
Cut Me Some Slack! 

Slack Resources and Technology-Mediated Human Capital Investments in Entrepreneurship 

 

 

Jason Jabbari, PhD 

Stephen Roll, PhD 

Sam Bufe, MA 

Yung Chun, PhD 

The Social Policy Institute 

Washington University in St. Louis 

 

 

Disclaimer: The authors would like to acknowledge the commitment of Intuit, Inc. and its Tax 

and Financial Center for making the Refund to Savings Initiative possible. We thank the 

thousands of taxpayers who consented to participate in the research surveys and shared their 

personal financial information. The authors would also like to thank Mastercard for its 

partnership on this paper. The findings and conclusions expressed are solely those of the authors 

and do not represent the views or opinions of research partners and funders. The authors accept 

all responsibilities for errors or omissions. Statistical compilations disclosed in this document 

relate directly to the bona fide research of, and public policy discussions concerning, financial 

security of individuals and households as it relates to the tax filing process and more 

generally. Compilations follow Intuit’s protocols to help ensure the privacy and confidentiality of 



customer tax data. The Washington University in St. Louis Institutional Review Board approved 

the collection of survey data that were used in this paper. 

Abstract: In this paper, we explore the impact that slack resources and technology can have on 

individuals' entrepreneurial aspirations. Focusing on human capital investments that individuals 

make through education and work that involve both slack resources and technology, we explore 

the relationship among formal online learning opportunities, informal skill development in the 

gig economy, and entrepreneurial aspirations. Leveraging a novel dataset that merges 

administrative tax data with a survey of over 8,528 low and moderate-income households, we 

use machine learning and propensity score weighting to examine the likelihood that individuals 

who make these technology-mediated human capital investments will have increased odds of 

entrepreneurial aspirations when compared to similar individuals who do not make these 

investments. We find that both partaking in online learning and working in the gig economy are 

significantly associated with increased odds of entrepreneurial aspirations. Furthermore, through 

a variety of robustness and mechanism checks, we find that technology-mediation is an 

important factor in these relationships and that informal skill development and career preparation 

is one way in which gig employment influences entrepreneurial aspirations. We discuss these 

findings with implications for both policies and practices around online learning and gig 

employment.  
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If you wanna stick around you gotta cut me some slack 

I'm gonna hit the road again and not come back 

-- Paul McCartney, Dave Grohl, Krist Novoselic, and Pat Smear, 2012  

1 Introduction  

Slack resources often consist of the time and money that are needed to meet long-term 

innovation goals, as opposed to short-term production goals. In the organizational literature, 

slack resources are associated with the exploration and experimentation of “new ideas, products, 

strategies, and markets that would otherwise be considered too risky to engage in under a 

traditional cost-benefit analysis” (Agrawal, Catalini, Goldfarb, & Luo, 2018). Thus, it is 

unsurprising that many organizations have used slack resources to spur innovation. For example, 

Google allows employees to use 20% of their paid time on side projects; Gmail, Google Maps, 

Twitter, Groupon, and, fittingly, the business communication platform Slack are all successful 

ventures that started as side projects.  

At the same time, technology has also been used to spur innovation, as it can provide 

organizations with new knowledge and tools that can help organizations anticipate disruptions, 

advance products, increase strategic choices, and locate new markets (Bolívar-Ramos, García-

Morales, & García-Sánchez, 2012; Martín-Rojas, García-Morales, & Bolívar-Ramos, 2013). For 

example, over 85% of small and medium-sized businesses in a recent large-scale survey reported 

that digital business tools have improved their businesses—citing growth in customers, revenues, 

employees, and innovation (Deloitte, 2017). Moreover, these competitive advantages extend 

across business sectors: Bartel and her colleagues (Bartel, Ichniowski, & Shaw, 2007) found that 

information technology increased customization and improved efficiency in manufacturing firms 

as well.  



Technological advances are also making it easier for individuals to invest in their human 

capital. Thanks to online and mobile learning platforms, a student can now take classes in a wide 

range of subjects whenever it is convenient to do so. Similarly, an individual can increase their 

human capital and gain marketable skills while earning money through the gig economy, the 

segment of the labor market where workers use mobile apps and platforms to find short-term 

contracts for a wide range of work. Due to the short-term nature of gig employment contracts, a 

gig worker typically has the flexibility to work when and where it is most convenient. 

Nevertheless, despite a wealth of research on the relationships between slack resources 

and innovation at the firm level (Bourgeois, 1981; Cyart & March, 1963; Levinthal & March, 

1981), there is little research on the relationship between slack resources and entrepreneurship at 

the individual level. The same is true for the relationship between technology and 

entrepreneurship (Koellinger, 2008). Additionally, there is no current research on the interactions 

across slack resources and technology and their relationship with entrepreneurship. As 

technology platforms can create slack resources and slack resources can increase technology use, 

it is likely that both slack resources and technology may work together to increase 

entrepreneurship.  

As we are most interested in the impact that slack resources and technology can have on 

individuals' entrepreneurial aspirations, we focus on human capital investments that individuals 

make through education and work that involve both slack resources and technology. In this 

paper, we examine the relationship between entrepreneurial aspirations and two types of 

technology-facilitated human capital investments: (1) formal online learning opportunities and 

(2) informal skill development in the gig economy. We explore the extent to which human 

capital investments in these technology-mediated sources of skill development can increase 



entrepreneurial aspirations for individuals, as compared to similar individuals not engaged in 

these activities. We know of no other studies that have tested theories of slack resources and 

technology in this way.  

To address the issue of selection bias in the decision to opt for these technology-mediated 

human capital investments, we use machine learning and propensity score weighting to balance 

our treatment group—individuals who engage in either online learning or gig employment—and 

our comparison group—individuals who do not engage in these activities—on observable 

characteristics. Leveraging a novel dataset that merges administrative tax data with a survey of 

over 8,528 low and moderate income households, we find that both partaking in online learning 

and working in the gig economy are significantly associated with increased odds of 

entrepreneurial aspirations. Furthermore, through a variety of robustness checks, we find that 

technology-mediation is an important factor in these relationships, as the point estimates for 

online learning do not substantially change when we limit our sample only to students, nor does 

the point estimate for working in the gig economy change when we limit our sample to part-time 

workers. Moreover, through a series of mechanism checks, we find that informal skill 

development and career preparation is one way in which gig employment influences 

entrepreneurial aspirations. These findings have implications for both policies and practices 

around online learning and gig employment.  

These types of human capital investments are increasingly important in a fast-changing 

and technology-driven economy. As the number of technology-based start-ups grew 47% from 

2007-2016 (Wu & Atkinson, 2018), we can assume that both the agility and innovation that 

come with slack resources and technology will become increasingly associated with 

entrepreneurial activities (Bradley, Wiklund, & Shepherd, 2011; Nambisan, 2017).  Our analyses 



are focused specifically on low- and moderate-income (LMI) households, a group for whom 

entrepreneurship plays an important role. Although LMI households tend to have lower levels of 

entrepreneurial success (Acs & Kallas, 2008), the benefits of entrepreneurship to LMI 

households can be quite high. Successful entrepreneurship can not only raise the incomes of the 

entrepreneur, but can have lasting intergenerational effects on the future incomes of family 

members (Velez-Grajales & Velez-Grajales, 2012). Additionally, one entrepreneurial venture 

can have spillover effects, increasing the likelihood of others becoming entrepreneurs. As such, 

entrepreneurial ventures can have a substantial and lasting impact on LMI communities. 

2 Conceptual Overview  

Technological advances over the past 30 years are allowing people to make better use of their 

time in ways that would have been difficult to imagine a few decades ago. While some of these 

advances have focused on entertainment (e.g., smartphones allowing people to binge a TV show 

on their bus ride to work), others have allowed people to make more productive use of their free 

time. In this paper, we argue that usage of these productivity-enhancing forms of technology is 

associated with increases in entrepreneurial aspirations. Specifically, we focus on the 

relationship between entrepreneurial aspirations and two different productivity-enhancing 

technological advancements: online education and gig economy platforms.  

2.1 Mechanism 1: Human Capital and Skill Development 

As noted by Unger and his colleagues (Unger, Rauch, Frese, & Rosenbusch, 2011), 

human capital (e.g., education, experiences, knowledge, and skills) can help individuals discover 

and exploit new business ventures (Shane & Venkatraman, 2000), plan and execute venture 

strategies (Baum, Locke, & Smith, 2016), acquire new resources (Brush, Greene, & Hart, 2002) 



and locate new markets. Indeed, research on entrepreneurship demonstrates that human capital is 

most strongly associated with entrepreneurial success when education, experience, knowledge, 

and skills are directly related to entrepreneurial tasks (Unger et al., 2011).  

Technological advances are changing the ways people can invest in human capital. 

Thanks to smartphones and broad access to the internet, individuals now have the flexibility to 

invest in their human capital when and where it is convenient. One such example involves 

investing in online education. Online education refers to any type of educational program in 

which at least some of the course materials are delivered online. As these platforms have become 

easier to scale and grown more affordable to students over recent decades, the use of online and 

mobile learning platforms has grown substantially (U.S. Department of Education, 2016). Today, 

students can use online education platforms to develop skills in a breadth of subjects ranging 

from English and history to mathematics and programming.  

While the efficacy of specific online education programs can vary, there is ample 

evidence that education delivered online can improve student outcomes. Several studies and 

meta-analyses have found improved educational outcomes among students receiving online 

education, with some arguing that education delivered online actually leads to better student 

outcomes than traditional brick-and-mortar education (Means, Toyama, Murphy, Bakia, & Jones, 

2009; Nguyen, 2015). While others argue that the effects of online education are overstated 

(Jaggars & Bailey, 2010), there is broad consensus that online education programs improve 

students’ skills and knowledge.  

