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ABSTRACT OF THE DISSERTATION 

Understanding the Molecular Pathogenesis of Retinal Neurodegeneration 

by 

Jonathan Beaux Lin 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2020 

Professor Rajendra Apte, Chair 

Retinal degenerative diseases are a major cause of morbidity in modern society because visual 

impairment significantly decreases the quality of life of patients. A significant challenge in 

treating retinal degenerative diseases is their genetic and phenotypic heterogeneity. Furthermore, 

limitations in our understanding of disease pathophysiology have led to reliance on therapies that 

often treat disease endpoints rather than addressing disease etiology and/or pathophysiology. The 

long-term goal of my thesis research was to provide molecular and cellular insights into the 

pathophysiology underlying diverse retinal degenerative diseases, which may lead to much-

needed, novel therapeutic approaches. During the first part of my thesis research, I discovered 

that impaired NAD+ homeostasis is a central feature of diverse retinal degenerative diseases 

(Chapter 2). For the second part of my thesis research, I found that the central cellular phenotype 

of aged macrophages, which are known to promote age-related macular degeneration, is 

impaired cholesterol homeostasis (Chapter 3) and that the transition towards this disease-

promoting, aged phenotype is regulated, in part, by microRNA-150 (Chapter 4). Although 

further research is necessary to translate these findings to the bedside, they have the potential to 

transform care for patients with retinal degenerative diseases.
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Chapter 1: 

Introduction 
 
 
This chapter is adapted, in part, from an invited review article published in Progress in Retinal 
and Eye Research. 
 
 
Lin JB, Apte RS. (2018). NAD+ and sirtuins in retinal degenerative diseases: A look at future 
therapies. Prog Retin Eye Res, 67:118-129. doi: 10.1016/j.preteyeres.2018.06.002. 
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1.1 Introduction 

Vision is a central sense that is considered critical in modern society. Numerous studies 

have demonstrated that visual impairment is associated with significant morbidity and has a huge 

impact on one’s quality of life. For example, visual impairment is associated with clinically 

significant decreases in mobility and independence (Fenwick et al., 2016). Furthermore, in 

patients with the blinding disease retinitis pigmentosa (RP), there is a correlation between 

residual visual field and quality of life (Chaumet-Riffaud et al., 2017), suggesting that there is an 

association between the degree of vision loss and the extent of impairment in quality of life. 

These decreases in quality of life can contribute to poor mental health. In support, Heesterbeek 

and colleagues found that a prospective cohort of 540 older adults with vision impairment 

exhibited twice the incidence of subthreshold depression and anxiety compared to older adults in 

general (Heesterbeek et al., 2017). Although these symptoms tended to fluctuate with time, 

having macular degeneration and problems with adapting to vision loss were two of the risk 

factors identified for developing depressive symptoms (Heesterbeek et al., 2017). Therefore, 

vision loss and the associated sequelae have a significant impact on human beings individually 

and on society in general. As such, despite their challenges, preventing and reversing vision loss 

caused by diverse retinal diseases are of utmost priority. 

 Retinal degenerative diseases make up a significant portion of the burden of blindness 

and are often untreatable. The retina is a complex, light-sensitive, neurovascular tissue with a 

highly organized structure that is essential to its function (Figure 1.1). Located at the posterior 

pole of each eye, the retina consists of numerous cell types, all of which must function in a 

coordinated manner to generate a neural signal to be transmitted to the occipital lobe of the brain 

via the optic nerve. Light photons entering the anterior surface of the eye first traverse the retina 
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before being sensed by the photoreceptors on the posterior aspect of the retina. Photoreceptors 

can be divided into two types:  rod photoreceptors mediate dim, peripheral vision, whereas cone 

photoreceptors mediate central, color vision. The signal from the photoreceptors is then 

transmitted to secondary neurons known as bipolar cells before being transmitted to the retinal 

ganglion cells, whose axons coalesce to form the optic nerve. Horizontal and amacrine cells 

provide lateral modulation. As expected, conditions leading to the death of any of these 

subpopulations of retinal neurons can lead to visual impairment. In particular, photoreceptor 

death is a common cause of blindness in retinal degenerative diseases, as these light-sensitive 

neurons are responsible for the initial transduction of light. 

 In this chapter, I will first provide a brief clinical description of various examples of 

retinal degenerative diseases to frame a discussion regarding the limitations of their current 

treatment options. Chapters 2, 3, and 4 describe three distinct research projects that I have 

undertaken during my graduate training with the long-term goal of improving our understanding 

of the pathophysiology underlying retinal degenerative diseases. Although further research is 

necessary to more fully understand the molecular and cellular pathways involved in these 

processes and, ultimately, to translate these findings from the bench to the bedside, these 

therapies have the potential to be highly innovative and may transform the care that clinicians 

can offer to patients with retinal degenerative diseases. 

 

1.2 Retinal Degenerative Diseases 

Retinal degenerative diseases are a heterogeneous family of multiple conditions all 

involving death or damage to cells of the retina. These diseases have a wide array of etiologies: 

some are acquired, some are a component of a broader systemic disease, and some are inherited. 
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Although some of these conditions share phenotypic characteristics, most have different 

underlying pathogeneses. This diversity makes it rather challenging to develop unifying 

therapeutic strategies. Instead, the prevailing dogma has been to consider each disease as a 

separate entity with its own avenue of research, discovery, and translational pipeline. 

 

1.3 Age-Related Macular Degeneration 

Age-related macular degeneration (AMD) is an acquired retinal degenerative disease that 

affects the central retina, called the macula. AMD is a leading cause of blindness in adults over 

the age of 50 years. AMD is projected to become an even larger problem over time and is 

predicted to affect as many as 288 million people by 2040 (Wong et al., 2014). Clinically, 

patients with early-stage AMD often complain about reduced light sensitivity, dark adaptation, 

and contrast sensitivity, which is believed to be related to early parafoveal rod photoreceptor 

degeneration (Curcio et al., 1996). On examination, these patients often present with the 

presence of lipid- and protein-rich deposits known as drusen in the sub-retinal space. Drusen 

themselves do not usually cause vision loss, but they are a significant risk factor for progression 

to advanced AMD that manifests either as advanced non-neovascular (dry) AMD or neovascular 

(wet) AMD. Both forms of advanced disease can lead to significant visual impairment related to 

secondary degeneration and death of macular photoreceptors, causing loss of central vision. In 

the case of advanced dry AMD, blindness is caused by death of the photoreceptors due to loss of 

the underlying retinal pigment epithelium (RPE) cells that are critical for photoreceptor survival 

and function. This stage of disease is called geographic atrophy (GA). In contrast, in wet AMD, 

pathological angiogenesis manifests as choroidal neovascularization (CNV), which can also 

cause photoreceptor death, retinal and sub-retinal fibrosis, and, ultimately, blindness. It is often 
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difficult for clinicians to counsel AMD patients regarding when progression to advanced disease 

may occur and what form it will take. The Age-Related Eye Disease Study (AREDS), sponsored 

by the National Eye Institute, was a large cohort study that provided key insights into the natural 

history of AMD. This study also identified risk factors associated with progression from early or 

intermediate AMD to advanced AMD, such as smoking and greater body mass index (BMI) 

(Clemons et al., 2005). Nonetheless, further research is necessary to determine the specific 

molecular and cellular mechanisms that underlie AMD pathogenesis. 

