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Abstract—Battery management system (BMS) is one of the 

key subsystems of electric vehicle, and the battery state-of 

-charge (SOC) is a crucial input for the calculations of energy 

and power. Therefore, SOC estimation is a significant task 

for BMS. In this paper, a new method for online estimating 

SOC is proposed, which combines a novel adaptive extended 

Kalman filter (AEKF) and a parameter identification 

algorithm based on adaptive recursive least squares (RLS). 

Specifically, according to the first order R-C network 

equivalent circuit model, the battery model parameters are 

identified online using the RLS with multiple forgetting 

factors. Based on the identified parameters, the novel AEKF 

is used to accurately estimate the battery SOC. The online 

identification of parameter tracks the varying model. At the 

same time, due to the novel AEKF algorithm to dynamically 

adjust the system noise parameter, excellent accuracy of the 

SOC real-time estimation is obtained. Experiments are 

conducted to evaluate the accuracy and robustness of the 

proposed SOC estimation method. The simulation test results 

indicate that under DST and UDDS conditions, the 

maximum absolute errors are less than 0.015 after filtering 

convergence. In addition, the maximum absolute error is less 

than 0.02 in the simulation of DST with current and voltage 

measurement noise, so is in DST with current offset sensor 

error. The tests indicate that the proposed method can 

accurately estimate battery SOC and has strong robustness.  

Index term—State of Charge, Adaptive Extended Kalman 

Filter, Online Identification, Lithium-ion battery, Electric 

Vehicle 

Ⅰ. INTRODUCTION 

s the performance of lithium-ion battery continues to 

increase, lithium-ion battery is widely applied as energy 

storage device for electric vehicles [1]-[4]. SOC directly affects 

the calculation of the power and energy of the battery, so it is1 

essential for EV energy management. The estimation accuracy, 

robustness, and anti-disturbance ability are important indicators 

for evaluating the performance of SOC estimation [5]-[7], thus 

SOC estimation approaches should focus on them. 

The Coulomb counting [8] method has low computational 

complexity and is easy to implement. It can operate efficiently 

for a short period of time when the initial state is known. 

However, due to current measurement bias, after long-term 

operation of this method, the integration process will accumulate 

errors, which will lead to large estimation errors. SOC estimation 

approach based on looking up OCV-SOC table has been applied 

in some fields because it is easy to implement [9]. Unfortunately, 

this method requires the battery to stand still for a long time so 

that the chemical reaction inside the battery is completely calmed, 

thus it is not real-time. Scholars have successively adopted 

various online data-driven methods to battery SOC estimation, 

such as fuzzy logic [10], neural network [11], sliding mode 

observer [12], non-linear observers [13], support vector machine 

[14] and proportional-integral observer [15] and model-based 

estimators [16]-[22]. 

According to the sensor measurements (voltage and current), 

model-based estimators apply algorithms to infer the SOC. 

Among a variety of battery models, the extensively applied 

models include neural network model [16] [17], equivalent 

circuit models (ECM) [18]-[21], electrochemical models [22] 

[23]. ECM-based estimation methods have been widely studied 

for the good accuracy and moderate practical burden. Kalman 

filter is a common algorithm for estimating the internal states of 
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a dynamic system, and it has a good application in many fields 

[24]-[28]. The Kalman filter-based methods rely on the accuracy 

of the ECMs for the battery, and SOC estimation is affected by 

the varying battery parameters. Therefore, SOC estimation is 

inseparable from the identification of system parameters. Some 

methods [29] [30] regard the parameters as a function of SOC, 

and identify the model parameters offline through experiments of 

various working conditions, but this method need high 

development cost and long development cycle.  