Although skill development may not be among their stated goals, gig economy platforms 

and applications that digitally connect workers with employers through short-term employment 

contracts, also allow their users to develop important skills. For example, Uber drivers may learn 



how to pinpoint markets and interact with clients; Etsy workers may learn how to manage an 

inventory and distribute products; and Airbnb hosts may learn how to market their product and 

pay employees. On the surface, this may seem like a relatively unimportant reason why workers 

join the gig economy. However, many gig workers explicitly report seeking out gig employment 

to build skills that they may want to capitalize on in their future (Broughton et al., 2018; 

Friedman, 2014). 

Both online education and gig platforms allow users to develop skills that increase the 

likelihood of entrepreneurial success. For example, a student who takes programming classes 

online will have a marketable skill that potential clients would be willing to pay for. Gig 

employment can help workers gain the informal skills and knowledge related to starting and 

running a business, while also acquiring advanced digital literacy skills. Furthermore, a gig 

worker who learns time management and interpersonal skills by driving for Uber is going to be 

better equipped to manage themselves when starting a business.  

With these entrepreneurially-relevant skills, users of productivity-enhancing technology 

platforms are more likely to have entrepreneurial success. Accrual of skills and human capital 

increases the expected value of (and therefore the likelihood of pursuing) an entrepreneurial 

enterprise. The logic flow for Mechanism 1 is shown in Figure 1. 

Figure 1. Human Capital and Skill development (Mechanism 1) 

 



2.2 Mechanism 2: Slack 

Nevertheless, human capital creation not only requires additional skills, but also 

additional time needed to execute these skills. Thus, individuals need to invest in education, 

experiences, knowledge, and skills that can increase entrepreneurial aspirations and abilities 

while also allowing for enough flexibility or “slack” to develop new ventures, strategies, 

resources, and markets. While slack resources and technology use are typically created through 

organizational strategies at the firm level, slack resources can be created through human capital 

investments at the individual level. Similar to organizations, individuals need time to “pay 

attention, think, and benefit from the knowledge gained” (Lawson, 2001). Some of the human 

capital investments that are most adept at increasing entrepreneurial aspirations and abilities 

while also allowing for enough slack for individuals to innovate are those that are mediated by 

technology, as these investment platforms often allow for the greatest degree of flexibility—

while also building technology and digital literacy skills.  

Thus, another defining characteristic of online education is that it gives students the 

autonomy to determine where and when their education happens (Allen & Seaman, 2002; Capra, 

2011; Chee, Yahaya, Ibrahim, & Noor, 2017). Indeed, online learning is often individualized and 

self-paced, thus allowing for more flexibility than traditional, in-person courses (Martin & 

Grudziecki, 2006). Thanks to online education platforms, students can now watch lectures on 

their bus rides to work and can take practice quizzes while waiting in line at the grocery store. 

With the ability to study and learn when it is convenient, students may have less of a need to 

block off time dedicated to their education, creating slack in their schedules.  

As the flexibility of online education creates slack in students’ schedules, the flexibility 

offered through the gig economy, which consists of technology-enabled peer-to-peer businesses, 



can also create slack in the schedules of gig workers. Since gig economy platforms offer 

employment through short-term contracts, gig workers also tend to have a great deal of 

autonomy over their schedules (Dokko, Mumford, & Schanzenbach, 2015; Lehdonvirta, 2018). 

An Uber driver, for example, who is not bound by a typical 9 to 5 schedule, has the flexibility to 

work a few hours on the weekend or at nights. In fact, Hall and his colleague (Hall & Krueger, 

2018) found that flexibility was one of the largest sources of attraction for Uber drivers. Their 

research found that Uber's flexibility was able to help drivers “smooth the transition to other 

jobs, as driver-partners can take off time to prepare for and search for another job at their 

discretion” (p. 714). This “smoothing” process may be present for both the transition into other 

traditional forms of employment and the transition into entrepreneurial activities.  

Similarly, someone who earns income selling items on Etsy or renting a property on 

AirBnB has the scheduling flexibility to work when it is convenient to do so. Here, gig 

employment offers a considerable amount of slack resources, as the peer-to-peer nature of these 

businesses offers workers both flexibility and convenience in their employment. These 

experiences are quite different from those of traditionally employed workers, who are required to 

be working during certain hours of the day. Even many part-time employees do not know what 

their schedules are going to look like in a given week, yet have to make themselves available for 

a full 40-hour workweek regardless. Thus, flexibility creates slack in the schedules of gig 

workers. 

Slack is another important component of entrepreneurial success. If their ventures are 

going to be successful, individuals need the time, flexibility, and energy to address the issues that 

their organizations face. Research on the subject has shown that slack can have a positive direct 

effect on entrepreneurial growth (Bradley et al., 2011). By providing users with additional slack, 



productivity-enhancing technology, such as gig platforms and online education, increase the 

likelihood of entrepreneurial success. For example, when compared to traditional college 

courses, online learning can offer a greater variety of courses, as well as a more cost-effective 

way of upskilling quickly, which can increase entrepreneurial activities. Massive Online Open 

Courses—or MOOCs—are one example of online learning where students can choose from a 

variety of courses at a low cost, take them when convenient, and not have to physically relocate 

or alter their work schedule.  

Finally, it is important to note that technology not only allows for greater degrees of 

slack, but that slack can also increase technology use. Here, individuals engaged in online 

learning or gig employment may be more likely use technology for other productive purposes 

with their slack time. As both online learning and gig employment have the capacity to build 

technology and digital literacy skills that are related to entrepreneurial activity, the relationship 

between slack and technology becomes especially important. For example, online learning 

experiences, which can leverage networking tools that allow for greater personalization, 

participation, and productivity, can increase creativity, innovation, and entrepreneurship beyond 

the confines of the course (McLoughlin & Lee, 2008). This logic flow is displayed in Figure 2.  

Figure 2. Slack resources (Mechanism 2) 

 

3 Prior Literature  



While organizational research has examined a positive relationship between slack resources and 

exploration activities, such as innovation (Nohria & Gulati, 1996), risk-taking (Singh, 1986), and 

adaptation (Kraatz & Zajac, 2001), only recently has this been studied at the individual level. In 

2018 Agrawal and his colleagues empirically demonstrated a positive relationship between slack 

resources and entrepreneurial activities. Using data on college breaks and Kickstarter projects in 

the United States, they observed more project posts on Kickstarter during university breaks. 

They also observe an increase in higher value projects during the period, which may be linked to 

the ability of entrepreneurs to put more resources into their ideas.  

 To-date, there has been no research on the relationship between online learning and 

entrepreneurship and little research on the relationship between gig employment and 

entrepreneurship. Concerning the latter, two compelling explanations exist for the relationship 

between gig employment and entrepreneurship (Burtch, Carnahan, & Greenwood, 2018). On the 

one hand, the gig economy may discourage entrepreneurial aspirations and activities by 

providing stable jobs for the unemployed. As many pursue starting their own business in order to 

resolve unemployment or underemployment—potentially due to the lower opportunity costs of 

starting a business for those who are unemployed (Block & Koellinger, 2009; Fairlie, 2002; 

Storey, 1991)—it is possible that gig economy employment may have a negative relationship 

with entrepreneurship. As the gig economy may provide additional employment opportunities, it 

is plausible to assume that the gig economy raises individuals' opportunity cost of seeking out 

new employment opportunities and thus reduces entrepreneurship. Burtch et al. (2018), for 

example, find a negative association between the gig economy and entrepreneurial activity at the 

city level. Focusing on the entry of Uber X into cities, they found that the Uber X's entry 



decreases the number of individuals reporting self-employment by 5 percent, as well as a 14 

percent decrease in the number of active Kickstarter projects in subject areas.  

However, while aggregate gig economy trends may demonstrate lower levels of 

entrepreneurship at the city-level, a different phenomenon may be taking place at the individual-

level, especially when considering entrepreneurial aspirations. Therefore, on the other hand, we 

posit that gig economy employment may encourage individuals’ entrepreneurial aspirations as it 

builds human capital and helps individuals secures slack resources. Here, slack resources may 

encourage a would-be entrepreneur to conceive new business opportunities and ventures (Voss, 

Sirdeshmukh, & Voss, 2008). Furthermore, a combination of flexible schedules and regular 

income from the gig economy may resolve both time and monetary constraints that a nascent 

entrepreneur may confront (Agrawal et al., 2018). Building upon this evidence of a positive 

association between human capital development, slack resources, and entrepreneurship, we 

hypothesize that there will be a positive relationship between online learning, gig employment, 

and individuals' entrepreneurial aspirations.  

4 Data and Methods 

In this study, we are interested in examining the how technology-mediated human capital 

investments influence entrepreneurship. Specifically, we explore the relationships among online 

learning, gig employment, and entrepreneurial aspirations. We do this in multiple steps. First, we 

examine the relationship between online learning experiences and new gig employment, as well 

as the relationship between online learning experiences and entrepreneurial aspirations. Next, we 

explore the relationship between new gig employment and entrepreneurial aspirations. Last, we 

explore how both online learning and new gig employment are simultaneously related to 

entrepreneurial aspirations.  



Additionally, while we do not have a prior measure of entrepreneurial aspirations, we are 

able to improve directionality by removing individuals who have previously started a business or 

non-profit organization, as well as individuals who had worked in the gig economy prior to this 

year. Finally, while we cannot completely control for the decisions to participate in online 

learning or work in the gig economy, we are able to balance each group on a variety of 

demographic and economic measures that are related to selection into these groups, as well as the 

main outcome measure—entrepreneurial aspirations. We do so by leveraging administrative tax 

return data and machine learning-based propensity score weighting methods.  

