(A)) (γ(A) ⊆ Oc)

= 2−#A. (Def. of P)

So Pc([D]) ≥ 2−#A, which is not very small since by assumption #A is small.
To show that there exists a suitable γ for each set A of salient sentences

that does not include every strict subsentence of D, we can proceed by
cases, depending on which subsentence fails to be included in A. Since this
is routine but lengthy, we give only one example here. Suppose S is not
included in A. Then we can choose any γ satisfying the following conditions:

1. γ(S) = 0.

2. γ(W) = 1.

3. γ assigns truth-values to a complex sentences as a function of its imme-
diate components, in the usual way, except that (S&¬W)∨ S is assigned
truth-value 1 regardless of the truth values of its immediate compo-
nents.

To verify that γ(D) = 1, note that γ(¬(W&S)&((S&W) ∨W)) = 1. (This
is because γ(S) = 0 and γ(W) = 1, and because γ assigns a truth value to
¬(W&S)&((S&W) ∨W) using the standard truth-table.) But since we also
have γ((S&¬W) ∨ S) = 1, condition (3) guarantees that γ(D) = 1.

To verify γ[A] ⊆ Oc, suppose otherwise. Then there is some w ∈ γ[A]

that fails to satisfy one of B0-B3 for A, B ∈ A. But, by condition (3), γ

assigns truth-values to complex sentences as a function of their immediate
components, in the usual way, except for the case of (S&¬W)∨ S. So the only
way in which the failure can occur is for w to fail to satisfy B2 when (S&¬W)

and S are members of A, which is impossible, since S is not a member of A.
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Moral: this model shows that Watson can be far from logically omni-
scient regarding Moriarty’s fiendish sentence, even if he nontrivially satisfies
CONNECTIVES.
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