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Conformational Basis and Small Molecule Antagonists of E. coli Adhesion to the Urinary Tract  

by 

Vasilios Kalas 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational and Molecular Biophysics 

Washington University in St. Louis, 2020 

Professor Scott J. Hultgren, Chair 

Urinary tract infections (UTIs) are one of the most prevalent infections, afflicting 15 

million women per year in the United States with annual healthcare costs exceeding $2-3 billion. 

Uropathogenic Escherichia coli (UPEC) are the main etiological agent of UTIs and employ 

numerous virulence factors for host colonization. The most common adhesive mechanism by 

which UPEC mediate host-pathogen interactions is the chaperone-usher pathway (CUP), which 

is responsible for the assembly of proteinaceous surface appendages termed pili. Generally, CUP 

pili function in adherence or invasion of host tissues and in biofilm formation on medical devices 

and body habitats. CUP pili are highly abundant and diverse among a wide variety of Gram-

negative pathogens, with 38 distinct pilus types in Escherichia species alone, mediating a 

considerable range of biological tropisms through adhesins at the distal pilus tip. Typically, these 

adhesins have a lectin domain, which recognizes a specific carbohydrate receptor, and a pilin 

domain to anchor the adhesin to the pilus. This thesis specifically examines the structural, 

dynamic, and allosteric properties of distinct E. coli CUP pilus adhesins that govern interactions 

critical for pilus function at the host-pathogen interface during UTI. 



 xii 

The type 1 pilus adhesin FimH is a critical virulence factor necessary for bacterial 

attachment to mannosylated receptors on the bladder epithelium during UTI. I determined 

through molecular and computational biophysics that FimH natively exists in a two-state 

conformational equilibrium in solution, composed of one low-affinity tense (T) and multiple 

high-affinity relaxed (R) conformations. I demonstrated that positively selected residues in FimH 

and ligand binding allosterically modulate this conformational equilibrium and that each of these 

conformational states engage mannose receptors through distinct binding modes. Mouse models 

of UTI indicate that FimH has evolved a “moderate” mannose binding affinity through a 

balanced conformational equilibrium to optimize persistence in the bladder during UTI. 

Furthermore, I discovered novel small-molecule galactoside antagonists that inhibit the FimH-

like adhesin FmlH from binding galactose-containing bladder and kidney epithelial receptors 

present during chronic UTI. Taken together, this thesis defines the biophysical basis of host 

receptor recognition and bacterial pathogenesis mediated by FimH and defines the atomic bases 

of distinct bacterial host tropisms mediated by FimH homologs, which were leveraged to spur 

the development of antibiotic-sparing, small-molecule glycomimetic antagonists as therapeutics 

for UTI and other infectious diseases. 
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Abstract 

 Adhesive pilus fibers mediate the interaction between pathogens and specific host cell-

surface ligands that allow a pathogen to establish a foothold in a particular host tissue. The 

chaperone-usher pathway (CUP) constitutes one of the most prevalent mechanisms among Gram-

negative bacteria for the assembly of adhesive pili. Studies at the interface of genetics, 

biochemistry, and structural biology have detailed the functions of the chaperone and the usher, 

providing a step-by-step understanding of pilus biogenesis by this sophisticated molecular 

machine. Furthermore, studies have elucidated the molecular basis of host receptor recognition 

mediated by adhesins localized at the tips of CUP pili. Together, snapshots in CUP pilus assembly 

and CUP pilus-mediated host-pathogen interactions have unveiled necessary molecular details for 

the design and application of novel anti-virulence compounds that promise to prevent and treat 

acute, chronic, and recurrent bacterial infections in humans. 
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Introduction 

One of the major pathways involved in assembly of adhesive pili in Gram-negative bacteria 

is the chaperone-usher pathway (CUP). CUP pili are thin, hair-like surface extensions involved in 

adherence and biofilm formation. One of the first observations of CUP pilus function was likely 

in 1908 when Guyot reported bacterial-mediated hemagglutination [1]. Since, significant 

improvements and discoveries have been made in the field of CUP pili revealing unique structural, 

biophysical, and biochemical phenomena of protein folding and assembly. Studies of CUP pili 

have exposed their crucial functions and essentiality in bacterial pathogenesis. CUP pili play 

critical roles in numerous infectious diseases, including type 1 pili in cystitis [2-6], S pili in 

neonatal meningitis [7, 8], F1 antigen in bubonic plague [9-11], and P pili in pyelonephritis [12-

15]. Piliated bacteria adhere to specific receptors on the host cell surface through CUP pilus tip-

localized adhesins. These adhesins are typically two-domain proteins comprised of a lectin 

domain, which recognizes a specific carbohydrate receptor, and a pilin domain to anchor the 

adhesin to the pilus. As many Gram-negative bacterial adhesins are assembled into polymeric 

surface appendages, CUP pili provide prevailing models for analysis and understanding of the 

assembly and function of a wide range of virulence associated proteins. CUP systems, particularly 

type 1 and P pili from uropathogenic E. coli, have been used as prototypes to elucidate how 

periplasmic protein monomers are assembled into complex structures and arrayed on the 

extracellular surface of Gram-negative bacteria without requiring cellular energy. In this chapter, 

I will focus on the structure, assembly mechanism, and receptor recognition mechanism of P pili 

and type 1 pili in uropathogenic Escherichia coli (UPEC), the most common cause of urinary tract 

infections (UTIs).  
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Pilus types 

CUP pili consist of multiple pilus subunits arranged into long, linear protein polymers. 

CUP pili can adopt one of two distinct pilus structures depending on the length of the G1 β-strand 

of the chaperone. F1-G1 long (FGL) chaperones assemble thin, fibrillary, amorphous structures 

while F1-G1 short (FGS) chaperones assemble thick, helical rods topped by a fibrillar tip [16]. 

CUP pili also vary according to usher relatedness across six major clades – α, β, γ(1-4), κ, π, and 

σ – of the 189-membered CUP pilus superfamily [16]. Paradigms for CUP pilus architecture and 

assembly have been well established with the P pilus and type 1 pilus of UPEC, members of the π 

and γ1 clades, respectively. These two archetypal pili exhibit a bipartite organization, consisting 

of a long, helical rod connected to a thin tip fibrillum. The P pilus subunits PapG, PapF, PapE, 

PapK, PapA, and PapH arrange in order from fibrillar tip to rod base (Figure 1). PapG, the adhesin, 

lies at the distal end of the pilus. The tip adaptor PapF connects PapG to the main tip component 

PapE, which appears in 5-10 copies and has a width of ~ 2 nm. The adaptor PapK anchors PapE 

to the main rod component PapA, which appears in >1000 copies and gives rise to a right-handed, 

helical structure that displays a 6.8 nm width, 2.5 nm pitch, and 3.3 subunits per turn [17-19]. 

Finally, PapH attaches at the base of the rod and terminates pilus biogenesis [20, 21]. Type 1 pili 

adopt a similar, yet condensed architecture [22]. The fibrillum consists of single copies of both the 

adhesin FimH and the tip subunit FimG, while the adaptor FimF links the fibrillum to the major 

rod component FimA, which appears in ~1000 copies (Figure 1). Preliminary studies suggest that 

FimI functions as the terminator subunit in type 1 pili [23, 24].  

 

Chaperone structure and function 

 CUP chaperones (~25-30 kDa) are all highly homologous in sequence and structure [25]. 
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They are composed of two complete Ig-like domains (Figure 2A). Chaperones function to 

transiently bind their cognate pilus subunits, shielding their interactive surfaces to facilitate their 

proper folding and stability in the periplasm [26]. In PapD, the chaperone from the P pilus system, 

a conserved salt bridge stabilizes the two Ig-like domains to adopt an overall boomerang-like 

shape. These domains orient to form a cleft that is directly involved in subunit binding. In the 

absence of subunits, chaperones like PapD and SfaE form dimers and Caf1M forms tetramers as a 

self-capping mechanism to prevent unfavorable interactions and proteolysis [27-29]. 

 Upon translocation of pilus subunits across the SecYEG translocase to the periplasmic 

space, they are taken up by their cognate periplasmic chaperones, which use several interactive 

surfaces to provide stability to the subunits. The active site of the chaperone is comprised of 

residues R8 and K112, a conserved basic patch in the cleft formed between the two domains. 

Mutagenesis of these basic residues abolishes the ability of the chaperone to mediate pilus 

assembly [30, 31]. Crystallography studies carried out on all of the P pili chaperone-subunit 

complexes [21, 32-36] further confirmed these interactions and the extended conformation by 

which the C-termini of subunits are anchored at the invariant R8 and K112 residues of the 

chaperone [31].  

 

Donor strand complementation (DSC) 

The absence of the seventh β-strand in the pilus subunit results in a deep groove on its 

surface that exposes its hydrophobic core. In a process termed donor strand complementation 

(DSC), the G1 strand of the chaperone is donated in trans in a non-canonical, parallel fashion to 

the exposed hydrophobic groove of the subunit to facilitate its proper folding [32, 37, 38] (Figure 

2B). The solvent-exposed set of alternating hydrophobic residues on the chaperone’s G1 strand 
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directly interact with subunit pockets [32]. In the case of PapD, residues L107, I105, and L103 are 

respectively in register with the subunits’ hydrophobic P1-P3 pockets. Mutating residue 105 is 

particularly detrimental to pilus biogenesis [27]. However, mutagenesis of residue L107 does not 

alter pilus assembly, which may be due to the plasticity of the P1 pocket [36]. These residues are 

termed P1-P3 residues based on their corresponding acceptor sites, the subunit P1-P3 pockets 

(Figure 2D). Additionally, N101 forms hydrogen bonds above the shallow P4 subunit pocket. 

Thus, the interactions involved in DSC facilitate subunit folding and prevent subunit aggregation. 

Presence of unfolded subunits in the periplasmic space otherwise induces periplasmic stress 

responses targeting aggregated subunits for degradation by the DegP protease [39, 40]. 

 

Donor strand exchange (DSE) 

            Once the subunit is folded, it remains bound to the chaperone until its incorporation into 

the pilus. The chaperone is exchanged for the N-terminal extension (Nte) of the incoming subunit 

via a “zip-in, zip-out” mechanism termed donor strand exchange (DSE). DSE is initiated by the 

insertion of the Nte P5 residue into the open P5 pocket of the previously assembled subunit (Figure 

2C-E). The chaperone G1 strand does not occupy the P5 pocket of subunits, which remains easily 

accessible in a chaperone-subunit complex to the P5 residue of the subunit Nte. Ultimately, 

insertion of Nte in an antiparallel fashion to the P2-P5 subunit pockets facilitates the removal of 

the chaperone’s parallel-oriented G1 strand. The DSE interaction is more energetically favorable 

than the DSC interaction, which allows DSE and the stable docking of subunits with each other to 

occur [33, 41].  

 

Chaperone-usher interactions 
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PapD-like chaperones have a set of conserved, solvent-exposed, hydrophobic residues 

(termed Set B: L32, Q34, T53, P54, P55, V56, R68, I93) situated at the N-terminal domain (Figure 

2A). X-ray crystallography studies demonstrated that the FimC chaperone of the type 1 pilus 

system interacts with the N-terminal domain of the usher via these Set B residues [42, 43], 

demonstrating that the Set B patch is a surface that interacts with the usher. Accordingly, point 

mutations in these residues negatively impact pilus biogenesis [27]. In addition, small molecules 

called pilicides, designed to block pilus biogenesis [44, 45], were shown to bind Set B residues 

and prevent the targeting of chaperone-subunit complexes to the usher [44]. These results implicate 

PapD’s conserved hydrophobic patch Set B as the usher-targeting site. Other chaperone residues 

that may be involved in interactions with other domains of the usher are subjects of investigation. 

Another set of highly conserved residues (Set C: L78, P79, D81, R82, E83, S84) is located 

at the elbow region of PapD, which is not known to interact with any protein partners. The stability 

of the chaperone depends on the formation of a buried salt bridge composed of D196, E83, and 

R116, which lies at the interdomain region [27]. E83 is part of the aspartate, arginine, glutamate, 

and serine (DRES) motif, which is highly conserved in the chaperone superfamily [25]. Situated 

at the end of the E1-F1 loop, part of the DRES motif packs against the hinge region connecting 

the two domains [25, 46], where the aspartate and arginine side chains from the DRES motif point 

out into solution, seemingly suitable for protein-protein interactions (Figure 2A). It is plausible 

that interactions with other proteins (subunits or usher domains) could cause conformational 

changes that would be transmitted to the interdomain region, possibly disrupting the salt bridge 

and thus facilitating a reorientation of the domains and causing allosteric conformational changes 

in the chaperone that play a role in the assembly of the CUP pilus.  
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Subunit-subunit interactions 

There are several major functional types of pilus subunits that may comprise a CUP pilus, 

including adhesins, adaptors, tip fibrillar subunits, pilus rod subunits, and terminators (Figure 1). 

Pilins, or pilus subunits, share an outstanding degree of sequence and structural homology with 

one another, necessary for preserving common mechanisms of subunit-subunit, chaperone-

subunit, and usher-chaperone-subunit interactions needed for maturation of a functional pilus. As 

described, the incomplete nature of the pilin fold ensures either chaperone binding (by DSC) or 

Nte binding (by DSE) to pilus subunits for their stability, proper folding, and ultimate 

incorporation into the growing pilus. Thus, the Nte, chaperone G1 strand, and the incomplete Ig-

like fold of pilin subunits, particularly the P1-P5 pockets, serve as common recognition motifs for 

the use of pilins as building blocks in the construction of a CUP pilus. However, structural 

distinctions across homologous pilins permit their unique positions and functions along the pilus 

chain. For example, differences in Nte sequence and hydrophobic pocket characteristics dictate 

subunit ordering. DSE reactions performed by incubating all combinations of Nte peptides (based 

on the five Nte-containing Pap subunits) with all chaperone-subunit complexes showed a range of 

reactivities [35, 47]. Reactions that occurred most rapidly were consistently those between cognate 

groove-Nte partners. In addition to chaperone-subunit and subunit-subunit interactions, subunits 

also contain specific surfaces that drive chaperone-subunit-usher interactions. Differences in 

subunit structure and residue side chains dictate selective trafficking to certain periplasmic 

domains of the usher. Thus, adhesin and terminator subunits, which occupy opposite ends of the 

pilus, adopt structures much more varied from their pilin counterparts required for their essential 

functions in host adhesion and pilus assembly termination, respectively.  
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Terminator structure and function 

 Studies in the Pap system suggest that pilus biogenesis ends with the incorporation the 

PapH terminator at the base of the pilus rod. Deletions or mutations of PapH result in the formation 

of long pili that are shed from the extracellular surface [20]. Overexpression of PapH results in 

short pili.  Further, the structure of PapD-PapH indicates that PapH has an occluded P5 pocket, 

which prevents the initiation of DSE with further subunits, thereby terminating pilus biogenesis 

[21]. Analogously, FimI may function as the terminator in type 1 pili [23, 24]. Further studies will 

elucidate whether incorporation of a P5 pocket-lacking pilin is utilized by other CUP pili for 

termination.  

 

Adhesin structure and function 

A mature CUP pilus typically contains an adhesin at its distal end. Adhesins contain two 

distinctive domains: a lectin domain, which functions to bind specific receptors with 

stereochemical specificity and contribute to host and tissue tropisms, and an Ig-like pilin domain, 

which links the receptor-binding lectin domain to the fibrillar tip [32, 48]. FimH and PapG, 

adhesins of the prototypical type 1 and P pilus systems, respectively, mediate host-pathogen 

interactions important in cystitis [5, 49-51] and pyelonephritis [14]. FimH mediates binding to α-

D-mannose-containing receptors whereas PapG binds galabiose, a receptor that is present in the 

globoseries glycolipids found in the kidney. Both lectin domains contain a β-barrel jelly-roll fold 

that is common to CUP adhesin structures, but they contain different receptor binding pockets. 

FimH contains a deep, negatively charged pocket at the tip of the lectin domain [52]. In contrast, 

PapGII (class II of three PapG classes, each of which recognize different globoseries of 

glycolipids) binds galabiose-containing receptors with a shallow binding pocket formed by three 
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beta strands and a loop at the side of the lectin domain [53]. CUP adhesins F17-G of ETEC [54] 

and GafD of UPEC [55] bind N-acetyl-D-glucosamine residues of proteins at a shallow binding 

site on the side of the lectin domain at a location unrelated to the binding pocket of PapG (Figure 

3). With the function of adhesion segregated to a distinct protein domain at the pilus tip, various 

bacterial strains can alter the structure and receptor specificity of the adhesin, thus allowing 

flexibility and selective advantage in establishing tropism.  

Numerous studies suggest that the lectin domain of FimH does not operate independently 

of the pilin domain but instead interacts intimately with it to influence receptor binding. A crystal 

structure of the type 1 pilus tip fibrillum [56] indicates a markedly different conformation in FimH, 

compared to the conformation observed in FimH in the FimC-FimH complex [48] or in the 

mannose-bound FimC-FimH structure [52]. In the tip structure, the pilin domain interacts with a 

compacted lectin domain in a stable, noncovalent manner, loosening the mannose-binding pocket 

at the distal end of the lectin domain and thereby inducing an inactive low-affinity state of the 

adhesin via a “page-turning” allosteric mechanism [56]. In contrast, FimH, when in complex with 

FimC and α-D-mannose, adopts an elongated, high affinity state [52], which was later shown to 

be induced by application of shear force, presumably by destabilization of inter-domain contacts. 

Indeed, cross-linking mutants along with positively selected residues in the pilin domain suggest 

that this conformational equilibrium is important for mannose binding and infectivity in murine 

models of cystitis [56, 57]. Shear force does indeed enhance bacterial adhesion to target cells [58], 

but whether this mechanism of tensile stress-induced binding enhancement applies to other pili 

systems or has a definitive role in pathogenesis remains to be seen.  

 

Usher domain function and selectivity 
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 The CUP usher catalyzes the translocation and assembly of the multi-subunit pilus fiber 

across the outer membrane, while maintaining membrane integrity. The usher is an outer 

membrane protein comprised of five domains: a 24-stranded beta barrel channel, plug, N-terminal 

domain (NTD) and C-terminal domains (CTD1, CTD2) [43, 59, 60]. In the apo state of the FimD 

usher, the plug resides in the lumen of the transmembrane channel, preventing flow of molecules 

across the outer membrane [61, 62]; in the active form, the plug swings away from the channel, 

creating an unobstructed opening through which pilins translocate (Figure 4). This plug switch 

induces a conformational change in the β-barrel domain, shifting the shape of the channel pore 

from ovular (52 Å x 28 Å) to nearly circular (44 Å x 36 Å) [63]. This in turn allows a range of 

subunit diameters (~20-25 Å) to pass through unobstructed. The plug then docks onto the NTD, 

as suggested in the crystal structure of the FimD usher [63] and from work in the Pap system [64]. 

The plug-NTD interaction results in the usher adopting an open state. 

 NTD and CTDs, which reside in the periplasmic space, serve as the workhorses of 

assembly within this molecular machine. Functional studies directly implicate the periplasmic 

domains of the usher in catalysis of pilus formation, as mutations in either NTD or CTD [59, 65] 

and deletions of the plug [62, 66] abrogate assembly. Measured relative affinities for the 

interactions of chaperone-subunit complexes with purified NTD, CTD2, and plug domains from 

the PapC usher suggest that (a) the tight-binding NTD serves as the initial anchoring site for the 

chaperone-adhesin complex, (b) plug or the NTD-plug complex serves as the docking site for all 

other chaperone-subunit complexes, and (c) CTD2 likely dissociates chaperone-subunits from 

NTD and plug, with the exception of the chaperone-terminator complex, which docks on plug or 

the NTD-plug complex and halts further pilus growth. Analogously to PapC NTD, the FimD NTD 

is selective; isothermal titration calorimetry (ITC) experiments show that FimD NTD binds the 
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chaperone when the chaperone is loaded with FimH or FimF but not with FimG or FimA [43]. 

Furthermore, these structures along with supporting NMR data reveal that the intrinsically 

disordered 24-residue N-terminal tail of NTD adopts an ordered conformation upon binding. As 

expected, deletion of the N-terminal tail of NTD completely abolishes pilus assembly in vivo [67]. 

In the ternary complex, the N-terminal tail of NTD contacts the chaperone and the subunit (FimH 

or FimF), constituting 50-60% of the total contact surface area (1260 Å2). While all components 

of these two ternary complexes adopt remarkably similar folds, there are subtle yet significant 

differences in hydrogen bonding at the FimD NTD-subunit interface that likely accounts for 

subunit selectivity. A similar molecular logic likely holds true for the selectivity of the NTD 

domains of other CUP ushers, although more work needs to be done to further bolster this 

argument. While the plug and CTD2 can recognize nearly all chaperone-subunit complexes, the 

mechanism by which this occurs remains undetermined. Similarly, the basis for the terminator’s 

ability to discriminate between plug and CTD2 remains unknown. More work is needed to 

elucidate the molecular basis of selectivity by usher domains for chaperone-subunit complexes to 

better understand the mechanism and subunit ordering of pilus assembly.  

 

Working model of usher-mediated pilus biogenesis 

 The results and associated interpretations presented above suggest the following working 

model of CUP pilus biogenesis (Figure 5): 

(1) The usher adopts a gated conformation in its inactive state, in which its plug domain 

lies in the center of the kidney-shaped β-barrel. NTD and CTD lie disordered in the periplasm, 

moving rapidly and randomly.   
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 (2) Once NTD binds the initiator of pilus assembly, the chaperone-adhesin complex, the 

binding energy induces movement in the NTD linker that thereby transduces conformational 

changes in the β-barrel domain, relaxing its shape from ovular to circular and preventing plug from 

re-entering the channel lumen once it has already entered the periplasm. Concurrently, NTD may 

swing to transfer its bound chaperone-adhesin complex to CTDs. Once NTD has unloaded its 

cargo, it binds the now periplasmic plug domain to form the NTD-plug complex, which can then 

bind and dock other incoming chaperone-subunit complexes.  

 (3) Alternatively or concomitantly, the CTDs may swing over together to the NTD-plug 

complex to catalyze the dissociation of the chaperone-adhesin complex. A minor conformational 

species in the FimD-FimC-FimH complex as measured by electron paramagnetic resonance (EPR) 

[63] suggests the occurrence of an uncharacterized transient binding interaction between CTD2 

and the chaperone-adhesin complex that may mediate this transfer. With the chaperone-adhesin 

complex bound primarily to CTD1, the lectin domain of the adhesin lies in the channel lumen, and 

the NTD-plug complex is available for the incoming chaperone-tip subunit complex.     

 (4) Next, the NTD-plug complex recruits the upcoming chaperone-tip subunit complex, 

while the chaperone-adhesin complex is bound to the CTDs. A unique conformation in the NTD-

plug complex brings the tip subunit into the ideal orientation with respect to the adhesin for DSE, 

allowing for the assembly of the growing pilus fiber. The reaction results in the displacement of 

the chaperone off of the CTD, allowing the newly incorporated chaperone-subunit complex to 

dock on the CTDs. The process repeats for all chaperone-subunit complexes in order of the subunit 

ordering observed in the mature pilus fiber. 