Genome-wide association studies have provided some clues into potential pathogenic 

mechanisms underlying AMD by identifying that polymorphisms in complement factor H, 

hepatic lipase (LIPC), ATP-binding cassette transporter member 1 (ABCA1), and cholesterol 

ester transfer protein (CETP), are associated with early or advanced AMD (Hageman et al., 

2005; Neale et al., 2010). These findings implicate altered regulation of inflammation and 

aberrant lipid homeostasis as potential contributors to the pathogenesis of AMD. In support, 

mouse models designed to mimic perturbations in inflammation or lipid homeostasis pathways in 

combination with environmental factors, such as a high-fat, Western diet, have been reported to 

recapitulate some features resembling AMD (Malek et al., 2005; Sene et al., 2013; Toomey et 

al., 2015). These findings confirm the relevance of these pathways in AMD and highlight the 

value of using mouse models for furthering our understanding of AMD. 

Currently, approved therapies for wet AMD include drugs directed against vascular 

endothelial growth factor (VEGF). VEGF is a key driver of pathological angiogenesis, the 

hallmark of wet AMD. Although anti-VEGF therapies have revolutionized treatment for wet 

AMD, long-term studies have demonstrated that atrophic neurodegeneration with loss of 

photoreceptors proceeds despite treatment (Bhisitkul et al., 2015; Sene et al., 2015). Perhaps 
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more importantly, some patients do not respond or are under-responsive to this therapy (Inoue et 

al., 2016; Kim et al., 2016; Sarwar et al., 2016; Sene et al., 2015), suggesting that VEGF-

independent pathways may also contribute to AMD pathogenesis. More research is needed to 

identify alternate therapeutic strategies that may be able to provide clinical benefit for these 

patients and to prevent photoreceptor neurodegeneration in both forms of advanced AMD. 

Unfortunately, because the pathophysiology of dry AMD remains incompletely understood, there 

are currently no approved therapies for dry AMD. High-dose supplementation of vitamins C and 

E, beta carotene, and zinc has been suggested to modestly slow progression to advanced AMD 

(Age-Related Eye Disease Study Research, 2001), but the effect size is fairly small, and its 

mechanism is still unclear. Taken together, it is clear that there is a paucity of current treatment 

options for AMD patients beyond targeting VEGF in wet AMD. 

 

1.4 Diabetic Retinopathy 

Diabetes mellitus is a systemic metabolic disease characterized by deficits in blood 

glucose control. The pathophysiology of diabetes mellitus is complex and affects numerous 

organ systems, but one component of this systemic disease is diabetic retinopathy (DR). 

Clinically, DR consists of early microvascular damage, which is initially characterized by 

pericyte loss and microaneurysms in small-caliber vessels in the retina, followed by capillary 

wall damage, leakage, exudation, and retinal edema. In advanced disease, hypoxic pathologic 

neovascularization can cause vision loss secondary to hemorrhage and detachment of the 

neurosensory retina. In addition to this vascular phenotype, diabetic patients often exhibit 

changes detectable with electroretinography (ERG), such as delayed implicit times (Satoh et al., 

1994) and decreased oscillatory potential amplitudes (Coupland, 1987), which precede vascular 
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changes. DR could therefore include two components – neuroretinal dysfunction and vascular 

dysfunction – with both contributing to vision loss. 

Studies in mouse models of DR support this possibility. For example, Rajagopal and 

colleagues identified that mice weaned to high-fat chow exhibit modest electrophysiological 

dysfunction in the form of increased latencies and decreased oscillatory potential amplitudes at 

six months that precede the vascular phenotype of microvascular disease that can be observed by 

12 months (Rajagopal et al., 2016). These findings may have translational relevance since 

multifocal ERG implicit times in patients with diabetes but without retinopathy predict future 

development of DR (Harrison et al., 2011). Other groups have reported even more striking high-

fat diet-induced retinal dysfunction in mice at 12 weeks in the form of reduced scotopic and 

photopic ERG amplitudes (Chang et al., 2015). Mechanistic studies suggest that this neuroretinal 

dysfunction may be due to the sensitivity of retinal neurons to systemic hyperglycemia. For 

example, in the streptozotocin-induced mouse model of diabetes, prolonged hyperglycemia leads 

to retinal oxidative stress (Du et al., 2013), which may contribute to photoreceptor death. 

Currently, clinicians can treat only the vascular disease, including permeability-related 

macular edema and ischemic neovascularization, with anti-VEGF pharmacotherapy and 

intraocular steroids. Neuroprotective strategies that could mitigate neuroretinal dysfunction or 

prevent retinal neurodegeneration are highly attractive but are currently investigational. As in 

AMD, a molecular understanding of the pathophysiology of DR might improve our ability to 

develop more diverse therapeutic strategies to prevent vision loss in DR. 
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1.5 Inherited Retinal Degenerations 

Inherited retinal degenerations (IRDs) are diverse diseases that are associated with 

progressive vision loss caused by mutations in over 250 genes. Some examples of IRDs include 

RP, Leber congenital amaurosis (LCA), and rod-cone or cone-rod dystrophies. IRDs can be 

isolated or syndromic. For example, RP, one of the most common IRDs, can be caused by 

mutations in any of more than 100 genes or can be a clinical feature of Usher syndrome or 

Bardet-Biedl syndrome. Because of this genotypic diversity, RP has a complex and 

heterogeneous clinical presentation that often depends on the underlying mutation. In general, 

RP patients present with loss of night vision and decreased peripheral vision due to death of rod 

photoreceptors. As rod photoreceptor death progresses, cone photoreceptor death may follow as 

a secondary effect of losing rod photoreceptor-derived survival factors. Exome and targeted gene 

sequencing have made it possible to examine the genetic etiology of various retinal degenerative 

diseases, including RP. 

Despite remarkable advances in our ability to identify the causative gene mutations 

associated with IRDs, including RP, our therapeutic strategies are still limited by lack of 

knowledge of the mechanisms by which these gene mutations cause disease. One therapeutic 

approach has been gene therapy with the goal of replacing the defective copy or copies of the 

affected gene with a normal gene delivered by a carrier, usually a viral vector. For example, a 

Phase III trial recently evaluated the safety and efficacy of voretigene neparvovec (AAV2-

hRPE65v2) in patients with retinal dystrophy caused by biallelic mutations in RPE65 (Russell et 

al., 2017). Using this approach, a wild-type copy of the RPE65 gene is delivered with an 

adenoviral vector to the sub-retinal space. In patients with viable retinal cells, normal RPE65 

protein can restore the visual cycle and may lead to some vision improvement. Although still in 
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its infancy compared to conventional gene therapy, CRISPR-Cas9 has also now made it possible 

to perform targeted gene editing to repair disease-causing mutations, which has been shown to be 

effective in restoring some vision in rodent models of retinal degenerative disease (Bakondi et 

al., 2016; Wu et al., 2016). However, one major challenge of both gene therapy and gene editing 

is that they would have to be optimized and targeted for each specific mutation, requiring the 

causative mutation to be identified in each individual patient. This requirement is a challenging 

proposition considering the diversity of mutations that have been identified, especially for RP, 

each affecting a fraction of the total patient population. Perhaps of additional concern, gene 

therapy is incredibly expensive in the present, making it difficult to use in widespread settings. 

Issues surrounding the durability of the effect, effect size, and scalability in more prevalent 

diseases further complicate the therapeutic landscape. 