4.1 Data 

Data for this study come primarily from the 2018 Household Financial Survey (HFS), which 

gathered detailed information on a variety of measures related to employment, future aspirations, 

and household finances. The HFS was administered to individuals who consented to participate 

in the survey following completion of their tax preparation in Intuit's TurboTax Freedom Edition 

(TTFE) in 2018. As part of the Internal Revenue Service's (IRS) Free File Alliance Program,1 the 

TTFE tax-preparation and tax-filing software is free for LMI tax filers who meet certain income 

and/or military service criteria. In 2018, the qualifying criteria for using TTFE were: (a) claiming 

the Earned Income Tax Credit, (b) having an adjusted gross income (AGI) less than or equal to 

$33,000, or (c) being an active duty military serviceperson with an adjusted gross income less 

than or equal to $66,000. For these analyses, HFS data were merged with administrative tax 

records for individuals that received a tax refund. By using administrative data, we were able to 

observe the precise values of household AGI, federal tax refunds, tax filing status, and the 

 

1 https://freefilealliance.org/ 

https://freefilealliance.org/


number of dependents in a household. While the unit of observation in this study is a tax 

household, demographic characteristics (e.g., age, gender, etc.) and self-assessed measures 

related to online learning, gig employment, entrepreneurial aspirations, and student debt 

correspond to the tax filer who completed the TTFE on behalf of their tax household.   

4.2 Sample  

Of the 15,983 households that completed the HFS, we were able to merge in federal tax data for 

12,288 households. While these households were restricted to those that did not owe any federal 

taxes, close examinations of previous HFS surveys reveal that these represent roughly 90% of all 

LMI tax filers and that there were no systemic differences across individuals that did and did not 

owe federal taxes. We were then able to merge in urbanicity data from the USDA for 10,141 of 

these households. We then removed 389 individuals who had already founded a business, as well 

as 413 individuals who had worked in the gig economy prior to this year. This allows us to 

isolate the impact of working in the gig economy, while also avoiding the potential “double-

measurement” of gig employment and entrepreneurial activities. Additional cases of list-wise 

deletion resulted in an analytic sample of 8,528 households. 

4.3 Measures 

4.3.1 Key Dependent and Independent Variables.  

We examined the associations among online learning, gig employment, and entrepreneurial 

aspirations. Our key dependent variable, entrepreneurial aspirations, was based on respondents’ 

answer to the following question: “Are you currently planning to start a business or nonprofit?” 

(1 = yes; 0 = no). In terms of our key independent variables, a dummy variable for online 

learning was developed from the question “Are you currently taking classes online?” (1 = yes; 0 



= no/not currently enrolled in a part-time or full-time educational program), while a dummy 

variable for gig employment was developed from the question “In the past year, did you earn any 

income through services offered through a mobile app or website (sometimes known as the 

‘Sharing’ or ‘Gig’ economy)?  Examples include ride-sharing services like Uber, home-sharing 

services like AirBnB, and selling crafts through sites like Etsy” (1 = yes; 0 = no). We also 

created four binary variables that demonstrate how gig workers view the value of their work (1 = 

somewhat/strongly agree; 0 = somewhat/strongly disagree): “I value the flexibility this job gives 

me” (93.67% somewhat/strongly agree); “This job allows me to control my own schedule due to 

child care, school, or other obligations” (87.71% somewhat/strongly agree); “This job allows me 

to fill in gaps or fluctuations in my other sources of income” (37.63% somewhat/strongly agree); 

“This job allows me to gain work experience for future job opportunities” (75.90% 

somewhat/strongly agree) 

4.3.2 Variables in the Propensity Score Estimation Model.  

As the decision to participate in online learning and the gig economy is not random and may be 

systematically related to the outcomes under study, we use propensity score weighting to ensure 

that individuals participating in online learning and working in the gig economy are comparable 

to individuals not participating in online learning and working in the gig economy. Specifically, 

we employed a theory-driven approach in our propensity score estimation model, and balanced 

each group on variables that are theoretically related to online learning, gig employment, and 

entrepreneurial aspirations. In doing so, the following variables were included the propensity 

score estimation model: gender (1 = male; 0 = female/other); whether or not individuals lived in 

an urban area (1 = lives in a metro county; 0 = does not live in a metro county); race/ethnicity—

whether individuals identified as White (1 = yes; 0 = no), Black (1 = yes; 0 = no), Hispanic (1 = 



yes; 0 = no), Asian (1 = yes; 0 = no); and Other (1 = yes; 0 = no); age quintiles; whether or not 

an individual has dependents (1 = yes; 0 = no); a tax filing status of single (1 = yes; 0 = no), 

married filing jointly (1 = yes; 0 = no), and head of household/other (1 = yes; 0 = no); 

household’s AGI; and federal tax refund amount. Variables measuring dependents, tax filing 

status, household AGI, and the federal tax refund were observed in the administrative tax data; 

the measure of urbanicity came from the linking USDA data with respondents’ zip codes; the 

remaining measures came from the survey data.  

4.3.3 Covariates in Multivariate Response Models 

We utilized additional covariates in our multivariate response models to account for other factors 

that might explain the outcomes. There was some overlap between these covariates and the 

variables used in the propensity score estimation model, which can provide an added layer of 

robustness (Bang & Robins, 2005). However, the full set of covariates used in the multivariate 

response models were substantially different than in the propensity score estimation model, 

which is also necessary when using propensity score methods (Freedman & Berk, 2008). In 

addition to gender, urban location, race/ethnicity, household AGI, and federal tax refund amount, 

age and dependents were also used in the multivariate response models. However, in the 

multivariate response models it is important to note that continuous measures were used for age 

and dependents.  

Our multivariate response models also included the following covariates: being married 

or living with a partner (1 = yes; 0 = no); student status (categories: “not a student,” “part-time 

student,” and “full-time student”); education level (categories: “high school/less than high 

school,” “certificate/technical degree,” “some college,” “associate’s degree,” “college degree,” 

“some graduate school,” and “graduate school degree”); employment status (categories: “not 



working,” “working part-time,” and “ working full-time”); home ownership (1 = yes; 0 = no); car 

ownership (1 = yes; 0 = no); student debt (1 = yes; 0 = no); unsecured debt—including amounts 

reported on credit cards, payday loans, and negative balances in checking accounts; liquid 

assets—including amounts reported in checking accounts, savings accounts, and cash; health 

insurance (1 = has health insurance; 0 = does not have health insurance); and perceived health. 

Perceived health was derived from the following question: “How would you rate your general 

physical health compared to others of your own age?” (1 = much better; 2 somewhat better; 3 

about the same; 4 = somewhat worse; 5 = much worse).  

In order to censor extreme outliers, age, liquid assets, and unsecured debt variables were 

winsorized at the upper-bound 99th percentile in the multivariate response models. Additionally, 

while liquid assets where transformed into quartiles, due a disproportional amount of the sample 

that had no unsecured debt, this variable was transformed into a categorical variable consisting 

of 4 categories: (1) no unsecured debt: $0; (2) low unsecured debt: $1-600; (3) moderate 

unsecured debt: $601-3,000; and (4) high unsecured debt: $3,001-25,000. Notably, individuals 

with unsecured debt were equally distributed into the latter three categories. Finally, due to 

variation in the state laws and regulations regarding gig employment, U.S. states were included 

as a random intercept. 

4.4 Analytic Strategy 

Propensity scores define the conditional probability of being assigned to a treatment or control 

group based on a set of observed characteristics (Rosenbaum & Rubin, 1983), but cannot account 

for unobserved characteristics. As a result, propensity scores can be seen as balancing property: 

“conditional on the propensity score, the distribution of observed baseline covariates will be 

similar between treated and untreated subjects” (Austin, 2011). Specifically, propensity score 



weighting was used in this study, which uses the inverse probability for receiving the treatment 

(that the subject actually received) to weight these observations from a given sample (Austin, 

2011). Stemming from a counterfactual framework, in which treatment participants (individuals 

that participate in online learning and work in the gig economy) and comparison participants 

have potential outcomes in the state in which they are observed and in the state in which they are 

not observed (Guo & Fraser, 2014), propensity score weights allow for average treatment effects 

(ATE) to be estimated, which in this study is the difference in the potential outcomes associated 

with online learning and gig work for all students. In following Guo’s (2014) notation, the ATE 

weights for cases in the treatment groups are calculated as 𝑤𝑖 =
1

𝑝(𝑥𝑖)
, while the ATE weights for 

cases in the comparison group are calculated as 𝑤𝑖 =
1

1−𝑝(𝑥𝑖)
. These weights are then applied in 

logistic regression models as follows:  

ln (
𝑃(𝑥𝑖)

1 − 𝑃(𝑥𝑖)
) = 𝛽0 + 𝛽1𝐺𝑖𝑔𝑖 + 𝛽2𝑂𝑛𝑙𝑖𝑛𝑒𝑖 + 𝐗𝒊

𝐝𝐞𝐦𝐨𝛄𝟏 + 𝐗𝒊
𝐟𝐢𝐧𝐚𝐧𝐜𝐞𝛄𝟐 + 𝐗𝒊

𝐡𝐞𝐚𝐥𝐭𝐡𝛄𝟑 + 𝜺𝒊 

Here, the dependent variable of each logit model is either binary gig employment or 

entrepreneurial aspirations indicator. The two key independent variables are gig employment and 

online learning experiences. In addition to the two key variables, we also control for three sets of 

covariates as discussed above: demographic characteristics, financial characteristics, and health 

characteristics. To demonstrate the effect of applying ATE weights, each of our outcome models 

contains both propensity score weighted and non-propensity score weighted estimates.  

