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Abstract 

This paper proposes a new model for autoregressive conditional heteroscedasticity and kurtosis. 

Via a time-varying degrees of freedom parameter, the conditional variance and conditional 

kurtosis are permitted to evolve separately. The model uses only the standard Student’s t density 

and consequently can be estimated simply using maximum likelihood. The method is applied to a 

set of four daily financial asset return series comprising US and UK stocks and bonds, and 

significant evidence in favour of the presence of autoregressive conditional kurtosis is observed. 

Various extensions to the basic model are proposed, and we show that the response of kurtosis to 

good and bad news is not significantly asymmetric.  

 

J.E.L. Classifications: C22, C51, C52 

Keywords: conditional kurtosis, GARCH, fourth moment, fat tails, Student’s t distribution 

 

 

Introduction 

It is an almost universally accepted stylised fact that asset returns are not normally distributed, 

following early research by Mandelbrot (1963), but rather that they are leptokurtic. This property 

implies that extreme market movements, in either direction, will occur with greater frequency in 

practice than would be predicted by the normal distribution. For example, a 5% daily loss is 

observed to occur in equity markets approximately once every two years, while if returns were 

normally distributed, such a change would be expected only once in every one thousand years 

(Johansen and Sornette, 1999), given the estimated return variances. Clearly this is an important 

observation in finance since, under the normality assumption for returns, variance is widely used 

as a proxy for market risk. If however, asset returns are fat-tailed, this will lead to a systematic 



 4 

underestimate of the true riskiness of a portfolio, where risk is measured as the likelihood of 

achieving a loss greater than some threshold.  

 

The standard ARCH and GARCH models introduced by Engle (1982) and Bollerslev (1986) 

respectively allow normally distributed disturbances to have time varying (conditional) variance. 

Such models are able to generate data with unconditionally fat tails, but not sufficiently fat to 

capture all of the observed unconditional leptokurtosis in returns series. Engle and Bollerslev 

(1986) explore the Gaussian model further, and although conditional kurtosis is not of direct 

interest to their study, they derive the conditional kurtosis forecasts from a GARCH(1,1) process 

as a function of the conditional variance. Their derivation is sufficient to illustrate a key point 

relevant to this paper: since the normal distribution is characterised entirely by its first two 

moments, the behaviour of the kurtosis is entirely determined by that of the variance. 

 

The observation that GARCH models with normal disturbances cannot generate sufficient 

leptokurtosis to replicate that observed in actual data was in part the motivation for the study of 

Bollerslev (1987).  He developed a more general model that allowed the disturbances to have a 

transformed t-distribution so that extreme values, occurring more commonly than under a normal 

distribution, may be accommodated. However, whilst such a model can lead to sufficiently fat 

tails to provide a realistic model for asset returns, the conditional kurtosis from such a model is 

tied to the conditional variance via a time-invariant degrees of freedom parameter. To introduce 

some notation, suppose that the conditional distribution of the series of interest, yt , t = 1, 2, …, T, 

is a transformed central t with conditional mean yt  t-1, variance ht  t-1 and degrees of freedom v, 
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and let fv(tt-1) denote the density function for t conditional upon all information available to 

time t-1. A GARCH-t model may thus be written 

 yt = 0 + t ,  t  t-1  fv(tt-1) 

 ht  t-1 = 0 + 1t-1
2
 + 2 ht-1  t-2      (1) 

where 0, 0, 1, 2 are parameters to be estimated. 

 

From a finance perspective, consideration of the higher moments of portfolio return distributions 

is important to ensure that investors make optimal decisions given their tolerances for risk and so 

that fund management or trading rule performance is correctly appraised. Research by 

Chunhachinda et al. (1997), for instance, suggests that the incorporation of moments higher than 

the second into the investor’s portfolio decision causes a major change in the construction of the 

optimal combination of risky assets. Since higher moment deviations from normality are agreed 

to be non-negligible, there is no reason to suppose that they should be time-invariant, other than 

for simplicity, and allowing them to be time-varying may improve their approximation to the 

actual return distributions. Failure to consider moments higher than the second or assuming that 

those moments are time-invariant could also lead to avoidably high approximation error. Nelson 

(1996), for example, plots the standardised residuals exceeding 4 in absolute value from an 

EGARCH fit to daily S&P 500 data, and finds that large residuals of either sign tend to bunch 

together through time. He argues that this finding implies evidence for time-varying kurtosis. 

 

More recent research by Harvey and Siddique (1999, 2000) has proposed and employed a model 

that allows for time-varying conditional skewness, based upon a non-central Student’s t-

distribution. However, their approach does not model time-varying conditional kurtosis. We 
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would argue that an examination of the conditional fourth moment is of importance given that 

leptokurtosis is almost universally observed in financial asset returns, irrespective of the 

frequency of observation (although excess kurtosis is seen to diminish somewhat with temporal 

and cross-sectional aggregation of returns). On the other hand, some asset return distributions for 

emerging market returns appear to be negatively skewed (implying a higher probability of 

negative returns than positive returns of the same order – see Bekaert, Erb, Harvey and Viskanta, 

1998), while others are positively skewed. The degree and sign of the conditional skewness 

appears also to vary with sampling frequency and for given assets over time (see Harvey and 

Siddique, 1999, Figure 3B, for an illustration of the latter).  