SOC estimation and parameter identification are often 

performed simultaneously, and methods based on EKF and RLS 

have been extensively utilized [31]-[35]. In [31], SOC is 

estimated using KF and the errors are analyzed, then RLS is 

utilized for parameter correction. Reference [32] proposed a 

co-estimation method combining EKF and bias compensation 

RLS, reducing the estimation errors causing by measurement 

bias. Wei [33] proposed a SOC and capacity dual estimator, and 

constructed a complete online model identification and SOC 

estimation framework by using the vector-type recursive least 

squares (VRLS) and Kalman filter. Reference [34] proposed an 

online estimator based on VFFRLS and CKF, and it indicated 

that the CKF outperforms EKF in SOC estimation of lithium-ion 

battery. Considering the SOC constraints, the estimator in [35] 

uses RLS and a improve EKF to estimate SOC of vanadium 

redox battery, enhancing the accuracy, convergence speed and 

robustness. These methods strictly require the accuracy of the 

model that describe the electrical characteristics of the battery 

system.  

For EKF-based state estimation methods, determining 

appropriate system noise parameters is critical for EKF-based 

SOC estimation methods. The noise parameters include process 

noise covariance and measurement noise covariance, which is 

used to characterize the statistical characteristics of the noise in 

the state equation and measurement equation, and represented by 

  and   respectively. As for ECM-based SOC estimation, 

these noise parameters are related to model uncertainty and 

measurement bias. The model of the battery is not absolute, and 

the model uncertainties from ECMs are inevitable, which is 

evidenced by [36]-[38]. The ECMs can simulate the electrical 

behavior of the battery system to some extent, but cannot 

represent the actual physical characteristics. Generally, 

uncertainties inevitably exist in ECMs，and the accuracy of the 

model always positively related to its complexity [39]-[41]. 

The measurement bias come from external disturbance and 

sensor deviations, and directly affect calculation accuracy. 

Reference [42] points out that suitable Kalman gains can reduce 

the influence of measurement bias, while the Kalman gains are 

affected by the coordination of process covariance and 

measurement covariance. To some extent，these uncertainties of 

model and measurement can be regarded as Gaussian white noise 

in EKF-based methods. Therefore, it is a significant task to find 

suitable noise parameters (exactly, the matching of process 

covariance and measurement covariance). 

Inappropriate noise covariance will reduce estimation 

accuracy, and even lead to filter divergence. Unfortunately, noise 

parameters are unknown and difficult to determine. In order to 

solve this problem, many Kalman filter-based adaptive 

estimators have been proposed. The different adaptive filtering 

methods are classified into four categories in [43]: maximum 

likelihood, Bayesian, covariance matching and correlation. These 

approaches have been applied in various fields. Reference [44] 

utilizes FFRLS and IRVM-EKF to jointly estimate the model 

parameter and SOC, and a measurement model is used to reduce 

the influence of model uncertainty and measurement bias, while 

the noise parameter is only adjusted qualitatively. Xiong, et al. in 

[45] [46] applied covariance matching to calculate noise 

covariances of EKF and the SOC estimation method achieved 

quite high accuracy. The method proposed in [47] applies RLS 

and adaptive dual EKF to reduce the impact of model inaccuracy 

and current measurement error, and accurate estimation result 

and good robustness are achieved. Although the approaches 

mentioned above have achieved good results, there are still some 

issues. The second filter and the calculation of the system noise 

covariance matrices lengthens the algorithm flow, and the 

accuracy depends on the predetermination of the size of the 

innovation sequence sets and the adaptive factors. 

In this paper, a new method for SOC online estimation is 

proposed. The approach consists of a novel adaptive extended 

Kalman filter and vector-type recursive least squares (VRLS). 

Specifically, the VRLS algorithm using multiple forgetting 

factors is used to identify the ECM parameters changing with 

different rates. A new adaptive extended Kalman filter directly 

adjusting the priori error covariance matrix is used to estimate 

the states, which can dynamically track the system noise. 

Moreover, the adaptive algorithm guarantees the positive 

definiteness of covariance, thus avoiding filtering divergence 
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causing by non-positive definiteness. What’s more, the adaptive 

algorithm flow is the simple because it directly adjusts the priori 

error covariance instead of the noise covariances. To verify its 

estimation accuracy and capacity of resisting disturbance, the 

proposed method was operated not only in classic DST and 

UDDS test, but also in DST with gaussian noise and current 

offset. The test results indicate the high estimation accuracy and 

strong robustness of the method. We hope that this study can 

provide some reference for SOC estimation in BMS. We also 

wish the application of the novel AEKF in state estimation of 

similar systems by scholars. 