Since model misspecification errors have been shown to bias estimates of treatment 

effects, especially in analyses with binary outcomes (Drake, 1993; Freedman & Berk, 2008), we 

utilized generalized boosted modeling (GBM) to estimate propensity scores. Nonparametric 

modeling approaches, such as GBM, have been shown to reduce the chance of these errors 



(McCaffrey, Ridgeway, & Morral, 2004). Specifically, GBM utilizes automated, data adaptive 

modeling algorithms and machine learning techniques to “predict treatment assignment from a 

large number of pretreatment covariates while also allowing for flexible, non-linear relationships 

between the covariates and the propensity score” (2004, p. 3). In estimating the propensity score 

weights, this study utilized the TWANG—Toolkit for Weighting and Analysis of Non-equivalent 

Groups—package (Ridgeway, Morral, Griffin, & Burgette, 2014) in STATA. As seen in Figures 

3 and 4, there was an adequate range of common support.  

4.5 Methodological Limitations  

As our propensity score method only allows us to balance the groups on observable 

characteristics, participants may not be balanced on unobservable characteristics related to 

partaking in online learning or working in the gig economy. As a result, we are unable to make 

causal inferences. Rather, we use propensity score weighting to balance groups on observables 

characteristics that are related to our treatments, as well as the outcomes under study. By doing 

so, we are able to remove some of the bias in our associational estimates.  

5 Results 

5.1 Sample Description  

Table 1 provides a description of the sample. Of the total sample, six percent had entrepreneurial 

aspirations, six percent worked in the gig economy, and nine percent participated in online 

learning. There were slightly fewer men than women in our sample (48%), and the majority of 

the individuals in our sample identified as White (73%) and lived in an urban location (86%). 

The average age of participants in the sample was 33, and the majority of individuals did not 

have dependents (83%) and were not married or currently living with a partner (74%). 



Unsurprisingly, given the above, the majority of individuals had a “single” tax filing status. The 

majority of individuals were not students (67%) and had less than a bachelor’s degree (60%). 

Most individuals were employed (79%), did not own a house (80%), but did own a car (67%). 

Nearly half (47%) of individuals had student debt, and the average amount of unsecured debt 

($3,602) was less than the average amount of liquid assets ($4,679). Additionally, the average 

AGI was $16,200 a year and individuals received a federal tax refund of $1,501 on average. 

Finally, most individuals had health insurance (90%) and on average perceived that their health 

was slightly better than others in their age group (2.72 out of 5).  

5.2 Characteristics of Online Learners and Gig Workers  

Prior to balancing on observable characteristics through propensity score weighting, there were 

notable differences between individuals who participate in online learning and those who did not. 

Most notably, individuals who participate in online learning are less likely to identify as White 

and more likely to identify as Black or Other. Additionally, individuals who participate in online 

learning were also more likely to come from both the youngest and oldest age quintiles. Finally, 

individuals who participate in online learning also had significantly lower levels of adjusted 

gross income and higher levels of federal tax refunds. Table 2a demonstrates unweighted group 

means, standardized effect sizes, and p-values for each covariate across individuals who 

participate in in online learning (treatment) and individuals who do not participate in online 

learning (control). As seen in model 2b, which demonstrates propensity score weighted group 

means, standardized effect sizes, and p-values for each covariate, these initial differences 

dissipated.  

There were also notable differences between individuals who work in the gig economy 

and those who did not. Most notably, individuals who work in the gig economy are more likely 



to live in an urban location, less likely to identify as White and more likely to identify as Black. 

Additionally, individuals who participate in online learning were also more likely to come from 

younger (2nd) and middle (3rd) age quintiles, while being less likely to come from the oldest age 

quintile. Finally, individuals who participate in online learning also had significantly lower levels 

of adjusted gross income (Table 3a). After weighting on propensity scores, these differences 

dissipated as well (Table 3b).  

5.3 Key Influences of Entrepreneurship: Online Learning and Gig Employment  

Before accounting for selection into online learning with propensity score weights (Table 4, 

Series 1), individuals who participated in online learning had 77% greater odds of working in the 

gig economy and 76% greater odds of having entrepreneurial aspirations. When accounting for 

other model covariates (Table 4, Series 2), the influence of online learning increased, suggesting 

that some of the other model covariates may negatively confound part of the relationship 

between online learning and the outcomes under study. When accounting for selection into 

online learning with propensity score weights (Table 4, Series 3), the influence of online learning 

on gig employment and entrepreneurial aspirations was slightly less than Series 1, suggesting 

that when selection bias is not limited through propensity score weights, the influence of online 

learning is upwardly biased. Finally, when accounting for selection into online learning with 

propensity score weights and accounting for other model covariates (Table 4, Series 4), the 

influence of online learning on gig employment and entrepreneurial aspirations was slightly 

larger than Series 3, again suggesting that some of the model covariates may negatively 

confound the relationship between online learning and the outcomes under study.  

The influence of gig employment on entrepreneurial aspirations followed a slightly 

different pattern. Before accounting for selection into gig employment with propensity score 



weights, individuals who worked in the gig economy had 213% greater odds of having 

entrepreneurial aspirations (Series 1). However, unlike online learning, when accounting for 

other model covariates (Series 2), the influence of gig employment slightly decreased, suggesting 

that part of the influence of gig employment on entrepreneurial aspirations is positively 

confounded by some of other the model covariates. Nevertheless, similar to online learning, 

when accounting for selection into gig employment with propensity score weights (Series 3), the 

influence of gig employment on entrepreneurial aspirations was slightly less than Series 1, 

suggesting that when selection bias is not limited through propensity score weights, the influence 

of gig employment is upwardly biased. Also similar to online learning, when accounting for 

selection into gig employment with propensity score weights and accounting for other model 

covariates (Series 4), the influence of gig employment on entrepreneurial aspirations was slightly 

larger than Series 3, again suggesting that some of the model covariates may negatively 

confound the relationship between gig employment and entrepreneurial aspirations.  

Finally, when both online learning and gig employment predicted entrepreneurial 

aspirations, online learning lost significance when accounting for selection into gig employment 

with propensity score weights (Series 3 and 4). This suggests that part of the influence of online 

learning on entrepreneurial aspirations may be mediated by the balancing of selection effects 

associated with gig employment. This is to be expected when considering the strong 

relationships among online learning and gig employment. Together, these findings demonstrates 

the importance of limiting selection bias through propensity score weights, as well as isolating 

the influence of online learning by accounting for other—potentially confounding—model 

covariates.  



5.4 Additional Model Covariates 

5.4.1 Online Learning and Gig Employment  

In addition online learning, identifying as Black or Asian was also associated with increased 

odds of gig employment when accounting for selection into online learning with propensity score 

weights (Appendix A, Model 1). We also see that having a certificate/technical degree and 

having a graduate school degree were both associated with increased odds of working in the gig 

economy. It is possible that students with high school degrees (or less) may not have the start-up 

resources (e.g., having a vehicle to work for a ride-share company) to engage in gig employment. 

Having high levels of unsecured debt were also associated with increased odds of working in the 

gig economy. Here, individuals may engage in gig work as a means to generate supplemental 

income in order to pay down debts.  

Conversely, age, full-time student status, liquid assets, and adjusted gross income were 

associated with decreased odds of gig employment. As gig employment is mediated through 

technology, it is unsurprising that older individuals are less likely to work in the gig economy. 

As for students, we can assume that college students might be investing in their human capital in 

other ways. Here, it is important to note that even though our sample is LMI, students might 

come from higher income backgrounds and thus not need supplemental income. Finally, the 

relationships among liquid assets and income may suggest that gig employment may represent a 

consumption smoothing mechanism for individual and families with lower earnings and levels of 

wealth.  

When not accounting for selection into online learning with propensity score weights, 

there were a few notable differences in the other model covariates (Appendix A, Model 2). First, 

identifying as Asian was no longer associated with increased odds of gig employment, 



suggesting that part of the influence of identifying as Asian on entrepreneurial aspirations is 

activated by the balancing of selection effects associated with online learning in Model 1. Here, 

it appears that once we balance online learning on observables in the selection model, which 

includes identifying as Asian as a covariate, its influence on entrepreneurial aspirations 

increases. 

When not accounting for selection into online learning, working part-time and having 

student debt was now associated with increased odds of gig employment, suggesting that 

selection into online learning may be driving part of the influence of working part-time and 

having student debt in Model 2. Considering Model 1, part of the influence of working part-time 

and having student debt on gig employment may be mediated by the balancing of selection 

effects associated with online learning. Here it is also important to note that in addition being a 

full-time student, being a part-time student was now associated with decreased odds of gig 

employment, suggesting that these influences on gig employment may also be partly driven by 

driven by selection into online learning.  

More subtle changes occurred across student status, education level, unsecured debt 

levels and liquid assets quartiles. For example, while having a certificate/technical degree 

(relative to having a high school diploma) was no longer associated with gig employment, all 

other education levels were now associated with increased odds of gig employment, suggesting 

that part of the influence of higher levels of education may be mediated by the balancing of 

selection effects associated with online learning. All levels of unsecured debt were also 

associated with increased odds of gig employment in Model 2, and while the first quartile of 

liquid assets was no longer associated with gig employment, the second quartile of liquid assets 

was now associated with decreased odds of gig employment. In each case, this suggests that part 



of the influence of unsecured debt and liquid assets on gig employment may be mediated by the 

balancing of selection effects associated with online learning.  

5.4.2 Online Learning and Entrepreneurial Aspirations  

In addition to online learning, identifying as Black, Asian or Other, living in an urban location, 

being married or having a partner, and having a certificate/technical degree were associated with 

increased odds of entrepreneurial aspirations when accounting for selection into online learning 

with propensity score weights (Appendix B, Model 3). These findings may be explained by the 

barriers in formal labor markets for many minority groups, the prevalence of business resources 

in urban areas, the support of spouses and partners, and the aspirations that are often associated 

with higher education levels—each of which can contribute to increased entrepreneurial 

aspirations. Conversely, the number of dependents in a household and being in the highest liquid 

asset quartile were associated with decreased odds of entrepreneurial aspirations. Here, 

individuals with greater familial responsibilities may not be able to take on the risk associated 

with starting a new business or non-profit, while individuals with higher liquid assets may not 

have the need or desire to take on additional risks. Finally, having worse perceptions of health 

were associated with a decrease in entrepreneurial aspirations, which may indicate a greater need 

or desire for stability among individuals with poor health.  

