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Abstract—Energy efficient transmission rate regulation of wire-
less sensing nodes, is a critical issue when operating in an energy
harvesting (EH) enabled environment. In this work, we view the
energy management problem as a queue control problem where
the objective is to regulate transmission such that the energy level
converges to a reference value. We employ a validated non-linear
queuing model to derive two non-linear robust throughput con-
trollers. A notable feature of the proposed scheme is its capability
of predicting harvest-able energy. The predictions are generated
using the proposed Accurate Solar Irradiance prediction Model
(ASIM) whose effectiveness in generating accurate both long and
short term predictions is demonstrated using real world data. The
stability of the proposed controllers is established analytically and
the effectiveness of the proposed strategies is demonstrated using
simulations conducted on the Network Simulator (NS-3). The
proposed policy is successful in guiding the energy level to the
reference value, and outperforms the Throughput Optimal (TO)
policy in terms of the throughput achieved.

Keywords—Energy harvesting, Energy prediction, Internet of
Things, Wireless Sensor Networks, Markov chains, Energy man-
agement, Non-linear Control

I. INTRODUCTION

The number of Internet of Things (IoT) devices is increasing
exponentially [1] and the energy demand for IoT related appli-
cations thus continues to grow [2]. Energy efficiency and the
life span of IoT devices are key challenges to next generation
IoT based solutions [3]–[6]. Therefore, energy management in
IoT technologies, is a critical issue. Since, wireless sensing
nodes are an integral part of IoT technology [7], [8] the prob-
lem of energy management in IoT sensing nodes inherits many
of the characteristics of the energy management problem in
Wireless Sensor Networks (WSNs) [9]–[11]. Thus throughout
the paper, the term ”node” is used for IoT and WSN nodes
interchangeably. The problem was originally challenged by the
limited energy storage capabilities and the independent oper-
ation of IoT nodes in remote, often hazardous environments
[12]. New challenges and design options later emerged as a

result of the integration of the harvesting capability of ambient
energy and the emergence of new networking paradigms, as for
example in smart cities [2], body sensor networks [13], [14],
habitat monitoring [15], volcano monitoring [16], structural
monitoring [17], vehicle tracking [18], and more recently nano-
networking [19].

The energy harvesting (EH) capability, whether this is solar,
vibration, thermal or energy from radio waves, significantly
affects the energy management design [20]. It is well es-
tablished that the harvesting energy capability penetrates in
all layers of network protocol design leading to numerous
harvesting aware solutions in a number of network related
problems [9], [21]: in topology control [22]–[24], in routing
[25], [26], in medium access control [27]–[30] in transmission
policies [31], [32], [33], in scheduling based congestion control
[34], in data cycling [35], [36] and in admission control [37].
In [22], topology control in the EHWSNs is considered and
game theory-based solution is proposed to adaptively adjust
the transmission power of each node to utilize the harvested
energy efficiently. In [23], the impact of node position on
the wireless sensor communication link are studied where
sensors are powered by RF EH from an existing wireless
system. To enusre the energy neutral operation of nodes, a
hierarchical routing protocol is proposed in [24] that groups
EH nodes into a number of clusters. In [25], problem of
rout selection in EHWSN is addressed and stability-aware
geographic routing scheme is proposed which considers the
residual energy, harvested energy, packet reception rate and
location information. In [26], the problems of energy con-
sumption and congestion are considered simultaneously. In
[27], the design and implementation of the MAC layer of
EH enabled wireless embedded systems is considered. An
efficient MAC for EH based WSNs is proposed in [28]. A
suitable range for the duty cycle is determined in the presence
of QoS and network lifetime constraints. Authors in [29]
proposed an adaptive energy-efficient algorithm which adapts
the MAC parameters of wireless sensors in response to the
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queue occupancy and varying traffic load levels. In [31] and
[32], problem of throughput maximization by considering the
channel conditions and time varying energy harvesting sources
is presented. A geometric water filling (GWF) algorithm is
proposed for power allocation with a sum power constraint.
Authors in [33] formulated a sum-rate maximization problem
of joint resource block and power allocation for the D2D links.

In this work, we examine the problem of determining the
transmission policy of wireless sensing nodes, taking into ac-
count the constrained energy resources and the EH capability.
Several works have appeared in the literature mostly involving
stochastic representations of the underlying processes [9], [21].
Stochastic approaches in many cases provide a more realistic
representation of the underlying processes and dynamics as
energy storage and consumption on wireless nodes is in most
cases stochastic in nature. These approaches rely on different
formulations of the problem, considering different decision
variables of the transmission policy, different design objec-
tives and different characteristics of the stochastic processes
involved, whether these are used to represent the energy
harvested, the storage devices, the data queueing disciplines
or the communications channel. Decision variables include
the wake up schedule of the sensing nodes [36], [38], the
transmission probability [39], the transmission mode [13], the
energy allocated for transmission [40], and the transmission
rate [41]. Different design objectives have also been considered
as for example the probability of future energy depletion [13],
the likelihood of data being correctly detected [13], the average
long term importance of the reported data [39], the detection
probability [36], the achieved throughput [28], [31], [40], [42]–
[47] and the packet delivery time or transmission completion
time [38], [41], [48], [49]. In addition, memoryless [50] and
temporally correlated [36], [39] models have been considered,
infinite [51] and finite [39], [49], [52] buffer capacities have
been accounted for, some cases in the presence of fading
communication channels [41], [31], Gaussian relay channels
[46] or additive white Gaussian channels [47]–[49]. Note also
that battery imperfections have been considered in [53], non
ideal circuit power transmitter has been considered in [47],
multi-hop duplex communications have been considered in
[54], reinforcement learning techniques have been incorporated
in [55] and recently in [56] it has been identified that the
transmission scheduling policy does affect the EH model, a
process which is naturally modelled by feedback. Significant
above works involve stochastic representations of the under-
lying processes [9]. However, stochastic approaches lead to
representations which make analysis and design complex in
nature and sometimes intractable. Deterministic approaches,
however, are in many cases easier to analyze and lead towards
simpler to implement solutions. This thrust has led us for
the adoption of deterministic approaches in other problems
exhibiting similar characteristics to the energy control problem,
as for example the congestion control problem in computer
networks. So, in this work we adopt a deterministic model
approach, we view the problem as a queue control problem
and we demonstrate through simulations that the approach is
able to outperform a characteristic stochastic approach, despite
the simplicity of the deterministic model. The advantage of