 (5) Ultimately, the chaperone-terminator complex docks on the NTD-plug complex. 

Unable to bind CTD2 and unable to undergo DSE due to its lack of a P5 pocket, the chaperone-
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terminator complex signals the end of pilus growth. The plug may bind the chaperone-terminator 

complex with its βC, βB, βE, and βF side and swing into the β-barrel lumen with that same side 

facing the extracellular space, as seen in the apo state. The mature pilus fiber anchors to the outer 

membrane in this fashion and is ready to perform its adhesive function.  

 Overall, this model provides insight into how the usher assembles the CUP pilus. With 

domain affinities, molecular snapshots of pilus biogenesis steps, and genetic and biochemical 

evidence, we can now understand how the usher efficiently transfers chaperone-subunit complexes 

using its periplasmic domains to perform its catalysis of fiber growth. Further work will be required 

to gain a deeper mechanistic understanding of this molecular machine to provide knowledge of 

targetable protein interfaces and dynamic processes for next generation small-molecule pilicides 

that can inhibit these virulent adhesive pili. 

 

Role of CUP pili in infections 

 UPEC introduced to the urinary tract from the fecal flora is the leading causative agent of 

urinary tract infections (UTIs), responsible for 85% of community-acquired UTIs [68]. Genetic, 

biochemical, and imaging studies accompanied by murine models of UTIs revealed that CUP pili 

are crucial factors for causing this disease. For instance, type 1 pili, encoded by the fim operon, 

are required for bladder infection in a murine model of UTI [2-6] and for biofilm formation in rat 

kidneys [69]. The adhesin of type 1 pili, FimH, mediates binding to the mannosylated receptors 

on the surface of bladder urothelial cells for colonization and invasion of the superficial umbrella 

cells, which line the bladder lumen. Following invasion, UPEC grow inside the cytosol of host 

cells, giving rise to biofilm-like bacterial aggregates of 104-105 bacteria, known as intracellular 

bacterial communities (IBCs) [2, 6, 70]. Type 1 pili are required for the establishment and 
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maintenance of IBCs, allowing proliferation of UPEC, which upon maturation can detach and 

spread to neighboring urothelial cells to continue the infection cascade. As IBCs have also been 

observed in human patients suffering from UTIs [71], it is likely that involvement of type 1 pili 

and IBCs in human UTI is also common. Furthermore, dysbiosis of the gut microbiota after 

streptomycin treatment allows UPEC expressing type 1 pili and F17-like pili to colonize the 

gastrointestinal tract, the source reservoir from which UPEC emerge to infect the urinary tract 

[Spaulding & Hultgren Nature in press].  

 Another well-studied CUP system that is important in urinary tract infections is P pili, 

encoded by the pap operon. P pilus adhesin PapG was shown to be important in pyelonephritis in 

primate models of infection [14]. In rat models of infection, P pili were shown to enhance early 

colonization of the kidney tubular epithelium [69]. Most UPEC strains from human cases of 

pyelonephritis carry PapGII [72, 73], one of three classes of PapG, which binds to Galα1-4Gal 

receptor epitopes in the globoseries of glycolipids found in human renal tissue [53]. 

 In addition to P and type 1 pili’s importance in UTIs, various other CUP pili from different 

species are important in bacterial virulence. For instance, S pili, encoded by the sfa operon, is 

involved in meningitis [74, 75], while class 5 ETEC fimbriae are important for the initiation of 

diarrheal disease [76].  

 Conventionally, carriage of these CUP pili and other putative virulence factors has been 

considered the sole determinant of virulence among pathogens. However, recent comparative 

transcriptomic and phenotypic analyses among human uropathogens indicate that expression of 

CUP pili such as type 1 pili, and not their carriage, predicts colonization and virulence in the mouse 

bladder [77]. Additionally, differences in host susceptibility, inflammatory state, and infection 

history can alter tissue or host habitats to affect recognition by CUP pili, thereby modulating risk 
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of developing infectious disease, as observed in recurrent UTI [78]. Considering the importance 

of CUP pili in infection, understanding how these pili are assembled, the mechanisms by which 

they cause pathogenesis, and their genetic regulation is critical in disease prevention and 

development of novel therapeutics. 

   

CUP pili as anti-virulence targets  

 Antibiotics have led to significant improvements of human health over decades, improving 

quality of life and human longevity. However, antibiotic resistance is escalating [79] and multidrug 

resistant uropathogens are spreading globally [80]. Accompanied by a lack of a significant effort 

to develop novel antibiotics and the outstanding risk that antibiotic usage can negatively impact 

gut microbiota and result in opportunistic infections, the search for anti-virulence therapeutics is 

gaining attention. Due to the important role of CUP pili in bacterial virulence, they have been 

important targets for vaccine development studies as well as anti-virulence therapeutics. FimH was 

shown to be a successful vaccine option in both murine [81] and primate [82] models of infection. 

Keeping in mind the role of FimH in mediating adhesion with mannosylated uroplakin of 

uroepithelial cells, alky and phenyl-α-D-mannopyranosides, or mannosides, have been designed 

to competitively bind with FimH and interfere with adhesion on host cells. These mannosides not 

only block adhesion but also counteract internalization and in vitro/in vivo biofilm formation on 

biotic and abiotic surfaces [83, 84] (Figure 6A-B). Mannosides also potentiate the efficacy of 

existing antibiotics in a murine model of UTI and have great oral bioavailability, increasing hopes 

that they can be used in drug development [84]. Furthermore, mannosides specifically deplete 

UPEC residing in the gastrointestinal tract without affecting the resident microbiota, functioning 

as molecular scalpels that selectively remove virulent E. coli [Spaulding & Hultgren Nature in 
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press]. Similar to FimH, PapG was also a target for antivirulence therapeutics design such that p-

Methoxy-phenyl derivatives of galabiose inhibit PapG with low micromolar IC50 (half-maximal 

inhibitory concentration) values [85-88]. 

 In addition to targeting the receptor-binding site of the mature pilus, compounds that 

directly interfere with pilus biogenesis have also been developed. These rationally designed 

bicyclic 2-pyridone compounds, termed pilicides, inhibit UPEC hemagglutination of erythrocytes 

and biofilm formation by inhibiting both P and type 1 pilus biogenesis [44]. X-ray crystallography 

and biochemical studies revealed an interaction of these compounds with PapD [44, 45]. The 

pilicides were shown to bind with a conserved, hydrophobic, solvent-exposed patch at the N-

terminal side of the chaperone (Figure 6C-D), the presumed usher-binding site, thus explaining 

the structural basis of their mechanism of action. 

Translated to clinical practice, mannosides, pilicides, and vaccine options can be cost-

effective ways to prevent and treat UTIs and other infections that require CUP pili, while reducing 

antibiotic resistance. Using specific anti-virulence therapeutics should have minimal impact on the 

composition of host microbiota, reducing the risk of opportunistic or recurrent infections.  

 

Conclusion 

Gram-negative bacteria use the chaperone-usher pathway (CUP) to assemble virulent 

surface appendages called pili. Structural biology combined with genetic and biochemical 

approaches has elucidated crucial protein-protein interactions made by the dedicated chaperone 

and ushers to facilitate the ordered assembly of pilins into the final pilus structure on the 

extracellular surface. This work has generated new insights into protein folding and revealed novel 

mechanisms of macromolecular assembly. Chaperones stabilize the fold of each subunit in a 
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chaperone-subunit complex, in which the subunit is held in a high-energy conformation primed to 

participate in pilus assembly at the usher. Ushers catalyze pilus assembly through interactions with 

each chaperone-subunit complex, coordinating the release of the chaperone and interactions of 

subunits with each other as they fold into their final condensed structures and translocate through 

the outer membrane usher pore. Ultimately, assembled CUP pili display tip-localized adhesins to 

mediate key host-pathogen interactions required for virulence. These multi-disciplinary 

approaches have revealed snapshots of a sophisticated protein assembly machinery and 

mechanisms of adhesin binding, thus spurring the development of therapeutics that suppress 

infection in animal models. Together, these efforts will lead to a better understanding of CUP 

pilus-mediated infectious disease, giving rise to potent therapeutics that target acute, chronic, and 

recurrent infections for prevention and treatment of human disease. 
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Figures 
 

 

Figure 1. Architecture in P and type 1 pili. A graphic illustrating pili from the Pap (left) and 

type 1 (right) systems. See text for details. 
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Figure 2. Conserved chaperone residues, donor stand complementation, and donor strand 

exchange. (A) A ribbon diagram of the PapD-PapE complex. PapE (red) binds the N-terminal 

domain of PapD (green). The conserved surfaces of PapD are shown in a ball-and-stick 
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representation and highlighted in yellow, cyan, and orange. Their function is described in the text. 

(B) Donor stand complementation (DSC). The topology diagram on the left shows the secondary 

structure of donor strand complemented PapE (tan), indicating β-strands as arrows and α-helices 

as cylinders. PapD donates its G1 strand (green) parallel to the F strand of PapE. The ribbon 

diagram on the right also depicts DSC, in which the G1 strand of PapD (green) completes the fold 

of PapE (red). [PDB code: 1N0L]. (C) Donor strand exchange (DSE). The topology diagram on 

the left shows the secondary structure of donor strand exchanged PapE (tan), indicating β-strands 

as arrows and α-helices as cylinders. PapK donates its N-terminal extension (Nte, blue) antiparallel 

to the F strand of PapE. The ribbon diagram on the right also depicts DSE, in which the PapK Nte 

(blue) completes the fold of PapE (red). [PDB code: 1N12]. (D) The P1-P5 pockets of PapE. The 

surface representation of PapE (red) emphasizes the pockets that allow the PapK Nte (blue) and 

the PapD G1 strand (green) to mediate DSE and DSC, respectively. PapD residues L103, I105, 

and L107 (yellow, ball-and-stick representation) project into the P1-P3 pockets and are 

correspondingly referred to as P1-P3 residues. PapK Nte residues (cyan, ball-and-stick 

representation) project into the P2-P5 pockets and are correspondingly referred to as P2-P5 

residues. The N-terminal ends of the Nte and G1 strand are labeled in the corresponding color. 

Note the shallow nature of the P4 pocket, which only accommodates a glycine residue in the Nte 

sequence of Pap subunits, as shown in (E). (E) Sequence alignment of the PapD G1 strand and 

Nte’s of all Pap subunits (except PapG, which lacks an Nte). Pap subunits have conserved P2-P5 

residues at their Nte. P2, P3, and P5 residues are hydrophobic (blue), while the P4 residue is strictly 

glycine (yellow) to prevent steric clashes with the shallow P4 binding groove. PapD has three 

hydrophobic residues that correspond to the P1-P3 residues. The arrows indicate the N- to C-

terminal direction for the sequences of Pap subunits (blue) and PapD (green).  
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Figure 3. Co-crystal structures of CUP adhesins with their receptors. (A) FimH in complex 

with D-mannose [PDB code:1KLF] (B) PapG in complex with galabiose [PDB code: 1J8R] (C) 

F17-G in complex with N-acetyl-D-glucosamine [PDB code: 1O9W] (D) GafD in complex with 

N-acetyl-D-glucosamine [PDB code: 1OIO] In every complex, the adhesin (magenta) is shown as 

a ribbon representation (left) and a magnified surface representation (right), with the bound ligand 

depicted as a ball-and-stick representation (green). The structures demonstrate that the binding 

pocket is in different locations of the adhesin fold and has different morphology, which dictates 

receptor specificity.  
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Figure 4. Structures of the gated and open FimD usher. (A) In the gated apo state, the plug 

(blue, surface representation) resides in the lumen of the usher pore (orange, ribbon diagram), 

preventing flow of molecules across the OM and maintaining membrane integrity. The remaining 

usher domains are not depicted since a FimD truncate was used to solve the apo structure [PDB 

code: 3OHN] (B) In the FimD-FimC-FimH complex, the plug swings into the periplasm and binds 

NTD (light blue), while FimC (green) docks at CTD1 (yellow) and CTD2 (purple) with its bound 

FimH (magenta). The lectin domain of FimH now resides in the lumen of the usher. Note the 

unoccupied P5 pocket (light pink) in the FimH pilin domain, which is targeted by the Nte of the 

incoming subunit FimG for DSE [PDB code: 3RFZ]. Rotation of the usher by 90°, such that the 
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usher is seen from the top, shows a kidney-shaped pore in the plug-gated usher but a nearly circular 

pore in the secreting usher. ECF, extracellular fluid; OM, outer membrane; PP, periplasm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

 

Figure 5. Model of pilus assembly. Upon translocation of subunits into the periplasm via the SEC 

machinery, chaperone proteins bind the subunits to maintain their proper fold and stability. At the 

outer membrane, the usher lies in a gated state, with the plug domain (blue) residing in the lumen 

of the usher pore (orange). Once the chaperone-adhesin complex binds the usher NTD (cyan), the 

plug domain swings away from the pore and docks onto the NTD, thus preparing the usher for 

pilus secretion. Soon thereafter, CTD1 (yellow) and CTD2 (purple) may swing over to bind and 

carry the chaperone-adhesin complex, freeing the NTD-plug complex in the process. The freed 

NTD-plug complex recruits the incoming chaperone-subunit complex, orienting it properly so that 

the Nte can participate in DSE with the CTD-docked chaperone-adhesin complex and the newly 

exchanged chaperone-subunit complex can transfer to the CTDs. The process repeats until the 

chaperone-terminator complex, bound at the NTD-plug complex, cannot transfer to the CTDs or 

engage in DSE, signaling the end of pilus assembly.  
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Figure 6. CUP pili as antibacterial targets. (A) Crystal structure of a mannoside (cyan) in 

complex with the FimH lectin domain (magenta) [PDB code: 3MCY]. (B) Mannoside prevents 

IBC formation and can treat established infections [84]. Confocal microscopy of mice bladders 

depicts an intracellular bacterial community (IBC, green) in the left panel and prevention of IBC 

formation with mannoside treatment in the right panel (white arrows indicate luminal bacteria). 

(C) Crystal structure of a pilicide (cyan) bound to PapD (green). The pilicide binds to the F1, C1 

and D1” strands, a region thought to be the usher-targeting site of the protein, where many of the 

Set B residues coincide [PDB code: 2J7L]. (D) Pilicide inhibits type 1 pilus and P pilus assembly. 

Atomic force microscopy images show a piliated, untreated bacterium (left panel) and a naked, 
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pilicide-treated bacterium (right panel), indicating that pilicides suppress pilus biogenesis. Figure 

parts (B) and (D) are reproduced, with permission, from [84] and [89]. 
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Abstract 

Positive selection in the two-domain type 1 pilus adhesin FimH enhances Escherichia 

coli fitness in urinary tract infection (UTI). We report a comprehensive atomic-level view of FimH 

in two-state conformational ensembles in solution, composed of one low-affinity tense (T) and 

multiple high-affinity relaxed (R) conformations. Positively selected residues allosterically 

modulate the equilibrium between these two conformational states, each of which engages 

mannose through distinct binding orientations. A FimH variant that only adopts the R state is 

severely attenuated early in a mouse model of uncomplicated UTI but is proficient at colonizing 

catheterized bladders in vivo or bladder transitional-like epithelial cells in vitro. Thus, the bladder 

habitat has barrier(s) to R state-mediated colonization possibly conferred by the terminally 

differentiated bladder epithelium and/or decoy receptors in urine. Together, our studies reveal the 

conformational landscape in solution, binding mechanisms, and adhesive strength of an allosteric 

two-domain adhesin that evolved "moderate" affinity to optimize persistence in the bladder during 

UTI. 
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Introduction 

Bacterial pathogens adhere to and establish footholds in favorable habitats within their 

host. Adhesion often confers fitness advantages to bacterial pathogens by promoting access to 

essential nutrients, resistance to displacement by fluid flow, or evasion of immune responses [1-

3]. Bacterial pathogens have evolved numerous ways in which to achieve adhesion either 

specifically or nonspecifically through extracellular structures that include capsules, extracellular 

polymeric substances, pili/fimbriae, flagella, and other diverse adhesins [1, 4, 5]. Many of these 

adhesive virulence mechanisms figure prominently in the colonization of the bladder by 

uropathogenic Escherichia coli (UPEC), which account for approximately 85% of all urinary tract 

infections (UTIs) [6,7]. Mouse models have shown that adhesive hair-like surface appendages 

called type 1 pili allow UPEC to colonize the bladder epithelium during UTIs by binding to 

mannosylated receptors on the urothelial surface through the tip-localized adhesin FimH [8]. 

Clinical observations and mouse models of UTI have shown that FimH mediates the invasion of 

UPEC into bladder superficial umbrella cells via endocytosis [9-12]. Escape from the endocytic 

vesicle allows UPEC to replicate within the cytosol to form intracellular bacterial communities 

(IBCs), which is one mechanism used by UPEC to subvert neutrophil attack, thus facilitating 

survival and dissemination during UTI [9-12]. 

Consistent with its vital role in bacterial colonization of the bladder, FimH has evolved 

within human uropathogenic strains of E. coli by positive selection [13]. FimH is composed of the 

following: (i) an N-terminal lectin domain (FimHLD) that binds mannose via a pocket formed by 

three loops, (ii) a C-terminal pilin domain (FimHPD) that noncovalently joins FimH to the pilus tip, 

and (iii) a five–amino acid linker that connects the two domains (Fig. 1A). It has been shown that 

three positively selected residues (residues 27, 62, and 163), which lie outside the mannose-
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binding pocket, modulate conformational changes in FimH (Fig. 1B) [14]. Crystal structures of 

FimH in various stages of pilus assembly have revealed that FimHPD exists in one conformation 

but FimHLD has at least two conformational states that show distinct affinities for mannose (Fig. 

1B) [15-19]. Before pilus assembly, the incomplete immunoglobulin (Ig)–like fold of FimHPD is 

stabilized via a donor strand complementation interaction with the chaperone FimC in the 

periplasm [15, 20]. Crystal structures have revealed that FimH adopts an elongated conformation 

when bound to FimC, wherein FimHLD and FimHPD do not interact with each other and FimHLD is 

in a high-affinity mannose-binding state. Thereafter, the FimC-FimH (FimCH) complex initiates 

pilus assembly at the outer membrane, where the FimD usher catalyzes donor strand exchange 

(DSE), in which the N-terminal extension (Nte) of FimG displaces FimC to complete the Ig-like 

fold of FimHPD [21-23]. Crystal structures show that FimH adopts a compact conformation when 

bound to FimG, wherein FimHLD and FimHPD interact closely with one another and 

FimHLD adopts a low-affinity mannose-binding state. To succinctly describe the correlation 

between all the structural and functional properties of FimH in its two known conformations (Fig. 

1B), we adapted the nomenclature used in the Monod-Wyman-Changeux model of allostery to 

herein refer to the high-affinity conformation as the relaxed (R) state and the low-affinity 

conformation as the tense (T) state. On the basis of these structures, an allosteric model that links 

the conformation of FimH to its mannose-binding function has been proposed (Fig. 1C) [17, 24]. 

This model posits that FimHPD can allosterically diminish the ability of FimHLD to bind mannose 

through interactions with the base of FimHLD. Conversely, mannose binding to FimHLD appears to 

promote FimHLD conformations that no longer interact with FimHPD. However, the structural and 

evolutionary basis for conformational allostery in FimH at the pilus tip remains incompletely 

understood. Here, we characterize the conformational ensembles, dynamics, and binding 
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mechanisms of FimH variants in a tip-like setting in solution. We discovered a mechanism 

whereby positively selected residues allosterically modulate a two-state conformational 

equilibrium in FimH to adapt a “moderate” mannose-binding affinity for optimal colonization of 

the bladder during UTI. 

Results 

FimGNteH functions as a type 1 pilus tip-like setting 

Biophysical experiments to directly probe conformations of FimH within an in vitro 

reconstituted pilus tip have remained challenging because of the inherent tendency of pilus 

subunits, or pilins, to self-polymerize and introduce heterogeneity in solution [14]. Thus, we 

created a “minimal” tip-like FimH complex through a spontaneous in vitro DSE reaction between 

FimH and a peptide corresponding to the Nte of FimG (FimGNte, residues 1 to 15) (Fig. 2A). This 

strategy was based on previous work that demonstrated how Nte peptides stabilize pilin domains 

[22]. We investigated the conformational and functional effects of allelic variation in positively 

selected residues A27, A62, and V163 [13, 14] on FimH within the FimGNteH complex. This was 

done using the FimH sequence of the UPEC strain UTI89 [25] as the wild-type (WT) background. 

We produced FimGNteH complexes with WT and variant FimH sequences (A62S, A27V/V163A) 

and the Q133K variant, a binding pocket mutation that abrogates adhesion [13]. As with other DSE 

interactions [14], all purified FimGNteH complexes exhibited high stability because all FimH 

variants remained bound to FimGNte in the SDS sample buffer at room temperature (~31 kDa) but 

dissociated when boiled (~29 kDa) (Fig. 2B). Moreover, these variant FimGNteH complexes 

displayed the same differential binding affinities toward human mannosylated glycoproteins as 

those affinities previously determined by equilibrium binding analysis of FimCGH variants (Fig. 

2C): A62S shows low affinity, WT displays intermediate or moderate affinity, and A27V/V163A 
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exhibits high affinity for mannose. However, each of the binding-competent FimH variants 

displayed equal affinity for mannose when in a FimCH complex [14]. Thus, we hypothesize that 

the observed adhesive differences among FimGNteH complexes are the result of shifts in 

conformational equilibria of FimH in a tip-like setting caused by sequence variation. In summary, 

the FimGNteH complex reliably functions as a minimal tip-like setting and appears well suited for 

the examination of FimH conformation by molecular biophysics. 

Crystal structures of ligand-free FimGNteH variants reveal diverse conformations in a tip-like 

setting 

Apo x-ray crystal structures of FimGNteH A62S and FimGNteH A27V/V163A were solved 

at 1.96 and 2.6 Å resolutions, respectively, to investigate whether conformational changes 

determine the differences in mannose affinity of FimH in a tip-like setting. Both structures were 

solved by molecular replacement (MR) using FimHPD and either the low-affinity or high-affinity 

FimHLD from previously solved crystal structures as search models (table S1). The FimGNteH 

A62S crystal structure reveals four FimGNteH copies in the unit cell (fig. S1A), each adopting 

a T conformation (Fig. 2D). This T conformation is nearly equivalent to the T conformations of 

FimH (from E. coli strain F18) observed in (i) a FimCFFGH crystal structure [17] and (ii) the apo 

and heptyl mannoside–bound FimGNteH crystal structures (fig. S2) [26]. In these structures, 

FimHLD adopts the same overall compacted shape, widened β-sandwich fold, and displaced 

binding loops that confer weak affinity for mannose (fig. S2). However, structural alignment of 

FimHPD in the FimGNteH A62S complex to FimHPD from the WT complexes in 

the T conformation exposes a ~7 Å rigid-body tilt of FimHLD, suggesting a small vibrational 

degree of conformational flexibility in the T state. Despite this tilt, the T conformer of FimGNteH 

A62S forms the same FimHPD-FimHLD interface, in which hydrophobic interactions and 
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interdomain hydrogen bonds bury the linker and an “insertion loop” (residues 109 to 124) [17] 

within a local hydrophobic core (Fig. 2E). Moreover, three of the four FimGNteH A62S copies lack 

visible electron density in regions of mannose-binding loop 1 (residues 11 to 16), particularly at 

residues 13 and 14, suggesting that loop 1 is highly dynamic within the crystal (fig. S1B). 