 

Fernandez and Steel (1998) introduce an alternative model for conditional skewness that can be 

applied to any continuous, unimodal and symmetric distribution. The method is then applied to a 

set of stock returns, although they examine only unconditional moments. Lambert and Laurent 

(2001) employ the Fernandez and Steel approach in the context of maximum likelihood 

estimation of a GARCH model. They do not, however, consider conditional third or fourth 

moments.  

 

Hansen (1994) develops a general model for autoregressive conditional density estimation, 

centred on a skewed version of the Student’s t density. The skewed Student’s t is different from 

that of Harvey and Siddique (1999) and the skewness is achieved by modifying the density of the 

symmetric Student’s t distribution. Hansen allows the degree of freedom parameter to vary over 

time within prescribed bounds (2.1 to 30) using a logistic function. Hansen’s density collapses to 

the symmetric student t when the asymmetry parameter is zero. Premaratne and Bera (2001) 

propose the use of a Pearson type IV distribution for the unconditional returns data, which is able 
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to account for both asymmetry and extreme fat tails simultaneously, although they do not fully 

examine these in a conditional setting that allows the third and fourth moments to be time-

varying. An alternative unconditional distribution that can account for both skewness and 

leptokurtosis is the skewed generalised t distribution proposed by Theodossiou (1998). The 

various types of asymmetric conditional density function that are available for GARCH-type 

modelling are reviewed in Bond (2001). 

 

In this paper, we develop a model for autoregressive conditional kurtosis that permits the kurtosis 

to develop over time in a fashion that is not fixed with respect to the variance. This is achieved 

via a central t-distribution with time-varying degrees of freedom, so that the variance, degrees of 

freedom and hence kurtosis all vary over time, in a manner determined by the data. It is this 

allowance of the degrees of freedom parameter to vary over time that permits the relaxation of 

the relationship between the variance and kurtosis. It is worth noting at the outset that such a set 

up with a central t cannot produce asymmetries in the conditional return distribution, although 

incorporation of asymmetry terms in the conditional variance and conditional kurtosis equations 

can generate asymmetries in the unconditional return distribution. For the reasons above, and for 

its tractability and ease of subsequent model estimation, the restriction implied by the use of a 

central rather than a non-central t may not be undesirable. As Premaratne and Bera (2001) note, 

the non-central t involves the sum of an infinite series which enters the log-likelihood function 

and which makes computation exceedingly difficult. The Hansen (1994) approach allows for 

time-varying skewness but requires the imposition of several restrictions on the parameter values 

to permit estimation. These parameter restrictions are lifted in work by Jondeu and Rockinger 

(2000). Our model, by contrast, makes use of the central Student’s t distribution and can be 

viewed as a natural extension of Bollerslev (1987) that fits within the GARCH genre of models. 
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We allow for asymmetries in the returns distributions via an indicator function employed in the 

conditional variance and conditional kurtosis equations.  

 

The remainder of the paper is laid out as follows. Section 1 develops the univariate model for 

conditional kurtosis and discusses estimation issues, while Section 2 describes the data that we 

employ to illustrate the model’s applicability. Section 3 discusses the univariate results and their 

interpretation. Finally, Section 4 concludes and offers suggestions for further research. 

 

1. Model Development 

1.1 The Framework 

In order to obtain a model with freely varying conditional kurtosis as well as conditional 

variance, an approach based on that of Bollerslev (1987), but extended, is employed. Let t , 

t=1,2,…,T, be independently distributed as central Student’s t variates with t  degrees of 

freedom. Extending the work of Bollerslev (1987), consider a time varying transformation of t , 

to result in a new process that may have any desired variance th and kurtosis tk . Let this be given 

by  

ttt  * .         (2) 

where the *

t  are the analogues of the disturbances of a t-GARCH model. We can state the time-

varying transformation as a function of the conditional kurtosis and the conditional variance: 
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t
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The conditional variance, ht = t,2  and conditional fourth moment, t,4 , are then given 

respectively by 

2

2

,2



t

t
tt



 ;                  (4a) 

  42
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
 .                 (4b) 

Equations (4) arise from the moment generating function for a central t, where all odd moments 

are by definition zero. Rearranging equation (4a) gives the time-varying transformation as a 

function of the conditional variance and the time-varying degrees of freedom 
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Defining 2

,4 / ttt hk  , and substituting (5) into (4b) gives the conditional kurtosis as a function 

of the degrees of freedom at time t as 
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Equation (6) can be rearranged to give the degrees of freedom as a function of the conditional 

kurtosis 
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The equations above show that the conditional variance and conditional kurtosis are not tied 

together in a fixed fashion and may thus vary freely over time, since kt is a function of vt only 

while ht also depends on t. Since they are not directly functionally related, the terms th and tk  
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may be parameterised individually as desired. In order to estimate the parameters of these 

processes, note that the Jacobian of the transformation ttt  * is 

tt

tJ


 1

*





        (8) 

Taking the Student’s t density for t , substituting ttt  *  and multiplying by the Jacobian 

gives the density of *

t : 
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Substituting for t in (9) and taking logarithms yields the log-likelihood for the t
th

 observation 

(dropping constant terms): 
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where vt is a function of kt, as given by (6). Maximisation of the log-likelihood function, 


T

t

tl
1

, 

yields the maximum likelihood estimates of all the parameters of the model.  

 

Many specifications of the variance and kurtosis equations are conceivable, most obviously they 

may be of the typical GARCH type, namely, 

  12
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An even more general specification could be entertained, where feedback between the conditional 

kurtosis and conditional variance are allowed for. However, such a model would be highly 

parameterised and we therefore do not consider it further in this study. 