When not accounting for selection into online learning with propensity score weights, 

there were a few notable differences in the other model covariates (Appendix B, Model 4). Being 

Asian, living in an urban location, being married or having a partner, and number of dependents 

was no longer associated with increased odds of entrepreneurial aspirations in Model 4, 

suggesting that part of their influence on entrepreneurial aspirations is activated by the balancing 

of selection effects associated with online learning in Model 3. Here, it appears that once we 



balance online learning on observables in the selection model, which either include or are 

strongly related to these covariates, their influence on entrepreneurial aspirations increases. 

Additionally, being male and having student debt were associated with increased odds of 

entrepreneurial aspirations in the unweighted model, while being a full-time student and having 

health insurance were associated with decreased odds of entrepreneurial aspirations. This 

suggests that part of their influence occurs through the balancing of selection effects associated 

with online learning. Finally, more subtle changes occurred across student status and liquid 

assets quartiles. For example, all education levels were associated with increased odds of 

entrepreneurial aspirations, while liquid assets quartile three and four were associated with 

decreased odds of entrepreneurial aspirations, suggesting that part of their influence on 

entrepreneurial aspirations may be mediated by the balancing of selection effects associated with 

online learning.  

5.4.3 Gig Employment and Entrepreneurial Aspirations  

In addition to gig employment, identifying as Black or Other and having a certificate or technical 

degree were also associated with increased odds of entrepreneurial aspirations when accounting 

for selection into gig employment with propensity score weights (Appendix C, Model 5). At the 

same time, higher liquid asset quartiles and having worse perceptions of health were associated 

with a decrease in entrepreneurial aspirations  

 When not accounting for selection into online learning with propensity score weights, 

there were a few notable differences in the other model covariates (Appendix C, Model 6). For 

example, being male and having student debt were now associated with an increase in the odds 

of entrepreneurial aspirations, while having health insurance was now associated with a decrease 



in entrepreneurial aspirations. Moreover, educational attainment beyond a high school diploma 

was associated with an increase in entrepreneurial aspirations in Model 6.  

5.4.4 Gig Employment, Online Learning, and Entrepreneurial Aspirations  

When not accounting for selection into gig employment with propensity score weights, being a 

full-time student was significantly associated with a decrease in entrepreneurial aspirations in 

Model 8 (Appendix D). All other model covariates in Models 7 and 8 had relationships that were 

similar to their respective models that did not include online learning (Models 5 and 6).   

5.5 Between-State Variation  

There was a significant amount of variation left unexplained at the state level in every propensity 

score-weighted model. This level of between-state variation could due to different regulations 

concerning gig-employment between states, as well as different business-startup environments in 

different states. However, it is also important to note that when propensity score weights were 

not included, there was not a significant amount of variation left unexplained at the state level, 

which suggests that when we account for individual-level characteristics associated with 

selection into online learning and gig employment within states, the differences between states 

increases. In other words, selection into online learning is negatively correlated with differences 

in gig employment between states; the same can be said of selection into gig employment and 

differences in entrepreneurial aspirations between states. One potential explanation is that in 

states with high levels of gig employment, selection into online learning becomes slightly less 

important in predicting gig employment, as there may be greater efforts to increase gig 

employment regardless of individual propensities towards online learning. Here, in states with 

high proportions of individuals working in the gig economy, there may be slightly fewer 



individuals with propensities towards online learning than we would expect, which may bring 

down the average likelihood of individuals working in the gig economy. Thus, these states may 

appear less extreme. As a result, gig employment would appear more similar across states when 

not accounting for selection into online learning, which would explain why the overall amount of 

between-state variation is not significant in models where propensity score weights are not 

included.  

5.6 Robustness Checks  

In order to assess the robustness of our results, we run two separate robustness checks (Table 9). 

First, we limit the sample to all students to see if the influence of online learning is a product of 

technology-mediated human capital development or a product human capital development more 

broadly. We find that that influence of online learning on gig employment and entrepreneurial 

aspirations is highly similar to that of the full sample. This suggests that the influence of online 

learning is not solely a product of human capital investments in education, but rather those 

human capital investments that are mediated by technology. Through technology, these types of 

learning programs often offer additional levels of flexibility and variety at a lower cost than 

traditional college courses and programs. Additionally, digital literacy may be an important 

factor in entrepreneurial aspirations as well. Next, we limit the sample to part-time workers to 

see if the influence of gig employment is a product of technology-induced slack time (and other 

experiences that may prepare individuals for entrepreneurial activities) or a slack time more 

broadly. Again, we find that the influence of gig employment on entrepreneurial aspirations is 

nearly identical to that of the full sample. This suggests that the influence of gig employment is 

not solely a product of having “slack” time, but rather experiences that may prepare them for 

entrepreneurial activities, such as managing their own schedule and income flows. While future 



research is needed to disentangle the key mechanisms of impact on entrepreneurial aspirations 

within online learning and gig employment, we do provide some initial mechanism checks for 

gig employment and entrepreneurial aspirations in the following section.  

5.7 Mechanism Checks  

In order to better understand the mechanism by which gig employment influences 

entrepreneurial aspirations, we run four separate models (Table 10) that contain the perceived 

value of working in the gig economy. In each model we limit the participants to individuals that 

participate in the gig economy. In the first model, we focus on whether individuals working in 

the gig economy value the flexibility that gig work provides them, but it was not significantly 

related to entrepreneurial aspirations. In the second model, we focus on whether individuals 

working in the gig economy value the control that gig work gives them over their schedule, but it 

was also not significantly related to entrepreneurial aspirations. In the third model, we focus on 

whether individuals working in the gig economy value the ability for gig work to fill in income 

gaps, but, likewise, it was not significantly related to entrepreneurial aspirations. In the final 

model, we focus on whether individuals working in the gig economy value the ability for gig 

work to help them gain work experience for future job opportunities, and it was significantly 

related to entrepreneurial aspirations. This suggests that the mechanism by which gig 

employment influences entrepreneurial aspirations is through informal skill development and job 

preparation.  

6 Discussion  

Rapid advances in technology have altered the pathways through which individuals can build 

their human capital. This is true for both formal skill development opportunities such as the 



pursuit of certificates or degrees, as well as for informal skill development opportunities, such as 

the business skills often required to be successful in the gig economy (e.g., schedule 

management, budgeting, branding, marketing, etc.). These technology-mediated pathways will 

likely continue to grow in the future. Between 2011 and 2016, the rate of undergraduate students 

taking any classes online increased from 32% to 43%, and this number may increase further yet 

as a result of the COVID-19 pandemic making online education a necessity rather than one of 

several options (U.S. Department of Education, 2016). Though fewer people overall participate 

in the gig economy than in online education, this type of employment is growing rapidly. By one 

measure, the rate of gig economy participation in a given quarter increased from 0.3% to 1.6% 

between 2013 and 2018, with 4.5% of households earning any gig income at all during the year 

in 2018 (Chase, 2018). 

While these technological advances often promise increased economic mobility, there is 

limited research on the mechanisms by which they may do so. Existing research on the impacts 

of these tools often concerns evaluating their direct effects, such as the efficacy of online 

learning relative to traditional classroom settings (e.g., Means, Toyama, Murphy, Bakia, & 

Jones, 2009; Ngueyen, 2015), or assessing the effect of gig economy access on employment 

dynamics (Burtch et al., 2018) and household well-being indicators (Daniels & Grinstein-Weiss, 

2018). Our work extends this literature by assessing the relationship between these technology-

mediated human capital investments and LMI individuals’ plans to engage in entrepreneurship, 

which is one of the ways in which LMI households may become more economically mobile 

Specifically, we proposed two primary pathways by which these technology-mediated 

human capital investments influence entrepreneurial aspirations: Human capital and skill 

development, and increased slack resources, which we define as the time available to individuals 



as a result of the flexibility and autonomy inherent in online education and gig work. To test the 

relationships between gig employment, online learning, and entrepreneurial aspirations, we first 

employed generalized boosted modeling to estimate and correct for the differential propensity of 

individuals to select into online learning and gig employment, and then used logistic regression 

techniques to generate selected-corrected estimates of these relationships. 

We found that, individually, both online learning and gig employment were significantly 

and substantially related to entrepreneurial aspirations. After accounting for differential selection 

into these technology-mediated human capital investment options, the odds of an individual 

engaged in online learning having entrepreneurial aspirations were more than double those of 

someone not engaged in online learning, and the odds of an individual working in the gig 

economy having entrepreneurial aspirations were more than triple of someone not working in 

this sector. However, when we included both online learning and gig employment in our model, 

only gig employment remained significantly associated with entrepreneurial aspirations, 

potentially indicating that both gig employment and online learning influence entrepreneurial 

aspirations along similar pathways.  

We proposed two distinct mechanisms by which online education and gig employment 

may affect entrepreneurial aspirations: human capital and skill development (Mechanism 1); and 

slack resources (Mechanism 2), defined as increased income, time, or flexibility. While this 

exploratory research is unable to fully disentangle the mechanisms driving the relationships 

between online education, gig employment, and entrepreneurial aspirations, we were able to 

leverage our survey data to investigate the relationship between households’ motivations for gig 

employment and gig aspirations. Three of the motivations we explored in the survey—extra 

income, increased flexibility, and control over schedules—may be seen a desire for different 



types of slack resources, while doing gig work to gain experience for future job opportunities 

may be seen as a desire for human capital and skill development. Of the different motivations we 

assessed, only a desire to gain experience for future job opportunities was significantly 

associated with entrepreneurial aspirations. These results are reinforced by a robustness analysis 

in which we restrict our sample to part-time workers—who likely have more free time than full-

time workers. In that analysis, we found very similar results to those in the full sample, 

indicating that slack time alone may not be driving entrepreneurial aspirations. These results may 

indicate that, as far as gig employment is concerned, the development of skills and human capital 

may be the stronger pathway toward developing entrepreneurial skills and aspirations. As far as 

online learning is concerned, while we cannot test specific mechanisms within it, we do know 

from a similar robustness analysis—in which we limit the sample to students—that technology 

plays an important role in its relationship with entrepreneurship.  