In contrast, the crystal structure of FimGNteH A27V/V163A reveals a novel 

R conformation, wherein the orientations of the FimHLD and FimHPD form a 90° bend (Fig. 2D). 

This observed conformation represents a substantial structural deviation from the elongated 

orientation of FimHLD and FimHPDobserved in the R conformation of FimH bound to the FimC 

chaperone; thus, we refer to this crystal structure as the bent R conformation and the previously 

identified chaperoned state as the elongated R conformation [15]. This bent R conformation is 

also distinct from a recently solved crystal structure of FimFNteH bound to heptyl mannoside, 

which shows FimHLD adopting a ~45° bend angle and a different orientation with respect to 

FimHPD (fig. S2) [26]. Structural alignment of FimHLD’s of the bent and elongated 

R conformations indicates that the FimHLD’s of the two R structures are nearly identical [root 

mean square deviation (RMSD) = 0.6 Å], displaying the same binding loop and side-chain 

orientations that are required for high-affinity interactions with mannose (Fig. 2F) [16]. 

Furthermore, the bent conformation exhibits a new interface between FimHLD and FimHPD, 

composed of a dislodged insertion loop and an extended, solvent-exposed linker (Fig. 2E). No 

specific hydrogen bonding, electrostatics, or hydrophobic interactions are observed at this new 

interface, which would allow for a high degree of conformational flexibility in the relative 

orientations between FimHLD and FimHPD about the extended linker. Instead, multiple contacts 

formed between symmetry partners within the crystal lattice are coordinated by Ca2+, which likely 

allowed for crystallographic trapping of the elusive bent R conformation (fig. S1, C and D). 
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Comparison of the bent R conformation to the T conformation indicates that the orientation of 

FimHLD and FimHPD in the bent R conformation lies on a different bend and rotation axis than 

their orientation in the T conformation, hinting at considerable conformational freedom and 

possible transition pathways between T and bent/elongated R states. Together, these two FimH 

conformations (T and bent R) provide the first atomic-level description of a functionally diverse 

structural ensemble adopted by FimH in a native tip-like setting in the absence of ligand. 

Positively selected residues and ligand binding modulate conformational ensembles of 

FimGNteH variants 

Structural ensembles of FimH in solution were probed by small-angle x-ray scattering 

(SAXS) of FimH variants in FimGNteH or FimCH complexes. In a FimCH complex, all binding-

competent FimH variants have the same affinity for mannose [14]. They also appeared to adopt 

the same high-affinity elongated R conformation based on the structural comparison heat map 

(χ2 = 0.4 to 0.6) (fig. S3, A and B) and rigid-body modeling of the FimCH crystal structure to the 

SAXS profiles for each of the FimCH variants (χ = 0.9 to 1.3) (fig. S3C). In contrast, each of these 

FimH variants had a drastically different affinity for mannose when in complex with FimG (Fig. 

2C) [14]. Correspondingly, in the FimGNteH complex, each variant adopted very different relative 

conformation(s) (χ2 = 0.6 to 7.4), with the low-affinity A62S and high-affinity A27V/V163A 

variants being most dissimilar from one another (Fig. 3A). Further, radius of gyration (Rg) and 

maximal intramolecular distance (Dmax) measurements indicated that A27V/V163A FimH is larger 

in overall shape by ~2 Å and more extended by ~5 Å than all other tested variants (Fig. 3B). Thus, 

we propose that positively selected residues allosterically influence the conformation(s) of FimH 

in pilus tips in solution, thus modulating mannose-binding affinity. 
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To resolve the solution structure(s) of FimH variants in a tip-like setting in the absence or 

presence of 4Z269, we evaluated the agreement between SAXS profiles and crystal structures of 

FimGNteH in four distinct conformations [T, bent R, a previously identified distinct bent R [26], 

and elongated R] either individually or in combination with one another. Rigid-body modeling of 

individual structures [28] against these scattering profiles resulted in moderate-to-poor goodness 

of fit (χ = 2 to 10) (fig. S3D). In contrast, multistate rigid-body modeling determined specific 

weighted combinations of multiple conformational models that fit the data better than any 

individual model. This analysis indicated that in the absence of 4Z269, the A27V/V163A variant 

exists entirely in the R state, comprising a mix of elongated and bent shapes, whereas WT, 

Q133K, and A62S adopt various proportions of T and bent R states (fig. S3E). Addition of 4Z269 

shifted the equilibrium away from the T conformation and toward a mix of bent and elongated 

R conformations for all variants except Q133K. However, multistate rigid-body modeling of 

SAXS profiles for FimGNteH WT and A27V/V163A variants in the presence of 4Z269 resulted in 

moderate goodness of fit, which indicates that the four abovementioned static conformations do 

not completely represent the solution ensemble and implies additional solution conformations that 

have not been determined by crystallography. Together, the improvements in goodness of fit from 

multistate modeling strongly intimate a conformational equilibrium and suggest that the crystal 

structures used in rigid-body modeling likely represent conformational snapshots and may not 

necessarily represent “preferred” states or capture the expanse or diversity of the conformational 

space of FimH in solution. In agreement with the multistate modeling, differential scanning 

fluorimetry revealed a two-state unfolding behavior for apo FimGNteH WT, Q133K, and A62S, 

with shifts toward one-state unfolding for A62S and WT variants in the presence of 4Z269 (fig. 

S3F). Single-state unfolding was observed for FimGNteH A27V/V163A in the presence and 
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absence of 4Z269. Together, these data strongly suggest that the identity of positively selected 

residues and mannose binding allosterically influence a preexisting equilibrium of distinct 

conformations in FimH in solution. 

Further, ion mobility–mass spectrometry (IMMS) was used as a direct method to 

investigate conformational distributions of FimH due to the ability of IMMS to resolve protein 

collision cross sections (CCSs). All FimGNteH and 4Z269-bound FimGNteH complexes remained 

intact when they were electrosprayed into the mass spectrometer, facilitating downstream analysis 

of the tip-like setting by IMMS (fig. S4, A and B). The CCS distributions at low collision energy 

(CE) of the WT, Q133K, and A62S variant FimGNteH complexes revealed a major peak and 

shoulder, whereas only one predominant peak with positive skew was observed for the 

A27V/V163A variant (Fig. 4A). Comparison of these distributions indicated that the 

A27V/V163A distribution is shifted to the right (or “right-shifted”) and displays a greater mean 

CCS than do the other variant distributions, consistent with its larger average shape 

(by Rg and Dmax) in solution. Given their non-normal shape, these distributions were modeled as a 

sum of two Gaussian curves. The WT, Q133K, and A62S FimGNteH complexes were each 

similarly best explained by two curves that have mean CCS values of 2464 to 2472 Å2 and 2606 

to 2636 Å2, which we respectively label A and B (Fig. 4B and table S2). In contrast, the 

A27V/V163A FimGNteH profile was best explained by two highly overlapping curves with mean 

CCS values of 2480 and 2565 Å2, which we respectively label A and C given their positions 

relative to the curves assigned for the other three FimH variants. Binding of 4Z269 caused a 

rightward shift in the overall CCS distributions of WT, A62S, and A27V/V163A (Fig. 4B). 4Z269-

bound WT and A62S FimGNteH displayed CCS distributions with right-shifted A and right-

shifted B, indicating that the two major structural species can engage 4Z269. In contrast, 4Z269-
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bound A27V/V163A FimGNteH displayed a normal CCS distribution adequately explained by one 

well-fitting curve because modeling with two Gaussian curves indicated that right-

shifted A and C overlap too extensively for an unambiguous assignment. As expected, no 

FimGNteH Q133K:4Z269 complex was observed (fig. S4B). In all cases, CCS distributions steeply 

increased with elevation of CE, indicative of protein unfolding and confirming that the CCS 

distributions analyzed above represent folded protein conformations (fig. S4C). In summary, 

FimGNteH WT, Q133K, and A62S in the gas phase take on an equilibrium of two distinct 

conformations with partially overlapping CCS distributions, whereas FimGNteH A27V/V163A 

adopts an equilibrium of two very similar conformations with highly overlapping CCS 

distributions. Thus, we have resolved two to three different structural conformations among 

FimGNteH variants in the gas phase. However, the width of the measured CCS distributions and 

mixture of structural populations likely mask multiple underlying conformational substates that 

dynamically interconvert within this conformational landscape. The conformational states 

represented by peaks A, B, and C may relatively correspond to bent R, T, and elongated R states, 

respectively, but a detailed examination of the presumed conformational dynamics of 

the T and R states is necessary to assess the validity of these structural assignments. 

FimGNteH samples expansive conformational phase space composed of restrained T state and 

dynamic R state 

To gauge the dynamic behavior of FimH in the FimGNteH WT tip-like setting, we 

performed unrestrained molecular dynamics (MD) simulations in four replicates, each starting 

from the T, bent R, and elongated R conformations in the presence or absence of ligands. MD 

trajectories initiated from the T state revealed very little structural fluctuation (RMSD) over time, 

vibrating around a fixed protein shape (Rg distribution), whereas those initiated from the bent 
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R state carved a vast conformational landscape with various overall protein shapes (Fig. 5A and 

movies S1 and S2). To best compare and conceptualize the sampled conformational landscapes, 

we parameterized FimGNteH conformation within a phase space composed of three measurable 

angular dimensions: (i) bend, (ii) twist, and (iii) orientation of FimHLD relative to FimHPD (fig. 

S5A). This analysis showed the breadth of conformations sampled in the R state compared to the 

restrained phase space of the T state simulations (Fig. 5B). Motions among the R conformations 

resembled movement about a ball-and-socket joint, in which a wide range of bends and rotations 

are accessible but restrained by the architecture of the FimHLD and FimHPD interface, which 

functions as a “socket.” We also observed considerable overlap in phase spaces from simulations 

initiated from the bent and elongated R states (Fig. 5B and movies S2 and S3), but no exchange 

between T and R states under these in silico conditions or in preliminary trials at 200 to 600 ns, 

suggesting a high-energy barrier to transition between T and R states that occurs on a much longer 

time scale (microseconds to milliseconds). Thus, the bent and elongated R conformations 

represent distinct snapshots of a highly dynamic conformational state, whereas the T conformation 

is a snapshot of a conformationally restrained structural state, which argues for enthalpy-entropy 

compensation in the equilibrium between T and R states. 

Dynamics and binding mechanisms of conformational populations in FimGNteH WT 

Mannose was then included in simulations of FimGNteH WT to probe its effect on 

conformational dynamics and mechanisms of ligand binding. The presence of mannose did not 

significantly alter the simulated dynamic behaviors of the T and R states (Fig. 5C and movies S4 

to S6). Strikingly, the R states remained bound to mannose even during the bending, twisting, and 

rotation that occured between the two domains throughout the duration of the simulations (Fig. 

5C and movies S5 and S6). As expected, the R states oriented their binding pocket loops to clasp 
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mannose tightly with rare, short-lived dissociation events, a signature of high-affinity binding (Fig. 

5, C and D). Mannose sat in the R pocket rigidly in a “horizontal” orientation, held in place by 

hydrogen bonds to residues in loop 2 (N46 and D54) and loop 3 (Q133, N135, and D140) and 

through packing against I13, I52, and the “tyrosine gate” (defined as binding pocket residues Y48 

and Y137), as previously observed [16]. In contrast, T states weakly interacted with mannose, 

characterized by continual motion of mannose within the open T pocket and multiple, long-lasting 

dissociation events (Fig. 5C and movie S4). When bound to the T state, the mannose ring 

occasionally sampled the horizontal orientation, as observed in the pocket of the bound R state, 

but was primarily observed rotated ~45° relative to its horizontal orientation (Fig. 5D). In 

the T state pocket, the hydroxyl group off the achiral carbon (C6) of mannose was bound to the N 

terminus of FimH and the carboxyl side chain of FimH residue D54. These two interactions were 

also observed with mannose bound to FimH in the R state. In contrast to what was observed in 

the R state, the axial hydroxyl group off the mannose anomeric carbon (C1) faced away from the 

rest of the binding pocket. This “tilted” mannose orientation represents a unique bound 

conformation and provides the first mechanistic insights into how the T state may contribute to 

host-pathogen interactions. FimH engages complex mannose-containing glycans on glycoproteins 

expressed on host epithelial cells [29, 30]. Thus, to have biological significance, the tilted mannose 

orientation must allow stereochemical space for FimH to engage the mannose-containing glycan 

without steric clashes with the extended glycan chain. Simulations indicated that oligomannose-3 

(Man(α1–3)-[Man(α1–6)]-Man) approached and bound the T state pocket in either the tilted or 

horizontal orientation with about equal frequency, revealing the sterically unhindered manner in 

which the T state can engage oligomannose receptors (Fig. 5, E and F, and movie S7). As expected, 

oligomannose-3 bound to the R state only sampled the horizontal orientation (Fig. 5, E and F, and 
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movie S8). Docking of oligomannose-3-chitobiose (Man(α1–3)-[Man(α1–6)]-Man(β1–4)-

GlcNAc(β1–4)-GlcNAc) to distinct time points within the T state simulations indicated that the 

1–3 branched terminal mannose of the oligomannose epitope is capable of freely rotating by ~45° 

within the binding pocket to allow for intercalation of the Man-GlcNAc moiety within the 

sterically accessible, dynamic tyrosine gate (fig. S5B). Previous crystallographic studies and 

isothermal titration calorimetry experiments indicate that the tyrosine gate displays a high degree 

of conformational dynamics in the presence of hydrophobic functional groups, such as those within 

the aglycon moiety of mannosides [31]. Thus, the proposed ligand entry and rotation pathways 

may represent a stepwise mechanism through which induced-fit binding proceeds, whereby 

interactions in the T state trigger structural perturbations within FimHLD that culminate in T-

R conformational changes. 

Comparison of the distributions of binding loop and residue positions among apo T, 

mannose-bound T, apo R, and mannose-bound R states for WT FimGNteH revealed specific 

motions that are correlated with mannose binding (fig. S5C). Among these changes, movement of 

loop 1 toward the binding pocket was most strikingly associated with mannose binding in 

the R state but marginally so in the T state. Despite the occasional displacement of loop 1 away 

from the R pocket, mannose often remained stably associated with R, suggesting that loop 1 

positioning is not the only determinant of mannose binding. Consistent with this observation, 

binding assays performed on loop 1 deletion mutants and chimeras in WT FimHLD showed a 

significant reduction, but not total abrogation, in mannose binding, demonstrating a role for loop 

1 as an affinity clamp in mannose recognition (fig. S5D). These findings agree with the weakened 

mannose affinity observed in mutations upstream of loop 1 that prevent β-hairpin formation 

necessary to bring loop 1 in close proximity to the binding pocket and observed in a recent 
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cocrystal structure showing loop 1 in close proximity to heptyl mannoside in a bound T state due 

to stabilization from crystal packing [26, 32]. In all, these computational studies establish a vast 

conformational phase space in the absence of ligand characterized by a conformationally 

restrained T state and multiple, shape-shifting R state conformations, and they elucidate structural 

and dynamic insights into two distinct mechanisms of mannose recognition by the low-

affinity T and high-affinity R conformations. 

Positive selection in FimH promotes moderate mannose-binding affinity to facilitate bladder 

colonization 

Positively selected residues, which were identified through sequence analysis of FimH 

alleles enriched in urinary E. coli isolates, significantly affect adhesive function and bacterial 

fitness in the urinary tract [13]. Despite A27V/V163A existing entirely in the high-affinity R state, 

previous work paradoxically demonstrated that UTI89 engineered to encode FimH A27V/V163A 

in place of FimH WT was severely attenuated and unable to form IBCs in the C3H/HeN mouse 

model of UTI at 6 to 24 hours post-infection (hpi) [13, 14]. We investigated the kinetics of this 

virulence defect during the acute stages of bladder colonization. UTI89 expressing A27V/V163A 

FimH exhibited attenuated colonization as early as 1 hpi, which suggests a defect in the ability of 

A27V/V163A to bind and/or invade superficial facet cells (Fig. 6A). Yet, UTI89 expressing 

A27V/V163A FimH bound and invaded 5637 bladder cells in vitro more efficiently than UTI89 

expressing WT FimH (Fig. 6, B and C), suggesting that the high-affinity variant does not lack the 

capacity to bind bladder tissue per se. 5637 bladder cells, a cancer cell line, exhibit more 

similarities with undifferentiated transitional bladder epithelial cells than with the terminally 

differentiated superficial facet cells that line the undisrupted bladder lumen [33]. Thus, attenuation 

in the mouse model may reflect colonization resistance properties of the bladder habitat that are 
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specifically selective against A27V/V163A FimH over WT FimH. To address this hypothesis, we 

changed the bladder habitat by inserting a catheter implant and subsequently tested these FimH 

variants in a model of catheter-associated UTI (CAUTI). In this model, a 5-mm piece of silicon 

tubing is implanted into the C57BL/6 mouse bladder, which mechanically disrupts regions of the 

bladder epithelium, exposing the underlying transitional epithelium and inducing inflammation. It 

has previously been shown that this catheterization increases the efficiency of bladder colonization 

by otherwise attenuated species of bacteria [34-37]. In the absence of an implant, again, a 

colonization defect was observed in C57BL/6 mice at 24 hpi (Fig. 6, D and E). Within this CAUTI 

model, in the presence of an implant, UTI89 with either WT or A27V/V163A FimH robustly 

colonized both the implant and the implanted mouse bladder tissue at 1 day after infection, 

although this rescue was partial because WT still outperformed A27V/V163A by 10-fold in 

bacterial titers in the bladder (Fig. 6, D and E). How the implant facilitates colonization may be 

multifactorial. First, disruption of the terminally differentiated epithelium may allow bacteria 

expressing the A27V/V163A variant to bypass the intact superficial facet cell layer and colonize 

deeper epithelial layers. Second, the catheter provides another surface to which the bacteria can 

bind and form a “staging ground” for dissemination to the bladder tissue. This is particularly 

possible because implanted catheters become coated by host proteins, including THP [36, 38], 

which we have shown is tightly bound by A27V/V163A (Fig. 2C). In addition, A27V/V163A can 

directly interact with implanted catheters, and in vitro assays indicate that it forms biofilms on 

abiotic surfaces to a higher degree than does WT [13]. In contrast, without the catheter, the tighter 

binding to soluble THP, or other soluble host proteins or mannose-containing oligosaccharides, by 

A27V/V163A may be particularly detrimental to colonization because it prevents binding to 

urinary tract surfaces. Thus, in the naive bladder, soluble host proteins and oligosaccharides may 
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act as decoy receptors, whereas in the catheterized bladder, soluble host proteins may aid in 

binding of bacteria to the implant. Together, these studies demonstrate that the preexisting 

conformational ensemble and corresponding mannose affinity of FimH determine the outcome of 

infection. Further, the results suggest that positive selection balances the conformational 

equilibrium of FimH in solution between R and T states to tailor moderate affinity to UPEC for 

the urothelium, thus facilitating adherence to and persistence in the bladder. 

 

Discussion 

Our interdisciplinary studies combining evolutionary biology and computational and 

molecular biophysics allowed us to directly interrogate, at the atomic and structural level, the 

multiple conformations that FimH adopts in solution in a tip-like setting within a two-state, T-

R conformational landscape (Fig. 7A). Positively selected residues influence the preexisting 

conformational equilibrium of the two-domain FimH by shifting the relative occupancies of a 

dynamically restrained T state conformation and multiple R state conformations that sample a 

great expanse of bends, twists, and orientations through ball-and-socket joint-like motions. As a 

result of these population shifts, natural sequence variation alters the apparent affinity of FimH 

toward mannosylated ligands. Thus, the conformational phase space of FimH in solution and 

population shifts spurred by positively selected residues further provide a framework for 

understanding the structural basis of allosteric coupling between interdomain interactions and 

mannose binding. Classically, the mechanism underlying protein allostery has been conceptualized 

as a deterministic process, in which information is transmitted through structural perturbations 

from one site of a protein to another in a sequential or concerted manner [39-41]. However, recent 

synergy in the fields of protein biophysics and protein evolution has given rise to the emerging 
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perspective that protein allostery is a natural and statistical consequence of shifts in the relative 

populations and/or dynamics of preexisting conformational ensembles [42, 43], which is supported 

by this work. Furthermore, by influencing the preexisting equilibrium of FimH, positively selected 

residues alter the very pathway through which binding occurs: If a particular FimH variant favors 

the T state, it will favor an induced-fit mechanism of binding; if a FimH variant favors the R state, 

it will use conformational selection as its mechanism of binding. 

Our structural, biophysical, and computational work indicate that the low-affinity T and 

high-affinity R conformations can bind mannose through distinct binding orientations and 

pathways. Consistent with previous cocrystal structures, simulations of the R state indicate that 

mannose and oligomannose-3 bind in a high-affinity horizontal orientation coordinated through 

hydrogen bond formation with residue F1 and residues in loops 2 and 3 and clamped by residue 

I13 in loop 1. Our simulations and a recent crystal structure of the T state bound to heptyl 

mannoside [26] also indicate that the T state may bind mannose in this horizontal orientation, 

particularly when loop 1 is proximal to the binding pocket. In addition to this binding mode, 

mannose also approaches and binds the T state pocket in a tilted orientation, specifically to residue 

F1 of the N terminus and D54 of loop 2, in a low-affinity interaction. Mannose glycans may slide 

and rotate and interact with the conformationally dynamic tyrosine gate of FimH. This novel ligand 

entry and rotation pathway may represent a stepwise mechanism through which induced-fit 

binding proceeds, whereby interactions in the T state trigger structural perturbations within 

FimHLD that culminate in T-R conformational changes. Furthermore, tight binding of mannose 

through multiple different bends and orientations of the R state, as indicated in our simulations, 

provides the basis for a physical model, here termed molecular tethering, by which bacteria can 

remain bound to their mannosylated receptors on the bladder surface (Fig. 7B). Entropic freedom 
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of multiple bound conformations within the high-affinity R state would theoretically enhance the 

lifetime of mannose binding relative to a single high-affinity R state. Moreover, the enhanced 

conformational flexibility and the number of viable bound R conformations in FimH may increase 

the biophysical adaptability of type 1 pili while tethered to a surface in part to allow attached 

bacteria to resist urine flow while bound to the bladder epithelium [44, 45]. Molecular tethering 

likely represents a universal feature of macromolecular interactions involving Gram-negative 

adhesins or any other two-domain, allosterically regulated protein containing a flexible linker. 