considering the problem as a queue control problem in a
deterministic model framework, is the availability of off the
shelf solutions which have been developed in the context
of other problems e.g. the congestion control problem. This
constitutes the major contribution of this work which paves the
way to adopt algorithms from the rich literature of congestion
control algorithms available in the literature.

At the same time, recent research efforts in literature have
established that EH aware protocols, can be greatly improved
upon availability of energy prediction strategies, which gener-
ate predictions of harvested energy to be used for better energy
provisioning. In [57], node clustering and routing algorithms
are proposed to optimize data transmission, based on future
predictions of harvested solar energy. Moreover, in [58] a
power management scheme for the throughput maximization
problem using energy predictions is proposed for the au-
tonomous mode of device-to-device (D2D) communications.
In [59], predicted energy based on Kalman filtering is used to
regulate the number of bits sent by the transmitter during a time
slot in point-to-point communication between wireless nodes.
In [60], power in WSNs is controlled using predictions of
wind energy, while adaptive control of the packet transmission
period with solar EH prediction is proposed in [61]. Such
prediction schemes [62] can lead to better energy management
of the available and harvested resources and lead to protocols
with improved properties and an effective energy provisioning
system.

In this work, we consider the energy management prob-
lem in IoT sensing nodes and in particular the problem of
regulating the transmission rate in the presence of harvested
energy whose levels can be predicted. We adopt a design
approach based on control theoretic considerations, which
is different from the overwhelming body of existing works
in the literature. We view the problem as a queue control
problem where the objective is to regulate the transmission
and thus the energy leaving the battery in order to ensure that
at equilibrium the energy level within the battery converges
to a constant reference chosen by the designer. Maintaining
this reference value ensures that the battery is not depleted
and that some energy is stored for crucial or emergency
operations. In particular, we consider a non-linear model of the
queuing dynamics first introduced in [63], to derive non-linear
robust controllers for serving the energy management policy. A
notable feature of the proposed protocol is that it incorporates
predictions of the energy to be harvested which are generated
using the proposed Accurate Solar Irradiance prediction Model
(ASIM) and is based on Markov Chains of increasing order
[64]. The stability of the proposed controllers is established
analytically and the performance of the combined prediction
and control policy is investigated using simulations conducted
on the Network Simulator (NS-3). Our simulation experiments
indicate that both derived controllers are successful in guiding
the energy level to the desired values and that the addition
of integral action is beneficial in terms of the throughput
achieved. Moreover, a sensitivity analysis is performed to
investigate the effect of changing the design parameter α
and the sampling period. Finally, the proposed approach is
compared against the Throughput Optimal (TO) policy [40]
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which is chosen as the benchmark solution on the basis that it
is a good representative of throughput maximization policies
which are abundant in the literature. Higher throughput is
achieved by the proposed strategy. The current work extends
our previous works in [64], [65]. The main new contributions
of the paper are the following:
• Extension of the ASIM model to account for both long

term and short term prediction and demonstration of its
effectiveness.

• Introduction of the proportional and integral controller
and demonstration of its effectiveness using both analy-
sis and simulations.

• Extensive performance evaluation that includes sensitiv-
ity analysis of the proposed schemes (to highlight the
robustness) and a comparative analysis relative to an
existing approach, namely the TO policy.

The proposed control based approach has not been adopted be-
fore and the significance of this work lies on the demonstrated
effectiveness of viewing the energy management problem as
a queue control problem which was studied extensively in the
context of internet congestion control. This paves the way for
adopting the rich literature of queue control algorithms derived
in that context to serve the energy management problem in
WSNs.

The paper is organized as follows: In section II, we describe
and validate the proposed prediction scheme, in section III
we formulate the energy management problem as a queue
control problem and we derive non-linear controllers whose
convergence properties are established analytically, in section
IV, we evaluate the performance of the combined prediction
and control scheme using simulations and finally in section V
we offer our conclusions and future research directions.

II. ENERGY PREDICTION

The proposed energy management scheme incorporates pre-
dictions of the energy to be harvested. In the proposed scheme,
the predictions are obtained using the ASIM model. In this
section, we review background theory on the ASIM model
and describe how Markov chains of increasing order are used
as a baseline to develop the proposed prediction model. We
present ASIM model as a generic model for both long term and
short term prediction. Central elements of the proposed model
are state dependencies of the underlying Markov chain which
are determined using a comprehensive data set from different
collection points around the world. The main characteristics of
the data set are described together with information on how
the model is implemented, tuned and validated.

A. The ASIM Model
In this subsection, we explain ASIM model which is

based on Markov chains of increasing order. At first, state
dependencies of first order Markov chains are shown and
then we describe how it can be extended to the Kth order
Markov chain. A random variable Xk at the time instant k is
considered which can attain values in the set [x1, x2, ..., xn].
The probability that a random variable can attain a state (xi)

at a particular time instant depends only on the attained state
at the previous time instant according to the Markov property
of the first order Markov chains i.e.