 

To summarise, the model may be termed generalised autoregressive conditional 

heteroscedasticity and kurtosis (GARCHK), and may be described by the following equations. 

  *

0 tty   ;                (12a) 

  ttt  * , 
t

tt  ~ ;               (12b) 
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All parameters are estimated using quasi-maximum likelihood with the BFGS algorithm. From 

equation (6) above, there exists a degrees of freedom restriction, 

  4t  

generated by the requirement for the existence of a fourth moment. Equation (6) also implies that 

kt  3 as vt   and kt   as vt  4. In order to ensure that the estimated model is admissible, 

it is sufficient that 0, 0, 1, 1 > 0, 2, 2  0, ht > 0  t, and kt > 3  t. We did not have to 

physically impose these restrictions on the estimation process since they seemed to arise naturally 
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from the data. The initialisations for the conditional variance and kurtosis series were set with 

every element equal to their unconditional values.  

 

1.2 Development of a Test for Autoregressive Conditional Kurtosis 

At first blush, it may appear sensible to attempt the formulation of test for autoregressive 

conditional kurtosis in a similar vein to Engle’s TR
2
 Lagrange Multiplier test for conditional 

heteroscedasticity, defining, 
2

4

ˆ

ˆ

t

t
t

h
y


 , and regressing it on p of its lagged values to test for 

autoregressive conditional kurtosis of order p. However, such an approach is inappropriate in the 

context of a student-t density since the TR
2
 approximate form for the LM statistic depends 

crucially on an assumption of conditionally normal disturbances. Therefore, in order to test 

whether there is evidence of autoregressive conditional kurtosis in the data, we revert to the 

application of a likelihood ratio test to the relevant estimated model parameters (1 and 2 in 

(12d)).  

 

1.3 Extensions of the Basic GARCHK Model 

There are several natural extensions of the model given by equations (12) that arise from an 

examination of the comparable GARCH literature. The simplest of these would be to increase the 

number of lags of the fourth power of the standardised error, 2

1

4*

1 /  tt h , and of the conditional 

kurtosis in the same way that a GARCH(1,1) can be extended to a GARCH(p,q). Models of a 

higher order in the conditional kurtosis equation were considered for the applications reported 

below, but all additional terms could be restricted to zero under a likelihood ratio test. This 
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indicates that one lag of each of the fourth power of the standardised error and of the conditional 

kurtosis is sufficient to capture all of the autoregressive conditional kurtosis in the data.  

 

The second obvious extension to make to the GARCHK model is to add additional terms to the 

conditional variance and conditional kurtosis equations that permit the next period values of these 

quantities to have asymmetric responses to the signs of the innovations, in the style of Glosten et 

al. (1993). This could be viewed as an alternative parameterisation for the skewness in the 

unconditional return distribution. It would also, of course, be plausible to specify logarithmic 

formulations for the conditional variance and kurtosis equations in the manner of Nelson (1991), 

although this possibility is not pursued here. Equations (12c) and (12d) thus become 
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11312
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where It-1 is an indicator function taking the value 1 if t-1
*
 is negative and zero otherwise, with all 

other parts of equations (12) remaining unchanged. Clearly, it would be possible to include the 

asymmetry term in either the conditional variance equation or the conditional kurtosis equation or 

both, and we opt for the latter.  

 

Engle et al. (1987) suggested that investors usually require compensation in the form of 

additional returns for taking on additional risk. Thus, a third possible intuitive extension of the 

GARCHK model would therefore be to allow the current return to depend on the current value of 

the conditional kurtosis as well as on the conditional standard deviation. Thus, equation (12a) 

becomes 
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  *

4

2/1

30 tt

t

t k
y

h
y   ;              (12a) 

where y is the mean value of yt. Standard GARCH-M formulations use ht
1/2

 in the conditional 

mean. This has units of returns but kt is unitless, so the conditional standard deviation is divided 

by the mean of the returns in order to ensure that the conditional standard deviation and 

conditional kurtosis terms in mean have the same scale. The scaled conditional standard deviation 

could also be viewed as the conditional coefficient of variation. Overall, therefore, both variables 

in (12a) are unitless so that the coefficients 3 and 4 both have units of returns. We do not 

estimate the conditional mean equation represented by (12a’) in this paper, and we therefore 

leave a more extensive consideration of such models for future research. 

 

1.4 Residual Standardisation and Moment Specification Testing 

Given the model, if it is capturing all of the relevant features of the data, certain moment 

relationships should hold on an appropriately standardised measure of the residuals. These can be 

tested on their sample moments. Effectively, the tests are of non-linear restrictions on the 

parameters of the model given the data, and can be regarded as mis-specification tests. The 

relevant forms for the tests are presented in Newey (1985). 

 

An important issue is to determine the appropriate standardised form of the residuals that should 

be used. It should be evident from the specification of the model of (12) that taking the residuals 

from the estimated GARCHK model and dividing them by the square root of the conditional 

variance, i.e. forming 2/1* ˆˆ
tt h , will in general not provide an independently distributed series. 

Such a procedure would be inappropriate since it would ignore any conditional kurtosis that was 
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present in the data. Instead, a more appropriate approach would be to take the estimated residual 

from the model and to divide it by the contemporaneous estimated value of the transforming 

variable: tt  ˆˆ* . Under correct model specification, the result will be a standardised measure that 

will be an independently distributed t-variate with vt degrees of freedom. From (12f), it should 

also be clear that as the degrees of freedom increase towards infinity, t  ht
1/2

, and hence this 

new standardised residual becomes the usual measure employed to test GARCH model 

effectiveness, 2/1* ˆˆ
tt h . 