Coupled with genetic and in vivo pathogenesis work, we have demonstrated how 

evolutionary pressures through positive selection in FimH allosterically shape the conformational 

dynamics and phase space of FimH to maintain a balanced conformational equilibrium 

between R and T states to allow UPEC to colonize the urinary tract (Fig. 7C). Surprisingly, a 

FimH variant that only adopts the high-affinity R state is severely attenuated early in a mouse 

model of uncomplicated UTI but is proficient at colonizing catheterized bladders in vivo or bladder 

transitional-like epithelial cells in vitro. Given how early the pathogenesis defect of A27V/V163A 

is observed relative to WT (within 1 hpi), some preset aspect(s) of the bladder habitat likely select 

against the high-affinity R conformation(s). One possibility may relate to the slower kinetics of 

association of the R state under conditions of flow, as part of a catch-bond mechanism [44-46], 

which, in the case of A27V/V163A, would translate to less frequent interactions with the bladder 

epithelium and increased clearance of bacteria from the bladder during periods of urination. A 

second possibility is that some inherent property of the bladder epithelium serves as a restrictive 

factor against the R state. We suggest that the superficial facet cells may mediate this restriction, 

because the A27V/V163A variant is capable of binding 5637 bladder cells in vitro and can mediate 

the colonization of the catheter-implanted bladder habitat. A third possibility is that soluble 
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mannosylated glycoproteins, such as THP, and mannose-containing oligosaccharides [47] may 

serve as decoy receptors that reduce the ability of A27V/V163A to colonize the bladder epithelium 

because it binds more tightly than WT to THP. These same host proteins that serve as decoys in 

host defense may facilitate bacterial colonization by coating the catheter [36, 38]. More work is 

required to dissect the individual and combinatorial contributions that the abovementioned 

possibilities may exert in preventing the high-affinity R state in mediating successful bladder 

colonization. Together, our data suggest that the T state may serve to temporarily mask the strong 

affinity that FimH has for mannose to avoid restrictive factors or properties native to the bladder 

habitat to initiate productive binding when engaging the host epithelium. 

Fundamentally, this encompassing study of solution protein dynamics, structure, and 

function exemplifies the importance of defining the native conformational ensembles of a protein 

in solution and its population shifts in the presence of ligand for a complete model of allosteric 

regulation. Understanding mechanistic and structural aspects of adhesin allostery, conformation, 

and function is critical in efforts to further develop antibiotic-sparing small molecules and vaccines 

for the treatment of acute and recurrent infections caused by UPEC and other pathogens. 

  

Materials and methods 

Ethics statement 

All animal experiments were conducted according to the National Institutes of Health 

(NIH) Guide for the Care and Use of Laboratory Animals and performed in accordance with 

institutional regulations after pertinent review and approval by the Animal Studies Committee at 

Washington University School of Medicine (protocol number 20150226). Human urine collection 
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was performed with informed consent and approved under Institutional Review Board protocol 

201207143. 

FimH variants 

In silico analysis of FimH sequences among 287 E. coli strains previously revealed three 

specific residues (positions 27, 62, and 163) evolving under positive selection. Variations at these 

three positions in the FimH sequence from UPEC strain UTI89 were examined in this study. These 

include the following: (i) the WT variant (A27/A62/V163), in which these three amino acids are 

together observed in E. coli isolates from infected urine (19 of 254 strains) but not in isolates from 

healthy feces (0 of 33 strains); (ii) the A62S variant (A27/S62/V163), in which these three amino 

acids are together observed in high abundance in isolates from both infected urine (169 of 254 

strains) and healthy feces (28 of 33 strains); and (iii) the engineered A27V/V163A variant 

(V27/A62/A163), in which these three amino acids have not been observed in tandem and have 

been shown to negatively affect pathogenesis in vivo. The mannose-binding pocket mutant 

Q133K, which cannot bind mannose, was also incorporated in this study as a negative control. 

These variants were generated by site-directed mutagenesis of the WT FimH allele from UTI89, 

as described in a previous report [13]. 

Protein expression and purification 

FimCH variant complexes were purified from periplasm preparations, as previously 

described [14]. FimGNteH complexes were assembled by a spontaneous in vitro DSE reaction, in 

which FimGNte peptide (FimG residues 1 to 15; EZBiolab) was mixed in ~10× molar excess with 

FimCH variant complexes in 15 mM MES (pH 5.6) and 50 mM NaCl and incubated at 37°C for 

16 hours. FimGNte displaces FimC in this reaction, and resultant FimGNteH variant complexes were 
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purified away from excess FimGNte peptide and free FimC using a SOURCE 15S column (GE) in 

15 mM MES (pH 5.6) with a gradient of 0 to 400 mM NaCl. Pooled fractions containing FimGNteH 

variant complexes were dialyzed against 15 mM MES (pH 5.6) and 50 mM NaCl, concentrated to 

1 to 5 mg/ml, and stored stably at 4°C for use in biophysical assays. 

Mannoside incubations 

Mannoside compound 4Z269 (para-biphenyl-2-methyl-3′-methyl amide mannoside) [27] 

was incubated with FimGNteH variant complexes for at least 1 hour at 4°C before biophysical 

analysis at molar ratios indicated below. 

Differential scanning fluorimetry 

FimGNteH variants (10 μM) in the absence or presence of 4Z269 (10 μM) were combined 

with 5× SYPRO Orange (Sigma; 1:1000 dilution of 5000× stock) in 50 μl of reaction mixture 

buffered in 15 mM MES (pH 5.6), 50 mM NaCl, and 0.4% dimethyl sulfoxide. Binding equilibria 

were established by allowing the reaction mixtures to incubate at 23°C for 30 min. These reaction 

mixtures were then placed in 96-well clear-bottom polymerase chain reaction plates and subjected 

to a melt curve from 20° to 90°C in 0.5°C increments of 15 s, each followed by a fluorescence 

read of the “HEX” channel in a Bio-Rad CFX96 thermocycler. Melt curves were fitted to the 

Boltzmann equation [y = A2 + (A1 − A2)/(1 + exp((x − xo)/dx)), where xo is the Tm] to determine the 

melting temperature (Tm). 

Enzyme-linked immunosorbent assay 

Immulon 4HBX 96-well plates were coated overnight with 1 μg of human glycoproteins 

reported to be ligands of FimH (secretory IgA, laminin, collagen IV, and THP). All glycoproteins 
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were ordered from Sigma except crude THP, which was isolated by ammonium sulfate 

precipitation of urine donated by healthy volunteers. Coated wells were then incubated with 200 

μl of blocking buffer [phosphate-buffered saline (PBS) + 2% bovine serum albumin (BSA)] for 2 

hours at 23°C, followed by incubation with 100 μl of FimGNteH variants diluted in blocking buffer 

to 1 μg/ml for 1 hour at 37°C. After washing three times with PBS + 0.05% Tween 20, 100 μl of 

polyclonal rabbit antibody raised against FimH residues 1 to 165 (from E. coli strain J96) with a 

C-terminal six-histidine tag (Sigma Genesis; 1:5000 dilution in PBS + 2% BSA) was added to 

each well for 1 hour at 37°C. After washing three times with PBS + 0.05% Tween 20, 100 μl of 

polyclonal goat anti-rabbit antibody conjugated to horseradish peroxidase (KPL; 1:5000 dilution 

in PBS + 2% BSA) was added to each well for 1 hour at 37°C. After a final round of washing, 

plates were developed with 100 μl of tetramethylbenzidine substrate (BD Biosciences) and 

quenched within 1 min with 50 μl of 1 M H2SO4, and absorbance was measured at 450 nm. 

Small-angle x-ray scattering 

Before sample submission, FimCH and FimGNteH variant complexes were buffer-

exchanged three to five times in Spin-X UF 5K concentrators (Corning) against freshly prepared 

buffer [15 mM MES (pH 5.6) and 50 mM NaCl] to a final concentration of 5 to 8 mg/ml. 

FimGNteH:4Z269 complexes were prepared in the same manner after FimGNteH variants were 

incubated with 4Z269 at a 1:2 molar ratio. Samples were diluted to 1 to 5 mg/ml using the final 

filtrate to ensure identical buffer conditions between buffer and sample. Samples were then 

shipped to the SIBYLS beamline at the Advanced Light Source for data collection and basic data 

processing, including scattering integration and buffer subtraction, as detailed extensively in the 

high-throughput mail-in SAXS protocol [48]. Integrated scattering profiles were then inspected 

and analyzed using the ATSAS program suite [49]. At least 9 to 12 scattering profiles representing 
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multiple concentrations and exposures were merged in PRIMUS to generate an average scattering 

profile for each sample tested. Pair distance distributions [p(r)] and maximal intramolecular 

distances (Dmax) were determined by GNOM. Structural comparison maps were calculated, as 

previously described, using the SIBYLS SAXS Similarity online tool 

(http://sibyls.als.lbl.gov/saxs_similarity/) [50]. Fits of crystal structures to merged scattering 

profiles were evaluated by the FoXS and MultiFoXS servers in the case of single-state and 

multistate rigid-body modeling, respectively. For each sample, 10 ab initio models were generated 

through simulated annealing by GASBOR [51] and averaged by DAMAVER [52]. The resultant 

low-resolution molecular envelope of each sample was represented in PyMOL by setting the van 

der Waals distance (vdw) to 5.0 Å and the solvent radius (solvent_radius) to 4.5 Å. 

Native electrospray ionization and IMMS 

FimGNteH variant complexes in 15 mM MES (pH 5.6) and 50 mM NaCl were diluted to 10 

to 20 μM protein concentration and underwent multiple rounds of buffer exchange through dilution 

and concentration into 100 mM ammonium acetate (pH 6.5) (>99.99% trace metals basis) such 

that the final salt concentration was reduced to lower than 10 to 20 μM for clean native electrospray 

ionization (nESI) spectra. FimGNteH:4Z269 complexes were prepared in the same manner after 

FimGNteH variants were incubated with 4Z269 at a 1:1 molar ratio. Samples were loaded at 5 to 

10 μl in custom-made electrospray capillaries and injected into a hybrid ion mobility quadrupole 

time-of-flight mass spectrometer (SYNAPT G2 High Definition Mass Spectrometry, Waters). The 

instrument was operated under gentle ESI conditions (capillary voltage, 1.5 to 2.2 kV; sampling 

cone, 2 V; extraction cone, 1 V; source temperature, 36°C). CE was varied to observe dissociation 

events between FimGNte, FimH, and 4Z269. The pressure of the vacuum/backing region was 5.1 

to 5.6 mbar. For the ion mobility measurements, the helium gas flow to the collision cell was 70 
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ml/min, the ion-mobility spectrometry (IMS) gas flow was 35 ml/min, the IMS wave velocity was 

500 m/s, and the IMS wave height was 20 V. Nitrogen was used as the mobility carrier gas. The 

instrument was externally calibrated up to 8000 mass/charge ratio (m/z) with the clusters produced 

by ESI of NaI solution (100 mg/ml). The peak picking and data processing were achieved by using 

MassLynx (version 4.1) and DriftScope software (Waters). The CCSs for protein ions were 

converted using previously published calibration protocols and databases [53]. FimGNteH variants 

in the presence or absence of 4Z269 were aerosolized by nESI, and native mass spectra were 

acquired under a range of CEs (5 to 40 V). Each spectrum was acquired every 1 s for 2 min and 

gated at m/z values of 3054 to 3056 (apo) and 3094 to 3096 (+4Z269) for the +10 charge state. 

These spectra indicated that all FimH variants entered the gas phase as an intact FimGNteH complex 

at low CE but steadily dissociated with increasing CE (fig. S3A). These spectra also revealed that 

FimGNteH variants stably associated with 4Z269 in accordance with the relative binding strengths 

of the FimH alleles: 4Z269 occupies ~100% of A27V/V163A, ~90% of WT, ~50% of A62S, and 

~0% of Q133K (fig. S3B). The +10 charge state corresponding to intact FimGNteH variants was 

then subjected to ion mobility analysis at various CEs. CCS distributions were modeled as a sum 

of two Gaussian curves because modeling by one Gaussian curve resulted in significantly poorer 

fits in nearly all cases (table S2). 

Protein crystallization and structure determination 

Crystals of FimGNteH A62S grew under numerous polyethylene glycol (PEG) conditions 

at 20°C by hanging drop vapor diffusion in 96-well plates. The diffracted crystals of FimGNteH 

A62S were grown within the PEG II crystallization screen (Qiagen) by mixing 100 nl of protein 

(7.5 mg/ml) with 100 nl of mother liquor [0.2 M calcium acetate, 0.1 M Hepes (pH 7.5), and 10% 

PEG 8000] and equilibrated against 75 μl of mother liquor in the reservoir. These crystals took on 
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a thick rectangular prism morphology and were picked directly from the 96-well screen. They were 

transferred into a cryoprotectant [0.2 M calcium acetate, 0.1 M MES (pH 5.6), 25% PEG 8000, 

and 20% glycerol] and then flash-frozen in a cryostream. Crystals of FimGNteH A27V/V163A 

were grown at 20°C by hanging drop vapor diffusion by mixing 1 μl of protein (5 mg/ml) with 1 

μl of mother liquor [0.2 M calcium acetate, 0.1 M Hepes (pH 7.5), and 5% PEG 8000] and 0.5 μl 

of 0.1 M cadmium chloride and equilibrated against 1 ml of mother liquor in wells of a 24-well 

plate. These crystals took on a thin-plate morphology. They were transferred into a cryoprotectant 

[0.2 M calcium acetate, 0.1 M Hepes (pH 7.5), 25% PEG 8000, and 20% glycerol] and then flash-

frozen in a cryostream. Diffraction data were collected at 100 K at an in-house facility equipped 

with a rotating anode (Rigaku MicroMax-007 generator), a Rayonix marmux x-ray source, and a 

Mar345 image plate detector. Data were indexed and integrated in iMosflm [54] and scaled by 

Scala [55]. The phase problem was solved by MR using Phaser-MR in Phenix [56] with two 

distinct search ensembles: (i) FimHPD (from PDB ID 1KLF) and FimHLD in the T state (from PDB 

ID 3JWN) as separate domains and (ii) FimHPD (from PDB ID 1KLF) and FimHLD in the R state 

(from PDB ID 1KLF) as separate domains. The best solutions were identified as a T conformation 

for FimGNteH A62S and a bent R conformation (90° between FimHLD and FimHPD) for FimGNteH 

A27V/V163A. Several rounds of refinements were performed in phenix.refine to improve the final 

models. 

Molecular dynamics 

Crystal structures of FimGNteH published in this study along with models of FimGNteH 

based on previous crystal structures (GNte docked on H from CH structure) in the absence or 

presence of ligands were used to initiate MD simulations. Structural models of FimGNteH variants 

were created with the in silico mutagenesis wizard in PyMOL after the mutant side-chain rotamer 



 59 

with the fewest steric clashes was selected. Structural models were then prepared within the 

CHARMM36 force field and the TIP3P water model by the MD software package GROMACS-

4.6.7 [57]. The system was first solvated in a cubic box, with sides equal to 130 Å in the presence 

of 50 mM NaCl. The structure was then energy-minimized to reduce steric clashes, and the system 

was finally equilibrated at constant temperature (37°C) and pressure (1 atm). Conventional 

unrestrained MD simulations were then performed with steps of 2 fs for a total time of ~15 to 20 

ns for each run, collecting four replicates for simulations on the T (5JQI), bent R (5JR4), 

and elongated R (based on 1KLF) conformations for WT FimH. Longer simulations were also 

performed at 100 to 200 ns for three replicates for all FimH variants in these conformations with 

similar results. Coordinates were saved every 0.1 ns. Commands in GROMACS and graphical 

output in MATLAB were used to analyze simulation trajectories. 

Conformational phase space 

Conformational phase space calculations were performed with custom in-house scripts in 

PyMOL and MATLAB after alignment of the pilin domain to a reference structure (FimHPD from 

FimCH). The coordinates of the following atoms were tracked and assigned the corresponding 

labels: Leu225 and CD2 (pip1 for “point in pilin 1”), Leu193 and CD1 (pip2), Ala247 and N 

(pip3), Leu193 and CA (pip4), Leu129 and CD2 (pil1 for “point in lectin 1”), Val20 and CG1 

(pil2), and Val105 and N (pil3). The points {pip1, pip2} and {pip2, pil1} define vectors along the 

longest dimension of FimHPD and FimHLD, respectively. The points {pip2, pip3, pip4} and {pil1, 

pil2, pil3} define transverse planes that respectively bisect FimHPD and FimHLD perpendicular to 

the axis of the longest dimension. Bend angle is defined as the {pip1, pip2, pil1} angle. Twist 

angle is defined as the {pip1, pip2, x} angle, where x is defined as the point on the {pil1, pil2, pil3} 

plane at a fixed radial distance from pil1 that is closest to the {pip2, pip3, pip4} plane. Orientation 
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angle is defined as the {pip3, pip2, y} angle, where y is the point on the {pip2, pip3, pip4} plane 

closest to x. These angles are schematically represented in fig. S5A. 

Mouse infections 

For the uncomplicated UTI model, 7- to 8-week-old female C3H/HeN mice were obtained 

from Envigo. Mice were anesthetized and inoculated via transurethral catheterization with 50 μl 

of bacterial suspension (~1 × 107 to 2 × 107 CFU in total) in PBS. At times indicated, mice were 

sacrificed, and bladders were aseptically removed and processed for CFU determination [37]. For 

the CAUTI model, a 5-mm piece of silicon tubing (RenaSil 0.635-mm outer diameter) was inserted 

transurethrally into the bladders of 6-week-old female C57BL/6 mice, as previously described 

[37]. Twenty-four hours after implantation, the mice were transurethrally infected with ~2 × 

107 CFU of UTI89 expressing either the WT or A27V/V163A allele of FimH with the fim operon 

locked in the phase on state [13]. Mice were sacrificed 24 or 72 hpi, and bacteria colonizing the 

bladder and implant were plated for quantification. 

Bladder epithelial cell studies 

Human bladder epithelial cells, designated 5637 (ATCC HTB-9) cells, were obtained from 

the American Type Culture Collection and maintained in RPMI 1640 supplemented with heat-

inactivated 10% (v/v) fetal bovine serum at 37°C in the presence of 5% CO2. Confluent, serum-

starved 5637 cells in 24-well plates were infected with UTI89 strains at a multiplicity of infection 

of 10. After 30 min, culture media were replaced either by fresh culture media or by media with 

gentamicin sulfate (120 μg/ml) (Sigma-Aldrich) to kill extracellular bacteria. Cells were further 

incubated for 1 hour, washed rigorously, solubilized with 1% Triton X-100, quenched with PBS, 

and plated for bacterial CFU quantification. 
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Figures 
 

 
 
 
 
Figure 1. Structure-function relationship in the type 1 adhesin FimH. (A) Schematic 

representation of FimH sequence. The lectin domain (FimHLD, residues 1 to 155) is colored blue, 

the linker is colored yellow (residues 156 to 160), and the pilin domain (FimHPD, residues 161 to 

279) is colored teal. (B) Comparison of previously identified conformations of FimH. FimH bound 

to FimC in a FimCH complex exists in a high-affinity conformer, or R state, with an elongated 

orientation between FimHLD and FimHPD, a narrowly packed β-sandwich fold in FimHLD (as 

highlighted between the two black triangles), and packed mannose-binding loops (labeled as L1, 

L2, and L3). FimH in a tip assembly (FimCFFGH complex) adopts a low-affinity conformer, 

or T state, with a compacted orientation between FimHLD and FimHPD, a widened β-sandwich fold 

in FimHLD (as highlighted between the two black triangles), and displaced binding loops 

(particularly L1). Positively selected residues are indicated as red spheres, and the mannose-

binding pocket is shaded gray. (C) Schematic representation of the negatively coupled allosteric 

relationship between mannose and the interface between FimH domains, whereby increases in 

mannose binding disfavor contacts between FimHLD and FimHPD and vice versa. 
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Figure 2. Crystal structures and mannose binding of FimH variants in a tip-like setting. (A) 

Reaction scheme of in vitro DSE reaction to produce tip-like FimGNteH complexes. (B) 

Representative SDS–polyacrylamide gel electrophoresis of purified FimGNteH variants either 

boiled (not labeled) or not boiled (NB). (C) Enzyme-linked immunosorbent assay (ELISA) 

measuring binding of FimGNteH variant complexes to surface-coated glycoproteins, which include 

secretory IgA (sIgA), Tamm-Horsfall protein (THP), collagen IV, and laminin. (D) Crystal 

structures of FimGNteH A62S [Protein Data Bank (PDB) ID 5JQI, left] and FimGNteH A27V/V163A 

(PDB ID 5JR4, right) depicted as ribbons. These structures are overlaid on previously solved 

crystal structures of FimH in a FimCFFGH complex (3JWN) and FimCH complex (1KLF), 

respectively. Conformations are labeled accordingly. FimHLD, linker, and FimHPD are colored as in 



 69 

(A), the insertion loop (residues 109 to 124) is colored purple, and FimGNte is colored gray. (E) 

FimHLD-FimHPD interface in FimGNteH A62S (left) and FimGNteH A27V/V163A (right). Contacts 

between residues are indicated as black dotted lines. (F) Structural alignment of FimGNteH 

A27V/V163A (colored blue) to FimHLD of mannose-bound FimCH (colored white). Residue side 

chains and mannose in green are depicted as sticks. Contacts between mannose and FimH are 

indicated as black dotted lines. 
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Figure 3. Conformational ensembles of apo and ligated FimH variants in solution. (A) 

Structural comparison heat map of SAXS profiles indicates varying degrees of conformational 

similarity among FimGNteH variants, as measured by χ2, ranging from high (blue) to low (red) 

similarity. (B) Normalized pair distance distributions of FimGNteH variants in the absence or 

presence of 4Z269. FimGNteH variants are represented as solid lines in the absence of 4Z269 or 

dotted lines in the presence of 4Z269 and color-coded, as indicated by the colored lines in (A). (C) 

Structural comparison heat map indicates varying degrees of conformational similarity of each 

FimGNteH variant in the absence or presence of mannoside 4Z269 at a 2× molar ratio. Color-coded 
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as in (A). (D) Averaged ab initio models of FimGNteH variants in the absence or presence of 4Z269 

are color-coded, as previously indicated. 
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Figure 4. Conformational distributions of free and 4Z269-bound FimGNteH variants isolated 

in the gas phase, as revealed by IMMS. (A) CCS distributions of intact FimGNteH variant 

complexes measured by IMMS. (B) Comparison of CCS distributions of free (solid line) and 

4Z269-bound (dotted line) FimGNteH variants. The solid and dotted black lines represent fitted 

Gaussian distributions to apo and ligated FimGNteH, respectively. Fitted Gaussian distributions are 

labeled by letters, given their mean CCS values. Note that Q133K cannot bind mannose and that 

the dotted lines for this variant represent CCS distributions and Gaussian fits to an independently 

measured apo FimGNteH Q133K spectral peak from the sample that was treated with 4Z269. 
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Figure 5. Dynamics and binding mechanisms of conformational populations in FimGNteH 

WT. (A) Structures revealed by MD simulations of FimGNteH WT in a T conformation (top) 

or bent R conformation (bottom) with corresponding measures of structural fluctuation over time 

(RMSD) and distributions of sampled protein shapes (Rg). Different colors correspond to four 

independent simulation replicates. (B) Three-dimensional conformational phase space of 

FimGNteH as defined by bend, twist, and orientation angles for simulations initiated from 

the T (green), bent R (blue), or elongated R (cyan) conformation. Shadows are cast on the grid 

panels and colored in gray. (C) Structures revealed by MD simulations of FimGNteH WT in 
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a T conformation (top) or bent R conformation (bottom) in the presence of mannose, with 

corresponding measures of structural fluctuation over time (RMSD), distributions of sampled 

protein shapes (Rg), and mannose binding. “On” and “Off” measure whether the center of mass of 

mannose is within or outside 10 Å of the carbonyl of residue F1 in the binding pocket. (D) 

Representative binding modes of mannose for T (top) and bent R (bottom) after 5 ns. Mannose is 

depicted as sticks, whereas FimH is shown as a ribbon representation. (E) Structures revealed by 

MD simulations of FimGNteH WT in a T (top) or bent R (bottom) conformation in the presence of 

oligomannose-3 (Man(α1–3)-[Man(α1–6)]-Man), with corresponding measures of structural 

fluctuation over time (RMSD), distributions of sampled protein shapes (Rg), and mannose binding. 