 

1.6 Limitations of Current Therapeutic Approaches 

For many retinal degenerative diseases, our incomplete understanding of disease 

pathogenesis has led to a current strategy of addressing disease symptoms and endpoints rather 

than their underlying etiology. For example, in AMD and DR, patients receive anti-VEGF 

therapies to inhibit pathological angiogenesis. For IRDs, even if we have a sophisticated 

understanding of the underlying genetics, it is not always easy to deliver therapeutics in a clinical 

setting due to the challenges highlighted above. Therefore, an attractive option would be to 

identify a potential therapeutic strategy that could prevent photoreceptor death in multiple forms 

of retinal degenerative diseases. One example of such an approach is stem cell therapy. Previous 

mouse studies have shown that photoreceptor neuron transplantation is feasible and improves 

visual function (MacLaren et al., 2006; Pearson et al., 2012; Santos-Ferreira et al., 2015). These 
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investigations have been the basis of ongoing human clinical trials using stem-cell based 

approaches in AMD (Mandai et al., 2017; Schwartz et al., 2015; Schwartz et al., 2016). Although 

these studies adopt the strategy of RPE transplantation rather than photoreceptor neuron 

transplantation since RPE dysfunction is known to contribute to photoreceptor degeneration in 

advanced dry AMD, they demonstrate that transplantation of cells into the eye is feasible, paving 

the way for future human clinical studies of photoreceptor transplantation. 

There remain numerous challenges of using stem cells for photoreceptor transplantation, 

such as ensuring proper functional connectivity with the host retina, the time required to 

differentiate cells for transplantation, and potential tumorigenicity of transplanted cells. Recent 

studies also suggest that material transfer of proteins from transplanted photoreceptors to host 

cells may itself improve visual function, necessitating a closer look at the mechanism underlying 

rescue in transplantation studies (Pearson et al., 2016; Waldron et al., 2018).These are important 

issues that must be investigated thoroughly before stem cell therapy can be widely used in 

humans. The source of stem cells also poses a significant challenge. Although induced 

pluripotent stem cells (iPSCs) can be used to overcome the ethical concerns and regulatory 

challenges surrounding embryonic stem cells since iPSCs are reprogrammed from adult somatic 

cells, they have one major limitation: specifically, since the source of iPSCs is often the patients 

themselves, the cells retain disease-causing mutations, requiring gene editing prior to 

transplantation. Although targeted gene editing can be achieved with CRISPR-Cas9 in mouse 

models (Burnight et al., 2017), successful application of this technology to treat retinal 

degenerative diseases in humans is still in its infancy. 
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1.7 Conclusions 

Retinal degenerative diseases are a major cause of morbidity in the modern world. Visual 

impairment significantly diminishes the quality of life of patients. A significant challenge in 

preventing blindness caused by retinal diseases is the genetic and phenotypic heterogeneity of 

the diseases and a variable understanding of disease pathogenesis. This limited understanding 

has led to either the widespread use of drugs that treat disease manifestations in relatively late 

phases of the natural history rather than the underlying cause or, in many instances, a complete 

lack of treatment options altogether. Indeed, more research is necessary to identify novel 

therapeutics for early and targeted intervention. Some strategies, such as gene therapy and stem 

cell-based therapeutic approaches, have been proposed, although they have limitations, such as 

the fact that gene therapy would have to be tailored for the causative mutation of each individual 

disease. The ability to identify novel therapies for diverse retinal diseases is highly attractive and 

would address a great clinical need. 
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Figure 1.1. Schematic depicting the structural organization of the neurosensory retina and its location in the eye. 
The retina consists of numerous neuronal cell types, including rod and cone photoreceptors, bipolar cells, retinal 
ganglion cells, horizontal cells, and amacrine cells. 
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Chapter 2: 
NAMPT-Mediated NAD+ Biosynthesis Is Essential for Vision in Mice 
 
 
This chapter is adapted from a manuscript published in Cell Reports. 
 

Lin JB, Kubota S, Ban N, Yoshida M, Santeford A, Sene A, Nakamura R, Zapata N, Kubota M, 
Tsubota K, Yoshino J, Imai S, Apte RS. (2016). NAMPT-mediated NAD+ biosynthesis is 
essential for vision in mice. Cell Rep, 17(1):69-85. doi: 10.1016/j.celrep.2016.08.073. 
 
J.B.L. & S.K. = co-first authors 
 
 
Conceptualization: R.S.A., S.I., K.T. 
Investigation: J.B.L., S.K., N.B., M.Y., A. Santeford, A. Sene, R.N., N.Z., M.K., J.Y. 
Writing – Original Draft: J.B.L., S.K. 
Writing – Review & Editing: J.B.L., R.S.A., S.I., A. Sene 
Supervision: R.S.A., S.I., K.T. 
Funding Acquisition: R.S.A., S.I., K.T. 
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2.1 Summary 

Photoreceptor death is the endpoint of many blinding diseases. Identifying unifying 

pathogenic mechanisms in these diseases may offer global approaches for facilitating 

photoreceptor survival. We found that rod or cone photoreceptor-specific deletion of 

nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the major NAD+ 

biosynthetic pathway beginning with nicotinamide, caused retinal degeneration. In both cases, 

we could rescue vision with nicotinamide mononucleotide (NMN). Significantly, retinal NAD+ 

deficiency was an early feature of multiple mouse models of retinal dysfunction, including light-

induced degeneration, streptozotocin-induced diabetic retinopathy, and age-associated 

dysfunction. Mechanistically, NAD+ deficiency caused metabolic dysfunction and consequent 

photoreceptor death. We further demonstrate that the NAD+-dependent mitochondrial deacylases 

SIRT3 and SIRT5 play important roles in retinal homeostasis and that NAD+ deficiency causes 

SIRT3 dysfunction. These findings demonstrate that NAD+ biosynthesis is essential for vision, 

provide a foundation for future work to further clarify the mechanisms involved, and identify a 

unifying therapeutic target for diverse blinding diseases. 
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2.2 Introduction 

Vision is a crucial sense that depends on photoreceptors for light transduction. 

Photoreceptors are divided into two classes: rods and cones. Rod photoreceptors mediate dim 

vision, while cone photoreceptors mediate precise central vision in ambient light. Photoreceptors 

make up a significant portion of the neurosensory retina, one of the most metabolically active 

tissues in the body (Ames et al., 1992; Kooragayala et al., 2015; Okawa et al., 2008). Although 

terminally differentiated and non-proliferative, photoreceptors have tremendous metabolic 

demands throughout their lives and experience significant light-induced oxidative stress due to 

their function of performing light transduction (Fu and Yau, 2007; Yau and Hardie, 2009). 

Because of the critical role that photoreceptors play in light transduction, photoreceptor 

death leads to blindness. Despite their differing etiologies, many blinding diseases share this 

final pathway of photoreceptor death, which inevitably causes vision loss. For example, age-

related macular degeneration (AMD) is one leading cause of blindness in older adults (Apte, 

2010; Klein et al., 2004; van Leeuwen et al., 2003). Although advanced AMD takes on two 

forms (i.e., dry or wet AMD) (Sene and Apte, 2014), both pathways ultimately lead to 

photoreceptor death. Similarly, inherited retinal degenerations, including retinitis pigmentosa 

(RP), rod and cone dystrophies, and Leber congenital amaurosis (LCA), are caused by genetic 

defects in over 100 different genes that lead to photoreceptor death (Astuti et al., 2015; Hartong 

et al., 2006; Wright et al., 2010). Developing treatment strategies for this broad spectrum of 

retinal degenerative diseases is challenging given these diverse pathogenic mechanisms. 

Nicotinamide adenine dinucleotide (NAD+) is both an essential coenzyme, functioning as 

an electron carrier in glycolysis and the Krebs cycle, and an essential cosubstrate for NAD+-

consuming enzymes, including sirtuins, poly(ADP-ribose) polymerases (PARPs), mono-ADP 
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ribosyltransferases, and cyclic ADP-ribose hydrolase (CD38) (Ying, 2006). Given these 

numerous functions, NAD+ has been shown to be important in many biological processes, 

including metabolism (Garten et al., 2009; Mouchiroud et al., 2013), circadian rhythms 

(Nakahata et al., 2009; Ramsey et al., 2009), and aging (Imai and Guarente, 2014). Relevant to 

our studies, NAD+ has also been shown to be important in neurodegeneration (Alano et al., 2010; 

Gerdts et al., 2015; Stein et al., 2014; Zhou et al., 2015). However, the role of NAD+ in retinal 

degeneration has been relatively unexplored to date. 