 

The quantity tttz  ˆˆˆ *  can then be used to apply conditional moment-based specification tests 

of the form proposed by Newey (1985) and Nelson (1991), and in a similar vein to those 

examined by Harvey and Siddique (1999).  The 9 orthogonality conditions examined in this paper 

are as follows 

E[zt] = 0 

E[ztzt-j] = 0 for j = 1, 2, 3, 4                                                                                   

E[{zt
2
 – (vt / (vt – 2))}{(zt-j

2
 – (vt-j / (vt-j – 2))}] = 0 for j = 1, 2, 3, 4 

 

1.5 Potential Applications of the Model 

We believe that the class of models proposed in this study could have widespread applicability in 

finance. The first application would be for the simulation of artificial series of asset returns that 

closely match the distributions and temporal profiles of actual returns series. These simulated 

series could be used in option pricing, or in risk measurement (e.g. for value at risk estimation). A 

further possible application of the approaches proposed here would be to an asset pricing model 

such as that of Dittmar (2002)
i
. He examines non-linear pricing kernels for describing the cross-
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sectional variation in stock returns. His approach is applicable when investors are averse to 

kurtosis as well as to variance, so that returns are influenced by coskewness and cokurtosis as 

well as covariance.  

 

2. Data 

The data employed in this study comprise four financial time series obtained from Datastream 

International – two equity indices (US Standard and Poor’s 500 and UK FTSE 100), and two 

bond indices (UK, US). The equity indices are total return indices where dividends have been 

added back to calculate the index values, while the bonds are both 10-year maturity benchmark 

total return bond indices. The daily sample spans the period 2 January 1990 to 14 June 2000, 

implying a total of 2727 observations. The series are transformed into continuously compounded 

returns by taking the natural logarithms of the price relatives in the usual fashion. 

 

Panel A of Table 1 presents summary statistics for the 4 series. Clearly, whilst all of the returns 

series show statistically significant evidence of leptokurtosis, the degree of unconditional 

skewness varies from one series to another. The FTSE 100 index returns are positively skewed 

but not significantly so. On the other hand, the S&P500 returns and the US bond returns are 

significantly negatively skewed while the UK bond returns are negatively skewed but not 

significantly so. In all cases, the null hypothesis that the unconditional return distributions are 

normal is rejected convincingly. An application of the Ljung-Box Q* test using 5 lags of the 

returns suggest reasonable evidence of autocorrelation in the conditional mean. Closer 

examination of the autocorrelation and partial autocorrelation functions (not shown but available 

from the authors on request) suggested a first order AR (for UK equities, and both bond series) or 

a first-order MA (for the US equities) model as sufficient to capture this linear dependence. 
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Engle’s (1982) LM test for ARCH is suggestive of highly significant volatility clustering effects 

in each case.  

 

3. Results 

3.1 Parameter Estimates 

Panel B of Table 1 gives results for estimation of Bollerslev’s GARCH-t model with time-

invariant kurtosis and degrees of freedom. The estimated degrees of freedom in each case can be 

calculated from a time-invariant version of (12e), and are 5.36, 6.45, 6.15, and 5.56 for the US 

equities, UK equities, US bonds and UK bonds respectively. These values together with those for 

the conditional variance equations are plausible and in line with the conclusions of previous 

research and are again indicative of the fatness of the tails of the return distributions in each case. 

All series except the US bond returns demonstrate strong persistence of shocks to the conditional 

variance, as demonstrated by the closeness of the sum of 1 and 2 to unity. 

 

 

The results of estimating equations (12a), (12b), (12c), (12d) and (12e) are presented in Table 2. 

This is the GARCHK model with asymmetries in the conditional mean and conditional kurtosis 

equations. First, it is evident that all of the conditional variance and conditional kurtosis 

coefficient values are positive as required. The parameter estimates concerning the conditional 

variance equation are entirely as expected: the persistence of shocks to volatility is high in most 

cases, with a higher coefficient value on the lagged conditional variance than the lagged squared 

error. The lagged kurtosis coefficient values are significant for all series, while the coefficients on 

the lagged fourth powers of the standardised error are only significant for the two equity series at 
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the 5% level, and for the US bond returns at the 10% level. The 1 coefficient has often been 

termed the “volatility of variance” parameter in the GARCH literature, since it measures how 

much the conditional variance will move around over time in response to innovations. The 

corresponding coefficient in the conditional kurtosis equation, 1, could usefully be termed the 

“volatility of kurtosis” and would similarly measure the stability of the fitted conditional kurtosis 

in response to innovations. It is clear, for all four series, that the volatility of kurtosis is 

considerably greater than the corresponding volatility of variance parameters, suggesting that the 

fitted kurtoses are likely to be far less smooth than the fitted variances. The conditional kurtosis 

coefficients also show a high degree of persistence for the US bond series, although the 

persistence is overall far less apparent than in the corresponding conditional variance equations. 

In the case of the kurtosis equations, much of the persistence results from the lagged standardised 

innovation term than the lagged conditional kurtosis, while almost all of the persistence in the 

conditional variance comes from the lagged conditional variance terms.  