Ⅱ. BATTERY MODEL AND IDENTIFICATION OF 

PARAMETERS 

A. RC Network-Based Battery Model 

In consideration of accuracy, parameter identification effort 

and the computational complexity, the first-order RC 

network-based circuit model is chosen to describe the electrical 

characteristics of the lithium-ion battery system, which is shown 

in Fig. 1. R0 stands for the ohmic resistance of the battery. The 

resistor capacitor (RC) network is used to describe the transient 

dynamics of the battery, which consists of polarization 

capacitance (Cp) and polarization resistance (Rp). Uoc is the 

open circuit voltage; IL represents the load current, the control 

input that can be measured by sensor; Ut represents the terminal 

voltage, which also can be measured by sensor; Up denotes the 

polarization voltage over the RC network.  

 
Fig. 1. First-order RC model of battery. 

B. Identification of Model Parameters 

The electrical behavior of the used ECM is generalized as the 

following state-space equations: 

     
   

  
 

  

  
                   (1) 

                                (2) 

Projecting (1) to discrete time domain yields (3): 

       
 

  
                 

 
  

                (3) 

By substituting (3) into (2), the terminal voltage can be 

expressed as: 

                                            

                              (4) 

where 

           
 

  
           

 
  

        
 

  
                   (5) 

and    is the sampling time interval of parameter estimator, 

which is set to 4s in this study. According to (4), subtracting 

         from      , the following regression equation can 

be organized: 

                                        (6) 

where 

                                             (7)         

                                     (8) 

                                            (9) 

and        is calculated by the terminal voltages of the two 

adjacent time steps, that is: 

                                      (10) 

In the similar way, the items in (7) and (9) are calculated with the 

following equations: 

                                      (11) 

                                           

                                           (12) 

In microscopic time, the change of OCV is small enough to be 

negligible, and it is reasonable to ignore the residual term     . 

The regression (6) can be solved by the RLS. In order to track 

the parameters with different rates of change, the vector-type 

forgetting recursive least squares (VRLS) is used, which uses 

multiple forgetting factors. In addition, the factors change over 

time. A small factor is used for tracking in the early stage while a 

big factor is used for stability in the later stage. The forgetting 

factors are calculated by the following formula: 

   
      

       
      

   
 

 

                  (13) 

where             
,    

,    
 are the forgetting factors used 

for identifying   ,   ,   ,      
 and      

 is the maximum 

value and minimum value of the forgetting factor respectively, 

   is the time constant. The values of these coefficients used are 

listed in TABLE I. The algorithm flow of VRLS is shown in 

TABLE II. After the regression (6) is solved, the model 

parameters can be calculated by the following formula: 

             
       

    

        

             
           (14) 

TABLE I 

THE VALUES OF COEFFICIENTS TO CALCULATE FORGETTING 

FACTORS. 

       
      

    

1 0.99 0.97 750 

2 0.98 0.96 750 
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3 0.99 0.97 750 

TABLE II 

THE ALGORITHM FLOW OF VRLS  

Step 1. Initialization1 

Parameter: 

   
          (15) 

Posteriori covariance: 

  
                        

     (16) 

Step 2. Priori parameter and covariance update 

Priori parameter: 

   
       

  (17) 

Priori covariance: 

  
      

  (18) 

Step 3. Gain update 

Gain: 

     
             

            (19) 

Step 4. Posteriori parameter and covariance update 

Posteriori parameter: 

   
     

                 
  

 
  (20) 

Posteriori covariance: 

  
               

     (21) 

Where 

                            
   

(22) 

Ⅲ. SOC ESTIMATION ALGORITHM 

A. State-Estimation Model 

According to Coulomb counting method, the recursive 

formula of SOC on discrete time domain can be written as: 

            
      

  
                (23) 

where    is Coulomb coefficient,    is the timescale of SOC 

estimator, which is set to 1s in this study, and    is the battery 

capacity. Combining (3) and (23) generates the battery system 

state-space equations: 

    
    

    
   

     
  

    
  

  

  
      

      
   

 
         

  

    
    

 
    

  

                          (24) 

              
    

    
                     (25) 

The OCV is considered as a function of SOC, which is expressed 

as: 

                    

   
                (26) 

where    is obtained by polynomial fitting. The fitted curve is 

shown in Fig. 2, which is obtained by an 8th degree polynomial 

curve fitting. Once the state equation (24) and the observation 

equation (25) are determined, the SOC can be estimated based on 

the EKF framework.  