“On” and “Off” measure whether the center of mass of oligomannose-3 is within or outside 20 Å 

of the carbonyl of residue F1 in the binding pocket. (F) Representative binding modes of 

oligomannose-3 for T (top) and bent R (bottom) after 8.5 ns. Man(α1–3)-[Man(α1–6)]-Man is 

depicted as sticks and colored green, yellow, and cyan, respectively. 
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Figure 6. Role of FimH conformation in bladder colonization during UTI. (A) Bacterial titers 

of mouse bladders infected with UTI89 harboring either FimH WT (blue) or A27V/V163A 

(orange) at an inoculum of 107colony-forming units (CFU) measured at 1, 3, and 6 hpi. (B) Total 

bacterial titers of 5637 bladder epithelial cells (no gentamicin treatment) infected with UTI89 

harboring WT (blue), Q133K (red), A62S (green), or A27V/V163A (orange) FimH at an inoculum 

of 107 CFU. (C) Invaded bacterial titers of 5637 bladder epithelial cells (treated with gentamicin) 

infected with UTI89 harboring WT (blue), Q133K (red), A62S (green), or A27V/V163A (orange) 

FimH at an inoculum of 107 CFU. LOD, limit of detection. (D and E) Bacterial titers of C57BL/6 

mouse bladders without catheterization or bladders and implants infected with UTI89 harboring 

either FimH WT (blue) or A27V/V163A (orange) at an inoculum of 107 CFU 24 hours after 

catheterization. **P < 0.01, ***P < 0.001, ****P < 0.0001, two-tailed Mann-Whitney U test. 
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Figure 7. Proposed model of FimH conformational ensembles, mannose binding, and 

virulence in UTI. (A) Two-state conformational landscape of FimH. FimH at the pilus tip natively 

adopts an equilibrium of a single, dynamically restrained, low-affinity T state and multiple, highly 

dynamic, high-affinity R states with various bends, twists, and orientations. Positively selected 

residues can shift this preexisting conformational equilibrium and thereby influence mannose-

binding affinity. The T and R states can bind mannose. Mannose in a tilted orientation rapidly 

enters into the widened and shallow binding pocket of the T state. Mannosylated ligands in a 

bound T state can then rotate in a high-affinity orientation and allosterically trigger structural 

perturbations that disrupt FimHLD and FimHPDinteractions and facilitate conversion to the 

bound R state. In addition, mannose in a horizontal orientation can less rapidly engage the R state 

but does so very tightly through hydrogen bond interactions with several binding loop residues. 

Positive selection, in modulating a native conformational equilibrium, likely alters flux through 

these two distinct binding mechanisms. (B) Schematic model of the FimH molecular tether. The 
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bends, twists, and orientations between FimHLD and FimHPD adopted in bound R states argue for a 

model in which the pilus tip can bend and rotate at the site of the FimH linker with an immobilized, 

bound FimHLD. This physical tethering in theory increases the biophysical and functional 

adaptability of the pilus and thereby allows bacteria to remain attached to the bladder epithelium. 

(C) Pathogenesis outcomes depend on the preexisting equilibrium and affinity of FimH, whereby 

moderate affinity is ideal for successful colonization of the bladder epithelium and formation of 

IBCs. Catheterization allows the high-affinity variant A27V/V163A to partially circumvent the 

colonization resistance property observed in the intact, unperturbed bladder habitat. 
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Supplementary Figures 

 

Figure S1. Structural analysis of solved FimGNteH complex crystal structures. (A) FimGNteH 

A62S (PDB ID 5JQI) crystallizes with four subunits in the unit cell. FimHLD is represented as 

tubes, FimHPD is represented as thin ribbons, and FimGNte is represented as orange tubes. (B) 2Fo-

Fc maps of FimGNteH A62S contoured at 1σ reveal well-resolved electron density for L2 and L3 

but moderate to weak electron density for L1 in chains B, F, and H, likely indicative of a high 
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degree of conformational flexibility in L1 in the crystal. (C) Crystal packing of FimGNteH 

A27V/V163A (PDB ID 5JR4) with symmetry partners colored in gray. (D) Close up of the packing 

interface reveals a calcium ion (green sphere) coordinated by D2 of FimGNte, waters (red spheres), 

and residues G159 and D162 from a neighboring FimH symmetry partner. Calcium acetate was 

absolutely required for formation of FimGNteH A27V/V163A crystals. 
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Figure S2. Structural comparison of all known FimH conformations. To date, four truly 

distinct conformational shapes (T, bent R, a distinct bent R, and elongated R) of FimH have been 

elucidated using X-ray crystallography under various conditions and with different binding 

partners, as indicated below each structural model, and with different FimH sequences, as 

indicated in parentheses. These four distinct conformational shapes reflect only two 

conformational states, given the structural homology and mannose binding propensity of the two 

unique folds of FimHLD identified within these crystal structures. 
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Figure S3. Solution analysis of FimCH and FimGNteH variants. (A) Structural comparison heat 

map of SAXS profiles indicates high degree of conformational similarity among FimCH variants 

as measured by χ2, ranging from high (blue) to low (red) similarity. (B) Normalized pair distance 

distributions of FimCH, color-coded as indicated by the colored lines in (A). (C) Rigid body 

modeling of the FimCH crystal structure (1KLF) to the scattering profiles of FimCH variants 

indicates excellent agreement between crystallographic and solution conformations for all variants. 

(D) Rigid body modeling of four structural models (1: 5JQI=“T”; 2: 5JR4= “bent R”; 3: derived 

from 4XOB = “bent R2”; 4: derived from 1KLF = “elongated R”) to scattering profiles of 

FimGNteH variants in the absence or presence of 4Z269 results in varying goodness of fit. (E) Best-

fitting multi-state models of FimGNteH scattering data. The fitted conformations are colored black 

for T, purple for bent R, yellow for a distinct, previously identified bent R, and cyan for elongated 

R. The relative abundances of these conformations are depicted as weighted percentages, with the 

corresponding goodness of fit shown above each bar. (F) Derivative melting curves obtained by 
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differential scanning fluorimetry (DSF) reveal distinct numbers of and positions in melting 

transitions for FimGNteH variants in the absence or presence of 4Z269. 
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Figure S4. Native and ion mobility mass spectra of FimGNteH variants in the absence or 

presence of 4Z269. (A) Native mass spectra of FimGNteH variants in the absence (top) or presence 

(bottom) of 4Z269 at various collision energies are shown, with an increase in free FimGNte and 

decrease in intact FimGNteH complex as CE increases. (B) Comparison of native mass spectra of 

FimGNteH variants in the absence (red) or presence (black) of 4Z269. (C) CCS distributions of 

FimGNteH variants in the absence (top) or presence (bottom) of 4Z269 over various CE. 
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Figure S5. Conformational dynamics and binding mechanisms of FimGNteH WT. (A) 

Schematic representation of the angles measured to define conformational phase space of FimH. 

(B) Structural alignment of oligomannose-3-chitobiose (Man(α1-3)-[Man(α1-6)]-Man(β1- 4)-

GlcNAc(β1-4)-GlcNAc) to the “horizontal” and “tilted” mannose orientations observed in the 

bound T and R states (“tilted” orientation shown at t=8.5 ns for T state in upper right quadrant; 

“horizontal” orientation shown in all other quadrants). Comparison to the crystal structure of 

FimHLD bound to this high-mannose epitope suggests a mechanism by which mannose may slide 

and rotate and press against the “tyrosine gate” (Y48, Y137) in a high-affinity orientation. Man(α1-

3)-[Man(α1-6)]-Man is depicted as sticks and colored green, yellow, and cyan, respectively, while 

the chitobiose component (GlcNac(β1-4)- GlcNac) is represented as pink sticks. (C) Comparison 

of the distributions of interatomic distances (indicated in graph title) among apo T (n=406), bound 

T (n=293), apo R (n=10), and bound R (n=687) states from simulations in which mannose was 

present. Movement of loop 1 toward the binding pocket is most strikingly associated with mannose 
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binding in the R state but marginally so in the T state. Despite the occasional displacement of loop 

1 away from the R pocket, mannose can remain stably associated with R. Loop 3 is consistently 

more proximal to the pocket in the R state over the T state, contributing to high-affinity 

interactions. In addition, pocket width (defined as the distance between the two residues F1 and 

D54 which coordinate the C6 hydroxyl group of mannose) is larger by 2 Å in the R state and thus 

more capable of forming stronger hydrogen bonds with mannose compared to the T state. 

Furthermore, residue Q133 is generally further away from the binding pocket in the T state than 

in the R state due to structural difference in T and R pockets, but when Q133 does move closer to 

the center of the pocket in the T state, it tends to disfavor mannose binding. Thus, the Q133K 

mutation abolishes mannose binding through steric hindrance of mannose entry in either the T or 

R pockets. Statistical significance was determined by the non-parametric Mann-Whitney U test, 

where *** indicates p<0.005 and **** indicates p<0.0001. (D) Melting temperatures observed by 

DSF for FimHLD variants in the presence or absence of 10 mM mannose. 
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Table S1. Data collection and refinement statistics 
 
 FimGNteH A62S (5JQI) FimGNteH A27V/V163A 

(5JR4) 
Data collection   
Space group P1 C2 
Cell dimensions��   
    a, b, c (Å) 56.4, 75.6, 78.4 122.3, 33.0, 72.5 
��α, β, γ (°)  68.4, 69.0, 77.4 90.0, 120.6, 90.0 
Resolution (Å) 49.8-1.96 (2.03-1.96) * 62.4-2.60 (2.73-2.60) * 
Rmerge (%)a 14.1 (70.6) 16.4 (48.2) 
Rpim (%)b 2.4 (41.8) 3.8 (21.2) 
I / σI 8.5 (1.6) 8.1 (3.3) 
Completeness (%) 83.4 (90.4) 99.6 (95.1) 
Multiplicity 3.9 (3.8) 6.4 (6.0) 
CC1/2 0.99 (0.85) 1.0 (0.68) 
Total / Unique reflections 297,496 / 75,411(40,054 / 

10,548) 
51,190 / 7,964 (6,606 / 1,106) 
 

Refinement   
Rworkc/ Rfreed 20.1 / 24.7  21.4 / 26.5 
No. atoms   
    Protein 8,522 2,138 
    Ligand/ion 24 7 
    Water 890 24 
B-factors   
    Protein 23.0 31.9 
    Ligand/ion 27.9 34.8 
    Water 27.3 30.9 
R.m.s. deviations   
    Bond lengths (Å) 0.004 0.012 
    Bond angles (°) 
Ramachandran plot 
    favored (%) 
    allowed (%) 
    outliers (%) 
Clashscore 

0.79 
 
98.0 
1.8 
0.2 
2.30 

1.03 
 
95.0 
4.6 
0.4 
9.17 

 
 
aRmerge = Σhkl Σi |Ii(hkl)-<I(hkl)>|/Σhkl ΣiIi(hkl), where the sum i is over all separate 
measurements of the unique reflection hkl. 
bRpim =  Σhkl [1/(n-1)]1/2 Σi|Ii(hkl)–<I(hkl) >|/Σhkl Σi Ii(hkl) 
bRwork = Σhkl ||Fobs| - |Fcalc||/ Σhkl |Fobs| 
cRfree, calculated the same as for Rwork but on the 5% data randomly excluded from the refinement 
calculation. 
*the outer resolution shell. Values in parentheses indicate the highest resolution shell 
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Table S2. Fitted parameter values and analysis of Gaussian peaks on CCS distributions 
 
 

 
a All CCS distributions were fit by either one Gaussian or a sum of two Gaussian peaks. The best 
fits are presented in this table. Two Gaussians explained the data better than one Gaussian, 
increasing R2 by 5% and improving the residual plots in all cases except for A27V/V163A + 
4Z269, in which one Gaussian was sufficient. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Amp1 
 

Mean 1 SD1 Amp2 Mean2 SD2 R2 Peak A 
(% AUC) 

Peak B 
(% AUC) 

Peak C 
(% AUC) 

WT 87.81 
(2.27) 

2472 
(0.69) 

69.0 
(0.87) 

32.54 
(0.82) 

2636 
(8.1) 

123 
(4.50) 

0.9985 60 40 --- 

WT     + 
269 

93.04 
(3.68) 

2492 
(0.88) 

66.43 
(1.22) 

30.01 
(1.42) 

2643 
(13.4) 

117.9 
(7.08) 

0.9972 64 36 --- 

Q133K 84.44 
(4.84) 

2472 
(1.21) 

71.11 
(1.72) 

37.75 
(2.05) 

2622 
(14.3) 

122.1 
(6.97) 

0.997 57 43 --- 

Q133K 
+ 269 

85.84 
(2.47) 

2483 
(0.63) 

67.56 
(0.97) 

35.92 
(0.94) 

2639 
(7.95) 

124.2 
(4.24) 

0.9985 57 43 --- 

A62S 81.16 
(4.80) 

2464 
(1.07) 

69.91 
(1.72) 

39.64 
(2.16) 

2606 
(13.1) 

120 
(6.05) 

0.9975 57 43 --- 

A62S   
+ 269 

90.28 
(3.27) 

2494 
(0.94) 

70.09 
(1.14) 

34.82 
(1.26) 

2653 
(10.7) 

121.2 
(5.66) 

0.9979 60 40 --- 

AV 78.14 
(18.3) 

2480 
(2.51) 

61.77 
(3.48) 

38.86 
(11.8) 

2565 
(32.2) 

88.06 
(9.93) 

0.9969 59 --- 41 

AV + 
269a 

100.5 
(0.43) 

2531 
(0.37) 

74.25 
(0.37) 

--- --- --- 0.9968 100 
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Abstract 

 Treatment of bacterial infections is becoming a serious clinical challenge due to the global 

dissemination of multidrug antibiotic resistance, necessitating the search for alternative treatments 

to disarm the virulence mechanisms underlying these infections. Uropathogenic Escherichia coli 

(UPEC) employs multiple chaperone–usher pathway pili tipped with adhesins with diverse 

receptor specificities to colonize various host tissues and habitats. For example, UPEC F9 pili 

specifically bind galactose or N-acetylgalactosamine epitopes on the kidney and inflamed bladder. 

Using X-ray structure-guided methods, virtual screening, and multiplex ELISA arrays, we 

rationally designed aryl galactosides and N-acetylgalactosaminosides that inhibit the F9 pilus 

adhesin FmlH. The lead compound, 29β-NAc, is a biphenyl N-acetyl-β-galactosaminoside with a 

Ki of ∼90 nM, representing a major advancement in potency relative to the characteristically weak 

nature of most carbohydrate–lectin interactions. 29β-NAc binds tightly to FmlH by engaging the 

residues Y46 through edge-to-face π-stacking with its A-phenyl ring, R142 in a salt-bridge 

interaction with its carboxylate group, and K132 through water-mediated hydrogen bonding with 

its N-acetyl group. Administration of 29β-NAc in a mouse urinary tract infection (UTI) model 

significantly reduced bladder and kidney bacterial burdens, and coadministration of 29β-NAc and 

mannoside 4Z269, which targets the type 1 pilus adhesin FimH, resulted in greater elimination of 

bacteria from the urinary tract than either compound alone. Moreover, FmlH specifically binds 

healthy human kidney tissue in a 29β-NAc–inhibitable manner, suggesting a key role for F9 pili 

in human kidney colonization. Thus, these glycoside antagonists of FmlH represent a rational 

antivirulence strategy for UPEC-mediated UTI treatment. 
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Introduction 

Urinary tract infections (UTIs) are one of the most prevalent infections, afflicting 15 

million women per year in the United States alone, with annual healthcare costs exceeding $2 to 

$3 billion [1-3]. Nearly 50% of women will experience at least one UTI in their lifetime. Despite 

appropriate and often successful clearance of bacteriuria by antibiotic treatment, 20% to 30% of 

women will experience a recurrence within 6 mo of the initial acute UTI [1, 4]. Kidney infection, 

or pyelonephritis, represents a severe manifestation of UTI, with ∼250,000 cases and 100,000 

hospitalizations per year in the United States [5]. Acute pyelonephritis requires hospital admission 

and i.v. antibiotics to thwart the long-term sequelae of kidney failure and renal scarring, and, 

together with bacteremia, results in a mortality rate of 10% to 20% [6–8]. With the global 

dissemination and increase of antibiotic resistance, treatment of UTI is becoming a serious clinical 

challenge [9]. Antibiotic susceptibility tests indicate that many uropathogens are resistant to 

traditional first-line antibiotics like trimethoprim-sulfamethoxazole (TMP-SMZ) and even to last-

line antibiotics such as ciprofloxacin and colistin [10-15]. The diminishing efficacy of antibiotic 

therapies toward UTIs and other infectious diseases demands alternative antibiotic-sparing 

approaches to combat bacterial pathogens. Recently, promising efforts have been made to target 

the virulence mechanisms that cause bacterial infection. These studies have provided much-needed 

therapeutic alternatives, which simultaneously reduce the burden of antibiotic resistance and 

minimize disruption of gastrointestinal microbial communities that are beneficial to human health 

[16]. 

Uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs, accounting 

for greater than 80% of community-acquired UTIs [17, 18]. Comparative genomic studies have 

revealed that UPEC strains are remarkably diverse, such that only 60% of the genome is shared 



 91 

among all strains [19]. As a consequence, UTI risk and outcome are determined by complex 

interactions between host susceptibility and diverse bacterial urovirulence potentials, which can 

be driven by differences in the expression and regulation of conserved functions. The ability of 

UPEC to colonize various habitats, such as the gut, kidney, and bladder, depends in large part on 

the repertoire of adhesins encoded in their genome. The most common mechanism for adhesion 

utilized by UPEC is mediated through the chaperone–usher pathway (CUP), which generates 

extracellular fibers termed pili that can confer bacterial adhesion to host and environmental 

surfaces, facilitate invasion into host tissues, and promote interaction with other bacteria to form 

biofilms [20]. Phylogenetic analysis of Escherichia genomes and plasmids predicts at least 38 

distinct CUP pilus types, with single organisms capable of maintaining as many as 16 distinct CUP 

operons [21]. Many of these CUP pilus operons contain two-domain, tip-localized adhesins, each 

of which likely recognize specific ligands or receptors to mediate colonization of a host and/or 

environmental niche. For example, the type 1 pilus adhesin FimH binds mannosylated 

glycoproteins on the surface of the bladder epithelium, which is crucial for the establishment of 

cystitis [22, 23]. The structural basis of mannose (Man) recognition by the N-terminal–receptor 

binding domain, or lectin domain (LD), of FimH has been leveraged to rationally develop high-

affinity aryl mannosides [24-32]. In mouse models of UTI, we have previously demonstrated that 

orally bioavailable mannosides that tightly bind FimH can prevent acute UTI, treat chronic UTI, 

and potentiate the efficacy of existing antibiotic treatments like TMP-SMZ, even against 

antibiotic-resistant E. coli strains [28]. Thus, use of mannosides that target the adhesin FimH 

represents the first successful application of an antivirulence strategy in the treatment of UTI. 

A homolog of the type 1 pilus, the F9 pilus, is one of the most common CUP pili in the E. 

coli pan genome and an important urovirulence factor employed by UPEC for the maintenance of 
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UTI [21, 33]. Our recent work has demonstrated that UPEC up-regulates the expression of F9 pili 

in response to bladder inflammation and epithelial remodeling induced upon UPEC infection [34]. 

These pili display the FimH-like adhesin FmlH, which is capable of binding terminal galactose 

(Gal), N-acetylgalactosamine (GalNAc), or Thomsen-Friedenreich antigen (TF) [Gal(β1-

3)GalNAc(α)]. FmlH was shown to bind TF within naïve or infected kidneys and to Thomsen 

nouvelle antigen (Tn) (GalNAc) within the inflamed bladder epithelium during chronic, 

unresolved UTI. Deletion of FmlH in the urosepsis isolate CFT073 resulted in a competitive defect 

in the ability of this strain to maintain murine UTI in C3H/HeN female mice. Furthermore, 

vaccination with the LD of FmlH (FmlHLD) as the challenge antigen significantly protected mice 

from developing UTI. Thus, we have shown that FmlH serves a key role in the UPEC pathogenesis 

cascade and represents a promising target for antivirulence therapies for UTI in both the bladder 

and kidney habitats. 

Herein, we describe the discovery and structure-based optimization of high-affinity aryl 

galactoside and N-acetylgalactosaminoside FmlH ligands that potently inhibit the function of 

FmlH. Treatment with these FmlH antagonists significantly reduced bacterial burdens in the 

kidneys and bladders of infected mice, thereby demonstrating promising translational value in the 

treatment of UTI in humans. The results of these studies, together with our previous work on FimH 

mannosides, further support the mechanistic and therapeutic value of antivirulence strategies that 

leverage structure-function relationships of diverse bacterial adhesins for the rational design of 

high-affinity glycosides for the treatment of UTI and other bacterial infections. 

 

Results 

O-nitrophenyl β-Galactoside Identified as Early Lead Inhibitor of the F9 Pilus Adhesin FmlH  
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 We revealed in a previous communication that FmlH binds surface glycan receptors 

containing terminal Gal, GalNAc, or TF residues [34]. Given the role of FmlH in UTI 

pathogenesis, we aimed to develop high-affinity galactoside antagonists of FmlH through an X-

ray structure-guided medicinal chemistry approach. This strategy entailed (i) screening a select 

library of galactosides through multiplex ELISA arrays for initial lead compound identification; 

(ii) an iterative process of cocrystal structure determination, virtual screening, structure-based 

ligand design, and in vitro biochemical characterization; and (iii) evaluation of the top lead 

compound in a mouse model of UTI (Fig. 1A). Toward these goals, we first investigated whether 

Gal, GalNAc, and TF could be adapted to function as soluble, competitive inhibitors of FmlH. To 

that end, an ELISA-based competition assay was developed to detect binding of FmlHLD to 

surface-immobilized desialylated bovine submaxillary mucin (ds-BSM) in the presence or absence 

of soluble compounds (Fig. 1A). As expected, Gal, GalNAc, and TF were each capable of 

inhibiting FmlHLD at a concentration of 1 mM, with GalNAc exerting greater inhibitory potency 

than TF or Gal. However, neither Man nor glucose (Glc) had any detectable effect on the ability 

of FmlHLD to bind ds-BSM (Fig. 1B). Lactose (Lac), or Gal(β1-4)Glc, was also incapable of 

inhibiting FmlHLD, demonstrating the high selectivity in which FmlHLD engages Gal-containing 

glycans (Fig. 1B). O-nitrophenyl β-galactoside (ONPG) and isopropyl β-thiogalactoside (IPTG) 

were also tested for inhibition in this exploratory phase of our search for FmlH inhibitors. While 

IPTG exerted minor inhibitory activity at 100 μM, ONPG was found to block FmlHLD from 

interacting with ds-BSM more effectively than Gal, GalNAc, or TF (Fig. 1B). The strong 

inhibitory potency of ONPG suggested that β-galactosides could potentially be rationally designed 

with higher affinity by specifically targeting residues within and surrounding the sugar binding 

pocket of FmlH. 
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 Therefore, X-ray crystallography was implemented to elucidate the 3D structures of both 

apo and ligand-bound FmlHLD (SI Appendix, Table S1). First, a crystal structure of apo FmlHLD 

was solved at 1.6 Å resolution by molecular replacement using FimHLD [Protein Data Bank (PDB) 

ID 3MCY] as the search model. Within this structure, two copies of FmlHLD are found in the 

asymmetric unit, each of which adopts a canonical β-sandwich fold, with three distinct binding 

loops (loop 1: residues 10 to 15; loop 2: residues 44 to 53; and loop 3: residues 132 to 142) that 

form a wide, shallow, solvent-exposed binding pocket (Fig. 1 C and D). Within the binding pocket 

of both copies resides a sulfate ion, which interacts with residues implicated in Gal binding (Fig. 