 

Considering the conditional variance asymmetry parameters, 3, they are statistically significant 

at the 1% level for all four series. Such results are consistent with previous studies of asymmetry 

in volatility. The asymmetries in conditional kurtosis appear to be, from a consideration of the t-

ratios, considerably less significant than those in conditional variance in all cases, although they 

do always have the expected positive sign. Thus, it can be said that negative innovations lead to 

higher (although not significantly so) future values of kurtosis than positive innovations of the 

same magnitude. The coefficient values on the asymmetry terms are bigger in the conditional 

kurtosis equation, ranging from 0.01 to 0.6, indicating that the asymmetric effects are larger in 

magnitude, although not significant, compared with those in the conditional variance equation.  
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In the context of equity markets, such asymmetries have been attributed to leverage effects – see, 

for example, Black (1976) or Christie (1982). The argument goes that as equity values fall, the 

relative weight attached to debt in a firm’s capital structure rises, ceteris paribus. This induces 

equity holders, who bear the residual risk of the firm, to perceive the stream of future income 

accruing to their portfolios as being relatively more risky. An alternative view is provided by the 

'volatility-feedback' hypothesis. Assuming constant dividends, if expected returns increase when 

stock price volatility increases, then stock prices should fall when volatility rises. Bekaert and 

Wu (2000) find strong support for the volatility feedback hypothesis rather than for the leverage 

effect. Whilst one cannot appeal to such explanations of leverage effects in the context of 

asymmetries in other financial asset return time series, there is equally no reason to suppose that 

such asymmetries do not exist. In the context of exchange rates, for example, it is possible that 

good news for one currency will have a differential impact on the perceptions of investors 

compared with an equivalent amount of good news for the other.  

 

The third column from the right of Table 2 presents the maximal value of the log-likelihood 

function for the model with GARCHK including asymmetry terms. This can be compared with 

the last column of Panel B in Table 1 which gives the LLF values for the restricted model where 

3 = 0, 1 = 0, 2 = 0, and 3 = 0. The final column presents the implied likelihood ratio test 

value for the restriction of the GARCHK asymmetric model to have fixed kurtosis over time and 

no asymmetries. This statistic will follow a 
2
(4) under the null hypothesis, with critical value 

9.48 at the 5% level. Restrictions of the conditional kurtosis to be fixed and of no asymmetries 

are resoundingly rejected for both equity returns series and marginally for the US bonds, 
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suggesting that there seems to be less evidence of conditional kurtosis or asymmetries in the 

latter, in contrast with the highly significant lagged conditional kurtosis term. This may be 

indicative, in the context of the complex non-linear optimisation that is required, that the overall 

model fit has only improved marginally upon inclusion of the 1 and 2 parameters as a result of 

a reduction in the goodness of fit of other parts of the model (although it is not apparent from the 

results which parts).  

  

The last column of Table 2 gives the results of a likelihood ratio test of the restriction that the 

asymmetry terms in both equations are jointly zero. Such a restriction is rejected marginally for 

the US equity and UK bond series but not for the UK equities or US bonds. It is clear that 

asymmetries are very much stronger in conditional variance than conditional kurtosis, and that 

the results of the latter dilute those of the former in the joint test. The asymmetry terms in the 

conditional variance can capture the skewness in the unconditional distribution of returns, while 

it is less clear what the impact of asymmetry terms in the kurtosis equation would be on the 

unconditional distribution. 

 

For illustration, Figure 1 plots the fitted conditional variance and conditional kurtosis obtained 

for the FTSE returns by estimating equations (12). Although there are periods when both the 

conditional variance and conditional kurtosis are high, it is evident that the model has succeeded 

in enabling the kurtosis to develop a different dynamic pattern. In general, the conditional 

kurtosis is much more stable for most of the time than the variance, but has periods where it rises 

very substantially. Thus the conditional kurtosis appears to be fitting to the extreme events, as 

one may expect. Both the conditional variance and conditional kurtosis take on high values in the 
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early 1990’s, but have historically low values for the 1993-96 period, before rising again towards 

the end of the sample.  

 

Whilst it is easy to make ex post rationalisations of results with the benefit of hindsight, these 

broad patterns do appear to tie in with economic and financial events at those times. The summer 

of 1990 was around the time of the “Gulf crisis” following the Iraqi invasion of Kuwait, while 

September 1992 witnessed the Sterling ERM crisis. US inflation figures caused world-wide bond 

and stock market falls. The second largest ever rise in the FTSE 100 occurred on the 7
th

 

September 1998, while it fell by 3.8% (the largest ever fall for that index) on 4 January 2000 as a 

result of market fears of interest rate rises. The “Russian crisis” occurred around September 1998, 

and led to a global fall in equity and bond market prices, followed by a partial bounce back.  

 

Figure 2 graphs the estimated degrees of freedom over time for the FTSE returns. The degrees of 

freedom never rises above 15 for the whole sample period, with an average of around 8, further 

indicating the fatness of the unconditional return distribution. Mirroring the conditional kurtosis, 

the degrees of freedom rises during the mid-1990’s as the return distribution’s tails thin, before 

falling considerably in the late 1990’s, when it spends most of its time in the 4-8 range. It is also 

worth noting, however, that the typical range of values that the degree of freedom parameter 

takes over time are higher than the fixed unconditional estimate of 6.4 from the Bollerslev t 

model. This is suggestive that forcing the degree of freedom parameter to be fixed over time will 

lead to a measured tail fatness that is greater than the values it would take for most of the sample 

period if it were allowed to vary. Figure 3 plots the time-varying transformation parameter, t, for 

the UK stock returns. The extent to which this varies over time is a measure of the extent to 
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which the relationship between the conditional variance and the degrees of freedom varies over 

time. From (12f), it is evident that the transformation series must be non-negative. The value of t 

is also less than unity for the majority of the sample period, and so from equation (12b), the 

transformation results in a shrinking of the t-variate relative to one that follows an untransformed 

t with vt degrees of freedom.  