We hypothesized that NAD+ biosynthesis plays an important role in photoreceptor 

function and survival. This hypothesis is supported by past studies demonstrating that LCA, the 

leading cause of childhood blindness from retinal disease, can be caused by mutations in 

nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) (Chiang et al., 2012; Falk et al., 

2012; Koenekoop et al., 2012; Perrault et al., 2012), an enzyme involved in NAD+ biosynthesis. 

The various mutant forms of NMNAT1 associated with LCA exhibit reduced NAD+ biosynthetic 

capacity and/or impaired protein folding (Falk et al., 2012; Koenekoop et al., 2012; Sasaki et al., 

2015) with both factors contributing to disease pathogenesis. 

NAD+ can be synthesized in three ways: 1) de novo from tryptophan, 2) salvaged from 

nicotinamide or nicotinic acid (NAM or NA, respectively), or 3) from nicotinamide riboside 

(NR). In mammals, the salvage pathway beginning with NAM is the predominant NAD+ 

biosynthetic pathway (Imai and Yoshino, 2013; Imai and Guarente, 2014). The first step of this 

pathway is catalyzed by nicotinamide phosphoribosyltransferase (NAMPT), which combines 

NAM with 5-phosphoribosyl pyrophosphate (PRPP) to form nicotinamide mononucleotide 

(NMN). NMN is then adenylated by NMNAT1-3 to synthesize NAD+. 
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In this study, we focus on the role of NAMPT-mediated NAD+ biosynthesis in 

photoreceptor survival and vision. Our results suggest that NAD+ biosynthesis may be important 

not only in LCA but also in a broad spectrum of retinal degenerations and age-associated retinal 

dysfunction. Thus, it may be possible to use NAD+ intermediates to protect against retinal 

degeneration. Although these findings provide a strong foundation for future studies, further 

work is needed to clarify the mechanisms involved. If successful, this therapeutic strategy would 

be far-reaching since it could be used for diverse retinal degenerations regardless of their 

etiology. 

 

2.3 Results 

Loss of NAMPT-mediated NAD+ biosynthesis impairs photoreceptor survival and vision 

Photoreceptors are one of the most metabolically active cells of the body with demanding 

energy requirements (Ames et al., 1992; Okawa et al., 2008) but limited mitochondrial reserve 

capacity (Kooragayala et al., 2015). Therefore, we hypothesized that photoreceptors depend on 

NAMPT-mediated NAD+ biosynthesis to meet their catalytic requirements. To test this 

hypothesis, we examined the effect of disrupting NAMPT-mediated NAD+ biosynthesis 

selectively in rod photoreceptors by generating conditional knockout mice lacking Nampt 

(Nampt-rod/-rod). 

As expected, rod-enriched retinal isolates from Nampt-rod/-rod mice showed significant 

reduction in Nampt gene expression (Figure 2.1A). This rod photoreceptor-specific deletion of 

Nampt led to a ~26% reduction in retinal NAD+ levels in Nampt-rod/-rod mice compared to 

NamptF/F littermates at 3 weeks (Figure 2.1B). We also measured NAD+ levels in rod-enriched 

retinal isolates to more specifically characterize the magnitude of NAD+ deficiency in rod 
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photoreceptors. We found that rod-enriched isolates from Nampt-rod/-rod mice had a ~43% 

reduction in NAD+ levels compared to those from NamptF/F mice (Figure 2.1C), suggesting that 

the NAD+ deficiency is predominantly specific to the rod photoreceptors. 

On biomicroscopy, we found that Nampt-rod/-rod mice had a degenerative phenotype that, 

by 6 weeks, was characterized by massive atrophy of the neurosensory retina, vascular 

attenuation with pigment mottling, and atrophy of the underlying retinal pigment epithelium 

(RPE) cells, which was not observed in NamptF/F littermates (Figure 2.1D). This neurosensory 

retinal degeneration was also associated with secondary atrophy and pallor of the optic nerve 

(Figure 2.1D). We confirmed this degeneration with histological examination of eyes from 

Nampt-rod/-rod mice. Although the histology was relatively normal at 2 weeks (data not shown), 

there was progressive loss of the outer nuclear layer with associated retinal degeneration, 

significant reduction of retinal thickness, and secondary extension to multiple retinal layers in 

Nampt-rod/-rod eyes that was complete by 6 weeks (Figure 2.1E). Of note, the outer nuclear layer 

(arrows; Figure 2.1E) appeared to be almost completely absent by 6 weeks, indicating 

substantial photoreceptor death. 

We performed electroretinography (ERG) to confirm the functional deficits associated 

with this profound anatomic degeneration. By 6 weeks, Nampt-rod/-rod mice demonstrated a 

dramatic reduction in the amplitudes of rod-generated scotopic a-waves (Figure 2.1F), 

indicating significant impairment of rod function. This impairment in rod photoreceptor function 

also led to declines in the amplitudes of the scotopic b-waves (Figure 2.1G). Interestingly, 

Nampt-rod/-rod mice also exhibited deficits in cone function, as manifested by a decline in the 

amplitudes of the photopic b-waves (Figure 2.1H). Although Nampt deletion was specifically in 

rods, this cone dysfunction was not surprising; cone photoreceptor degeneration is often 
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observed as a secondary effect of rod photoreceptor degeneration since rods are required for cone 

survival (Ait-Ali et al., 2015; Wong and Kwok, 2016). Consistently, by 6 weeks, Nampt-rod/-rod 

mice had significantly worse photopic visual acuity compared to age-matched NamptF/F controls 

(Figure 2.1I). As such, our findings replicate the progression of rod degeneration followed by 

cone degeneration often observed in patients with inherited retinal degenerations such as RP. 

We also generated Nampt-rod/wt mice to determine the effect of partial ablation of 

NAMPT-mediated NAD+ biosynthesis. As expected, rod-enriched retinal isolates from Nampt-

rod/wt mice exhibited partial reduction in Nampt expression compared to NamptF/wt controls (data 

not shown), which was roughly half of the reduction in Nampt-rod/-rod versus NamptF/F mice. This 

monoallelic Nampt deletion did not cause a statistically significant reduction in retinal NAD+ 

levels nor did it cause significant retinal degeneration by 6 weeks as measured by ERG (data not 

shown), suggesting that Nampt is haplosufficient during this short time scale. 

To confirm that the effect of Nampt deletion was cell autonomous, we generated mice 

lacking Nampt specifically from cone photoreceptors (Nampt-cone/-cone). Although cones constitute 

only ~3% of photoreceptors, they are exclusively responsible for precise color and central vision 

in humans. As expected, immunohistochemistry revealed reduced intracellular NAMPT staining 

(red) within cone photoreceptors (green) in retinal sections from Nampt-cone/-cone mice, while 

retinal sections from NamptF/F mice demonstrated robust cone NAMPT expression (Figure 

2.2A). 

Biomicroscopic imaging of Nampt-cone/-cone mice demonstrated changes consistent with 

cone degeneration, including mottling of the RPE and pallor of the optic nerve (Figure 2.2B). 