 
Fig. 2. Polynomial curve-fitted SOC-OCV correlation. 

B. New Adaptive Extended Kalman Filter 

Discrete state-space of n-dimensional non-linear system can 

be represented by the following equations: 

                                          (27) 

                                      (28) 

According to the estimate state           of previous instant 

   , measurement    and control input      and   , 

extended Kalman filter output the estimate state       of instant 

 .    and    is the process noise and measurement noise. 

TABLE III presents the algorithm flow of standard extended 

Kalman filter (SEKF): 

TABLE III 

FLOWCHART OF SEKF ALGORITHM 

Step 1. Initialization 

(1) Initialize the state: 

            (29) 

(2) Initialize the posterior error covariance:  

                           
   (30) 

Step 2. Prediction update 

(1) Predict the state: 

                          (31) 

(2) Calculate the priori covariance:   

                   
     (32) 

where    
  

     
             

 (33) 

Step 3. Correction update  

(1) Calculate the Kalman gain:                           

           
            

     
  

 (34) 

(2) Estimate the state: 

                                   (35) 

(3) Calculate the posterior covariance: 

                       (36) 

where    
  

     
         

 (37) 
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From (24), (25) and (26), the state-space equations of 

lithium-ion battery system can be rewritten as: 

                                      (38) 

                                       (39) 

where     
    

    
 ,        ,     

     
  

    
  

  
 ,  

    
         

  

    
    

 
    

  

 . The corresponding matrices of 

   and    in SEKF are expressed as: 

       
    

    
              

 ,       . 

The different adaptive filtering approaches are classified into 

four categories in [43]: maximum likelihood, Bayesian, 

covariance matching and correlation. In this paper, we applied an 

adaptive extended Kalman filter that seeks an adaptive priori 

error covariance       . In an adaptive estimator, the innovation 

sequence is a key piece of statistics utilized to update the 

adaptive parameter, which is defined as: 

                                  (40) 

The set of historical innovation sequence set that from instant    

to     is expressed as: 

       
                             (41) 

The lithium-ion battery system parameters are slowly 

changing during the operation of the system. It has been proved 

in [48] that the priori error covariance        is convergent if 

the system parameters gradually and slowly change. In fact, it is 

unrealistic for the approximation that the steady        

maintaining a constant in the practical process, which may 

reduce the filtering effect and even cause filtering divergence. 

However, this approximation is asymptotically efficient and can 

be used to explore a suboptimal but explicit way to estimate 

       in real time. Similar assumptions and approximations can 

be seen in [43] [49] [50]. Let         represents the estimation of 

priori error covariance, and               represents the 

probability density function of the set    conditioned on        , 

then based on maximum likelihood method, the maximum 

likelihood function can be written as: 

                                                
    

                
   
    

                               (42) 

in which the probability density function of the sequence    

conditioned on         can be formulated as: 

                            

 
 

          
 
     

 

 
  

    
                     (43) 

where   is the number of measurements;    
 denotes the 

covariance matrix through innovation   ;     is the determinant 

operator. Taking the logarithm of (41), the following equation 

can be obtained: 

                 
 

 
                

    
    

      (44) 

The maximum likelihood criterion for maximizing   is 

organized into the following equation: 

          
     

    
   

    
    

   
    

                   

(45) 

In order to obtain the minimum of   , let the derivative of the 

maximum likelihood function    equal zero: 

        
  

    

       
       

  
    

       
   

    
     

    
            (46) 

where    is the trace operator. Since    
           

   , 

(46) can be converted into: 

        
    

       

       

  
        

    

       

       

  
    

    
  

   

    

  

                    (47) 

As the EKF algorithm operating, the error of the estimated 

state of the state quickly approaches zero. Therefore, the priori 

error covariance        tends to be convergent.58 Using the 

approximation that        tends to be constant, 
       

       
 and 

        

       
 are equal and they approximately equal to identity matrix. 