 

For comparison, Figures 4 to 6 replicate Figures 1 to 3, but for the US Treasury bond series. First, 

considering Figures 1 and 4, it is evident from examining the ranges of values of the conditional 

variance and conditional kurtosis that the conditional variance is typically lower for the US bond 

series than for the UK equities, although the higher conditional kurtosis has peaks that are higher 

in the bond case. Unlike the equity series, the bond returns were relatively stable in the early 

1990’s and at the end of our sample, while the conditional variance and conditional kurtosis rose 

substantially in the mid 1990’s. Figure 4 scales very differently from Figure 1. In the latter case, 

one very large value of the kurtosis relative to its typical values has considerably changed the 

scaling, while there are no such extreme estimates for the US bonds. The fitted degree of freedom 

parameter for the US bonds (Figure 5) remains within a narrow range of values (4,7.2) for the 

whole sample period, leading the time-varying transformation parameter to also lie within a 

narrower range of values than was the case for UK equities. No restrictions are placed on the 

model that constrain the value of the degree of freedom parameter, other than that it must be 

greater than 4 at all times.  
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3.2 Results of Moment-Based Specification Tests 

The results from an application of the moment-based specification tests described in Section 2.4 

are given in Table 3 for the most general of the models that we consider, whose coefficient values 

were described in Table 2. The first five conditions in Table 3 examine the specification of the 

conditional mean of the standardised residuals, and the next 4 examine the conditional variance. 

If the model has captured all of the dynamic features of the first four moments of the returns 

series, none of the test statistics should be significantly different from zero. Table 3 suggests 

some evidence of further structure in the conditional mean for the S&P and for both of the bond 

series. The covariance of the standardised residuals with their first lags are statistically significant 

only for the two bond series, while the covariance with the third lag is significant for the US 

equities. This evidence of further linear structure is not consistent with the acf and pacf results 

obtained from the raw (i.e. the original unstandardised) returns, but may be symptomatic of the 

difficulty in estimating the model also containing conditional standard deviation and conditional 

kurtosis terms in the mean equation. There is evidence that the dependence in the conditional 

variance has not been fully captured in the cases of the S&P 500, and the US and UK bond series. 

Thus, overall, there still remain some features of the data that have apparently not been fully 

captured by the model. Harvey and Siddique (1999) found using similar moment tests that their 

(albeit different) model could equally not describe all of the relevant facets of the data. This 

should not, however, be taken as evidence that the model proposed here is less well specified 

than those described in previous studies. Rather, since virtually none of the studies in the 

GARCH literature have employed specification tests, our results may be indicative that standard 

GARCH(1,1) models are not sufficient to fully capture the temporal dependencies in financial 

asset return series. Obtaining a model that is able to capture such features in their entirety is an 

open question for future research. 
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3.3 Comparison with the Harvey and Siddique Model 

As discussed in the introductory section of this paper, Harvey and Siddique (1999) developed a 

model that permits the conditional skewness to vary over time but where the conditional kurtosis 

is not explicitly parameterised. Thus, while we focus on the fourth moment at the expense of the 

third, they focus on the third moment at the expense of the fourth. Modifying their notation 

slightly, the model may be described by the following equations: 

yt = 0 + 1ht-1 + t
*
        (13a) 

12

2*

110   ttt hh   + ht-1It      (13b) 

st = 0 + 1st-1 + 2t-1
* 3

        (13c) 

where st denotes the conditional skewness, It denotes the indicator function that sets non-positive 

disturbances to zero for capturing asymmetries in the conditional variance equation. Note that 

their indicator function is defined in the opposite way to that used by Glosten et al. Harvey and 

Siddique do not consider asymmetries in the skewness equation (13c). The results from 

estimation of their model are presented in Table 4.  

 

As the results show, the intercept and lagged conditional skewness terms, 1, are significant and 

negative for all four series, but the lagged cubed disturbance parameter is significant only for the 

US stock series; this result is identical to that of Harvey and Siddique. However, the magnitudes 

of the parameters are different for the US stock series due to the considerably different sample 

periods in our paper compared with theirs. 

  

4. Conclusions 
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This paper has proposed and estimated a model for conditional kurtosis. The model is based on 

the approach of Bollerslev (1987), but its novelty lies in its ability to allow the conditional 

kurtosis to develop in a fashion that is not fixed to the conditional variance. This occurs via a 

time-varying degree of freedom parameter. The model was applied to a set of four financial asset 

return time series, and the results indicate strong evidence for the presence of “GARCH-style” 

dependence in the conditional kurtosis, suggesting the presence of a hitherto unexplored 

phenomenon in such series. 

 

Several extensions to the basic model were proposed, including considerations of asymmetries in 

the relationship between the sign of the innovations and the size of the next period conditional 

kurtosis, and of a possible feedback from the kurtosis to the returns. Evidence for these 

relationships appeared to be weaker in the context of conditional kurtosis than was the case for 

the conditional variance.   