P (Xk+1 = xi | Xk = xj , Xk−1 = xl, ..., X1 = xm)

= P (Xk+1 = xi | Xk = xj) = Pj,i (1)

where Pj,i is the transition probability from the state xj to
the state xi depicting transition from a state to any other state.
The transition of random process can be represented by the
probability Πi(k) = P (Xk = xi).

Πi(k + 1) =

n∑
j=1

Πj(k)Pj,i , i ∈ {1, 2, .., n} (2)

Within the ASIM model, the range of attainable irradiance
values are divided into n equally sized sets to obtain the
states. Each set corresponds to a state whose value is equal
to the median of the set. For instance, if the maximum solar
irradiance value for a particular location is determined to be
less than 1000 W

m2 , n = 10 different states can be considered
where first state corresponds to the range 0 to 100 W

m2 .
We now describe how the first order Markov chain can be

extended to a general Kth order Markov chain. For the Kth

order Markov chain, the probability of the random process
attaining a state depends only on the attained states at the
previous K time instants i.e.

P (Xk+1 = xi | Xk = xj , Xk−1 = xl, ...., X1 = xm)

= P (Xk+1 = xi | Xk = xj , Xk−1 = xl, ....

, Xk−K+1 = xq) = Pj,l,...,q,i (3)

Denoting by Πj,l,...,q(k) = P (Xk = xj , Xk−1 =
xl, ...., Xk−K+1 = xq), the probability Πi(k) = P (Xk = xi)
is now evaluated according to:

Πi(k + 1) =

n∑
j=1

n∑
l=1

....

n∑
q=1

Πj,l,...,q(k)Pj,l,...,q,i

, i ∈ {1, 2, ..., n} (4)

For concluding the model, we consider each K-tuple as a state
and transitions are only possible if the original state and the
K element of the destination state are same. As an example,
the state x1x2..xK3 can make a transition to any state starting
with x2...x

K−1
3 , e.g. x2...xK−1

3 xK5 , where P1,2,...,3,5 is the
probability associated with the transition.

The Kth order Markov chain can be defined by its proba-
bility matrix, where the probability matrix can be calculated
using equations (3) and (4). If there are k states in a Markov
chain then the probability matrix takes the form:

P =



P1,..,1,1 P1,..,1,2 · · · P1,..,1,k

P1,..,2,1 P1,..,2,2 · · · P1,..,2,k

...
...

...
...

P1,..,k,1 P1,..,k,2 · · · P1,..,k,k

P2,..,1,1 P2,..,1,2 · · · P2,..,1,k

P2,..,2,1 P2,..,2,2 · · · P2,..,2,k

...
...

...
...

Pk,..,k,1 Pk,..,k,2 · · · Pk,..,k,k
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Fig. 1: Autocorrelation for all datasets

The transition probability from the current state q to state
i at any time instance t is Pjl..qi. Therefore, if there are n
number of transitions from states jl..q to state i in the irra-
diation data, the transition probability Pjl..qi will be Pjl..qi =

njl..qi/
∑k
i=1 njl..qi. We now analyse the prediction results of

the ASIM model in subsequent subsections.

B. ASIM as a Long-Term Predictor
In this subsection, we evaluate the performance of the ASIM

model for long term predictions using solar radiation data
sets. We demonstrate that the predictions obtained from ASIM
model show close realization of original radiations. We first
evaluate the data set and then demonstrate the results.

1) Long-Term Data Set: The ASIM model is evaluated using
real world solar radiation data sets obtained from the World
Radiation Data Center (WRDC) [66]. Moreover, long-term
data is the accumulated sum of one day (24 hours) radia-
tions. Data sets from four various locations are used namely:
Sonnblick (Austria), Bondville (Illinois, USA), Valentia (Ire-
land), and Tamanrasset (Algeria). The chosen locations are
characterized by longer data collection period having variety
in daily radiation as shown in Table I. Although in this work
the focus has been on solar energy harvesting, the ability of
the ASIM model to successfully generate predictions for data
sets beyond solar has been demonstrated in [62], where wind
energy sets were also considered.

TABLE I: Long-Term Data set information

Location Data years Mean
Temp.

Daily total Radiation
(W/m2)
Max Min Avg.

Sonnblick, Austria 1993 - 2012 -04◦C 3828 97 1450
Bondville, IL, USA 2003 - 2012 11◦C 3246 33 1470
Valentia, Ireland 2003 - 2012 11.4◦C 3165 26 995
Tamanrasset, Algeria 2001 - 2006 21.1◦C 3604 1968 2809

The data sets considered in this study, similar to other
real world data sets, have some missing values. It is worth
noting, however, that the number of missing values in the
selected locations is fairly small 0.05%, 0.08%, 0.5% and 0.9%
respectively. In order to fill in the missing values we used
the near interpolation technique [67]. Data sets show varying
level of dependency among radiation values. We performed
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(c) Ireland Data Set
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Fig. 2: Long term data comparison between predicted and the
original results

basic autocorrelation analysis to estimate the level of depen-
dency. The results of the autocorrelation analysis are shown
in Fig. 1. The Tamanrasset, Algeria trace appears to have
longer dependency as it starts converging at about lag 10
and has the highest coefficient values. On the contrary, the
Bondville, IL, USA trace starts converging at around lag 6
and has the smallest coefficient values. This suggests that the
Tamanrasset data set may require a higher order Markov chain
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to generate predictions of satisfactory accuracy as compared
to the Bondville data set. To see the effect of dependent states
on accuracy we refer to our previous work [64].