Then (47) reduces to 

        
      

        
      

    
    

     
    

           (48) 

The following formula represents the necessary and sufficient 

condition for (48): 

      
      

        
      

    
    

                   (49) 

From (39) and (40) it can be known that    
 and    are     

matrix (or scalar), thus (49) can be organized into 

    
      

      
    

       
                  (50) 

Pre-multiply (50) by   
 , and post-multiply (50) by the inverse 

of   
  (or the general inverse), 
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                           (51) 

Pre- and post-multiplying (51) by        obtains: 

        
     

      
      

    
                           (52) 

Since    
           

   ,    
 is     matrix and        

is symmetric positive definite, namely     
   

 

    
  , 

      
        , substituting ( 34) into (52) obtains the following 

equation: 

                 
   

                      (53) 

Let 

                                        (54) 

(36) and (54) at instant   can be respectively written as 

                      ,          . Substituting them into 

(53), (53) can be converted into: 

                    
                      (55) 

Then accumulating (55) from instant    to     forms 

                      
       

    
                   (56) 

and further 

                       
     

    

   
    

                   (57) 

With the assumed approximation              ,    , 

       could be approximately calculated by averaging all the 

       from instant    to    , namely the estimated 

covariance        can be obtained by: 

        
 

    
        

 

    
               

     
    

   
    

 (58) 

Covariance           is calculated by the similar way: 

          
 

      
        

 

      
               

     
    

   
    

  

(59)                                                                       

Then with (58) and (59), the recursive formula of         can be 

obtained by follows: 

        
      

    
           

 

    
                      

                        (60) 

Substituting (36) into (60) obtains: 

                  
 

    
             

                      

(61) 

The derivation of the recursive formula of the estimated priori 

error covariance         is completed. The algorithm flow of the 

new adaptive extended Kalman filter consists of (29), (30), (31), 

(61), (34) and (35). This algorithm adjusts priori error covariance 

       with the feedback information     , implicitly estimating 

the statistical characteristics of process noise. The new AEKF 

adjusts the matching of matrices of process noise covariance and 

measurement noise covariance, then suitable Kalman gain is 

obtained. It should be noted that before applying the adaptive 

algorithm (    ), the standard extended Kalman filter is used 

to help filtering converge, which uses an inaccurate or nominal 

noise covariances   and  . The boundary point of roughly 

filtering convergence is that the innovation is small enough and 

stable. The algorithm flow of the novel adaptive extended 

Kalman filter that tracks priori error covariance is shown in 

TABLE IV. 

TABLE IV 

ALGORITHM FLOWCHART OF THE NOVEL AEKF  

Step 1. Initialization 

Initialize the state: 

            

Initialize the posterior error covariance: 

                           
   

Step 2. State prediction 

Predict the state: 

                      

Calculate the priori error covariance: 

     (instant before filtering convergence), 

                   
     

     (instant after filtering convergence), 

                
             

                   

      
 

Step 3. Filtering correction 

Calculate Kalman gain: 

           
            

     
  

 

Estimate the state: 

                                   

Calculate the posterior error covariance (only when     ): 

                       

Remark. The derivation of this adaptive algorithm is 

suboptimal, because it is based on the assumption that the priori 
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error covariances of the SOC estimator are similar at steady state. 

Optimal filters perform well when the accurate noise parameters 

are known. In the specific application, optimal filtering cannot be 

achieved as the accurate noise parameters for the battery system 

(24) and (25) are difficult to obtain, this algorithm can be 

considered as an alternative method. 

C. Algorithm Framework of SOC Estimation 

The proposed SOC estimation method consists of 

VRLS-based model parameter identification and a state 

estimation algorithm based on a novel adaptive extended Kalman 

filter. The framework of the proposed approach is shown in Fig. 

3. 

 
Fig. 3. Framework of the proposed adaptive SOC estimation 

algorithm. 

Ⅳ. EXPERIMENT AND SIMULATION 

Experiments and simulations were set up to verify the 

accuracy and robust of the proposed SOC estimation method. 