 

The research described above could be usefully extended in a number of directions. First, the 

models proposed could be used to produce conditional kurtosis forecasts. These predictions may 

be useful – for example in the pricing of some classes of financial asset, such as options on 

options that require estimates of the “variance of a variance”. This quantity could be obtained 

from the forecasts of conditional kurtosis, and the option prices obtained compared with those 

from simpler approaches. Second, it may be the case that models allowing for dynamic higher 

moments can better describe the distributional properties of financial asset returns, especially 

when measured at high frequency, than less complex models that do not. Third, models 

containing feedback terms from the conditional variance and kurtosis to the conditional mean 

(“GARCHK-M” models) may, when appropriately formulated, be used to obtain separate 
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estimates of the market-required risk premia for accepting variance (or standard deviation) and 

kurtosis risk. GARCHK-M models could then be used in portfolio construction or in investment 

performance appraisal to evaluate whether the trade-off between mean, variance, and kurtosis 

that is implicit from the series of returns to the chosen portfolio was an optimal one given the 

market-required returns for each type of risk. Finally, the development of a multivariate version 

of the model should shed light on the co-relationships between the moments of each series 

employed in the system, which is likely to be of relevance in the context of portfolio construction 

or financial risk management. 
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Table 1: Summary Statistics and Model Estimates for GARCH with fixed degrees of freedom 

Panel A: Summary Statistics 

 Mean Variance Skewness Kurtosis 

(excess) 
BJ

 

Normality 

Ljung-Box 

Q*(5) 

ARCH(5) 

Equities        

S&P500 0.022 0.159 -0.345** 5.415** 3385.130** 12.754* 255.253** 

FTSE 100 0.015 0.125 0.014 2.826** 906.954** 29.024** 274.823** 

        

Bonds         

US 0.002 0.053 -0.305** 1.957** 477.062** 19.961** 16.649** 

UK  0.007 0.050 -0.020 3.736** 1585.630** 12.226* 78.74** 

 

Panel B: Estimates for GARCH with fixed degrees of freedom 

  **

12110 tttt yy                  (12a) 

  ttt  * ,  tt ~                (12b) 

  12

2*

110   ttt hh                (12c) 

0tk                 (12d) 

 0 1 2 0 1 2 0 LLF 

Equities         

S&P500 0.060 

(0.014)** 

- 0.034 

(0.024) 

0.043 

(0.005)** 

0.286 

(0.015)** 

0.730 

(0.008)** 

7.404 

(2.126)** 

-1736.96 

FTSE 100 0.031 

(0.012)* 

0.063 

(0.022)** 

- 0.057 

(0.004)** 

0.273 

(0.014)** 

0.711 

(0.009)** 

5.449 

(1.319)** 

-1517.63 

         

Bonds          

US 0.0116 

(0.009) 

0.036 

(0.019) 

- 0.172 

(0.006)** 

0.019 

(0.012) 

0.384 

(0.020)** 

5.791 

(0.799)** 

-495.74 

UK  0.0249 

(0.008)** 

0.043 

(0.019)* 

- 0.004 

(0.001)** 

0.045 

(0.002)** 

0.938 

(0.002)** 

6.846 

(0.683)** 

-279.36 

Notes: Asymptotic standard errors are shown in parentheses. 

 The Bera-Jarque (BJ) normality test is asymptotically 

distributed as a 
2
(2) variate under the null of normality while the Ljung-Box and ARCH tests are asymptotically 

distributed as 
2
(5) variates under their respective null hypotheses. The 5% 

2
(2) and 

2
(5) critical values are 

respectively 5.991 and 11.071, and at the 1% level, the critical values are 9.210 and 15.086 respectively. * and ** 

denote significance at the 5% and 1% levels respectively; LLF denotes the maximal value of the log-likelihood 

function. 
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Table 2: An Asymmetric Model with Conditional Variance & Kurtosis  

Model: **

12110 tttt yy    , ttt  * , 
t

tt  ~ , 
2*

11312

2*

110   ttttt Ihh  , 
2

1

4*

1
13122

1

4*

1
10








 
t

t
tt

t

t
t

h
Ik

h
k





  

 0 1 2 0 1 2 3 0 1 2 3 LLF LR: 

03 

03 

 

LR: 

0

,,

3

213





 

Equities               

S&P500 0.048 

(0.013)** 

- 0.031 

(0.023) 

0.025 

(0.003)** 

0.081 

(0.008)** 

0.816 

(0.005)** 

0.164 

(0.016)** 

5.348 

(0.566)** 

0.419 

(0.151)** 

0.209 

(0.100)* 

0.606 

(0.318) 

-1685.66 7.00** 102.6** 

FTSE 100 0.027 

(0.012)* 

0.079 

(0.020)** 

- 0.026 

(0.002)** 

0.080 

(0.006)** 

0.819 

(0.005)** 

0.140 

(0.014)** 

2.239 

(0.161)** 

0.444 

(0.136) 

0.370 

(0.036)** 

0.500 

(0.330) 

-1469.76 2.84 47.9** 

Bonds                

US 0.008 

(0.009) 

0.039 

(0.019)** 

- 0.062 

(0.002)** 

0.013 

(0.009) 

0.729 

(0.009)** 

0.098 

(0.018)** 

4.640 

(0.912)** 

0.356 

(0.425) 

0.139 

(0.125) 

0.291 

(0.865) 

-484.35 3.22 11.4* 

UK  0.017 

(0.008)* 

0.054 

(0.018)** 

- 0.005 

(0.001)** 

0.024 

(0.002)** 

0.937 

(0.002) 