2) Evaluation methodology and Results: To evaluate ASIM
model for long term data set, the first half of each trace is used
as the training data while the other half is used for evaluating
the accuracy of the generated predictions. The considered
training data set is divided into bins of size 5 for deriving the
states of the Markov chain. Therefore, the first Markov state
contains all the solar radiance values between 0 − 5 where
the largest value of the data set dictates the number of states.
For instance, if the largest value is 3165 (Ireland data set), the
model will have 633 states. The steady state probability of a
transition is calculated by dividing the number of transitions
among these states within the considered data set, over all the
transitions. The transition probabilities from the attained state
obtained during the training phase are used for predicting the
next state. This is done by partitioning the 0− 1 interval into
regions, where the size of the region is equal to the obtained
transition probabilities. The next state is determined by a
random number generated following a uniform distribution in
the interval 0− 1.

We analyse the accuracy through different methods. First,
we use an overlapping graph of actual radiation versus pre-
dicted radiations generated by ASIM model to visualize the
similarity. We use the reduced form of the ASIM model which
incorporates a third order Markov chain with bin size of 5.
It has been shown that such a configuration provides a good
trade-off between complexity and performance. Fig. 2 shows
the comparison between predicted and real values for the
considered locations. The graphs indicate that the predictions
provided by ASIM model capture radiations close to the actual
radiations. Readers are referred to our recent work [62], where
we have compared the performance of of ASIM model with
other state of the art prediction models.

We also calculate the Normalized Root Mean Square Error
(NRMSE) for each data set. The NRMSE is obtained by
dividing Root Mean Square Error (RMSE) with the mean of
the observed data in the time interval under consideration.
Following standard equation is used to compute NRMSE

values

√∑n
i=1
{Ai−Pi

Ai
}
2

n

A
, where Ai and Pi represent actual

and predicted values respectively. The error margin is shown
in Table III.

C. The ASIM as a Short-Term Predictor
In this subsection, we evaluate the ability of the ASIM

model to also act as a short term predictor. We collect short
term real data sets from WRDC [66]. We consider similar
locations to the ones considered in the previous subsection.
The short-term data set is the accumulated sum of one hour
(60 minutes) radiations. Some basic characteristics of this data
are shown in Table II. The evaluation methodology is the same
as the one described in the previous section. The change comes
from the data set which has hourly granularity instead of daily.
The time scale is thus reduced from day to hours. Fig. 3
compares predicted and real data for the considered locations.

The NRMSE is shown in Table III for all the data sets for
both short and long term prediction. It may be noted that in
Algeria, there are less variations in weather conditions due to
less rain and less clouds, thus, more accurate predictions are
obtained for Algeria. The results demonstrate the ability of the
model to also act as a short term predictor.
Remarks: Reliability of the predictions is dependent on the
data sets and application under consideration. For instance,
applications where battery storage is small, it is recommended
to use short term predictions.

TABLE II: Short-Term Data set information

Location Data of Jan. Mean
Temp.

Hourly total Radiation
(W/m2)
Max min average

Sonnblick, Austria 2014 - 2015 -04◦C 190 0 25.1
Bondville, IL, USA 2014 - 2015 11◦C 211 0 30
Valentia, Ireland 2014 - 2015 11.4◦C 114 0 10.5
Tamanrasset, Algeria 2006 - 2007 21.1◦C 329 0 78

TABLE III: Normalized RMSE

Location Normalised RMSE
Long-term Short-term

Sonnblick, Austria 0.68 0.42
Bondville, IL, USA 1.36 0.52
Valentia, Ireland 0.99 0.89
Tamanrasset, Algeria 0.1 0.25

III. CONTROL BASED ENERGY MANAGEMENT

In this section, we develop and analyse control based
energy management policies for IoT which incorporate energy
predictions. The main feature of the proposed scheme, which
differentiates it from previous approaches, is that the battery
at each node is modelled as a M/M/1 queue accommodating
energy “packets” and the energy management problem is
viewed as a queue control problem. The objective of control
problem is to regulate the amount of energy which is made
available for packet transmission such that the energy queue
level within the battery is maintained at a desired level chosen
by the designer. This approach is attractive as it implies that
design methodologies which have been used for queue control
in the context of congestion control in computer networks can
also be applied in this framework. In this work, we adopt
this design approach and inspired by [63], we derive non-
linear controllers based on non-linear models of the energy
queue. Below, we provide details of the adopted approach and
establish the stability properties of the considered controllers
analytically.

The battery at each IoT node is modelled as a queue
accommodating energy “packets” as shown in Fig. 4. The state
of the queue which is the amount of energy stored in the battery
is denoted by x(t). The EH capability of the nodes implies an
energy input into the battery per unit time which is denoted
by Ein(t). Energy is dissipated for network functionality,
including transmissions, and the rate of energy dissipation out
of the battery is denoted by Eout(t). It is assumed that energy
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Fig. 3: Short-term data comparison between predicted and the
original results

packet transmission time is proportional to the packet length.
It must be noted that, as in many textbooks, the dependence on
t of some variables is implied and thus the (t) notation is used
interchangeably. Motivated by works [42], [68], [69] indicating
that arrival of energy packets to the battery can be modelled
as Poisson processes with mean Ein, we model the queueing
dynamics using a non-linear queueing model. The model was
first introduced in [63] and is based on M/M/1 queue, steady

Fig. 4: Queue Model of the Battery

state considerations. The model is shown below:

ẋ(t) =


max(−Eout(t) x(t)

1+x(t) + Ein(t), 0), x(t) = 0

−Eout(t) x(t)
1+x(t) + Ein(t), 0 < x(t) < xmax

min(−Eout(t) x(t)
1+x(t) + Ein(t), 0), x(t) = xmax

(5)
where xmax is the maximum energy that can be stored in
battery.