This structural degeneration also manifested in functional deficits by ERG.  By 6 weeks, Nampt-

cone/-cone mice exhibited mild declines in their scotopic a- and b-wave amplitudes (Figures 2.2C 
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and 2.2D). More strikingly, Nampt-cone/-cone mice exhibited dramatic declines in the amplitudes of 

their photopic b-waves (Figure 2.2E), indicating predominant cone dysfunction. These structural 

and functional changes in Nampt-cone/-cone mice were also associated with a significant decrease in 

photopic visual acuity (Figure 2.2F). Cumulatively, these findings provide strong support for the 

essential role of NAMPT-mediated NAD+ biosynthesis in photoreceptor survival, as cell-specific 

deletion of this key enzyme led to rapid photoreceptor degeneration and vision loss. 

 

Exogenous NMN prevents photoreceptor degeneration and restores vision 

 To confirm the importance of NAMPT-mediated biosynthesis in photoreceptor survival, 

we tested whether exogenous supplementation with NMN could rescue photoreceptor 

degeneration by bypassing the NAMPT-catalyzed reaction. NAMPT catalyzes the conversion of 

NAM to NMN and should reduce photoreceptor death by ameliorating the NAD+ deficiency. We 

gave Nampt-rod/-rod mice daily intraperitoneal injections of NMN (150 mg/kg) or vehicle alone 

beginning at P5 and ending at the time of ERG testing. Strikingly, ERG at 4 weeks in NMN-

treated Nampt-rod/-rod mice revealed significant recovery of scotopic and photopic retinal function 

compared to vehicle-treated Nampt-rod/-rod mice (Figures 2.3A, 2.3B, and 2.3C). There was no 

dramatic effect of NMN on the ERG of NamptF/F controls (data not shown). Consistently, retinal 

sections from NMN-treated Nampt-rod/-rod mice showed rescue of retinal degeneration compared 

to vehicle-treated Nampt-rod/-rod mice, as manifested by relative preservation of the outer nuclear 

layer (Figure 2.3D). 

Correspondingly, daily intraperitoneal NMN injections also significantly improved 

retinal function by ERG in Nampt-cone/-cone mice compared to vehicle-treated Nampt-cone/-cone mice 

(Figures 2.3E, 2.3F, and 2.3G). These data clearly demonstrate that NAMPT-mediated NAD+ 
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biosynthesis is necessary for the survival and function of both rod and cone photoreceptors, as 

promoting NAD+ biosynthesis in the retina with NMN supplementation can compensate for 

Nampt deletion, thereby reducing photoreceptor death and improving vision. 

 

Early NAD+ deficiency is a feature of multiple mouse models of retinal dysfunction 

 Next, we sought to determine whether NAD+ deficiency is an early feature of other 

mouse models of retinal disease or dysfunction, which would support the possibility that NAD+ 

intermediates may have therapeutic potential against a broad spectrum of retinal degenerative 

diseases. Light-induced degeneration is a well-characterized model that is widely used to study 

mechanisms of photoreceptor death (Grimm and Reme, 2013) and is known to cause retinal 

dysfunction, which can be observed by histology and ERG (Schimel et al., 2011). We found that 

there was a significant reduction in retinal NAD+ levels as early as 24 hours following light 

exposure (Figure 2.3H). In addition, we tested whether mice with streptozotocin (STZ)-induced 

diabetic retinopathy, whose retinal dysfunction has been well characterized (Samuels et al., 

2015), exhibit retinal NAD+ deficiency. At 3 weeks after STZ induction, hyperglycemic mice 

had a significant reduction in retinal NAD+ compared to non-hyperglycemic controls (Figure 

2.3I). Finally, it is well known that there are defects in retinal structure and function in old mice, 

such as a decreased number of rod photoreceptors, a decreased level of total opsin in the retina, 

and diminished rod ERG recordings (Kolesnikov et al., 2010; Lin et al., 2016b). Consistent with 

these past reports, we found that 18-month-old wild-type mice (C57BL/6J) had worse retinal 

function on ERG compared to strain-matched 6-month-old mice from the same source (data not 

shown). As in light-induced degeneration and STZ-induced diabetic retinopathy, this age-

associated retinal dysfunction was associated with a significant decline in retinal NAD+ levels 
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(Figure 2.3J). These findings support the idea that NAD+ deficiency may be a shared feature of 

retinal dysfunction. 

 

NMN rescues retinal dysfunction in light-induced degeneration 

 Since we showed that there is NAD+ deficiency associated with the retinal dysfunction 

that follows light-induced degeneration, we sought to determine whether exogenous NMN 

supplementation to rescue NAD+ deficiency would rescue retinal dysfunction. We gave wild-

type mice (129S1/SvImJ) daily intraperitoneal injections of NMN (300 mg/kg) or vehicle alone 

beginning 6 days prior to light exposure, on the day of light exposure, and for 3 days following 

light exposure (total of 10 injections/mouse). Remarkably, NMN-treated wild-type mice were 

more resilient against light exposure and retained improved retinal function as measured by ERG 

compared to vehicle-treated mice (Figures 2.4A, 2.4B, and 2.4C). These findings suggest that 

the NAD+ deficiency associated with retinal disease can indeed be rescued by NAD+ 

intermediates such as NMN, further supporting the possibility of using NAD+ intermediates to 

treat retinal degenerative diseases. 

 

Loss of NAMPT-mediated NAD+ biosynthesis leads to metabolic dysfunction 

To provide insight into how NAD+ deficiency leads to retinal degeneration, we 

performed transmission electron microscopy on Nampt-rod/-rod retinas. Although there were no 

obvious differences in mitochondrial ultrastructure at 3 weeks, we observed profoundly 

dysmorphic changes in photoreceptor inner segments by 4 weeks along with disruption of the 

outer segments, which we did not observe in NamptF/F littermates of the same age (data not 

shown). Of interest, by 4 weeks, the mitochondria of Nampt-rod/-rod retinas were rounded and 
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constricted with loss of cristae and a morphology that was distinctly different from that observed 

in NamptF/F littermates (Figure 2.4D). In addition, at this time point, we observed degenerative 

vacuoles in the cytoplasm of Nampt-rod/-rod retinas, which appeared to contain degenerated 

organelles including ruptured mitochondria (data not shown). These results suggest that loss of 

NAMPT-mediated NAD+ biosynthesis in photoreceptors leads to mitochondrial structural 

irregularities that may lead to or be associated with defects in mitochondrial function. 

To characterize these possible mitochondrial defects, we performed non-biased 

metabolomic analysis with liquid chromatography-mass spectrometry (LC-MS) and gas 

chromatography-mass spectrometry (GC-MS), comparing retinas isolated from 3-week old 

Nampt-rod/-rod mice to those isolated from gender-matched NamptF/F littermates. We chose this 

time point since it would allow us to identify signs of mitochondrial dysfunction that precede 

gross retinal degeneration. The LC-MS results revealed that although there were no statistically 

significant differences, there was a trend toward accumulation of some acylcarnitine species in 

Nampt-rod/-rod retinas, suggesting a possible defect in Krebs cycle efficiency (data not shown). In 

addition, the GC-MS results revealed that numerous mitochondrial metabolites were 

significantly elevated or reduced in Nampt-rod/-rod retinas. To determine whether the identities of 

these dysregulated metabolites were suggestive of defects in certain metabolic pathways, we 

performed metabolite set enrichment analysis with MetaboAnalyst 3.0 (Xia et al., 2015) using 

the over representation analysis algorithm. This analysis revealed that there are numerous 

metabolic pathways that are broadly dysregulated in Nampt-rod/-rod retinas, including protein 

biosynthesis, propanoate metabolism, and the citric acid cycle, among others (Figure 2.4E). 