0.045 

(0.005)** 

4.610 

(2.000)* 

0.021 

(0.767) 

0.519 

(0.149)** 

0.012 

(1.890) 

-274.61 6.22* 9.5 

Notes: Standard errors are shown in parentheses. * and ** denote significance at the 5% and 1% levels respectively. LLF denotes the maximal value of the log-likelihood 

function, while LR denotes the value of the likelihood ratio test statistic. The 
2
(2) critical values are 5.99 and 9.21 at the 5% and 1% levels respectively, and the 

2
(4) critical 

values are 9.48 and 13.28 at the 5% and 1% levels respectively. 
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Table 3: Moment Specification Tests  
 

Orthogonality Conditions  US  

S&P500 

UK  

FTSE100 

US  

T-Bond 

UK  

T-Bond 

1. E[zt] = 0 -0.012 

(1.621) 

0.010 

(1.910) 

-0.016 

(3.825) 

-0.004 

(0.194) 

2. E[ztzt-1] = 0 0.076** 

(35.045) 

0.018 

(2.381) 

0.028** 

(7.457) 

0.038** 

(7.249) 

3. E[ztzt-2] = 0 0.037 

(1.580) 

0.026 

(0.098) 

0.029 

(0.965) 

0.038 

(2.00) 

4. E[ztzt-3] = 0 -0.087** 

(9.218) 

-0.014 

(0.281) 

-0.052 

(3.264) 

-0.029 

(1.022) 

5. E[ztzt-4] = 0 -0.044 

(2.282) 

0.023 

(0.837) 

-0.053 

(3.173) 

0.033 

(1.267) 

6. E[(zt
2
 – (vt / (vt – 2)))(zt-1

2
 – (vt-1 / (vt-1 – 2)))] = 0 -0.643** 

(19.298) 

-0.277 

(3.317) 

-0.443** 

(21.188) 

-0.146 

(0.419) 

7. E[(zt
2
 – (vt / (vt – 2)))(zt-2

2
 – (vt-2 / (vt-2 – 2)))] = 0 -0.108 

(0.222) 

-0.231* 

(4.761) 

-0.066 

(0.312) 

-0.336** 

(8.739) 

8. E[(zt
2
 – (vt / (vt – 2)))(zt-3

2
 – (vt-3 / (vt-3 – 2)))] = 0 -0.453** 

(9.421) 

-0.111 

(0.924) 

-0.160 

(1.169) 

-0.066 

(0.176) 

9. E[(zt
2
 – (vt / (vt – 2)))(zt-4

2
 – (vt-4 / (vt-4 – 2)))] = 0 -0.321* 

(4.522) 

-0.338** 

(12.636) 

0.099 

(0.580) 

-0.006 

(0.001) 

Notes: Specification tests are applied to the transformed residuals from the conditional kurtosis model 

with asymmetries in the conditional variance and kurtosis equations and variance and kurtosis terms in 

the conditional mean. Orthogonality conditions are based on  tttz  ˆ/ˆˆ
*

 . * and ** denote 

significance at the 5% and 1% levels respectively. Cell entries refer to sample averages with test 

statistics in parentheses. The latter follow a 
2
(1) distribution under the null hypothesis in each case.  
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Table 4: Autoregressive Conditional Skewness Model Parameter Estimates and 

t-ratios 

Model: yt = 0 + 1ht-1 + t
*
 

12

2*

110   ttt hh   + ht-1It 

st = 0 + 1st-1 + 2t-1
* 3

   

Series 0 1 0 1 2  0 1 2 

S&P 500 0.022 

(2.437) 

-0.054 

(-3.333) 

0.027 

(2.726) 

0.750 

(11.09) 

0.117 

(4.321) 

-0.096 

(-3.417) 

-0.010 

(2.551) 

-0.370 

(-4.546) 

0.016 

(6.563) 

FTSE 100 0.031 

(1.607) 

-0.075 

(-1.032) 

0.070 

(15.717) 

0.404 

(9.145) 

0.364 

(5.278) 

-0.232 

(-2.484) 

-0.016 

(3.444) 

-0.984 

(-46.483) 

-0.001 

(-1.204) 

US bonds 0.0984 

(2.521) 

-0.384 

-1.964) 

0.053 

(6.861) 

0.434 

(6.835) 

0.000 

(0.000) 

-0.052 

(-1.466) 

-0.023 

(-2.518) 

-0.740 

(-8.382) 

-0.008 

(-1.160) 

UK bonds 0.001 

(0.234) 

0.035 

(0.481) 

0.017 

(302.03) 

0.577 

(29.238) 

0.021 

(5.556) 

-0.140 

(-2.630) 

-0.001 

(-262.20) 

-0.648 

(-4.093) 

-0.001 

(-0.138) 

Note: t-ratios in parentheses. 
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Figure 1: Fitted Conditional Heteroscedasticity and Conditional Kurtosis over 

Time for UK Stock Returns 

 

 

 

Figure 2: Estimated Degrees of Freedom over Time for UK Stock Returns 
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Figure 3: Plot of Transformation Series, t for UK Stock Returns 

 

 

Figure 4: Fitted Conditional Heteroscedasticity and Conditional Kurtosis over 

Time for US T-Bonds 
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Figure 5: Estimated Degrees of Freedom over Time for US T-bonds 

 

Figure 6: Plot of Transformation Series, t for US T-Bonds 
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