A. Controller

We adopt this model for developing and analysing our en-
ergy management policy. The energy dissipation rate Eout(t),
is the control variable, as this can be adjusted by regulating the
transmission rate. The control objective is to regulate Eout(t)
using predictions of the energy arrival such that the energy
stored in the battery tracks a reference energy level denoted
by xref . Maintaining the energy level at xref ensures that
the battery is not depleted and that some energy is always
stored for emergency and crucial operations. The energy pre-
dictions, denoted by Êin(t), are generated by the ASIM model
described in the previous section. Using feedback linearization
and robust control concepts, we propose the following control
law:

Eout(t) = max[ρ(t)
1 + x(t)

x(t)
[αx̃+ Êin(t)], 0] (6)

where x̃(t) = x(t)−xref is the queue error, α > 0 is a design
parameter and ρ(t) is introduced to provide robustness against
x(t) attaining small values close to zero and is defined as:

ρ(t) =


0 if x(t) ≤ 0.01,
1.01x(t)− 0.01 if 0.01 < x(t) ≤ 1,
1 if x(t) > 1.

(7)

The proposed control law is used to update the rate Eout(t)
with which energy is made available to the wireless sensor
node. The update is done every time T > 0 which is a design
parameter and whose effects are discussed in the performance
evaluation section. It is assumed that the whole amount of
energy which is made available to the sensor node is utilized
to send sensed data. So, the more energy is made available to
the wireless sensor node, the more data can be sent, and hence
higher throughput can be achieved.
Theorem 1: The control law defined by equation (6) guarantees
that x(t) is bounded and converges close to xref within finite
time, with an error that depends on the upper bound of the
estimation error ε.
Proof: For the proof of Theorem 1, readers are referred to our
previous work [65].
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B. Controller With Integral Term

In this section, we add integral action and propose another
controller for regulating Eout(t), so that energy stored in
battery has a fixed value xref resulting in availability of some
amount of energy every time to keep the nodes alive. Following
robust control law based on integral term is proposed.

Eout(t) = max[ρ(t)
1 + x(t)

x(t)
[αx̃(t) + k + Êin(t)], 0] (8)

where x̃(t), α and ρ(t) are defined earlier in section A. k is
the integral term and its derivative is defined as:

k̇ = δx̃(t) (9)

with δ being the design parameter. Moreover, boundary of the
neighbourhood ε can be made arbitrarily small by adjusting
the design parameter δ.
Theorem 2: The control law described by equation (8) guar-
antees that x(t) is bounded and converges close to xref with
time, with an error that depends on the upper bound of the
estimation error ε.
Proof: Consider the following Lyapunov function:

V (x) =
1

2
x̃2(t) +

1

2

k2

δ
(10)

Differentiating the equation (10) with respect to time yields
the following:

V̇ (x) = x̃(t) ˙̃x(t) +
1

δ
kk̇ (11)

Our objective is to show that V̇ (x) ≤ 0 outside a specific
neighbourhood of the equilibrium point xref . Equation (5)
dictates 3 different cases to be considered based on the value
of x(t).
Case 1: (0 < x(t) < xmax)
For (0 < x(t) < xmax) two sub cases can be further identified.
Case 1.1: Eout(t) > 0
Substituting Eout(t) from equation (8) in (5) yields:

ẋ(t) = −ρ(t)[αx̃+ Êin(t) + k] + Ein(t) (12)

Further substituting the value of ˙̃x(t) and k̇ from equation (12)
and equation (9) respectively, in equation (11) yields:

V̇ (x) = −ρ(t)x̃2(t)α− k(ρ(t)x̃(t)− x̃(t))

−ρ(t)Êin(t)x̃(t) + Ein(t)x̃(t) (13)

Equation (5) dictates 3 additional sub cases which depend on
the value of x(t).
Case 1.1.1: (x(t) > 1)
Since for x(t) > 1, according to equation (7) we have ρ(t) =
1. Substituting the latter in equation (13) yields:

V̇ (x) = −x̃2(t)α− k(x̃(t)− x̃(t))− Êin(t)x̃(t) +Ein(t)x̃(t)
(14)

Let the estimation error be denoted by λ, where (Ein(t) −
Êin(t)) = λ. It can be assumed that the error is upper bounded

by a finite constant ε such that |λ| < ε. Substituting (Ein(t)−
Êin(t)) = λ in equation (14) yields:

V̇ (x) = −αx̃2(t) + λx̃(t) (15)

Completing the square results in the following:

V̇ (x) = −(
√
αx̃(t)− λ

2
√
α

)2 +
λ2

4α
(16)

It implies that for |x̃| ≥ ε
α , equation (16) leads to V̇ (x) ≤ 0.