1D). Cocrystal structures of FmlHLD bound to TF and of FmlHLD bound to ONPG were also solved 

to 2.1 Å and 1.8 Å, respectively. Structural overlay of the apo and ligated crystal structures yields 

root-mean-square deviation (RMSD) values that fall within 0.6 Å, suggesting that FmlHLD 

generally adopts the same active or functional conformational state in the absence or presence of 

ligand (Fig. 1C). This functional conformational state most likely corresponds to a high-affinity 

conformation of FmlH, as the FmlHLD structures exhibit a higher degree of structural homology to 

the high-affinity conformation of FimH (RMSD values of 0.8 to 0.9 Å) than to the low-affinity 

conformation of FimH (RMSD values of 1.7 to 1.9 Å) [34–38]. 

 The cocrystal structure of FmlHLD-TF reveals two copies of FmlHLD-TF in the unit cell, in 

which each TF adopts a distinct ligand conformation (Fig. 1D). In both copies, the terminal Gal in 

TF occupies the cleft of the binding pocket through direct polar interactions with residues F1, D53, 

K132, and N140. In contrast, the orientation of the GalNAc in TF differs significantly between the 

two copies of FmlH. In chain A, the GalNAc sugar points toward loop 3, with the carbonyl group 

of GalNAc forming a hydrogen bond (H-bond) with the guanidinium group of R142. In chain B, 

however, the GalNAc packs against and forms a H-bond with the hydroxyl group of Y46. 
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Accordingly, the differences in the orientation of bound ligand across the two copies are 

accompanied by slight differences in orientation of the side chains of the interacting residues Y46 

and R142. The multiple binding modes observed for a single ligand suggests that the wide, shallow 

nature of the Gal binding pocket in FmlH would enable galactosides to possibly bind FmlH with 

diverse interactions and conformations. 

 The FmlHLD-ONPG cocrystal structure also shows two copies of FmlHLD in the unit cell, in 

which a sulfate ion occupies the binding pocket of chain A while ONPG occupies the binding 

pocket of chain B (Fig. 1D). As expected, the Gal component of ONPG resides in the cleft of the 

binding pocket, while the solvent-exposed nitrophenyl group mediates a polar or salt-bridge 

interaction with R142 through an intricate network of H-bonds with water molecules. Furthermore, 

the positioning of the Gal component of ONPG aligns with that of the Gal residue of TF (Fig. 1C). 

Moreover, the conformation of the FmlH binding pocket observed in this FmlHLD-ONPG cocrystal 

structure resembles the binding pocket conformation in the FmlHLD-TF cocrystal structure, 

reflecting a high-affinity binding orientation that can be targeted for drug discovery. These results 

and observations strongly suggested that the FmlHLD-ONPG cocrystal structure represents an 

appropriate structural candidate for use in virtual screening to aid in the design of galactoside 

compounds specific for FmlH. 

Virtual Screen Identifies and Informs the Design of FmlH-Targeting Galactosides  

 An exhaustive virtual screen was performed using AutoDock Vina to computationally dock 

∼1,800 known galactosides in the binding pocket of FmlHLD (from an FmlHLD-ONPG cocrystal 

structure; PDB ID 6AOY), generating a ranked list of top binding poses and associated docking 

scores for each galactoside (SI Appendix, Fig. S1A). Top hits from the virtual screen were filtered 

according to group efficiency values and then visually inspected to aid and inform structure-guided 
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drug design. In all cases, the Gal component of top-scoring galactosides bound to the cleft of the 

binding pocket, as expected. In addition, most of the high-scoring hits also interacted with specific 

hot-spot residues near the Gal binding pocket, which we sought to leverage for compound 

optimization. These hot-spot residues included (i) residue Y46, which caps the top of the binding 

pocket and can contribute hydrophobic interactions; (ii) residue K132, which lies at the bottom of 

the sugar binding pocket and can engage polar groups linked to the Gal sugar; and (iii) residue 

R142, which points toward an empty, solvent-exposed cleft near the binding pocket and can 

contribute electrostatic interactions (SI Appendix, Fig. S1B). These visual insights were then 

considered in our rational design strategy for FmlH-targeting galactoside antagonists. 

Design and Synthesis of FmlH-Targeting Galactoside Antagonists  

 To increase FmlH binding affinity and explore structure-activity relationships (SARs), we 

constructed a large library of galactoside analogs (Fig. 2). Based on the docking results, we 

predicted that β-Gal isomers would be preferred over α-Gal and that ortho positioning of functional 

groups on a phenyl scaffold would best facilitate interactions with specific sites within the binding 

pocket, namely hot-spot residues Y46 and R142. Accordingly, we synthesized and evaluated small 

sets of phenyl galactosides with ortho-substituted functional groups (2 to 6; Fig. 2A). We also 

either purchased or synthesized several other phenyl galactosides, which contained meta or para 

substituents on the aglycone ring (7 to 11; Fig. 2A), and other aryl and heterocyclic galactosides 

(12 to 22; Fig. 2 B and C). This allowed us to derive meaningful SARs for informing further design 

and optimization of improved galactosides. In addition, we tested natural-product galactosides 

isolated from cranberries and other natural sources (23 to 27; Fig. 2D). The promising activity of 

the simple galactoside ONPG (4β) in the initial screen, coupled with the hot-spot residues 

identified in virtual screening, prompted us to expand our FmlH-ligand design strategy with a 
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compound series containing biphenyl aglycones (28 to 32; Fig. 2E), such as 29β-NAc, the N-

acetyl-β-galactosaminoside with an m-carboxylic acid on the B-ring designed to directly interact 

with the hot-spot residue R142 (SI Appendix, Fig. S1 B and C). To confirm the predicted 

preference for the β-Gal isomers, we also synthesized and tested many corresponding α-Gal 

isomers. Compounds were synthesized by using one of two general synthetic glycosylation 

methods involving either a reaction between Gal pentaacetate and phenols promoted by boron 

trifluoride or a Koenigs–Knorr-type reaction of galactosyl halide with aryl alcohols (SI Appendix, 

Fig. S2). 

Biochemical Characterization of FmlH Antagonists  

 Selected top-hit glycosides and a few low-scoring analogs from the virtual screen, as well as 

synthetic galactosides, were tested in the ELISA-based competition assay for their ability to inhibit 

binding of FmlHLD to ds-BSM. Direct comparison of inhibitory potency among galactosides led 

to delineation of basic SARs (Fig. 3 A–C and SI Appendix, Table S2). When tested at 100 μM, 

the phenyl β-galactoside 1β (beta isomer of 1; Fig. 2A) exhibited significantly higher binding 

inhibition (77%) than Gal (8.1%), indicating that the phenyl group significantly enhances binding 

to FmlHLD (Fig. 3A). Various ortho substituents on the phenyl ring additionally conferred 

substantial improvements in inhibitory potency, as observed with 2β (87%), 3β (95%), 4β (ONPG; 

93%), 5β (97%), and 6β (90%). In contrast, the meta-methoxy groups in compound 7β (76%) did 

not enhance binding strength compared with 1β. Further, para-substituted functional groups 

displayed variable inhibitory potencies relative to 1β, with enhancements observed in 8β (86%) 

and 9β (86%), with no significant effect observed in 11β (78%) or 11β-thio (72%), and with a 

reduction observed in 10β (65%). Thus, we deduced that the ortho-substituted phenyl β-

galactosides generally outperformed other simple phenyl galactosides. 
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 Complex heterocyclic galactosides, such as coumarins 12β (85%) and 14β (89%), which 

differ only by a methyl group, displayed significant inhibitory potencies against FmlHLD, while 

the related galactoside 13β (50%) displayed reduced inhibitory activity, likely because of its fluoro 

substituents (Fig. 3A and SI Appendix, Table S2). Resorufin galactoside 15β (80%) also showed 

similar potency compared with the phenyl β-galactoside 1β. These combined results suggest that 

the substituents of 12β are responsible for augmenting affinity relative to 1β. In contrast, indoles 

16β (22%) and 17β (41%) performed poorly as inhibitors of FmlHLD. Naphthyl galactosides 18β 

(46%) and 19β (79%), in addition to isoquinoline 21β (15%), showed no improvement in activity 

relative to 1β. However, quinoline 20β (95%) displayed significantly higher inhibition than 1β and 

18β. This advocates that the electron pair-donating nitrogen atom in 20β is making a specific 

interaction with FmlH. This observation is consistent with the pattern of SARs, indicating that the 

ortho position is key to enhancing inhibitory potency against FmlHLD. 

 We also evaluated naturally occurring galactosides derived from cranberries and other 

natural sources in this screen (Fig. 3A and SI Appendix, Table S2). These compounds included 

anthocyanidin (pelargonidin, 23β; cyanidin, 24β; peonidin, 25β) and flavonol (quercetin, 26β; 

myricetin, 27β) β-galactosides. Generally, these compounds exhibited moderate to weak inhibition 

of FmlHLD binding, with little enhancement in inhibition relative to Gal (8.1%). The only 

significant binders were 24β (29%) and 26β (14%). Comparison of the anthocyanidin family 

indicates that the 3′ or meta-substituted hydroxyl group on the B-ring of 24β is critical for its 

specific interaction with FmlH. Absence of this meta substituent in 23β (0.7%) or methylation of 

the hydroxyl group in 25β (3.6%) abrogates potency, suggesting that the hydroxyl group of 24β 

might participate in a H-bond to a specific residue in the FmlHLD binding pocket. Additional 

inhibitory screens performed with cranberry-derived compounds and fractions at 1 mM confirmed 
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the specificity and necessity of the Gal sugar for inhibiting the binding pocket of FmlH (SI 

Appendix, Fig. S3 A and B). 

 Interestingly, the tested GalNAc-derived compounds possessed significantly higher 

inhibitory potency compared with their matched-pair Gal-derived counterparts, as exemplified 

with 4β-NAc (87%) relative to 4β (31%) when tested for inhibition at 10 μM (Fig. 3B and SI 

Appendix, Table S2). These results taught us that the N-acetyl group, together with other 

functional groups, contributes to binding by targeting distinct components of the binding pocket 

of FmlH. In contrast, the galactosides with α-linkages (28α-30α) or disaccharides with aglycone 

moieties (33 to 35) were generally poor inhibitors of FmlH, except for 11α-NAc (82%) (Fig. 3A 

and SI Appendix, Table S2). 

 Consistent with the above-mentioned SARs, the ortho biphenyl galactoside 28β (91%) was 

more potent than the meta 31β (57%) or para 32β (30%) analogs (Fig. 3A and SI Appendix, Table 

S2). Next, we installed a carboxylate group at the meta position on the biphenyl B-ring (29β), 

intended to target the pocket formed by N140 and R142, and found that 29β exhibited greater 

inhibition (99%) compared with 28β when tested at 100 μM. This pronounced difference in activity 

was further highlighted when these compounds were tested for inhibition at 10 μM and 1 μM (Fig. 

3 B and C and SI Appendix, Table S2). Importantly, 30β (87%), the methyl ester of 29β, tested at 

100 μM resulted in a reduction in binding, suggesting that the negative charge of the carboxylic 

acid likely mediates a critical electrostatic interaction with R142 of FmlHLD. Lastly, we 

synthesized the GalNAc version of 29β to increase its binding affinity and found that 29β-NAc 

(93%) had significant improvement in activity over 29β (75%) when tested at 10 μM. Final 

evaluation of the highest performing galactosides in the ELISA-based competition assay at 

concentrations of 10 μM and 1 μM allowed for a clearer ranking of compounds, where 29β-NAc 
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clearly stood out as the most potent (Fig. 3 B and C and SI Appendix, Table S2). 

Determination of FmlH–Galactoside Binding Affinities  

 Bio-layer interferometry (BLI) was pursued to quantitate the binding affinity of the most 

promising FmlH antagonists. First, biotinylated serine-linked TF (Ser-TF) immobilized on 

streptavidin pins was incubated with varied titrations of FmlHLD in solution, and steady-state 

analysis of binding responses revealed a dissociation constant (Kd) of 15.0 ± 0.8 μM (Fig. 3D). 

Next, immobilized Ser-TF was incubated in solutions comprising a fixed concentration of FmlHLD 

but varying concentrations of galactosides to determine their inhibitory or dissociation constant 

(Ki or Kd) values (Fig. 3E). The BLI-based affinity determinations correlated well with the relative 

binding strengths measured in the ELISA-based competition assay (Fig. 3 A–C and SI Appendix, 

Table S2). The two lead compounds, 29β-NAc and 29β, bound tightly to FmlHLD, with respective 

Ki values of ∼90 nM and 2.1 μM, which represent a ∼7,800-fold and ∼330-fold enhancement in 

binding affinity relative to Gal. Another promising compound, 4β-NAc, bound FmlHLD with a Ki 

value of 2.3 μM. In summary, a combinatorial approach based on virtual screening and structure-

guided ligand design led to the discovery of small–molecular weight monomeric glycosides 

derived from Gal and GalNAc that function as effective antagonists of FmlH. Optimization of 

early hits to high-affinity o-biphenyl Gal and GalNAc antagonists was realized via ortho 

substitution on phenyl aglycones to facilitate interactions that significantly enhanced binding to 

FmlH. 

Structural Basis of Galactoside Inhibition of FmlH  

 To elucidate the molecular basis for galactoside inhibition of FmlH, cocrystal structures of 

FmlHLD bound to 4β, 5β, 20β, and 29β-NAc were determined (Fig. 4 A and B). These galactosides 

share a common aglycone motif consisting of a phenyl ring with an ortho-substituted functional 
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group. As predicted from computational studies, the sugar portion of all these galactosides resides 

within the cleft of the binding pocket. The phenyl groups directly attached to the sugar portion of 

all four compounds lie along the same 3D plane. In this nearly identical conformation, the phenyl 

ring is oriented perpendicularly to the side chain of residue Y46, revealing edge-to-face π-stacking, 

which likely contributes to the affinity enhancement observed for all β-galactosides. For 4β, 5β, 

and 20β, the ortho substituents point toward R142 but are too distant (>7 Å) for direct interaction 

and, instead, form H-bonds with water molecules that, in turn, interact with residues K132 and 

R142 (Fig. 4A). Thus, we deduced that the marked affinity enhancement observed for 4β, 5β, and 

20β is due to a combination of (i) indirect interactions between the ortho substituent and residues 

K132 and R142 formed by an intricate network of water-mediated H-bonds and (ii) edge-to-face 

π-stacking between the phenyl ring and residue Y46. 

 In contrast to simple phenyl galactosides, the biphenyl scaffold of 29β-NAc presents the 

carboxylic acid to engage in a direct charge–charge interaction with the guanidinium side chain of 

R142 (Fig. 4B). The lower potency of the methyl ester derivative 30β is further evidence that the 

charge–charge interaction likely drives the observed affinity enhancement (Fig. 4C). The improved 

affinity of 29β-NAc relative to 29β is also due to additional interactions mediated by the N-acetyl 

group in H-bonding to a water molecule captured by the biphenyl aglycone and the side chain of 

residue K132 (Fig. 4 B and C). Altogether, analysis of all X-ray crystal structures of ligand-bound 

FmlH offers two general mechanisms for the significant enhancement in binding affinity of 

galactosides relative to Gal: edge-to-face π-stacking with Y46 and polar or electrostatic charge–

charge interactions with K132 and R142. 

FmlH Antagonist Effectively Treats Murine UTI in Vivo and Prevents Binding to Human 

Kidney Tissue  
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 We previously reported that FmlH binds to naïve kidney and inflamed bladder tissue and 

plays a critical role in chronic UTI, as abrogation of its function through genetic deletion or 

vaccination results in significant attenuation in the ability of UPEC to cause chronic UTI [34]. 

Thus, we hypothesized that galactosides that inhibit the function of FmlH would have efficacy in 

the treatment and/or prevention of UTI. To assess therapeutic potential, the lead compound 29β-

NAc was evaluated for its ability to reduce bacterial burdens in the urinary tracts of C3H/HeN 

mice during chronic UTI. We previously defined chronic cystitis in C3H/HeN mice as urine titers 

of >104 CFU/mL lasting at least 2 to 4 wk, as well as bladder inflammation and edema at euthanasia 

[39]. Further, C3H/HeN mice are genetically predisposed to vesicoureteral reflux (retrograde flow 

of urine from the bladder to the kidneys), which can lead to bacterial colonization of the kidneys, 

renal abscess formation, scarring, and atrophy [40]. Accordingly, we observed high levels of 

kidney colonization by CFT073 in control (vehicle-treated) animals. When delivered 

intravesically, 29β-NAc significantly reduced bacterial burdens in both the bladder and the kidneys 

of these mice (Fig. 5 A and B). For comparison, mannoside 4Z269, which inhibits the type 1 pilus 

adhesin FimH, also significantly reduces titers of CFT073 from the bladders and kidneys of 

infected mice relative to vehicle control (Fig. 5 A and B). When administered together, 29β-NAc 

and 4Z269 eradicated bacteria from the kidney in nearly all mice while also reducing bacterial 

titers in the bladder, suggesting that FimH mannosides and FmlH galactosides may function 

synergistically to target distinct bacterial adhesins or communities within the kidney habitat (Fig. 

5 A and B). 

 To show relevance to human UTI, we assessed FmlH and FmlH-targeting galactosides 

through immunofluorescence analysis of FmlHLD binding to human kidney and bladder biopsied 

tissue determined to be nonmalignant. While FmlHLD does not appear to bind to healthy human 
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bladder tissue, FmlHLD does bind to healthy human kidney tissue, particularly in regions 

resembling the collecting ducts and distal tubules of the kidney (Fig. 5C and SI Appendix, Figs. 

S4 and S5). As a negative control, the binding null mutant FmlHLD K132Q, which lacks the ability 

to bind ds-BSM in vitro (SI Appendix, Fig. S6), was incapable of binding kidney tissue, suggesting 

that FmlHLD specifically recognizes receptors naturally present in human kidney tissue (Fig. 5C). 

These observations are consistent with the previously reported binding phenotypes in mice, in 

which FmlH can bind naïve mouse kidney tissue, but not naïve mouse bladder tissue, and can bind 

to receptors in inflamed bladder tissue [34]. Moreover, incubation of 29β-NAc with FmlHLD 

prevented binding to human kidney tissue, suggesting that these results may translate to humans. 

Importantly, these collective data provide substantial evidence that aryl glycoside–based FmlH 

antagonists derived from β-Gal or β-GalNAc can serve as an effective therapy for persistent UTIs, 

including pyelonephritis, for which there is an enormous unmet medical need. 

 

Discussion 

 UPEC is the causative agent of most UTIs, a common and very costly disease in women, 

children, and the elderly that is becoming increasingly resistant to antibiotic treatment. By 

leveraging our expertise in UPEC pathogenesis and structure-based drug design, we developed 

small-molecule Gal-based FmlH antagonists that show in vivo efficacy in the treatment of chronic 

UTI in mouse models. Virtual screening combined with rational design led to the identification of 

several naturally occurring cranberry and synthetic galactosides, the most potent of which binds 

FmlH with nanomolar affinity. X-ray crystallography revealed that potent galactosides achieve 

significant enhancements in binding affinity through interactions on opposite sides of the wide Gal 

binding pocket of FmlH. Appropriately substituted aryl groups, like those found in 4β/4β-NAc, 
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5β, and 20β, are seen to mediate edge-to-face π-stacking interactions with Y46 of FmlHLD. Further, 

the optimized biphenyl aglycone of compound 29β-NAc contains an ideally positioned carboxyl 

group to mediate electrostatic interactions with R142 in addition to π-stacking interactions with 

Y46. Evaluation of the lead candidate 29β-NAc in a mouse model of chronic UTI demonstrated 

significant reductions of bacterial burdens in the mouse kidney and bladder. Combination dosing 

with mannoside and galactoside resulted in near complete clearance of bacteria from the kidney 

and significant elimination of bacteria from the bladder. Furthermore, FmlH was shown to bind 

specifically to human kidney tissue, which could be inhibited by 29β-NAc. Additionally, FmlH 

has been shown to be up-regulated in urine samples directly isolated from human patients with 

UTI compared with expression during in vitro growth in media or normal urine [41], suggesting 

an important role for FmlH in human UTI. Thus, FmlH-targeting galactosides represent a rational 

antivirulence modality for the effective treatment of UPEC-mediated UTI. 

 Our rational strategy to discover receptor-mimicking galactosides targeting FmlH was 

similar to the strategy we followed for the development of FimH mannosides. However, the design 

of the galactoside and N-acetylgalactosaminoside antagonists of FmlH was met with distinct 

challenges. The most striking difference between FmlH and FimH is the binding affinity for their 

respective ligands: FimH binds soluble Man with a moderate binding affinity of ∼5 to 10 μM, and 

FmlH binds soluble Gal with a weak binding affinity of ∼700 μM [34, 42, 43]. The weak binding 

affinity of FmlH, which is quite common for most carbohydrate–lectin interactions, rendered the 

development of high-affinity galactosides much more challenging. This disparity in affinity is a 

direct consequence of the substantial variance in the shape of the binding pocket. FimH binds Man 

with high affinity because of the deep, narrow pocket formed by loops 1, 2, and 3, in which loops 

2 and 3 mediate specific polar interactions directly to Man and a water molecule and loop 1 serves 
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as an affinity clamp to stymie dissociation of Man [35]. In contrast, loop 1 in FmlH is more distant 

from loops 2 and 3 than it is in FimH and does not contribute to binding, which results in a widened, 

solvent-exposed pocket for weak Gal binding (Fig. 1D). In addition, the differences in binding 

pocket architecture dictate the sterically allowed linkage types. FimH has space at the tip of the 

LD between its parallel tyrosine gate (residues Y48 and Y137) to accept α-linked moieties, of 

which biaryl groups confer drastic enhancements in affinity through strong parallel face-to-face π-

stacking interactions. In contrast, FmlH is capped at the very tip of the pocket with Y46, which 

biases specificity toward β-linked moieties, of which biaryl groups confer moderate enhancements 

in affinity through significant edge-to-face π-stacking interactions. Having accounted for these 

variations, our structure-guided medicinal chemistry approach, coupled with our in vivo work, has 

clearly demonstrated the future translational impact of galactosides as treatments for UTI. 