To confirm that these effects on mitochondrial function were indeed related to loss of 

NAMPT function within photoreceptors, we treated 661W cone photoreceptor-like cells with the 
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pharmacological NAMPT inhibitor FK866 (20 µM) and measured reductive capacity to 

approximate metabolic activity. NAMPT inhibition caused considerable reduction of 

photoreceptor cell reductive capacity. By 24 hours, FK866-treated cells had roughly 40% of the 

reductive capacity of vehicle-treated cells (Figure 2.5A). By 48 hours, there was an even more 

dramatic effect with reductive capacity reduced down to ~20% (Figure 2.5B). Although there 

was no cell death at 24 hours (Figure 2.5C), this loss of reductive capacity ultimately led to cell 

death by 48 hours (Figure 2.5D). This finding highlights that metabolic dysfunction, as 

represented by a decrease in reductive capacity, precedes cell death. 

Since we observed that exogenous NMN supplementation rescued retinal function in 

Nampt-rod/-rod and Nampt-cone/-cone mice, we tested whether NMN supplementation could rescue the 

deleterious effects of NAMPT inhibition in photoreceptor cells. Our results demonstrate that 

providing FK866-treated photoreceptors with NMN (100 µM) could completely restore normal 

reductive capacities at 24 hours and at 48 hours and prevent subsequent cell death (Figures 

2.5A, 2.5B, and 2.5D). These results provide strong evidence for the importance of NAMPT-

mediated NAD+ biosynthesis in photoreceptors since we demonstrate that bypassing the 

NAMPT-catalyzed reaction could restore normal reductive capacity and prevent cell death. 

To determine whether these dramatic effects of NAMPT inhibition were unique to 

photoreceptors, we tested the effects of FK866 (20 µM) on the reductive capacity and cell 

survival of ARPE-19 RPE cells. Of interest, an identical dose of FK866 had no effect on the 

reductive capacity of RPE cells at 24 hours and only a modest albeit statistically significant 

effect on reductive capacity at 48 hours (data not shown). Remarkably, FK866 did not reduce 

RPE cell survival at either 24 or 48 hours (data not shown), demonstrating that RPE cells are 

more resilient to metabolic dysfunction and thereby protected from cell death. Ultimately, these 
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results suggest that photoreceptors are uniquely vulnerable to impairment of NAMPT-mediated 

NAD+ biosynthesis and implicate this pathway as a master regulator of photoreceptor 

metabolism and survival. 

 

NAMPT inhibition causes rapid NAD+ depletion, leading to an ATP crisis 

To further characterize the effects of NAMPT inhibition, we measured NAD+ levels in 

photoreceptor cells after treatment with FK866 (20 µM). As expected, by 6 hours, FK866-treated 

photoreceptor cells contained significantly less total NAD+ compared to vehicle-treated cells 

plated at the same density (Figure 2.5E). Exogenous NMN supplementation (100 µM) returned 

NAD+ back to near-normal levels (Figure 2.5E). After 24 hours, there were undetectable levels 

of NAD+ in FK866-treated cells compared to vehicle-treated cells (Figure 2.5F). Similar to the 

6-hour time point, exogenous NMN supplementation for 24 hours prevented FK866-associated 

NAD+ depletion, bringing NAD+ back to even higher levels compared to vehicle-treated cells 

(Figure 2.5F). We interpret these results to indicate that NAMPT inhibition causes rapid NAD+ 

deficiency, which likely contributes to the metabolic dysfunction described above. 

To further characterize the connection between NAD+ depletion and cell death, we 

investigated the time course of NAD+ depletion and its effect on ATP production by 

simultaneously measuring NAD+ and ATP content in photoreceptor cells at various times after 

treatment with FK866 (20 µM). As above, we found that FK866 caused rapid NAD+ deficiency. 

By 6 hours, NAD+ levels were down to ~50% of their original levels (Figure 2.5G). NAD+ 

depletion continued rapidly, dropping to ~15% by 12 hours and to undetectable levels by 24 

hours (Figure 2.5G). NAMPT inhibition also caused ATP depletion, but ATP levels did not 

decline after 6 hours of FK866 treatment and dropped only modestly to ~70% of the original 



 
26 

 

levels by 12 hours (Figure 2.5G). By 24 hours however, ATP levels had dropped down to ~10% 

of the original levels (Figure 2.5G). The temporal relationship between NAD+ and ATP 

depletion suggests that the ATP crisis is a downstream effect of NAD+ deficiency-associated 

metabolic dysfunction. 

To confirm the connection between NAD+ availability, ATP content, metabolic function, 

and cell survival, we also measured NAD+ and ATP levels in RPE cells after NAMPT inhibition. 

Consistent with the mild effects on metabolic function and the lack of effect on cell survival, 24 

hours of FK866 treatment (20 µM) caused only a ~60% reduction in total NAD+ levels (data not 

shown), a smaller effect than that observed after 24 hours of FK866 treatment in photoreceptor 

cells. This intermediate decrease in total NAD+ levels was accompanied by a concomitant 

increase in ATP levels (data not shown), drastically different from the severe ATP depletion 

exhibited by photoreceptor cells. These findings suggest that photoreceptor cells are more 

vulnerable to perturbations in NAD+ biosynthesis compared to other non-photoreceptor eye cells, 

such as RPE cells. 

 

NAMPT inhibition impairs basal metabolism and the normal response to metabolic stress 

The rapid decline of ATP in photoreceptor cells within 24 hours of FK866 treatment 

suggests that NAMPT inhibition causes significant metabolic dysfunction. To characterize what 

elements of metabolic function were impaired, we treated photoreceptor cells with FK866 (20 

µM) and profiled various aspects of metabolism by measuring oxygen consumption rate (OCR) 

as a measure of aerobic respiration and extracellular acidification rate (ECAR) as a measure of 

glycolytic flux. We measured these parameters of metabolic function at baseline and under 
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various conditions of stress induced by sequential treatments with oligomycin, carbonyl cyanide-

4-(trifluoromethoxy)phenylhydrazone (FCCP), and antimycin A/rotenone. 

At baseline, FK866-treated photoreceptor cells exhibited reduced OCR and ECAR 

(Figures 2.5H and 2.5I), indicating that NAMPT inhibition caused reduced basal oxidative 

respiration and basal glycolytic flux. While vehicle-treated cells responded appropriately to the 

ATP synthase inhibitor oligomycin by shifting toward glycolytic metabolism (reduced OCR; 

increased ECAR), FK866-treated photoreceptor cells were unable to shift toward glycolytic 

metabolism (Figures 2.5H and 2.5I). Moreover, while vehicle-treated cells responded 

appropriately to the ionophore FCCP by elevating their oxidative respiration (increased OCR), 

FK866-treated photoreceptor cells were unable to accelerate oxidative respiration in response to 

metabolic stress (Figure 2.5H). NMN supplementation restored normal baseline metabolism and 

the appropriate responses to stress (Figures 2.5H and 2.5I), confirming that these phenotypes 

were specific to NAD+ deficiency. 

To confirm that these effects on metabolic function were specific to NAMPT inhibition, 

we performed Nampt knockdown in photoreceptor cells. Partial reduction of NAMPT-mediated 

NAD+ biosynthesis through Nampt knockdown in photoreceptor cells caused a reduction in 

NAD+ levels (data not shown) within 24 hours after knockdown. Although this intermediate 

reduction in NAD+ did not affect reductive capacity or cell survival at the early 48-hour time 

point, it did impair the ability of photoreceptor cells to maximally accelerate oxidative 

respiration in response to FCCP (data not shown), further reinforcing the importance of 

NAMPT-mediated NAD+ biosynthesis for maintaining mitochondrial homeostasis in 

photoreceptors. 
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Taken together, these data confirm the importance of NAMPT-mediated NAD+ 

biosynthesis for maintaining photoreceptor glycolytic and mitochondrial function – both at 

baseline and in response to metabolic stress – and highlight a NAMPT-specific effect due to the 

ability of NMN to restore normal metabolic responses. Importantly, we observed these signs of 

metabolic dysfunction after 24 hours of FK866 treatment prior to when we observed the effects 

on photoreceptor cell viability. Once again, these results highlight that glycolytic and 

mitochondrial dysfunction precede and therefore likely cause photoreceptor cell death. 