V̇ (x) is negative outside the neighbourhood (|x̃| < λ
α ) i.e for

the region |x̃| ≥ λ
α . With ε being the boundary of the

neighbourhood as defined earlier, any solution starting in the
neighbourhood will remain therein for all the future times
since V̇ (x) ≤ 0 for the region |x̃| ≥ λ

α . Hence, solutions are
uniformly bounded [70], [65]. Further V (x) is monotonically
decreasing until the solution enters the neighbourhood. There-
fore, we can conclude that the solution is uniformly ultimately
bounded [70]. Moreover, the boundary can be made arbitrarily
small by adjusting the value of the design parameter α.
Case 1.1.2: (x(t) < 0.01)
For x(t) < 0.01, equation (7) identifies the value of ρ(t) = 0.
Substituting ρ(t) = 0 in equation (11) yields:

V̇ (x) = Ein(t)x̃(t) + kx̃(t) (17)

Since x(t) < xref , it follows that x̃(t) < 0 and in addition
Ein(t) is always positive, it follows that V̇ (x) ≤ 0.
Case 1.1.3: (0.01 ≤ x(t) ≤ 1)
Since 0.01 ≤ x(t) ≤ 1, thus equation (7) dictates ρ(t) =
1.01x(t) − 0.01. Substituting the value of ρ(t) in equation
(11) yields:

V̇ (x) = −ρ[αx̃2(t) + x̃(t)Ein(t)] + Ein(t)x̃(t)

−k[ρ(t)x̃(t)− x̃(t)] (18)

Since x(t) < xref it follows that x̃(t) < 0 which in turn
results in V̇ (x) < 0.
Case 1.2: Eout(t) = 0
For Eout(t) = 0 equation (5) gives:

ẋ(t) = Ein(t) (19)

Two sub cases can be further identified.
Case 1.2.1: Ein(t) = 0
Substituting Ein(t) = 0 in equation (19), ˜̇x(t) = 0 and
V̇ (x) = 0.
Case 1.2.2: Ein(t) > 0
Since Ein(t) > 0, It follows that after some time t2 ≥ t1 we
will have x̃(t) ≥ 0 for t > t2 and x̃(t) will be growing with
time t. Increasing x̃(t) implies increasing x(t) which means
that there exists a time t3 close to the t2 i.e t3 ≥ t2 ≥ t1 such
that Eout(t) takes the following value [65]:

Eout(t) = ρ(t)
1 + x(t)

x(t)
[αx̃(t) + k + Êin(t)] (20)

Moreover, at any instant Eout(t) = 0 implies that x̃(t) < 0,
and ẋ(t) = ˜̇x(t) = Ein(t) ≥ 0, which in turn results in
V̇ (x) ≤ 0 [65].
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Case 2: (x = xmax)
Since x(t) = xmax, considering xmax > 1, according to
equation (7) we have ρ(t) = 1. Substituting ρ(t) = 1 in
equation (11) results in:

V̇ (x) = −αx̃2(t) + λx̃(t) (21)

Thus for |x̃| ≥ ε
α , it follows that V̇ (x) ≤ 0.

Case 3: (x = 0)
Since x = 0, the equation (8) yields Eout = 0 and substituting
the latter in equation (5) yields:

˜̇x(t) = max[Ein(t), 0] (22)

Equation (22) dictates the following 2 additional sub cases to
be considered.
Case 3.1: Ein(t) = 0
Since Ein(t) = 0, it follows that ˜̇x(t) = 0 and which in turn
results in V̇ (x) = 0.
Case 3.2: Ein(t) > 0
Since Ein(t) > 0, it follows the same proof as presented for
the Case 1.2.2 and leads to V̇ (x) ≤ 0.

C. Discrete Time Implementation
The above presentation of the considered algorithms and

their stability analysis was based on continuous time treatment.
However, the discrete time version of the proposed control
algorithm is more suitable for practical implementation. Below,
we present the discrete time version of the controller in
equation (6):

Eout(k) = max[ρ(k)
1 + x(k)

x(k)
[αx̃(k) + Êin(k)], 0] (23)

where

ρ(k) =


0 if x(k) ≤ 0.01,
1.01x(k)− 0.01 if 0.01 < x(k) ≤ 1,
1 if x(k) > 1.

(24)

x̃(k) = x(k)−xref , xref is the reference queue size and α is
a design parameter. Discrete time version of proposed robust
controller based on proportional and integral term defined by
equation (8) can be represented as:

Eout(k) = max[ρ(k)
1 + x(k)

x(k)
[αx̃(k) + w(k) + Êin(k)], 0]

(25)
where ρ(k) is defined earlier in equation (24) and

w(k + 1) = δx̃(k)T + w(k), w(0) = 0 (26)

with δ being a design parameter and T being the sampling
period.
Remarks: The proposed approach consists of two schemes:
The Markov based energy prediction scheme and the energy
management controller. The implementation complexity of the
energy prediction scheme depends on the order of the Markov
chain to be utilized and the chosen number of states n. The
latter is dictated by the range of the available data set and
the chosen bin size. The smaller the bin size, the larger is

the number of states but the higher is the prediction accuracy.
However, it has been demonstrated that reasonably large bin
sizes suffice to generate results with good accuracy. The up-
dating matrices are generated offline during the training phase
and thus do not contribute to online complexity. The size of
these matrices depends on the number of states and the order of
the Markov chain. This thus generates the corresponding need
for memory requirements. The updating mechanism of the
predicted value simply involves selection of a particular row
of the relevant matrix and a random number generation. The
computational complexity of the energy control scheme can be
interpreted from the discrete time version of the proposed con-
troller presented in equation (23) and (24). These algorithms
involve limited number of mathematical computations and the
implementation complexity is thus reasonable. It must be noted
that the complexity is also affected by the sampling period. The
smaller the sampling period the higher is the complexity as the
computations have to be repeated more frequently.