 It is noteworthy that our collective search for high-affinity antagonists of FmlH and FimH 

has led to discovery of biphenyl moieties as the preferred aglycone groups for high-affinity 

galactosides and mannosides, respectively. Pocket geometry dictates the type of biphenyl scaffold 

that is optimal. Thus, the best FimH-targeting mannosides contain para biphenyls in the alpha 

stereochemistry, while the best FmlH-targeting galactosides contain ortho biphenyls in the beta 

orientation. However, in both cases, H-bonding donors or acceptors on the B-ring result in 

significant enhancement in binding affinity through specific interactions outside the sugar binding 

pocket. Intriguingly, the inhibitory potency conferred by the meta carboxyl on the B-ring of 29β-

NAc is also appreciated in the significant inhibitory role of the meta-substituted group on the B-

ring in cranberry compounds 24β and 26β, which suggests a common pharmacophore between our 

optimal synthetic compound and natural-product compounds in targeting FmlH. This study 

provides evidence that specific glycosidic compounds in cranberry can specifically bind and 



 106 

inhibit a bacterial adhesin. Furthermore, our work exposes a trend indicating that π-stacking of 

aromatic aglycones with binding pocket residues in the adhesin is essential in mimicking 

glycoprotein receptors and for developing tight-binding ligands in each lectin. Mimicking 

carbohydrates with small molecules is a long-sought-after goal in medicinal chemistry and 

chemical biology [44-46], and we believe that these results add significantly to this understanding 

and goal. This information can now be utilized not only in the future optimization of lead 

compound 29β-NAc as a treatment for UTIs, but also in the rational design of numerous other 

lectin antagonists for the development of small-molecule glycoside-based drugs aimed at treating 

infections mediated by E. coli or other microbes [44]. 

 The rapid increase and spread of antibiotic resistance, including multidrug-resistant forms of 

bacteria, has rendered many antibacterial therapies ineffective and threatens to undermine the 

biomedical strides made to promote human health and longevity [9]. Selection pressures imposed 

by antibiotics on bacterial pathogens have promoted their proliferation, especially through overuse 

of antibiotics within the farming industry and inappropriate use or misuse among patients [47-50]. 

Recent reports indicate that patients are now succumbing to bacterial strains which possess broad-

spectrum resistance to all last-resort antibiotics, which many fear signals that antibiotic resistance 

will pave the way for the “next pandemic” [15]. Antivirulence strategies that aim to reduce the 

pathogenicity of bacterial pathogens promise to provide the same therapeutic efficacy as 

antibiotics without introducing selective pressures that would promote widespread dissemination 

of resistance [16]. Multiple antivirulence efforts will be required to combat the multiple 

mechanisms by which diverse bacterial pathogens colonize the host, which can include, for 

example, the targeting of CUP pilus adhesins or the biogenesis machinery responsible for the 

assembly of CUP pili [51]. As highlighted in this work, UPEC employs an armament of diverse 
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CUP pili to colonize and persist within changing local environments encountered during UTI 

pathogenesis, which suggests that targeting more than one CUP adhesin may indeed be a more 

effective strategy for combating UTIs. Herein, we have highlighted the overwhelming value of 

applying a deep mechanistic understanding of structure-function-virulence relationships of 

bacterial adhesins to the rational design of high-affinity carbohydrate glycomimetics for the 

treatment of UTI. This demonstration serves as a general model for the rational approach necessary 

to target virulence factors and disrupt their role in bacterial infections. 

 

Materials and Methods 

Ethics Statement 

 All animal experiments were conducted according to the National Institutes of Health (NIH) 

guidelines for housing and care of laboratory animals and performed in accordance with 

institutional regulations after pertinent review and approval by the Institutional Animal Care and 

Use Committee at Washington University School of Medicine (protocol 20150226). Deidentified 

human tissue was obtained from the Tissue Procurement Core at Washington University School 

of Medicine. 

Protein Expression and Purification 

 FmlH residues 1 to 160 from UPEC strain UTI89 with a C-terminal six-histidine tag (i.e., 

FmlHLD) were cloned into the IPTG-inducible plasmid pTrc99A. This construct was then 

transformed into and expressed in E. coli strain C600. Periplasms were isolated as previously 

described and dialyzed four times against PBS plus 250 mM NaCl [34]. FmlHLD was purified from 

this periplasmic fraction by cobalt affinity chromatography through elution with 150 mM 

imidazole. FmlHLD was buffer exchanged into 10 mM Hepes [4-(2-hydroxyethyl)-1-
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piperazineethanesulfonic acid] (pH 7.5) and 50 mM NaCl, concentrated to 6 mg/mL, and stored 

stably at 4 °C for use in biochemical and biophysical assays. 

In Silico Docking and Virtual Screening 

Structure-based virtual screening through in silico docking was performed with AutoDock 

Vina [52]. Existing Gal-based derivatives were identified through the ZINC12 database [53]. Their 

3D structures were extracted from the downloaded mol2 file as pdb coordinates and converted to 

pdbqt format using Open Babel [54]. The crystal structure of apo FmlH was converted to its 

topology file using AutoDock Tools. The grid box was centered at the Gal binding pocket of FmlH, 

and its dimensions (26 × 26 × 26 Å3) were chosen to accommodate bulky compounds and multiple 

potential binding modes at or near the binding pocket. The exhaustiveness of the search was set to 

a value of 15. The top binding modes and scores within this grid space were generated by 

AutoDock Vina. Custom in-house scripts in Bash and MATLAB were used to link these binding 

scores with compound properties such as molecular weight. Top binding modes were visualized 

in PyMOL. 

Virtual screening of this library, which comprised galactosides ranging from 150 to 900 

Da in molecular mass, yielded a mean docking score of 6.3 kcal/mol (1 kcal = 4.18 kJ), with a 

standard deviation of 0.73 kcal/mol and a range of 4 to 9 kcal/mol (SI Appendix, Fig. S1A). To 

prioritize hits, we abstained from directly comparing raw binding scores, as large, lipophilic 

molecules tend to have artificially high predicted binding interactions due to their contribution to 

hydrophobic interactions as calculated by the empirical scoring function of AutoDock Vina [52]. 

Instead, the results of the virtual screen were evaluated per group efficiency (GE), which, in this 

context, measures the contribution of the aglycone group within each galactoside (indicated as X 

in the following equation) to the docking score (DS) with respect to the number of heavy atoms 
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(HA) present in the aglycone group [GE = (DSX − DSGal)/(HAX − HAGal)]. Top hits were defined 

as galactosides with a GE value greater than 1.25 times the SD (σ = 0.0016 kcal/mol per HA) 

above the library mean (μ = 0.0011 kcal/mol per HA), which constituted the top ∼10% of highest 

scoring galactosides (SI Appendix, Fig. S1A). 

Synthesis of Galactosides and N-acetyl Aminogalactosides 

Galactosides and N-acetyl aminogalactosides were synthesized by standard glycosylation 

chemistry, including boron trifluoride-mediated glycosidation and the Koenigs–Knorr reaction, 

respectively (SI Appendix, Fig. S2). In method A, boron trifloride-promoted glycosylation of 

phenols with Gal pentaacetate yielded corresponding acetylated aryl galactosides, which were 

treated with sodium methoxide in methanol to provide the corresponding aryl galactosides (1β to 

3β, 5β to 9β, 18β to 19β, and 28β to 32β; 2α to 3α, 18α to 19α, and 28α to 32α). In method B, final 

GalNAc and Gal analogs (20β-NAc, 21β, 28β-NAc, and 29β-NAc) were synthesized from 

galactosyl halide and aryl alcohols via a Koenigs–Knorr-type reaction, which yielded aryl 

galactosides that were then deacetylated by treatment with methylamine in ethanol. 

ELISA 

 Immulon 4HBX 96-well plates were coated overnight with 1 μg of bovine submaxillary 

mucin (Sigma). Coated wells were then treated with 100 μL of Arthrobacter ureafaciens sialidase 

(10 mU/mL) diluted in PBS for 1 h at 37 °C. Thereafter, wells were incubated with 200 μL of 

blocking buffer (PBS plus 1% BSA) for 2 h at 23 °C, followed by incubation with 100 μL of 

biotinylated FmlHLD diluted in blocking buffer to 20 μg/mL in the presence or absence of 

galactoside compounds for 1 h at 23 °C. After washing three times with PBS plus 0.05% TWEEN-

20, 100 μL of streptavidin-HRP conjugate (BD Biosciences; 1:2,000 dilution in blocking buffer) 

was added to each well for 1 h at 23 °C. After a final round of washing, plates were developed 
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with 100 μL of tetramethylbenzidine (BD Biosciences) substrate and quenched within 1 to 2 min 

with 50 μL of 1 M H2SO4, and absorbance was measured at 450 nm. This assay was used to 

determine percent inhibition values and inhibitory constant (IC50) values where indicated. 

BLI 

 Streptavidin pins were first dipped in a baseline in PBS (pH 7.4) for 120 s, followed by 

loading of 5 to 10 μg/mL biotinylated Ser-TF (Toronto Research Chemicals) in PBS for 300 s, 

quenching by 10 μg/mL biocytin in PBS for 240 s, and another baseline step in PBS for 120 s. 

Thereafter, pins were dipped in PBS for 120 s and transferred to protein samples (varying 

concentration of FmlHLD or fixed concentration of FmlHLD with varying concentration of 

galactoside compounds) for association for 300 to 600 s. Equilibrium binding response values were 

used to determine the affinity of interaction between FmlHLD and immobilized Ser-TF under a 1:1 

binding model or between FmlHLD and galactosides in solution under a competitive one-site 

binding model. 

Protein Crystallization and Structure Determination 

 Crystals of apo FmlHLD in 10 mM Hepes (pH 7.5) and 50 mM NaCl were grown by mixing 

2 μL of protein (6 mg/mL) with 2 μL of mother liquor [0.2 M ammonium sulfate, 0.1 M NaCl, 0.1 

M Mes [2-(N-morpholino)ethanesulfonic acid] (pH 5.6), and 28% PEG 3350] and equilibrated 

against 1 mL of mother liquor in the reservoir. Cocrystals of FmlHLD bound to TF or galactosides 

4β (in space group P 2 21 21), 5β, and 20β were grown by mixing 2 μL of protein (6 mg/mL) in 

the presence of 5 mM compound with 2 μL of mother liquor [0.2 M ammonium sulfate, 0.1 M 

NaCl, 0.1 M Mes (pH 5.6), and 32% PEG 3350] and equilibrated against 1 mL of mother liquor 

in the reservoir. These crystals were transferred into cryoprotectant [0.2 M ammonium sulfate, 0.1 

M NaCl, 0.1 M Mes (pH 5.6), 35% PEG 4000, and 10% glycerol] and then flash frozen in liquid 
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nitrogen. Cocrystals of FmlHLD bound to the galactoside 29β-NAc were grown by mixing 2 μL of 

protein complex (10 mg/mL FmlHLD with a 1.2:1 molar ratio of 29β-NAc to FmlHLD) with 2 μL 

of mother liquor (0.7 M LiSO4 and 2% PEG8000) and equilibrated against 1 mL of mother liquor 

in the reservoir. These crystals were transferred into cryoprotectant (1 M LiSO4, 10% PEG8000, 

and 25% glycerol). Diffraction data for TF, 4β (in space group C 1 2 1), and 29β-NAc structures 

were collected at 100 K at an in-house facility equipped with a rotating anode Rigaku MicroMax 

007 generator, a Rayonix Marmux X-ray source, and a Mar345 image plate detector. Diffraction 

data for apo, 4β, 5β, and 20β structures were collected at 100 K at the ALS Beamline 4.2.2. Data 

were indexed and integrated in iMosflm [55], XDS [56], or HKL2000 and scaled by Scala [57]. 

The phase problem was solved by molecular replacement using Phaser-MR in PHENIX [58] with 

FimHLD from PDB ID 3MCY. Several rounds of refinements were performed in PHENIX to 

improve the final models. 

Mouse Infections 

 Seven- to 8-wk-old female C3H/HeN mice were obtained from Envigo. Mice were 

anesthetized and inoculated via transurethral catheterization with 50 μL of CFT073 bacterial 

suspension (∼1 × 108 to 2 × 108 CFU in total) in PBS. Mice experiencing high titers of bacteriuria 

(>104 CFU/mL) and edematous and inflamed bladders when killed after 2 wk, or chronic cystitis 

[39], were then transurethrally inoculated either with 50 mg/kg compound or vehicle control (10% 

DMSO). Mice were killed 6 h posttreatment, and bacteria colonizing the bladder or kidney were 

plated for quantification. 

Immunofluorescence 

 Frozen, deidentified human bladder and kidney sections were obtained from the Tissue 

Procurement Core and stored stably at −80 °C. These tissue section slides were removed from the 
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freezer and allowed to thaw at room temperature for 10 to 20 min. After applying a hydrophobic 

barrier pen around the tissue, slides were rehydrated in 200 μL buffer (5% BSA and 0.2% Triton 

X-100 in PBS) for 10 min. Buffer was gently aspirated and slides were blocked for 1 h at room 

temperature with 200 μL of buffer. Thereafter, buffer was gently aspirated and slides were 

incubated with 200 μL of sample overnight at 4 °C. Samples diluted in buffer included 50 μg/mL 

FmlHLD wild-type (WT), 50 μg/mL FmlHLD K132Q, and 50 μg/mL FmlHLD WT incubated with 

100 μM 29β-NAc. Samples were gently aspirated and slides were washed three times in buffer for 

5 min each. Next, slides were incubated with our mouse anti-FmlH polyclonal antibody (1:500 

dilution in buffer) for 1 h at room temperature. Slides were washed again three times in buffer and 

then incubated in the dark with donkey anti-mouse IgG Alexa Fluor 594 and Wheat Germ 

Agglutinin Alexa Fluor 633 (each 1:500 dilution in buffer) for 1 h at room temperature. Slides 

were washed once with buffer and then incubated in the dark with DAPI (1:1,000 dilution in 

buffer) for 5 min at room temperature. After washing twice with buffer, coverslips were mounted 

using 80 μL of mounting media. Slides were loaded onto a Zeiss LSM 880 Confocal Laser 

Scanning Microscope (Carl Zeiss, Inc.) equipped with a diode 405 to 430 laser, a HeNe 543 laser, 

and a HeNe 633 laser. Images were acquired with a 20×, 0.8 numerical aperture Zeiss Plan 

Apochromat objective using ZEN 2 imaging software. 

Statistics 

 Mouse data are compiled from two (4Z269 plus 29β-NAc) or three (all other treatments) 

independent experiments, with four or five mice per group per experiment. These data were 

analyzed using the uncorrected two-tailed Mann–Whitney U test in GraphPad Prisim v.5. ELISA 

data are reported as box-and-whisker plots indicating the mean, 2.5th, 25th, 75th, and 97.5th 

percentiles of at least two independent experiments, with three technical replicates per experiment. 
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Figures  
 

 
 
 
Figure 1. Biochemical and structural characterization of early galactoside antagonists of FmlH. 

(A) Strategy for structure-guided drug design and evaluation of FmlH-targeting galactosides. A 

select library of galactosides were initially assessed in an ELISA-based competition assay for 

inhibition of FmlH binding to sialidase-treated BSM, with BSM indicated by gray circles, TF 

residues indicated by the yellow square-circle conjugates, biotinylated FmlHLD by blue rectangles, 

and galactosides shown as colored circles. Cocrystal structures of FmlHLD bound to a lead 

compound facilitated virtual screening and structure-guided drug design for biochemical 

evaluation of an expanded galactoside library. The top lead compound would then be tested as a 

treatment in a mouse model of UTI. (B) ELISA-based competition assay performed in triplicate in 
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the absence or presence of 1 mM or 0.1 mM compounds with at least two biological replicates. 

Data are reported as the mean percent inhibition, with the box indicating the 25th to 75th 

percentiles and the whiskers indicating the 2.5th and 97.5th percentiles. (C) Structural alignment 

of FmlHLD from an apo FmlHLD crystal structure (PDB ID 6AOW), a FmlHLD-TF cocrystal 

structure (PDB ID 6AOX), and a FmlHLD-ONPG cocrystal structure (PDB ID 6AOY). (D) Crystal 

structures of sulfate ions or ligands bound in the FmlHLD binding pocket, with H-bonding (black 

dashed lines) indicated between sulfate ions (yellow sticks), ligands (green sticks), water 

molecules (red spheres), or side chains (pink sticks). 
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Figure 2. Grouped organization of galactosides evaluated for FmlHLD inhibition. The major 

groups include the phenyl (A), heterocyclic (B), napthyl/quinoline/phenylethyl (C), natural 

product (D), and biphenyl (E) series. 
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Figure 3. In vitro screening and affinity determination of galactosides against FmlHLD. (A–C) 

ELISA-based competition assay performed in triplicate in the absence or presence of (A) 100 μM, 

(B) 10 μM, and (C) 1 μM compounds with at least two biological replicates. Data are reported as 

the mean percent inhibition, with the box indicating the 25th to 75th percentiles and the whiskers 

indicating the 2.5th and 97.5th percentiles. a, α; b, β. (D, Left) Schematic of conventional BLI 

experiment, in which pins coated with streptavidin (orange stars) are loaded with biotinylated Ser-
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TF (gray ovals and yellow square-circle conjugates) and dipped into solutions of varying 

concentrations of FmlHLD (blue rectangles). (Right) Equilibrium analysis of soluble FmlHLD 

binding to immobilized Ser-TF according to a 1:1 binding model. (E, Left) Schematic of 

competitive BLI experiment, in which streptavidin-coated pins are dipped into a solution 

composed of a fixed concentration of FmlHLD in the presence of varying concentrations of 

galactoside (yellow circles). (Right) Equilibrium constants of soluble galactoside-mediated 

inhibition of FmlHLD in binding immobilized Ser-TF in accord with R2 > 0.85. 
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Figure 4. Structural basis of galactoside inhibition of FmlHLD. (A) Crystal structures of sulfate 

ions or galactosides bound in the FmlHLD binding pocket, with H-bonding (black dashed lines) 

indicated between sulfate ions (yellow sticks), ligands (green sticks), water molecules (red 

spheres), or side chains (pink sticks). Crystal structures shown here include an apo FmlHLD crystal 

structure (PDB ID 6AOW), a FmlHLD-4β cocrystal structure (PDB ID 6ARM), a FmlHLD-5β 

cocrystal structure (PDB ID 6ARN), and a FmlHLD-20β cocrystal structure (PDB ID 6ARO). (B) 

Cocrystal structure of 29β-NAc bound to FmlHLD (PDB ID 6AS8). (C) SARs for 29β-NAc and 

related compounds, with their corresponding IC50 values derived from the ELISA-based 

competition assay. IC50 values are reported for six replicates as the mean with SEM. 
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Figure 5. Evaluation of galactosides for treatment of UTI and relevance in humans. (A and B) 

Bacterial titers in bladders (A) or kidneys (B) from C3H/HeN mice experiencing chronic cystitis 

transurethrally inoculated with 10% DMSO (three replicates, n = 13), or 50 mg/kg of 4Z269 (three 

replicates, n = 13), of 29β-NAc (three replicates, n = 14), or of both 4Z269 and 29β-NAc (two 

replicates, n = 9). Bars indicate median values. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 

0.0001; ns, not significant; two-tailed Mann–Whitney U test. (C) Immunofluorescence analysis of 

FmlHLD WT, FmlHLD K132Q, or FmlHLD WT in the presence of 29β-NAc binding to human 

bladder or human kidney tissue. Green corresponds to FmlH, red corresponds to Wheat Germ 
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Agglutinin, and blue corresponds to DAPI. Each image is representative of nine total images (three 

imaged areas of three tissue slices). (Scale bars: 100 μm.) 
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Figure S1. Virtual screen and structure-guided design of galactosides targeting FmlHLD. (A) 

Summary of virtual screen of galactosides against FmlHLD, in which the docking score of the top 

predicted binding mode is plotted against the molecular weight for each galactoside. Compounds 

with GE values 1.25σ above the mean are colored blue while compounds with GE values below 0 

are colored red. (B) Surface representation of FmlHLD with hot spot residues Y46, K132, and R142 

colored green, blue, and pink, respectively. Hot spot residues were identified as common targets 

observed in the binding modes of the top compounds from virtual screening. (C) Chemical 

structure of compound 29β-NAc, with the carboxylic acid in pink designed to interact with R142, 

the phenyl ring in green designed to interact with Y46, and the N-Acetyl group in blue designed 

to interact with K132. 
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Figure S2. Synthesis of galactoside-based FmlH ligands. (A) Boron trifluoride promoted 

glycosidation reaction of protected galactose followed by deprotection to yield galactosides. (B) 

Koenigs-Knorr type reaction followed by deprotection for the substitution of a galactosyl halide 

with an alcohol to yield galactoside and galactosaminosides. 
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Figure S3. Cranberry-derived galactosides can inhibit FmlH. (A) Cranberry-derived compounds 

and fractions were tested at 1 mM in the ELISA-based competition assay for inhibition of FmlHLD. 