We should also note several other limitations in this study. First, we examine 

entrepreneurial intentions rather than actual entrepreneurship; due to our cross-sectional survey, 

we cannot directly measure actual rates of business startups following online education 

enrollment or gig employment, which limits our ability to make inferences about future 

entrepreneurial behaviors. Second, as our data come from a cross-sectional survey, we cannot 

make any causal inferences about the relationship between engagement with technology-

meditated human capital investment platforms and entrepreneurial intentions. In particular, we 

cannot assess the degree to which unobserved factors may correlate with both the decision to 

engage in online education or gig employment and with entrepreneurial aspirations, which may 

bias our results. While we do employ propensity score weighting techniques to reduce selection 

bias in our estimates, we cannot fully account for the potential role of any unobserved factors. 



Finally, our data our drawn from a survey of LMI tax filers administered after tax filing. While 

the novelty of the measures we use in our analysis justifies the use of this sample, our results 

should not be interpreted as generalizable to the full U.S. population. 

Despite these limitations, this research highlights a relatively unexamined pathway 

between these technology-mediated human capital investments and economic mobility. While 

gig employment is often seen as a way to earn income for people who want or need scheduling 

flexibility and online education is seen as a cheaper and more accessible way to build human 

capital and increase future earnings, we observe that they also correspond with a desire to engage 

in entrepreneurship. Thus, these households may see these avenues as a starting point for 

building a business and meeting their economic needs outside of traditional wage-labor 

arrangements. Further, we observe that there appears to be something unique to the technological 

aspect of these arrangements; gig workers have higher rates of entrepreneurial aspirations than 

non-gig workers, and online students have higher rates of entrepreneurial aspirations than 

traditional students. This may present an opportunity for schools offering online courses to build 

an entrepreneurial focus into their curriculum or their career services supports. Similarly, gig 

platforms may be able to help workers by providing explicit skill development or mentorship 

opportunities around entrepreneurship. 

Future research in this area should further examine the degrees to which technology-

mediated human capital investment platforms may attract, encourage, and support aspiring 

entrepreneurs. For example, the construction of longitudinal datasets that allow for the 

measurement of the relationships between enrolling in online education or engaging in gig work 

and subsequent rates of business ownership would allow for the examination of participation in 



these platforms and actual entrepreneurship, as opposed to the entrepreneurial intentions 

measured in this paper. 
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Table 1. Sample Characteristics (N = 8,528) 

VARIABLES MEAN SD MIN MAX 

Entrepreneurial Aspirations 0.06  0.00 1.00 

Gig Employment 0.06  0.00 1.00 

Online Learning 0.09  0.00 1.00 

Male 0.48  0.00 1.00 

Race/Ethnicity      

     White 0.73  0.00 1.00 

     Black 0.06  0.00 1.00 

     Asian 0.05  0.00 1.00 

     Hispanic 0.10  0.00 1.00 

     Other 0.06  0.00 1.00 

Urban Location 0.86  0.00 1.00 

Age 33.18 14.31 18.00 75.00 

Has Dependents 0.17  0.00 1.00 

Number of Dependents 0.29 0.70 0.00 3.00 

Is Married/Has Partner 0.26  0.00 1.00 

Filing Status     

     Married Filing Jointly 0.10  0.00 1.00 

     Other Filing Status 0.11  0.00 1.00 

     Single Filing Status 0.80  0.00 1.00 

Student Status      

     Not a Student 0.67  0.00 1.00 

     Part-Time Student 0.06  0.00 1.00 

     Full-Time Student 0.26  0.00 1.00 

Education Level      

     High School (or less) 0.16  0.00 1.00 

     Certificate/Technical Degree 0.04  0.00 1.00 

     Some College 0.30  0.00 1.00 

     Associate's Degree 0.09  0.00 1.00 

     Bachelor's Degree 0.25  0.00 1.00 

     Some Graduate School 0.06  0.00 1.00 

     Graduate School Degree 0.09  0.00 1.00 

Employment Status      

     Not Currently Working 0.21  0.00 1.00 

     Working Part-Time 0.34  0.00 1.00 

     Working Full-Time 0.45  0.00 1.00 

Owns Home 0.20  0.00 1.00 

Owns Car 0.67  0.00 1.00 

Has Student Debt 0.47  0.00 1.00 

Unsecured Debt  $3,602 $5,249 $1.00 $25,000 

Liquid Assets $4,679 $10,029 $0.00 $69,500 

Adjusted Gross Income $16,200 $10,510 $0.00 $64,190 

Federal Tax Refund $1,501 $1,852 0.00 $8,937 

Has Health Insurance 0.90  0.00 1.00 

Perceived Health Score 2.72 1.04 1.00 5.00 



Table 2. Propensity Score Estimation Model Variables: Online Learning  

Table 2a: Unweighted Variables (N = 8,528)  

VARIABLES Online Learning means (SD) No Online Learning means (SD) Std. Eff. Size P-value 

Gender: Male  0.447  0.479  -0.064 0.094 

Urban Location  0.877  0.861  0.048 0.189 

Race/Ethnicity        

     White 0.673  0.733  -0.135 0.001 

     Black 0.083  0.053  0.130 0.004 

     Hispanic  0.119  0.099  0.065 0.109 

     Asian  0.044  0.055  -0.05 0.150 

     Other 0.081  0.059  0.092 0.033 

Age       

     Quintile 1 (18-22) 0.419  0.213  0.487 0.000 

     Quintile 2 (23-25) 0.188  0.177  0.028 0.473 

     Quintile 3 (26-31) 0.196  0.210  -0.035 0.355 

     Quintile 4 (32-45) 0.144  0.190  -0.119 0.001 

     Quintile 5 (46-75) 0.053  0.209  -0.393 0.000 

Has Dependents  0.167  0.175  -0.023 0.536 

Filing Status       

     Single 0.811  0.795  0.039 0.295 

     Married Filing Jointly 0.092  0.099  -0.023 0.543 

     Head of Household 0.097  0.106  -0.029 0.429 

Adjusted Gross Income $14,900 ($10,860) $16,320 ($10,470) -0.135 0.001 

Federal Tax Refund $1,666 ($1,972) $1,486 ($1,839) 0.097 0.016 

Note: P-value is based off a t-statistic for continuous variables and a chi-squared statistic for a categorical variable. 

 

 

 

 

 

  



Table 2. Propensity Score Estimation Model Variables: Online Learning  

Table 2b: Weighted Variables (N = 8,528)  

VARIABLES Online Learning means (SD) No Online Learning means (SD) Std. Eff. Size P-value 

Gender: Male  0.458  0.477  -0.038 0.443 

Urban Location  0.847  0.862  -0.044 0.477 

Race/Ethnicity        

     White 0.716  0.729  -0.029 0.545 

     Black 0.057  0.055  0.011 0.775 

     Hispanic  0.109  0.100  0.029 0.560 

     Asian  0.060  0.055  0.023 0.700 

     Other 0.057  0.061  -0.014 0.691 

Age       

     Quintile 1 (18-22) 0.255  0.230  0.061 0.133 

     Quintile 2 (23-25) 0.193  0.178  0.040 0.378 

     Quintile 3 (26-31) 0.222  0.209  0.032 0.509 

     Quintile 4 (32-45) 0.169  0.187  -0.046 0.334 

     Quintile 5 (46-75) 0.161  0.197  -0.091 0.197 

Has Dependents  0.164  0.175  -0.030 0.538 

Filing Status       

     Single 0.796  0.796  -0.001 0.984 

     Married Filing Jointly 0.109  0.098  0.040 0.525 

     Head of Household 0.095  0.106  -0.037 0.431 

Adjusted Gross Income $15,570 ($9,956) $16,190 ($10,490) -0.059 0.186 

Federal Tax Refund $1,499 ($1,888) $1,499 ($1,851) 0.00 0.999 

Note: P-value is based off a t-statistic for continuous variables and a chi-squared statistic for a categorical variable. 

 

  



Table 3. Propensity Score Estimation Model Variables: Gig Employment  

Table 3a: Unweighted Variables (N = 8,528) 

VARIABLES Gig Employment means (SD) No Gig Employment means (SD) Std. Eff. Size P-value 

Gender: Male  0.452  0.477  -0.051 0.278 

Urban Location  0.895  0.860  0.101 0.017 

Race/Ethnicity        

     White 0.672  0.731  -0.133 0.007 

     Black 0.090  0.053  0.161 0.006 

     Hispanic  0.120  0.100  0.067 0.187 

     Asian  0.053  0.055  -0.009 0.849 

     Other 0.065  0.061  0.017 0.721 

Age       

     Quintile 1 (18-22) 0.202  0.233  -0.074 0.099 

     Quintile 2 (23-25) 0.246  0.174  0.187 0.000 

     Quintile 3 (26-31) 0.265  0.206  0.146 0.004 

     Quintile 4 (32-45) 0.179  0.187  -0.020 0.660 

     Quintile 5 (46-75) 0.109  0.201  -0.231 0.000 

Has Dependents  0.168  0.175  -0.019 0.690 

Filing Status       

     Single 0.809  0.796  0.033 0.476 

     Married Filing Jointly 0.105  0.098  0.025 0.613 

     Head of Household 0.086  0.107  -0.067 0.123 

Adjusted Gross Income $14,790 ($9,878) $16,280 ($10,540) -0.142 0.001 

Federal Tax Refund $1,457 ($1,781) $1,505 ($1,856) -0.026 0.573 

Note: P-value is based off a t-statistic for continuous variables and a chi-squared statistic for a categorical variable. 