 

NAD+ deficiency causes NAD-IDH dysfunction 

Our in vitro and in vivo results suggest that there are defects in oxidative metabolism in 

photoreceptors under conditions of NAD+ deficiency. To more specifically characterize these 

defects in oxidative metabolism, we tested the activity of three enzymes of the Krebs cycle that 

require NAD+ as a coenzyme: NAD+-dependent isocitrate dehydrogenase (NAD-IDH/IDH3), 

alpha-ketoglutarate dehydrogenase (AGDH), and malate dehydrogenase (MDH). The fact that 

these enzymes require NAD+ as a coenzyme provides the opportunity to determine whether their 

enzymatic dysfunction is caused solely by loss of NAD+ as a coenzyme. If loss of NAD+ as a 

coenzyme were solely responsible for enzymatic dysfunction, we would expect to be able to 

restore enzymatic function simply by providing sufficient NAD+ to the reaction mixture. 

We found that NAD-IDH activity was significantly lower in rods isolated from Nampt-

rod/-rod retinas compared to those isolated from NamptF/F retinas, even when sufficient NAD+ was 

supplied in the reaction (Figure 2.5J) despite similar NAD-IDH expression levels (Figure 

2.5K). These findings suggest that NAD-IDH dysfunction cannot be explained by loss of NAD+ 

as a coenzyme alone. Of significant interest, the rod AGDH and MDH activities were completely 
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rescued by NAD+ (Figures 2.5L and 2.5M), indicating selective enzymatic dysfunction. These 

findings not only characterize one specific aspect of mitochondrial dysfunction but also suggest 

that NAD+ plays important roles on regulating metabolism in addition to its role as a coenzyme. 

 

SIRT3 and SIRT5 play important roles in photoreceptor survival 

In addition to serving as a coenzyme for crucial steps of glycolysis and the Krebs cycle, 

NAD+ also serves as a cosubstrate for NAD+-consuming enzymes, including the sirtuins. Of the 

seven sirtuin family members, three of them, SIRT3, SIRT4, and SIRT5, are known to regulate 

mitochondrial function (Laurent et al., 2013; Yang et al., 2007; Zhang et al., 2015). Because 

other sirtuin family members have been shown to play crucial roles in regulating the survival of 

retinal cells (Jaliffa et al., 2009; Silberman et al., 2014) and because sirtuins depend on NAD+ 

availability for optimal function (Satoh and Imai, 2014), we hypothesized that NAD+ deficiency 

may also impair mitochondrial sirtuin activity, contributing to mitochondrial dysfunction. 

To determine whether the mitochondrial sirtuins are essential for photoreceptor survival, 

we performed individual and combined knockdown of SIRT3, SIRT4, and SIRT5 in 

photoreceptor cells. Individual knockdown of SIRT3 and SIRT5 caused significant reduction in 

reductive capacity compared to knockdown by negative control (Figure 2.6A). Interestingly, 

individual knockdown of SIRT4 did not diminish reductive capacity, highlighting the specificity 

of the effect of SIRT3 and SIRT5 (Figure 2.6A). Combined SIRT3 and SIRT5 knockdown had a 

synergistic effect, leading to significantly lower reductive capacity compared to either single 

knockdown alone (Figure 2.6A). Of note, NMN was not able to rescue the effect on reductive 

capacity in the SIRT3/SIRT5 double knockdown (Figure 2.6A), suggesting that exogenous 

NMN cannot protect against SIRT3/SIRT5 deletion. 
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This decline in reductive capacity secondary to SIRT3/SIRT5 knockdown was also 

accompanied by progressive cell death. Individual knockdown of SIRT3 and SIRT5 caused 

significant reduction in cell survival compared to knockdown by negative control (Figure 2.6B). 

Again, individual knockdown of SIRT4 had no effect on cell viability (Figure 2.6B), 

highlighting the specificity of the SIRT3/SIRT5 effect. Once again, combined SIRT3 and SIRT5 

knockdown had a more profound effect on cell death compared to either individual knockdown 

alone (Figure 2.6B). Consistently, NMN supplementation did not rescue the cell death caused by 

combined SIRT3/SIRT5 double knockdown (Figure 2.6B). 

To test whether loss of SIRT3 and SIRT5 causes mitochondrial dysfunction similar to 

that caused by NAD+ deficiency, we performed individual and combined SIRT3 and SIRT5 

knockdowns in photoreceptors and measured the NAD-IDH activity 24 hours after transfection. 

We found that knocking down SIRT3, SIRT5, or both SIRT3/SIRT5 in photoreceptor cells 

recapitulated NAD-IDH dysfunction (Figure 2.6C). The fact that SIRT3 and SIRT5 

knockdowns phenocopy the NAD-IDH dysfunction observed in rods isolated from Nampt-rod/-rod 

retinas suggests that SIRT3 and SIRT5 may play a role in governing the metabolic dysfunction 

associated with NAD+ deficiency. 

To test the role of SIRT3 and SIRT5 in retinal function in vivo, we tested mice lacking 

SIRT3 and SIRT5. Both SIRT3KO and SIRT5KO mice have normal-appearing fundi on 

biomicroscopy and normal retinal function on ERG compared to strain-matched controls (data 

not shown). However, since many studies report that SIRT3 and SIRT5 regulate many of the 

same protein targets and even the same lysine residues within the same protein (Hebert et al., 

2013; Park et al., 2013; Rardin et al., 2013a; Rardin et al., 2013b; Schwer et al., 2009; Sol et al., 
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2012; Still et al., 2013), it is possible that SIRT3 and SIRT5 can compensate for one another. To 

test this possibility, we also tested mice lacking multiple mitochondrial sirtuins. 

Although SIRT3KOSIRT5KO mice had normal retinal function at baseline (data not 

shown), we could not yet conclude that SIRT3 and SIRT5 are inessential for retinal function 

since previous studies have reported that mice lacking mitochondrial sirtuins rarely show striking 

phenotypes (Lombard et al., 2007; Yu et al., 2013) until they are challenged by specific stimuli 

such as fasting or a high-fat diet (Hirschey et al., 2011). To this end, we tested whether 

SIRT3KOSIRT5KO mice are more vulnerable to retinal degeneration after exposure to light. We 

found that SIRT3KOSIRT5KO mice were strikingly more vulnerable to retinal degeneration upon 

light stress compared to SIRT3hetSIRT5het controls as manifested by retinal dysfunction 

measured by ERG (Figures 2.6D, 2.6E, and 2.6F) four days after light treatment. Interestingly, 

SIRT3hetSIRT5KO and SIRT3KOSIRT5het mice demonstrated an intermediate degenerative 

phenotype (Figures 2.6D, 2.6E, and 2.6F), supporting the notion that SIRT3 and SIRT5 

synergistically regulate mitochondrial function in photoreceptors. Together, these results provide 

strong evidence that SIRT3 and SIRT5 not only are important for maintaining photoreceptor 

survival but also have distinct, non-redundant roles in regulating retinal homeostasis. 