(B) As a control, cranberry-derived compounds and fractions were tested at 1 mM in the ELISA-

based competition assay for inhibition of FimHLD. The identifies of the compounds indicated 

above are as follows: 1 (quinic acid), 2 (gallic acid), 3 (p-coumaric acid), 4 (2,4-dihydrobenzoic 

acid), 5 (protocatechuic acid), 6 (ferulic acid), 7 (vanillic acid), 8 (catechin), 9 (epicatechin), 10 

(quecetin), 11 (quercitrin), 12 (quercetin galactoside; 26β) 13 (myricetin), 14 (myricetrin), 15 

(cranberry fraction 1 – oligosaccharide), 16 (cranberry fraction 2 –anthocyanins/flavonols), 17 

(cranberry fraction 3 mixed-sized proanthocyanidins), 18 (cyanidin arabinoside), 19 (cyanidin 

galactoside; 24β), Fruct (fructose). 
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Figure S4. Immunofluorescence analysis of FmlHLD WT, FmlHLD K132Q, or FmlHLD WT in the 

presence of 29β-NAc binding to human bladder tissue. Green corresponds to FmlH, red 

corresponds to Wheat Germ Agglutinin, and blue corresponds to DAPI. 
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Figure S5. Immunofluorescence analysis of FmlHLD WT, FmlHLD K132Q, or FmlHLD WT in the 

presence of 29β-NAc binding to human kidney tissue. Green corresponds to FmlH, red 

corresponds to Wheat Germ Agglutinin, and blue corresponds to DAPI. 
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Figure S6. Mutagenesis of FmlH binding pocket abrogates function. Varying concentrations of 

FmlHLD WT and K132Q were tested for binding to sialidase-treated BSM by ELISA. 
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Table S1. Data collection and refinement statistics 

 
 

aRmerge = Σhkl Σi |Ii(hkl)-<I(hkl)>|/Σhkl ΣiIi(hkl), where the sum i is over all separate 
measurements of the unique reflection hkl. 
bRpim =  Σhkl [1/(n-1)]1/2 Σi|Ii(hkl)–<I(hkl) >|/Σhkl Σi Ii(hkl) 
bRwork = Σhkl ||Fobs| - |Fcalc||/ Σhkl |Fobs| 
cRfree, calculated the same as for Rwork but on the 5% data randomly excluded from the refinement 
calculation. 
Values in parentheses indicate the highest resolution shell 
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Table S2. Galactoside inhibition of FmlH 

 
 
Percent inhibition (PI) values are reported as the mean with standard error of the mean for 

galactosides tested at 100 μM (PI100), 10 μM (PI10), and 1 μM (PI1) in the ELISA-based 

competition assay. Compounds indicated above not shown in Figure S1 include 33 (p-nitrophenyl 

Gal-β1-3-GalNAc), 34 (p-nitrophenyl Gal-β1-3-GlcNAc), 35 (p-nitrophenyl Gal-β1-6-Gal), and 

36β-thio (IPTG). The “thio” designation indicates a sulfur linkage between the sugar and the 

aglycone group, the “phospho” designation indicates a phosphate group attached the C6-hydroxyl 

group on the sugar, and the “uro” designation indicates galacturonide as the sugar. 
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Chapter 4: Conclusions and Future Directions 
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The global emergence and dissemination of antibiotic resistance among Gram-negative 

pathogens has crippled the ability of current last-resort therapies to effectively treat bacterial 

infections, including urinary tract infections (UTIs). This has become a looming worldwide crisis 

that has prompted the development of novel treatment and prevention strategies for infections, 

including the targeting of bacterial virulence mechanisms. Extracellular fibers termed chaperone-

usher pathway (CUP) pili are critical virulence factors in a wide variety of pathogenic Gram-

negative bacteria, functioning in adherence and invasion of host tissues and in biofilm formation 

on medical devices and body habitats. These fibers are each assembled by an outer membrane β-

barrel usher from multiple pilus subunits properly folded by a periplasmic chaperone. There are 

more than a hundred different types of CUP pili, which mediate a considerable range of biological 

tropisms, frequently, through presentation of two-domain adhesins at the distal pilus tip. These 

adhesins have a lectin domain, which often recognizes a specific carbohydrate receptor, and a pilin 

domain to anchor the adhesin to the pilus. The type 1 pilus adhesin FimH, for example, binds 

mannosylated receptors on the bladder epithelium, mediates invasion of superficial facet cells, and 

promotes formation of biofilm-like collections termed intracellular bacterial communities (IBCs), 

all critical events in the establishment of urinary tract infection (UTI) by uropathogenic E. coli 

(UPEC). Studies that uncovered allelic variation in FimH among clinical UPEC isolates, which 

drastically impacts FimH function and virulence, have challenged our understanding of the FimH 

structure-function relationship, necessitating new approaches to understand the mechanisms of 

adhesin function and the pathogenic correlates of allelic diversity. Furthermore, UPEC encode 

several CUP adhesins, including FmlH and SfaH, which presumably confer distinct tropisms but 

remain poorly characterized. The work presented in this thesis uncovers the structural basis of 

UPEC adhesion in the urinary tract mediated by distinct CUP adhesins. I have discovered that 
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positively selected residues in FimH alter a pre-existing equilibrium of two conformational states 

to fine-tune mannose binding strength and host-pathogen interactions in order to optimize 

persistence in the bladder during UTI. Further, I defined the structural basis of the FimH-like 

adhesin FmlH in binding to galactose-containing receptors exposed in kidneys and inflamed 

bladders during chronic cystitis. I then leveraged these structural insights to develop novel small-

molecule galactosides that function as high-affinity competitive antagonists of FmlH with 

therapeutic efficacy in mouse models of UTI. Together, the work presented in this thesis provides 

fundamental, biophysical underpinnings of host-pathogen interactions in UTI and provides novel 

treatment modalities that may help reduce the economic and health burdens imposed by this 

common and increasingly antibiotic-resistant infectious disease. 
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Discussion 

Conformational ensembles of FimH alleles 

 The type 1 pilus adhesin FimH binds mannosylated receptors on the bladder epithelium, 

mediates invasion of superficial facet cells, and promotes formation of tight-knit biofilm-like 

communities termed intracellular bacterial communities (IBCs), all critical to the establishment of 

UTIs by UPEC [1-7]. FimH has a mannose binding lectin domain (FimHLD) and a pilin domain 

(FimHPD), which is joined via DSE to the FimG pilin [8]. Structural snapshots of pilus assembly 

[9-12] have revealed two distinct conformations in FimH, which I refer to as a low-affinity T state 

and high-affinity R state. Functional assays have hinted that mannose binds tightly to the R state 

but weakly, if at all, to the T state [9, 13], raising the question as to how FimH in a tip, which is 

observed by crystallography to adopt the T state, manages to bind mannose in solution. While the 

mannose binding pocket of FimH is invariant in all clinical UPEC strains, natural variation occurs 

outside of the binding pocket with residues at positions 27, 62, and 163 under positive selection 

[14]. In particular, the A27V/V163A double mutation confers increased mannose binding in vitro 

but results in a 10,000-fold reduction in mouse bladder colonization 24 hours post infection (hpi) 

and an inability to form IBCs. Thus, the A27V/V163A double mutation revealed either the 

necessity of an unknown function of FimH or the requirement for the regulation of mannose 

binding for in vivo fitness. The observation that positions which lie far away from the mannose 

binding pocket can, by some allosteric mechanism, impact FimH-dependent functions in UPEC 

pathogenesis is profound, but was not well understood.  

These questions prompted the investigation of the structural and evolutionary basis for 

conformational allostery in FimH at the pilus tip. FimH alleles purified within a FimGNteH 

complex, which functioned as a tip-like setting, were interrogated by a battery of molecular 
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biophysics techniques, including X-ray crystallography, small-angle X-ray scattering, ion mobility 

mass spectrometry, and molecular dynamics. These methods revealed that FimH in a tip-like 

setting natively adopts a pre-existing two-state conformational equilibrium in solution comprised 

of a single low-affinity T conformation and multiple, dynamic high-affinity R conformations. 

Positively selected residues can influence the relative proportions of these conformations. With 

respect to FimH from UPEC strain UTI89 (defined as WT), A62S skews the equilibrium toward 

the low-affinity T state while A27V/V163A pushes the equilibrium toward the high-affinity R 

state. In addition, high affinity mannose analogs termed mannosides can shift the conformational 

ensembles of FimH toward the R state. Yet despite their high-affinity for the R state, mannosides 

can engage both the T and R states through distinct binding modes, in which mannoside can enter 

and dock onto the low-affinity, solvent-exposed binding pocket of the T state in a “vertical” 

orientation or tightly interact with the compressed binding loops of the R state in a “horizontal” 

orientation. Together, the conformational landscape and ligation states indicate FimH exists in a 

thermodynamic cycle whereby binding can possibly proceed through induced fit (apo T à bound 

T à bound R) or conformational selection (apo R à bound R) or a mixture of both. The 

contribution of these binding mechanisms for each FimH allele requires further exploration 

through detailed kinetic studies capable of resolving each of these apo and ligated FimH 

conformational states. Furthermore, the conformational flexibility and number of viable 

bound R conformations in FimH may increase the biophysical adaptability of type 1 pili while 

tethered to a surface in part to allow attached bacteria to resist urine flow while bound to the 

bladder epithelium but further work is required to demonstrate that entropic freedom in the bound 

R state influences bacterial persistence at the host-pathogen interface to function as a molecular 

tether. 
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Our work also revealed that FimH alleles skewed toward the T state (A62S) or toward the 

R state (A27V/V163A) exhibit defects in pathogenesis in a mouse model of UTI, suggesting that 

an equilibrium between T and R states is optimal for bladder colonization. The mechanism by 

which the bladder habitat selects against the high-affinity R state as early as 1 hour post infection 

remains unknown and requires further investigation. Some possible explanations for this 

pathogenesis defect include a slow rate of association of the R state under conditions of flow, an 

inhibitory property mediated by intact superficial facet cells of the bladder epithelium, or soluble 

decoy receptors in the urine that preferentially antagonize variants that favor the R state. Together, 

our data suggest that the T state may serve to temporarily mask the strong affinity that FimH has 

for mannose to avoid restrictive factors or properties native to the bladder habitat to initiate 

productive binding when engaging the host epithelium.  

Overall, in-depth analysis of sequence variation in a virulence factor expressed by clinical 

E. coli isolates critical for UTI led to the elucidation of fundamental principles underlying host-

pathogen interactions. The work presented herein exposes the biophysical basis for evolutionary 

pressures that selected specific residues in FimH for fitness in the urinary tract and the structural 

basis for mannose binding by FimH. The conformational phase space of FimH in solution and 

population shifts spurred by positively selected residues further provides a framework for 

understanding the structural basis of allosteric coupling between inter-domain interactions and 

mannose binding. Finally, mannosides demonstrate considerable promise in the treatment of UTI, 

especially given their ability to target both the low-affinity T and high-affinity R conformations 

of FimH, both of which contribute to host-pathogen interactions in the urinary tract.  
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Galactoside inhibition of FmlH during chronic cystitis 

In addition to type 1 pili, UPEC express the Fml/F9/Yde pilus tipped with the FmlH 

adhesin to bind the inflamed bladder epithelium that exists during chronic cystitis [15]. Chronic 

cystitis is characterized by long-term UPEC colonization of a chronically inflamed bladder 

epithelium that is hyperplastic and devoid of terminally differentiated superficial facet cells, likely 

due to inflammation induced mucosal wounding, increased urothelial turnover and unchecked 

bacterial replication [16]. FmlH specifically binds to Tn antigen which appears as part of the 

remodeled glycan profile of the mouse bladder epithelium during chronic cystitis. Consistent with 

this, FmlH provides a fitness advantage during chronic cystitis but not in acute cystitis due to its 

ability to bind to inflamed but not to naïve bladder tissue.  

Furthermore, FmlH binds to TF epitopes found in naïve kidney tissue, thus promoting 

UPEC colonization of the kidneys [15]. As such, FmlH may play a critical role in the development 

of pyelonephritis, which contributes to high rates of hospitalization, severe kidney morbidities, 

and mortality [17]. Interestingly, FmlH is upregulated in urines directly isolated from patients with 

UTI compared to expression during in vitro growth in media or normal urine, suggesting a host 

condition-specific induction of Fml pili [18]. Thus, FmlH represents a promising target for the 

development of anti-adhesive compounds for use in the treatment of UTI and in particular 

pyelonephritis.  

Structure-guided drug design directed the development of high-affinity galactoside 

inhibitors of FmlH. Initial biochemical screens led to the identification of o-nitrophenyl β-

galactoside (ONPG) as an early lead FmlH inhibitor. A FmlH-ONPG co-crystal structure then 

facilitated in silico virtual screening of all known galactose analogs against FmlH, providing 

structural insights for the rational design of novel galactosides specific for FmlH. ELISA-based 
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screening and iterative rounds of structure-guided drug design led to the discovery of numerous 

phenyl and biphenyl galactoside antagonists of FmlH, including our lead compound, a biphenyl 

N-acetyl-β-galactosamine 29β-NAc, which exhibits a KD of ~90 nM, a ~7,800-fold enhancement 

in binding affinity relative to D-galactose. The design strategy for 29β-NAc accounted for all the 

unique structural features of the binding pocket of FmlH, including: (i) the wide and solvent-

exposed nature of the binding pocket; (ii) the considerable distance of Loop 1 from Loop 2 and 

Loop 3; (iii) the capping of the binding pocket by residue Y46; (iv) the positively charged side 

chain of residue R142 on the edge of the binding pocket; and (v) the capacity to accommodate the 

N-acetyl group of N-acetyl galactosamine. Necessarily, FmlH galactoside design differed in 

approach to that of FimH mannoside design due to differences in receptor specificity, 

stereoisomerism at the anomeric carbon, binding affinity, binding pocket architecture, and 

accessory side chains in the vicinity of the binding pocket (including orientation of tyrosine 

residues). Yet, similarities in the properties of these compounds, including the biphenyl scaffold 

in the aglycone group and hydrogen bond interactions mediated through functional groups on the 

B ring, may be a reflection of universal features of adhesin-carbohydrate interactions and a 

common mechanism by which aromatic aglycones mimic those interactions.  

Our in vivo work clearly demonstrates the translational impact of galactosides as treatments 

for UTI. Transurethral delivery of 29β-NAc resulted in significant reduction of bacterial titers in 

the bladder and especially the kidney. Furthermore, a combinatorial approach in which both 29β-

NAc and mannoside 4Z269 were administered resulted in synergistic efficacy in ridding the kidney 

of UPEC, suggesting that FimH and FmlH occupy niches within the urinary tract simultaneously 

during chronic UTI. Future studies aim to further this progress in galactoside development through 

optimization of oral bioavailability, pharmacokinetics, and metabolic stability, which will provide 
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lead candidates that can be tested individually or together with mannosides for treatment or 

prevention of human cystitis and pyelonephritis in the clinic. 

 

Future directions 

FimH conformations in biofilm formation and maturation 

 Type 1 pili and FimH play a critical role in the formation and maturation of biofilms on 

abiotic surfaces [19]. Deletion of type 1 pili results in an attenuated ability of E. coli to mediate 

microcolony formation. Further, mannose or α-methyl-D-mannose can inhibit biofilm formation 

on diverse abiotic substrates, including polyvinyl chloride, polycarbonate, polystyrene, and 

borosilicate glass. A fascinating corollary exists between the propensity of E. coli to form biofilms 

and the mannose binding affinity and/or conformational state of FimH [14]. Yet, the mechanism 

by which FimH adsorbs to a surface and promotes biofilm formation among E. coli remains 

elusive. I hypothesize that the high-affinity R state is dually critical for biofilm formation: (i) for 

abiotic surface attachment with a hydrophobic surface of FimH exposed in the R state during 

biofilm initiation and (ii) for high-affinity mannose binding during biofilm expansion/maturation.  

To address this hypothesis, a two-pronged approach can be pursued. First, biofilm and 

hemagglutination screening can be performed on a FimH mutant library generated by error-prone 

PCR to identify mutation(s) that preserve the structure of FimH in the R state but prevents mannose 

binding. In addition, molecular dynamics simulations of FimH adsorption to a graphene sheet can 

reveal specific residues implicated in surface interactions that could then spur site-directed 

mutagenesis. Together, these studies could decouple surface adhesion from biofilm maturation and 

reveal the atomic basis for FimH-mediated biofilm formation, providing key molecular details for 

understanding and combatting biofilms that form on catheters and lead to serious nosocomial 
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infections. 

In vivo colonization resistance to high-affinity R state 

 UTI89 engineered to express A27V/V163A FimH, which predominantly occupies the 

high-affinity R state, lacks the ability to effectively colonize the urinary tract and establish UTI. I 

hypothesize that the high mannose binding affinity of A27V/V163A is directly responsible for its 

colonization defect. To uncover the mechanism which mediates this colonization resistance, we 

first examined whether Tamm-Horsfall protein (THP) is responsible for the pathogenesis defect of 

A27V/V163A. In a preliminary study, THP knock-out mice (of the 129S1 background) acquired 

from Dr. Satish Kumar were inoculated with 107 CFU/ml of UTI89 expressing either WT FimH 

or A27V/V163A FimH. Bacterial titer analysis indicates that A27V/V163A remains attenuated 

relative to WT FimH in this mouse model, suggesting that THP does not mediate the pathogenesis 

defect of A27V/V163A (Fig. 1). Further work will explore whether other decoy receptors on the 

surface of superficial facet cells or in urine, such as secretory IgA or soluble oligomannose, may 

be involved in mediating this pathogenesis defect. Mouse and human urine filtration experiments 

and outer membrane preparations of superficial facet cells derived from in vitro bladder spheroid 

models will provide the cleanest approaches to pulling down or identifying receptors that may be 

implicated in the colonization resistance property of the bladder habitat.  

SfaH structure-function relationship and biological tropism of S pili 

 E. coli expressing S pili have been implicated in the onset or maintenance of neonatal 

meningitis and UTI [20-23]. However, the role of S pili in infectious disease has not be clearly 

delineated. Moreover, the mechanism underlying the sialic acid specificity of S pili is not clearly 

understood. Several studies implicate different components of S pili with adhesive functions, with 

debates regarding the true adhesin [24, 25]. Some experimental evidence suggests that SfaG, a 
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pilus tip adapter, is responsible for recognition of sialic acid receptors while bioinformatics 

suggests that the SfaH adhesin would exert the function of sialic acid binding. Through a panel of 

glycan arrays, I have shown that SfaH in a SfaCH complex does not bind sialic acid residues or 

any other tested glycan structure (Fig. 2A-D). Yet, SfaH does possess some adhesive ability, as 

SfaH in a SfaCH complex strongly binds secretory IgA and laminin in a protease-sensitive manner, 

suggesting that SfaH may play a role in binding uncharacterized protein tertiary structures or 

motifs (Fig. 3). A crystal structure of SfaHLD indicates that it adopts a similar fold to FimH (Fig. 

4A), resembling FimHLD in the T conformation (RMSD=1.7 Å) more than FimHLD in the R 

conformation (RMSD=3.2 Å) (Fig. 4B-C). However, the side chain packing in the canonical 

binding pocket appears to restrict space necessary for carbohydrates to interact with SfaH, likely 

due to steric occlusion mediated by residues S14 and E148 (Fig. 4D). Thus, while SfaH closely 

resembles an adhesin homologous to FimH and FmlH, SfaH lacks the ability to bind glycans due 

to the geometry of residues within the canonical adhesin binding pocket that preclude the entrance 

of carbohydrate moieties. More work is required to demonstrate that SfaG is the true sialic acid 

binder within S pili through purification of SfaG and screening in glycan arrays and glycoprotein 

binding assays. Thereafter, the binding functions of SfaG and SfaH should be evaluated using 

immunohistochemistry methods against tissues at implicated host sites, such as meninges, choroid 

plexus, kidneys, and bladder, and of different host ages, including neonates and adults, to 

determine their role in pathogenesis.  

Conformational ensembles in CUP adhesins as a universal feature of bacterial adhesion 

 CUP pili typically present tip-localized two-domain adhesins to mediate attachment to a 

particular host or tissue. These two-domain adhesins are comprised of a lectin domain, which often 

recognizes a specific carbohydrate receptor, and a pilin domain, which anchors the adhesin to the 
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distal end of the pilus. FimH has been demonstrated to adopt diverse structures within a two-state 

conformational landscape, a property that may represent a universal feature of two-domain CUP 

adhesins. Ion mobility mass spectrometry analysis of FmlGNteH and SfaGNteH complexes reveal 

that these two homologs of FimH do in fact adopt a two-state conformational equilibrium similar 

in distribution to FimGNteH, lending support to the supposition that conformational phase space is 

a natural property of two-domain CUP adhesins (Fig. 5). Further studies will explore whether these 

two-state conformational equilibria in FmlH and SfaH impact ligand binding affinity and 

pathogenesis, as is observed in FimH. Future studies will also aim to investigate FimH homologs 

and related two-domain CUP adhesins among Gram-negative bacteria (Fig. 6) to characterize 

diverse conformational landscapes and receptor specificities to understand mechanisms underlying 

E. coli adhesion and tissue and host tropisms.  

 

Closing remarks 

Studies rooted in structural biology have uncovered fundamental physicochemical 

principles of the chaperone-usher pathway. Protein crystallography, in particular, has provided 

views of key macromolecular interactions at the host-pathogen interface at the atomic level. 

However, these static structures only serve as signposts for the dynamic processes that underlie 

CUP pilus function. This thesis builds on previous structural studies with a focus on a biophysical 

understanding of the allosteric and dynamic molecular details of CUP systems using a broad range 

of techniques including bacterial genetics, bioinformatics, computational biology, biochemistry, 

biophysics, structural biology, and cell biology. Understanding how protein-protein interactions 

and ligand binding can regulate a dynamic conformational equilibrium of the receptor binding 

domain of bacterial adhesins is changing the established view of UTI pathogenesis. Elucidating 
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structure-function relationships in distinct adhesins has helped build a molecular platform for 

interrogation and identification of host selective pressures that have acted to diversify ligand 

specificity and has contributed to the design of novel anti-virulence compounds for the treatment 

of UTI. Together, this work has unraveled the dynamics, allostery, and atomic determinants that 

govern CUP function and specificity, which is critical for understanding virulence in Gram-

negative pathogens and is spawning new ways of thinking about drug development for the 

treatment of infectious diseases. 
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Figures 

 

Figure 1. Role of THP in mediating colonization resistance to FimH variants. Bacterial titers in 

the bladders of THP knockout mice infected with 107 CFU/ml UTI89 expressing either WT FimH 

or A27V/V163A FimH at 6 or 24 hpi. 
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Figure 2. Glycan array screens for determination of SfaH specificity. Biotinylated SfaCH complex 

(100-200 μg) was incubated with various glycan arrays, which include (A) the National Center for 

Functional Glycomics (NCFG) defined glycan array, (B) the NCFG modified sialyl glycan array, 

(C) the NCFG SBA glycan array, and (D) the Center for Functional glycomics (CFG) glycan array 

v5.2. Bound SfaCH was then quantitated after incubation of streptavidin labeled with Alexa Fluor 

488. A positive glycan binding result is typically associated with an RFU value greater than 10,000. 
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Figure 3. Glycoprotein binding by SfaH. Glycoproteins (1 μg) coated on an ELISA plate, as 

indicated on the x-axis, were pre-treated either with PBS, sialidase, or trypsin for 1 hour at 37 ˚C. 

Thereafter, biotinylated SfaCH complex (5 μg) was incubated with glycoproteins for 4 hours at 4 

˚C, and binding was detected by incubation with streptavidin-HRP conjugate for 1 hour at 4 ˚C.  
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Figure 4. Structural analysis of SfaH. (A) Crystal structure of SfaHLD solved to a resolution of 1.6 

Å (Rwork=16.1%; Rfree=19.4%). (B) Structural overlay of SfaHLD (yellow) and FimHLD in the R 

conformation (marine). (C) Structural overlay of SfaHLD (yellow) and FimHLD in the T 

conformation (magenta). (D) Binding pocket of SfaHLD indicating the proximity between and 

steric occlusion mediated by residues S14 and E148 (green sticks).  
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Figure 5. Conformational ensembles of fimbrial adhesins. Ion mobility mass spectrometry reveals 

drift time distributions of adhesins in tip-like settings (GNteH complexes), including FmlGNteH WT, 

SfaGNteH WT, FimGNteH WT, FimGNteH Q133K, FimGNteH A62S, and FimGNteH A27V/V163A. 

These distributions indicate two distinct conformations centered around t=6 ms and t=7 ms. 

FimGNteH A27V/V163A, as expected, predominantly adopts a single conformation characterized 

by a drift time of 6 ms while all other tested adhesins display an equilibrium of two conformations 

that favors the conformation corresponding to a drift time of 7 ms. 
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Figure 6. Diversification of CUP adhesins. Maximum likelihood phenogram depicting the 

evolutionary relationship among FimH, FmlH, and SfaH homologs in Gram-negative bacteria. 

Distinct groupings of branches are annotated according to relatedness to the three aforementioned 

adhesins. 
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