IV. PERFORMANCE EVALUATION

In the previous section, using analysis, performance bounds
were derived for provable controlled behaviour. In this section,
we demonstrate using simulations conducted on the NS-3 that
the proposed approach achieves the desired behaviour and
performance. For this, a network of 100 harvesting enabled
wireless sensor nodes is considered where nodes are placed
in an area of 1500 × 1500m2 following a uniform random
distribution. 802.11 transceivers are used with the transmission
power value set to 7.5 dbm. We considered DCF (Distributed
Coordination Function) mode of 802.11 which allows the
devices to communicate in an adhoc fashion and therefore
forms a kind of WSN. The most commonly used Friss loss
propagation model is adopted. In the considered scenario, a
randomly selected set of 20 source/sink pairs initiate the com-
munication in the network by transmitting packets with a rate
of 2.048Kb/s each. Each packet size is restricted to 64 byte.
The packets are relayed between nodes based on the OLSR
(Optimized Link State Routing) protocol. All measurements
are recorded after 100 sec which provides sufficient time for
the OLSR algorithm to converge to its equilibrium state. The
EH enabled nodes periodically update the EH status based on
equation (23) and determine the data transmission rate. The
control period is denoted by T and is set to T = 10 sec in
the reference scenario. The harvested energy, which is used to
update the energy level in the battery, is determined from real
data solar irradiance sets obtained in Austria [66]. Each dataset
contains solar irradiance for two years (2011 and 2012) having
the granularity of one value per 30 minutes. This data is used to
generate energy predictions according to short term version of
our proposed ASIM model [64], whose performance has been
demonstrated in section III of the paper. Multiple simulations
are run to establish that the energy consumption for packet
transmission is of 0.0025 J/packet. The battery capacity of a
node is assumed to be 1 J , where battery is initially considered
to be fully charged. Initially, the design parameter α which
affects the convergence properties of the scheme is set to 1.
Two desired energy levels xref are considered indicatively:
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Fig. 5: Energy level and Throughput when xref = 0.3 J

0.3 J and 0.5 J . Each node is assumed to be persistent in the
sense that it always has data to send.
In the first set of experiments, we set the xref value to 0.3 J

and we report the time evolution of the stored energy of all
the nodes in the network and the total network throughput in
Fig. 5b and 5c respectively. In order to better understand the
observed behaviour, in Fig. 5a we also report the time evolution
of the Eout(t) value which indicates the rate of energy leaving
the battery to serve the various network operations and the
Êin(t) value which indicates the predicted energy input rate.
It must be noted that the aforementioned values are network
values i.e. the sum of the parameter values over all the network
nodes. This is done in order to demonstrate the effectiveness
of the method for all the network nodes. The corresponding
energy levels per node are depicted in the Fig. 6. The first thing
to note is that at periods of time for which the system is able to
converge to a steady state behaviour, the energy stored in the
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Fig. 6: Energy level per node when xref = 0.3 J

battery converges to the desired value of 0.3 J . This indicates
that the primal design objective is met. The transient behaviour
also reveals some interesting attributes. At the initial and last
stages of the simulation, when the predicted harvesting energy
increases, indicating future energy availability, the algorithm
increases the energy availability for transmission, leading to
the reported high throughput values in that period. In those
transient periods, the frequent changes in the input signal
do not allow the energy level in the battery to converge to
the reference level, however, the algorithm is successful in
maintaining bounded energy level values which do not allow
the depletion of the batteries or the full utilization. Moreover,
when the predicted energy input is zero, the algorithm leads
to the Eout attaining its lower bound value which implies
that no transmissions are allowed leading to the observed zero
throughput value. In addition, during this period the battery
energy level converges to the posed reference value. Similar
behaviour is observed in the case of the reference value being
equal to 0.5 J as depicted in Fig. 7. The proposed algorithm
is able to achieve its primal goal which is to converge to an
energy level of 0.5 J when in steady state.
Feedback control policies, such as the one proposed in this

work are known to have good robustness properties i.e. to con-
tinue to work effectively in the presence of model uncertainties
or disturbances such as for example varying harvesting intakes.
However, suitable choice of the reference value can further
improve system performance and robustness. For example, at
times where extended periods of low harvesting intake can
be predicted, the reference value can be set at a relatively
high value to account for high processing and communication
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needs that might arise during that period. Similarly, at periods
of expected high energy intake smaller reference values may
be selected. As long as the changes in the reference values
are not frequent, the algorithm will be able to cope with these
changes, with transient properties similar to the ones reported
above.
At times of extended low power intake (as for example at
night) congestion may occur when the energy management
policy does not allow any packet transmission. However, the
lack of energy does not leave any alternatives and congestion
is preferred rather than total battery depletion. One option
that might alleviate the problem to some extent, is to choose
high reference values at periods of low harvesting intake. The
larger stored energy resources can be used at high congestion
situations to alleviate, to some extent the congestion problem.

A. Effect of the sampling period

Harvesting enabled sensor nodes update their harvesting
status after every T seconds and based on equation (23) they
determine the data transmission rate. The sampling period T
is a major design parameter as it is related to the process-
ing overhead of the scheme and the achieved performance,
usually involving a trade-off whose optimal point is in most
cases determined using simulations. Control theory dictates
that the higher the sampling rate, the better performance is
achieved at the expense, however, of higher processing needs
as the computations must be performed more frequent. In this
subsection, we investigate the effect of changing the sampling
period T on the achieved performance. In Fig. 8, we report the
time evolution of the battery energy levels and the network
throughput when T takes the values 10, 30, 50 and 100
sec. As expected, the increase in the sampling period has an
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adversarial effect on achieved performance. Higher values of
the sampling period lead to the algorithm failing to converge
to steady state values which in turn results to the energy
levels within the battery never achieving the desired reference
values. In addition, as the sampling period increases, the
reported throughput significantly decreases leading to almost
zero values at high sampling periods.