Two typical tests are applied to evaluate the proposed method, 

including Dynamic Stress Test (DST) and Urban Dynamometer 

Driving Schedule (UDDS). The load current and the terminal 

voltage were obtained through bench experiments, as well as the 

reference SOC. The algorithm verification was operated in 

Matlab Simulink environment.  

A. Experimental Configuration 

A test bench shown in Fig. 4 was built on our own for 

experiments, which consists of battery cell, a device for battery 

charging/discharging (NBT BTS-5V300A), a thermal chamber 

for temperature control and a monitoring platform. The tested 

battery was made in Wanxiang Group, and its model number is 

WX35A. This test bench can perform test simulation of typical 

automotive conditions. The battery cell was charged/discharged 

in the thermal chamber with the NBT BTS-5V300A, and the 

temperature in the thermal chamber was kept around 25℃.The 

monitoring platform load the current profile to the NBT 

BTS-5V300A and observed the terminal voltage of the battery 

through the CAN BUS, and monitored the thermal chamber 

through and RS485. According to the measured current of a 

96s2p battery pack of a mid-size EV in test, the imported load 

current for a single cell was calculated before the bench 

experiment. The reference SOC, which is regarded as true SOC, 

is calculated by coulomb counting according to the known initial 

SOC and load current. The specifications of battery cell and the 

NBT BTS-5V300A are respectively shown in TABLE V and 

TABLE VI. 

 

Fig. 4. Composition of battery test bench. 

TABLE V 

THE SPECIFICATIONS OF BATTERY CELL 

Items  Values 

Nominal capacity 35000 mAh 

Rated voltage 3700 mV 

maximum charging current of cell 75A 

maximum discharging current of cell 150A 

TABLE VI 

THE SPECIFICATIONS OF THE NBT BTS-5V300A 

Items  Values 

Voltage measurement range for charge  10mV~5 V 

Voltage measurement range for discharge 2V~5 V 

Current measurement error 0.1% of full scale 

Voltage measurement error 0.1% of full scale 

Temperature resolution 0.1 °C 

Sample frequency 10Hz 

B. Experimental Details 

1) Experiment 1: Test of DST Cycles 

The dynamic stress test (DST) is a dynamic driving test profile 

simplified from actual urban driving cycles (AUDC), which is 

widely used to evaluate performance, control strategies and 
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algorithmic effects of vehicles.  In the DST experiment of this 

study, the battery went through 27 DST cycles and the battery 

SOC changed from the initial 1 to 0.2672. The profiles of load 

current and terminal voltage in the entire test are shown in Fig. 5, 

in which the positive current values represent discharging current, 

and the negative current values represent charging current. 

 

(a) 

 

(b) 

Fig. 5. Experimental profiles of DST:(a) Current of entire test; (b) Terminal voltage of entire test. 

2) Experiment 2: Test of UDDS Cycles 

The UDDS test is a relatively complex typical dynamic 

driving cycle, which is often used to evaluate vehicle 

performance, energy consumption and battery management 

strategy. In this study, 11 UDDS cycles were utilized to evaluate 

the SOC estimation method, and the battery SOC decreased from 

1 to 0.1812 in the entire test. The profiles of load current and 

terminal voltage are shown in Fig. 6.   

 

(a) 

 

(b) 

Fig. 6. Experimental profiles of UDDS:(a) Current of entire test; (b) Terminal voltage of entire test. 

3) Experiment 3: Test of DST Cycles with Measurement Noise 

Due to the measurement deviation of current and voltage 

sensors and the influence of external disturbance signals, SOC 

estimation faces great challenge. To evaluate the anti-disturbance 

ability of the proposed method, a test of DST cycles with 

measurement noise was conducted. In this experiment, a 

Gaussian white noise disturbance signal was added to the 

measurement of current and voltage under the same DST 

conditions as in section 4.4.1. (62) is the probability density 

function of the random noise in the single cycle. The standard 

deviation of the noise is calculated by (63): 

     
 

    
     

  

                   (62)  

                        (63)  

where   represents current noise or terminal voltage noise,   

is the standard deviation of the noise distribution,   is the 

proportion coefficient,      donates the maximum value of the 

current or the voltage. Considering the practical condition of 

electric vehicles, the proportion coefficient was set as 2.5%. The 

current and terminal voltage noise profiles in this test are shown 

in Fig. 7.  