 

 

  



Table 3. Propensity Score Estimation Model Variables: Gig Employment  

Table 3b: Weighted Variables (N = 8,528)   

VARIABLES Gig Employment means (SD) No Gig Employment means (SD) Std. Eff. Size P-value 

Gender: Male  0.454  0.477  -0.047 0.347 

Urban Location  0.884  0.861  0.068 0.159 

Race/Ethnicity        

     White 0.715  0.730  -0.032 0.515 

     Black 0.059  0.055  0.017 0.691 

     Hispanic  0.117  0.100  0.056 0.278 

     Asian  0.054  0.055  -0.003 0.944 

     Other 0.055  0.061  -0.025 0.576 

Age       

     Quintile 1 (18-22) 0.214  0.233  -0.045 0.351 

     Quintile 2 (23-25) 0.204  0.177  0.070 0.144 

     Quintile 3 (26-31) 0.231  0.208  0.058 0.241 

     Quintile 4 (32-45) 0.185  0.186  -0.003 0.951 

     Quintile 5 (46-75) 0.167  0.197  -0.076 0.164 

Has Dependents  0.170  0.175  -0.011 0.833 

Filing Status       

     Single 0.806  0.796  0.023 0.644 

     Married Filing Jointly 0.107  0.097  0.034 0.534 

     Head of Household 0.087  0.106  -0.063 0.181 

Adjusted Gross Income $16,050 ($10,090) $16,220 (10,520) -0.016 0.744 

Federal Tax Refund $1,488 ($1,799) $1,502 ($1,854) -0.008 0.872 

Note: P-value is based off a t-statistic for continuous variables and a chi-squared statistic for a categorical variable. 

 

 

  



Table 4. Gig Employment, Online Learning, and their Relationships with Entrepreneurial Aspirations 

 GIG EMPLOYMENT ENTREPRENEURIAL ASPIRATIONS 

  Online Learning Only Gig Employment Only Online + Gig 

Series 1: Non PS-Weighted (No Controls)    

     Gig Employment   3.126***(0.414) 3.035***(0.404) 

     Online Learning  1.767***(0.243) 1.755***(0.227)  1.665***(0.217) 

     State Rand. Int. Variance 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 

     Pseudo R-Squared 0.01 0.01 0.02 0.03 

     Observations  8,528 8,528 8,528 8,528 

     

Series 2: Non PS-Weighted (Full Controls)    

     Gig Employment   2.800***(0.388) 2.707***(0.377) 

     Online Learning  2.321***(0.418) 1.998***(0.338)  1.872***(0.320) 

     State Rand. Int. Variance 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 

     Pseudo R-Squared 0.15 0.11 0.11 0.12 

     Observations  8,528 8,528 8,528 8,528 

     

Series 3: PS-Weighted (No Controls)    

     Gig Employment   3.048***(0.464) 3.036***(0.463) 

     Online Learning  1.669***(0.230) 1.669***(0.243)  1.107(0.310) 

     State Rand. Int. Variance 1.447**(0.190) 1.496**(0.204) 2.043***(0.350) 2.049***(0.354) 

     Pseudo R-Squared 0.05 0.06 0.13 0.13 

     Observations  8,528 8,528 8,528 8,528 

     

Series 4: PS-Weighted (Full Controls)    

     Gig Employment   3.343***(0.602) 3.321***(0.594) 

     Online Learning  2.334***(0.513) 2.144***(0.319)  1.141(0.445) 

     State Rand. Int. Variance 1.481***(0.153) 1.466**(0.172) 2.053***(0.399) 2.062***(0.405) 

     Pseudo R-Squared 0.22 0.18 0.24 0.24 

     Observations  8,528 8,528 8,528 8,528 

Notes: Results presented as odds ratios, with robust standard errors in parentheses.  

Pseudo R-Squared estimates are based on McKelvey and Zaviona’s (1975) formulations.  

*** p<0.001, ** p<0.01, * p<0.05



Table 5. Robustness Checks  

 GIG EMPLOYMENT 

ENTREPRENEURIAL 

ASPIRATIONS 

ENTREPRENEURIAL 

ASPIRATIONS 

 Full Sample  Students  Full Sample  Students  Full Sample  

Part-Time 

Workers 

Online Learning Only       

     Odds Ratio  2.334*** 2.639*** 2.144*** 2.106***   

     Standard Error (0.513) (0.734) (0.319) (0.359)   

Controls Included Yes Yes Yes Yes   

State REs Included Yes Yes Yes Yes   

PS Weights Included Yes Yes Yes Yes   

     Pseudo R-Squared 0.22 0.35 0.18 0.32   

     Observations  8,528 2,807 8,528 2,807   

       

Gig Employment Only       

     Odds Ratio     3.343*** 3.307*** 

     Standard Error     (0.602) (1.072) 

Controls Included     Yes Yes 

State REs Included     Yes Yes 

PS Weights Included     Yes Yes 

     Pseudo R-Squared     0.24 0.40 

     Observations      8,528 2,912 

Note: Pseudo R-Squared estimates are based on McKelvey and Zaviona’s (1975) formulations.  

*** p<0.001, ** p<0.01, * p<0.05 

 



Table 6. Mechanism Checks: Views on the Value of GIG Work   

 ENTREPRENEURIAL ASPIRATIONS 

 Value of GIG: To Have Flexibility Value of GIG: To Have Control Over Schedule 

Odds Ratio  0.479 1.057 

Standard Error (0.238) (0.457) 

Controls Included Yes Yes 

State REs Included No No 

PS Weights Included No No 

     Pseudo R-Squared 0.11 0.10 

     Observations  474 472 

   

 Value of GIG: To Fill In Income Gaps Value of GIG: To Gain Experience for Future Jobs 

Odds Ratio  1.090 2.033* 

Standard Error (0.354) (0.572) 

Controls Included Yes Yes 

State REs Included No No 

PS Weights Included No No 

     Pseudo R-Squared 0.10 0.12 

     Observations  473 473 

*** p<0.001, ** p<0.01, * p<0.05 

 

 



 

Figure 3. Boxplot of Propensity Scores: Online Learning 

 

  

 

 

 

 

 

 

 



Figure 4. Boxplot of Propensity Scores: Gig Employment 

 

 

 

 

 

 

  



Appendix A 

 
The Relationship among Online Learning and Gig Employment  

 MODEL 1: PS-Weighted MODEL 2: Non PS-Weighted 

VARIABLES OR SE OR SE 

Online Learning 2.334*** (0.513) 2.321*** (0.418) 

Male  0.959 (0.160) 1.066 (0.105) 

Race/Ethnicity (White)     

     Race/Ethnicity: Black 2.376* (0.950) 1.887*** (0.341) 

     Race/Ethnicity: Asian 2.172* (0.829) 0.954 (0.210) 

     Race/Ethnicity: Other 0.871 (0.243) 1.157 (0.228) 

     Race/Ethnicity: Hispanic 1.150 (0.301) 1.168 (0.179) 

Urban Location  0.795 (0.218) 1.183 (0.188) 

Age 0.971** (0.010) 0.971*** (0.005) 

Is Married/Has Partner  1.293 (0.331) 1.248* (0.139) 

Number of Dependents 0.953 (0.185) 1.050 (0.126) 

Student Status (Not a Student)     

     Part-Time Student 0.614 (0.188) 0.527** (0.119) 

     Full-Time Student 0.408*** (0.066) 0.463*** (0.071) 

Education Level (High School)     

     Certificate/Technical Degree 3.931* (2.137) 1.403 (0.504) 

     Some College 1.577 (0.576) 1.744** (0.351) 

     Associate's Degree 1.067 (0.411) 2.208*** (0.530) 

     Bachelor's Degree 1.904 (0.772) 2.694*** (0.562) 

     Some Graduate School 2.546 (1.299) 2.774*** (0.739) 

     Graduate School Degree 4.483*** (1.850) 3.876*** (0.923) 

Employment Status (Not Working)     

     Working Part-Time 1.448 (0.428) 1.379* (0.193) 

     Working Full-Time 0.832 (0.239) 0.846 (0.131) 

Owns Home 0.976 (0.295) 0.833 (0.123) 

Owns Car 0.931 (0.155) 1.128 (0.124) 

Has Student Debt 1.347 (0.300) 1.296* (0.140) 

Unsecured Debt (None)     

     Low ($1-$600) 1.441 (0.304) 1.537** (0.208) 

     Moderate ($601-$3,000) 1.656 (0.475) 1.621*** (0.220) 

     High ($3,001-$25,000) 2.299** (0.620) 2.040*** (0.296) 

Liquid Assets Quartile (1)     

     Quartile 2 ($221-$1,150) 0.560** (0.125) 0.911 (0.122) 

     Quartile 3 ($1,151-$4,300) 0.630 (0.178) 0.686* (0.102) 

     Quartile 4 ($4,301-$69,500) 0.779 (0.232) 0.882 (0.137) 

Adjusted Gross Income/$1k 0.972* (0.011) 0.979*** (0.006) 

Federal Tax Refund 1.000 (0.000) 1.000 (0.000) 

Has Health Insurance  0.997 (0.271) 1.147 (0.185) 

Perceived Health Score 1.105 (0.084) 1.052 (0.050) 

     State Random Intercept Variance 1.481*** (0.153) 1.000 (0.000) 

     Constant 0.084*** (0.054) 0.042*** (0.016) 