B. Effect of the parameter α
The proposed proportional controller approach, incorporates

a single parameter α which needs to be tuned. The parameter
α does not have a physical meaning. It is rather a design pa-
rameter of the control algorithm. The continuous time analysis
performed in the previous sections suggests that the parameter
does not affect the stability properties of the system or its
steady state behaviour. However, such a parameter is usually
introduced to dictate the transient properties of the system, as
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for example the speed of convergence. Due to the simplicity of
the adopted model, its effect is difficult to be evaluated using
mathematical analysis. In addition, since the implementation
is done in a discrete time setting, the effect of the parameter
might prove to be different than what is expected from the
continuous time analysis. In such situations it is common
practice, to evaluate its performance using simulations. This
approach has been adopted here as well. In this subsection,
we investigate the effect of the parameter α on the achieved
performance. We consider the following values of α: 0.1, 0.5,
1, 2, 5 and 10. We show the reported time evolution of the
energy storage, the energy output rate and the throughput
in Fig. 9. We observe that the value of α critically affects
the system behaviour and that the value of α = 1 leads to
the desired behaviour. As the value of α increases, larger
Eout(t) values are generated which leads to the depletion of
the available energy resources. This is obviously undesirable.
Values of α less than 1 lead to smaller Eout(t) values and thus
higher energy storage values at equilibrium. This in turn leads
to smaller throughput values.

C. Effect of adding Integral Action

The results presented so far refer to the proposed energy
queue controller which incorporates feedback linearization
principles to apply proportional control action. However, it
has been shown in the previous section that the stability
properties of the controller are preserved if integral action is
also introduced. So, the question which arises is whether the
addition of the integral action is beneficial to the observed
performance. In this section, we evaluate the performance of
the proposed approach when integral action is introduced. The
queue reference value is set to 0.3 J and the total stored energy
in the network and the throughput are shown in Fig. 10. It
is observed that the controller is successful in guiding the
energy queue close to the desired energy level. However, the
main advantage is that higher throughput levels are achieved
thus demonstrating the beneficial effect of adding the integral
action.

D. Performance Comparison

The proposed energy management strategy is different in
principle from existing strategies in that it poses the problem
as a queue control problem where the design objective is to
regulate the dissipated energy so that the energy within the
battery converges to a reference value dictated by the network
operator. The effectiveness of the method has been demon-
strated using both analysis and simulations. However, how
does the proposed approach compare with existing strategies
which are characterized by a different design rationale. Most
of the existing schemes pose the objective of regulating the
energy dissipation in order to maximize the achieved through-
put, or sensing rate in the context of sensor networks. We
indicatively choose TO policy [40] as a representative of the
aforementioned design rationale and compare its performance
against the proposed strategy. The reason that the specific
approach was chosen is that the starting point is similar to
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our approach, i.e. a queue based representation of the energy
storage device. The main difference is that although stochastic
models are considered in [40], deterministic models (which are
however, based on equilibrium states of underlying stochastic
processes) are used in our work. So, the idea is to test two
approaches which have the same starting point i.e. queue repre-
sentation of the energy storage device but they have a different
design rationale. The approach in [40] attempts to maximize
throughput or minimize delay while our approach is control
theory based. It is a comparison between design rationales
rather than specific protocols. It is evident from Fig. 11 that
the proposed policy is more efficient as at the time instants
where more input energy is available, it is able to provide
more output energy rate Eout(t) and corresponding higher
throughput. At the same time, for the time instants that Ein(t)
is small, the proposed scheme is able to retain the battery level
to the reference value which can be adjusted by changing the



12

100 200 300 400
Time (sec)

0

50

100

150

po
we

r (
W

at
ts

)

(a) Rate of Output Energy (Eout(t))

100 200 300 400

Time (sec)

0

50

100

150

E
ne

rg
y 

(J
) 

(b) Energy Storage Level

0 100 200 300 400

Time (sec)

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (b

ps
)

(c) Throughput

Fig. 10: Energy level and Throughput with addition of integral
action

value of xref . In comparison, the TO policy reports less energy
for transmission and correspondingly smaller throughput while
the energy storage level is higher. Thus, the proposed approach
when compared to the TO policy reports a better performance
in maintaining the desired energy level simultaneously with
adapting the throughput rate according to the available energy
levels.

V. CONCLUSIONS

In this paper, we view the energy management problem in
EH enabled IoT sensing nodes, as a queue control problem,
where the objective is to regulate transmission so as to guide
the battery energy level to a predetermined reference level, and
we propose non-linear controllers whose stability properties
are established analytically. The proposed strategies utilize
predictions of the energy to be harvested which are generated

0 100 200 300 400
Time (sec)

0

20

40

60

80

100

120

Po
we

r (
E ou

t ) 
(W

at
ts

)

TO Policy
Proposed Policy

(a) Rate of Output Energy (Eout(t))

0 100 200 300 400

Time (sec)

0

20

40

60

80

100

S
av

ed
 E

ne
rg

y 
in

 B
at

te
ry

 (J
)

TO Policy

Proposed Policy

(b) Energy Storage

0 100 200 300 400

Time (sec)

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (b

ps
)

Proposed Policy
TO Policy

(c) Throughput

Fig. 11: Comparison with TO policy

using the proposed ASIM model. The effectiveness of the
proposed method is demonstrated using simulations conducted
on the NS-3 simulator. A major contribution of this work is the
demonstrated effectiveness of viewing the energy management
problem as a queue control problem. So, a natural extension
of this work is the consideration of queue control strategies
which have been proposed in the context of internet congestion
control, in the context of the addressed energy management
problem. Another line of future research is the investigation of
the combined energy and rate management problem as coupled
queue control problems.
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