 

(a) 

 

(b) 

Fig. 7. Experimental profiles of noise for DST:(a) Current noise of entire test; (b) Terminal voltage noise of entire test. 
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C. Simulation result and Discussion 

The estimation simulation of DST was made in 

Matlab/Simulink. The online parameter identification profiles 

and the reference values are shown in Fig. 8. The reference 

values are offline obtained through HPPC test [51], while the 

identification profiles are obtained by using VRLS. Fig. 8 

suggests that the R0 values of identification and reference are 

close in low SOC region to high region. the identification values 

of Rp and Cp general approach to those of reference, but the 

deviations in high SOC region are relatively large. As stated in 

our research of [51], the influence of Rp and Cp to SOC 

estimation are much smaller than that of R0. It can be expected 

that the identification effect is enough. The cause of the large 

error region will study in our later research.  

The SOC estimation profiles of DST are exhibited in Fig. 9 

and Fig. 10. In the verification tests, the initialized estimated 

SOC value is 0 while the corresponding one of reference is 1. 

With intent to illustrate the performance of the proposed method, 

the estimation results using the proposed algorithm and the 

combination of RLS and SEKF (RLS+SEKF) are compared. The 

model parameters are identified with VRLS in both methods. 

The estimation results of RLS+SEKF and the proposed method 

are presented in Fig. 9 and Fig. 10, respectively. The estimated 

SOC of both methods converges quickly to the reference value in 

about 65s, because the same algorithm is used before filtering 

convergence. It is shown in Fig. 9 that the estimation accuracy of 

RLS+SEKF method is poor and has large error fluctuation. In 

comparison, it can be seen from Fig. 10 that the maximum 

absolute estimation error of the proposed method is less than 

0.01, and the errors are distributed in the region near zero after 

filtering convergence. This estimation result proves the 

outstanding estimation accuracy and stability of the proposed 

method. 

 

(a) 

 

(b) 

 

(c) 

Fig. 8. Identification result of VRLS.  

 

(a) 

 

(b) 

 

(c) 

Fig. 9. Estimation result of RLS+SEKF in DST cycles. (a) Estimated SOC; (b) Estimation error; (c) Convergence detail. 
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(a) 

 

(b) 

 

(c) 

Fig. 10. Estimation result of proposed method in DST cycles. (a) Estimated SOC; (b) Estimation error(c) Convergence detail. 

The SOC estimation profiles of UDDS are presented in Fig. 11 

and Fig. 12. In the UDDS test, the estimated SOC of both 

methods converges to the reference value in about 60s, because 

both methods used the same estimator before filtering 

convergence. Both RLS+SEKF method and the proposed method 

have high estimation accuracy during the early stage of the 

algorithm operation. However, as the algorithm continues, the 

fixed noise covariances    and   are no longer applicable to 

the system, which leads to the error expansion of the SOC 

estimation of SEKF. The absolute estimation error band of the 

proposed method is within 0.015, and most of the errors are less 

than 0.01 and distributed around 0. The estimation result 

suggests that the proposed method can track system noise well 

and accurately estimate SOC in the entire process. The proposed 

method operated well in both DST and UDDS, which indicates 

its high SOC estimation accuracy and strong robustness. 

 

(a) 

 

(b) 

 

(c) 

Fig. 11. Estimation result of RLS+SEKF in UDDS cycles; (a) Estimated SOC. (b) Estimation error; (c) Convergence detail. 

 

(a) 

 

(b) 

 

(c) 

Fig. 12. Estimation result of proposed method in UDDS cycles. (a) Estimated SOC; (b) Estimation error; (c) Convergence detail. 

The SOC estimation result profiles of DST cycles with 

measurement noise are presented in Fig. 13 and Fig. 14. In Fig. 

13, it is shown that the maximum absolute estimation error of 

RLS+SEKF method is larger than 0.1, and the dispersion degree 

is high. Comparing Fig. 13 and Fig. 14, it is seen that the 

estimation error of proposed method before using adaptive 

extended Kalman filter is as large as RLS+SEKF method. The 

estimator performs well after the new AEKF is started up, and 

the maximum absolute error of proposed method is less than 0.02. 