     Observations/Groups 8,528/52  8,528/52  

 



Appendix B   

 
The Relationship among Online Learning and Entrepreneurial Aspirations  

 MODEL 3: PS-Weighted MODEL 4: Non PS-Weighted 

VARIABLES OR SE OR SE 

Online Learning 2.144*** (0.319) 1.998*** (0.338) 

Male  1.212 (0.189) 1.310** (0.121) 

Race/Ethnicity (White)     

     Race/Ethnicity: Black 2.990*** (0.639) 2.584*** (0.387) 

     Race/Ethnicity: Asian 2.197* (0.834) 0.986 (0.219) 

     Race/Ethnicity: Other 2.304** (0.590) 2.181*** (0.330) 

     Race/Ethnicity: Hispanic 1.655 (0.597) 1.123 (0.168) 

Urban Location  1.743* (0.395) 1.191 (0.170) 

Age 0.999 (0.014) 0.992 (0.004) 

Is Married/Has Partner  1.517* (0.266) 1.194 (0.127) 

Number of Dependents 0.667* (0.128) 1.027 (0.107) 

Student Status (Not a Student)     

     Part-Time Student 0.669 (0.161) 0.827 (0.164) 

     Full-Time Student 0.605 (0.170) 0.592*** (0.086) 

Education Level (High School)     

     Certificate/Technical Degree 2.803* (1.327) 2.747*** (0.679) 

     Some College 1.359 (0.283) 1.788*** (0.301) 

     Associate's Degree 1.112 (0.428) 1.973** (0.410) 

     Bachelor's Degree 0.936 (0.236) 1.924*** (0.349) 

     Some Graduate School 1.513 (0.616) 2.450*** (0.583) 

     Graduate School Degree 0.881 (0.384) 1.851** (0.414) 

Employment Status (Not Working)     

     Working Part-Time 0.748 (0.193) 1.013 (0.134) 

     Working Full-Time 0.688 (0.136) 1.053 (0.146) 

Owns Home 0.938 (0.268) 0.916 (0.123) 

Owns Car 0.894 (0.148) 0.869 (0.088) 

Has Student Debt 1.272 (0.233) 1.297** (0.130) 

Unsecured Debt (None)     

     Low ($1-$600) 0.988 (0.193) 0.976 (0.126) 

     Moderate ($601-$3,000) 1.149 (0.263) 1.121 (0.138) 

     High ($3,001-$25,000) 0.806 (0.219) 1.107 (0.151) 

Liquid Assets Quartile (1)     

     Quartile 2 ($221-$1,150) 0.983 (0.190) 0.919 (0.111) 

     Quartile 3 ($1,151-$4,300) 0.763 (0.154) 0.730* (0.097) 

     Quartile 4 ($4,301-$69,500) 0.528* (0.159) 0.656** (0.098) 

Adjusted Gross Income/$1k 1.009 (0.010) 0.990 (0.006) 

Federal Tax Refund 1.000 (0.000) 1.000 (0.000) 

Has Health Insurance  0.611 (0.171) 0.593*** (0.073) 

Perceived Health Score 0.818** (0.061) 0.798*** (0.035) 

     State Random Intercept Variance 1.466** (0.172) 1.000 (0.000) 

     Constant 0.072*** (0.050) 0.120*** (0.038) 

     Observations/Groups 8,528/52  8,528/52  
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The Relationship among Gig Employment and Entrepreneurial Aspirations 

 MODEL 5: PS-Weighted MODEL 6: Non PS-Weighted 

VARIABLES OR SE OR SE 

Gig Employment 3.343*** (0.602) 2.800*** (0.388) 

Male  1.187 (0.224) 1.293** (0.120) 

Race/Ethnicity (White)     

     Race/Ethnicity: Black 2.693* (1.043) 2.534*** (0.382) 

     Race/Ethnicity: Asian 0.829 (0.335) 0.970 (0.216) 

     Race/Ethnicity: Other 2.217* (0.821) 2.184*** (0.331) 

     Race/Ethnicity: Hispanic 0.900 (0.272) 1.106 (0.166) 

Urban Location  1.002 (0.348) 1.194 (0.171) 

Age 0.991 (0.012) 0.994 (0.004) 

Is Married/Has Partner  0.950 (0.241) 1.194 (0.127) 

Number of Dependents 1.221 (0.244) 1.012 (0.106) 

Student Status (Not a Student)     

     Part-Time Student 0.878 (0.233) 1.240 (0.208) 

     Full-Time Student 1.048 (0.155) 0.777 (0.102) 

Education Level (High School)     

     Certificate/Technical Degree 4.127** (1.900) 2.774*** (0.687) 

     Some College 1.855 (0.700) 1.755*** (0.295) 

     Associate's Degree 1.387 (0.439) 1.935** (0.403) 

     Bachelor's Degree 1.711 (0.695) 1.829*** (0.332) 

     Some Graduate School 1.268 (0.580) 2.151** (0.512) 

     Graduate School Degree 1.766 (0.883) 1.678* (0.376) 

Employment Status (Not Working)     

     Working Part-Time 0.713 (0.228) 0.969 (0.129) 

     Working Full-Time 0.657 (0.210) 1.078 (0.150) 

Owns Home 0.992 (0.279) 0.944 (0.127) 

Owns Car 0.910 (0.154) 0.863 (0.088) 

Has Student Debt 1.060 (0.251) 1.276* (0.128) 

Unsecured Debt (None)     

     Low ($1-$600) 0.614 (0.205) 0.952 (0.123) 

     Moderate ($601-$3,000) 0.941 (0.253) 1.094 (0.135) 

     High ($3,001-$25,000) 0.802 (0.271) 1.051 (0.144) 

Liquid Assets Quartile (1)     

     Quartile 2 ($221-$1,150) 0.647 (0.187) 0.916 (0.111) 

     Quartile 3 ($1,151-$4,300) 0.571* (0.156) 0.741* (0.099) 

     Quartile 4 ($4,301-$69,500) 0.409*** (0.104) 0.648** (0.097) 

Adjusted Gross Income/$1k 1.020 (0.012) 0.992 (0.006) 

Federal Tax Refund 1.000 (0.000) 1.000 (0.000) 

Has Health Insurance  0.631 (0.184) 0.576*** (0.072) 

Perceived Health Score 0.690*** (0.069) 0.795*** (0.036) 

     State Random Intercept Variance 2.053*** (0.399) 1.000 (0.000) 

     Constant 0.222* (0.132) 0.107*** (0.034) 

     Observations/Groups 8,528/52  8,528/52  

 



Appendix D 

 
 Gig Employment, Online Learning, and their Relationships with Entrepreneurial Asp. 

 MODEL 7: PS-Weighted MODEL 8: Non PS-Weighted 

VARIABLES OR SE OR SE 

Gig Employment 3.321*** (0.594) 2.707*** (0.377) 

Online Learning  1.141 (0.445) 1.872*** (0.320) 

Male  1.191 (0.227) 1.313** (0.122) 

Race/Ethnicity (White)     

     Race/Ethnicity: Black 2.685* (1.050) 2.473*** (0.374) 

     Race/Ethnicity: Asian 0.841 (0.334) 0.999 (0.223) 

     Race/Ethnicity: Other 2.227* (0.827) 2.184*** (0.332) 

     Race/Ethnicity: Hispanic 0.900 (0.273) 1.107 (0.166) 

Urban Location  1.001 (0.347) 1.197 (0.172) 

Age 0.990 (0.012) 0.994 (0.004) 

Is Married/Has Partner  0.948 (0.243) 1.176 (0.125) 

Number of Dependents 1.221 (0.244) 1.021 (0.107) 

Student Status (Not a Student)     

     Part-Time Student 0.801 (0.307) 0.869 (0.173) 

     Full-Time Student 0.996 (0.146) 0.628** (0.092) 

Education Level (High School)     

     Certificate/Technical Degree 4.094** (1.917) 2.707*** (0.671) 

     Some College 1.851 (0.702) 1.733** (0.292) 

     Associate's Degree 1.389 (0.440) 1.888** (0.394) 

     Bachelor's Degree 1.713 (0.695) 1.816** (0.330) 

     Some Graduate School 1.289 (0.578) 2.303*** (0.550) 

     Graduate School Degree 1.774 (0.879) 1.683* (0.378) 

Employment Status (Not Working)     

     Working Part-Time 0.715 (0.229) 0.980 (0.131) 

     Working Full-Time 0.652 (0.208) 1.062 (0.148) 

Owns Home 0.992 (0.278) 0.940 (0.126) 

Owns Car 0.913 (0.156) 0.856 (0.087) 

Has Student Debt 1.056 (0.248) 1.275* (0.129) 

Unsecured Debt (None)     

     Low ($1-$600) 0.613 (0.205) 0.947 (0.123) 

     Moderate ($601-$3,000) 0.940 (0.252) 1.081 (0.134) 

     High ($3,001-$25,000) 0.799 (0.270) 1.037 (0.142) 

Liquid Assets Quartile (1)     

     Quartile 2 ($221-$1,150) 0.652 (0.186) 0.925 (0.112) 

     Quartile 3 ($1,151-$4,300) 0.572* (0.156) 0.746* (0.100) 

     Quartile 4 ($4,301-$69,500) 0.412*** (0.105) 0.655** (0.098) 

Adjusted Gross Income/$1k 1.020 (0.012) 0.991 (0.006) 

Federal Tax Refund 1.000 (0.000) 1.000 (0.000) 

Has Health Insurance  0.634 (0.180) 0.582*** (0.072) 

Perceived Health Score 0.687*** (0.066) 0.791*** (0.035) 

     State Random Intercept Variance 2.062*** (0.405) 1.000 (0.000) 

     Constant 0.226* (0.133) 0.112*** (0.036) 

     Observations/Groups 8,528/52  8,528/52  

 