The result indicates that the new AEKF can reduce the 

disturbance of measurement bias of current and voltage. 
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(a) 

 

(b) 

Fig. 13. Estimation result of RLS+SEKF in DST cycles with measurement noise. (a) Estimated SOC; (b) Estimation error. 

 

(a) 

 

(b) 

Fig. 14. Estimation result of proposed method in DST cycles with measurement noise. (a) Estimated SOC; (b) Estimation error. 

Current offset is another common sensor error, which will 

cause the most error when coulomb counting because the error 

will be integrated. In order to verify the proposed method, a DST 

with current offset is created. The modified current measurement 

is calculated by (64). 

                                  (64) 

where       is raw current measurement,         is the added 

current offset, and the used values of         are 1 A, 2 A , -1 A 

and -2 A. The estimation result is presented in Fig. 15. The 

maximum estimation absolute error is less than 0.015, suggesting 

the high robustness of the algorithm. 

 

(a) 

 

(b) 

Fig. 15. Estimation result of proposed method in DST cycles with current offset. (a) Estimated SOC; (b) The local details. 

The estimation accuracy of SEKF relies remarkably on the 

appropriate predetermination of the process noise covariance 

matrix  and measurement noise covariance matrix  . The use 

of inappropriate noise parameters will lead to large estimation 

error even filtering divergence. Overcoming this shortcoming is 

an ability that an adaptive filter should have. To further evaluate 

the robustness of the proposed method, several different 

combinations of   and   were used in the two algorithms for 

estimation simulation of UDDS test. The values of different   

and   used for simulation are listed in TABLE VII. Where      

is the identity matrix of 2 rows and 2 columns. 

The simulation results are presented in Fig. 16 and Fig. 17. It 
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can be seen from the results that with different initial noise 

parameters, the estimation accuracy of the proposed method is 

excellent, while the estimation accuracy of RLS+SEKF is 

heavily dependent on the predetermination of noise covariances. 

The result comparison indicates the great anti-interference 

capacity of the proposed method. 

TABLE VII 

THE DIFFERENT Q AND R USED FOR SIMULATION 

        

1           0.5 

2           1.5 

 

 

(a) 

 

(b) 

Fig. 16. Estimation result of RLS+SEKF with different noise parameters for UDDS. (a) Estimated SOC; (b) The local details. 

 

(a) 

 

(b) 

Fig. 17. Estimation result of proposed method with different noise parameters for UDDS. (a) Estimated SOC; (b) The local details. 

Ⅴ. CONCLUSION 

Equivalent circuit model-based methods are suitable for SOC 

estimation of lithium-ion battery, and EKF is an appropriate SOC 

estimator. However, the lithium-ion battery system varies during 

its operation, and offline parameter identification approaches 

suffer from the difficulty of implementation. Furthermore, the 

system noise, which comes from the uncertainties of model and 

measurement, is unmeasurable and not known in advance, thus 

the predetermined fixed noise parameters will significantly affect 

the accuracy of the SOC estimation. In order to solve these 

problems, this paper proposes a SOC estimation method 

combining RLS and a novel adaptive extended Kalman filter, 

which can online dynamically track the model parameters and 

the system noise. RLS is used for online identification of the 

ECM, while the new adaptive extended Kalman filter tracks the 

system noise by directly adapting to priori error covariance 

      . Bench experiments and simulations were established to 

evaluate the proposed method, and the proposed method was 

compared to the RLS+SEKF method. The maximum estimation 

error after the convergence of the proposed method in DST and 

UDDS is less than 0.015, which is far less than that of traditional 

RLS+SEKF. Further, a test of DST cycles with current and 

terminal voltage noise is conducted to evaluate the 

anti-disturbance ability of the proposed method. In the 

disturbance environment, the absolute estimation errors are 

limited within a region less than 0.02 after starting up the new 

adaptive extend Kalman filter. The experiments demonstrate the 
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high estimation accuracy and strong robustness of the proposed 

method. 

In the future study, the proposed method will be applied to 

BMS software development to verify its practicality in 

engineering. 
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