 

NAMPT inhibition causes SIRT3 dysfunction 

Since we found that SIRT3 and SIRT5 are essential for photoreceptor survival, we sought 

to determine whether NAD+ deficiency caused by NAMPT inhibition impairs SIRT3 and SIRT5 

function in photoreceptor cells. Since SIRT3 regulates predominantly protein acetylation 

(Parihar et al., 2015) and SIRT5 regulates predominantly protein succinylation, malonylation, 

and glutarylation (Du et al., 2011; Nishida et al., 2015; Papanicolaou et al., 2014; Tan et al., 
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2014), we tested whether NAMPT inhibition modulates the acylation of mitochondrial proteins 

in photoreceptor cells. We found that mitochondrial lysates generated from photoreceptor cells 

treated with FK866 (20 µM) for 24 hours showed obvious hyperacetylation (Figures 2.7A and 

2.7B), indicating SIRT3 dysfunction. Normal acetylation patterns were restored with NMN 

(Figures 2.7A and 2.7B), confirming that this hyperacetylation was specific to NAMPT 

inhibition. Although there were clear acetylation changes, these mitochondrial lysates 

demonstrated only modest changes in succinylation (Figures 2.7C and 2.7D) and no obvious 

differences in malonylation or glutarylation (data not shown), suggesting that NAD+ deficiency 

primarily impairs SIRT3 function. 

To confirm that these effects were caused by NAMPT inhibition rather than being 

secondary to metabolic dysfunction, we measured the activity of SIRT3 and SIRT5 in the 

mitochondrial lysates generated from FK866-treated photoreceptor cells. Consistent with our 

Western Blots, mitochondrial lysates generated from FK866-treated photoreceptor cells had a 

significant reduction in SIRT3 activity compared to mitochondrial lysates generated from 

vehicle-treated cells (Figure 2.7E). There was, however, no difference in SIRT5 activity (Figure 

2.7F). Taken together, these results demonstrate that NAD+ deficiency leads to dysregulation of 

the mitochondrial acylome primarily through impairment of SIRT3 function. Since we show that 

SIRT3 is important for photoreceptor survival, this NAD+ deficiency-associated impairment of 

SIRT3 activity likely contributes to the mitochondrial dysfunction observed in photoreceptors 

lacking Nampt, providing additional mechanistic evidence for why NAMPT-mediated NAD+ 

biosynthesis is essential for mitochondrial homeostasis, photoreceptor survival, and vision. 
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2.4 Discussion 

NAD+ has numerous functions in diverse biological processes including metabolism, 

circadian rhythms, aging, and neurodegeneration (Alano et al., 2010; Garten et al., 2009; Gerdts 

et al., 2015; Imai and Yoshino, 2013; Mouchiroud et al., 2013; Nakahata et al., 2009; Ramsey et 

al., 2009; Stein et al., 2014; Zhou et al., 2015). In the current study, we demonstrate that 

NAMPT-mediated NAD+ biosynthesis is indispensable for photoreceptor survival and vision. 

Using loss-of-function approaches, we show that disrupting NAMPT-mediated NAD+ 

biosynthesis in rod and cone photoreceptors leads to photoreceptor death, retinal degeneration, 

and blindness. By testing the effects of NAMPT inhibition on non-photoreceptor cells, we 

confirm that photoreceptors are uniquely susceptible to perturbations in NAD+ biosynthesis. 

Moreover, we demonstrate that, in photoreceptors, loss of NAMPT-mediated NAD+ 

biosynthesis leads to NAD+ deficiency, significant glycolytic and mitochondrial dysfunction 

under basal conditions, and the inability to respond appropriately to metabolic stress, which 

ultimately lead to photoreceptor death and retinal degeneration. Corresponding with this 

energetic failure, metabolic profiling of retinas from Nampt-rod/-rod mice revealed dysregulation of 

numerous metabolic pathways. Of interest, there was a trend (P = 0.0704) toward dysregulation 

of the citric acid cycle, a key pathway in oxidative metabolism. The trends toward accumulation 

of various acylcarnitine species also support a failure of Krebs cycle efficiency. These hallmarks 

of metabolic dysfunction could be identified prior to cell death and vision loss, supporting the 

possibility of probing mitochondrial function to predict subsequent photoreceptor death (Perron 

et al., 2013). These findings are interesting, especially considering recent studies that show that 

photoreceptors have limited mitochondrial reserve capacity, which may make them susceptible 

to defects in energy homeostasis (Kooragayala et al., 2015). We speculate that defects in the 
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Krebs cycle cause broad energetic failure and contribute to downstream defects in numerous 

metabolic pathways, such as protein biosynthesis and propanoate metabolism. Further studies are 

necessary to explore the precise connection between these phenomena. 

Our results also identify that NAD+ deficiency leads to selective enzymatic dysfunction 

and that cell death is unlikely to be caused by loss of NAD+ as a coenzyme alone. When we 

tested the activity of the three NAD+-dependent enzymes of the Krebs cycle in rods isolated from 

Nampt-rod/-rod retinas, only NAD-IDH activity could not be rescued by providing sufficient NAD+ 

as a coenzyme, while the activity of AGDH and MDH were restored by providing exogenous 

NAD+. This result stresses the importance of NAD-IDH in maintaining metabolic homeostasis in 

photoreceptors. In support, the retina has been shown to be highly dependent on NAD-IDH and 

exquisitely sensitive to defects in NAD-IDH function, such that mutations in NAD-IDH that 

impair its catalytic activity cause RP (Hartong et al., 2008). Of significant interest, these RP 

patients have normal NADP+-dependent IDH (i.e., NADP-IDH or IDH1/IDH2) activity and no 

other manifestations of disease despite the fact that they carry this mutation in all cells of their 

body (Hartong et al., 2008). This finding suggests that in contrast with most organ systems, the 

retina uniquely relies on the NAD+-dependent form of IDH (Hartong et al., 2008). 

We further demonstrate that SIRT3 and SIRT5 both play important roles in photoreceptor 

survival and that NAD+ deficiency leads predominately to SIRT3 dysfunction. Our results agree 

with past studies reporting that other sirtuin family members, including SIRT1 (Jaliffa et al., 

2009) and SIRT6 (Silberman et al., 2014), play roles in survival of photoreceptors and other 

retinal cells. Interestingly, we demonstrate that the deleterious effects of SIRT3 and SIRT5 

deletion are synergistic. These findings strongly suggest that SIRT3 and SIRT5 are not redundant 

even though they may regulate the acylation status of the same mitochondrial proteins and even 
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the same lysine residues within the same proteins (Hebert et al., 2013; Park et al., 2013; Rardin 

et al., 2013a; Rardin et al., 2013b; Schwer et al., 2009; Sol et al., 2012; Still et al., 2013). 

Based on our results, we hypothesize that SIRT3 dysfunction caused by NAD+ deficiency 

may contribute to mitochondrial dysfunction by causing aberrant hyperacetylation of key 

mitochondrial proteins, such as NAD-IDH. The possibility that SIRT3 dysfunction is linked to 

decreased NAD-IDH activity is supported not only by our ability to recapitulate NAD-IDH 

dysfunction with SIRT3 knockdown but also by the fact that NAD-IDH has been identified as a 

target of SIRT3 (Hebert et al., 2013; Rardin et al., 2013b; Schwer et al., 2009; Sol et al., 2012; 

Still et al., 2013). Further studies are needed to explore this possibility and to confirm these 

observations in vivo, perhaps using new technologies such as CRISPR/Cas9 to delete Nampt 

selectively from photoreceptors. 

 Cumulatively, these findings provide unique insights that point to the dominant 

mammalian NAD+ biosynthesis pathway as a master regulator of photoreceptor metabolism. 

Human retinal degenerations encompass a broad spectrum of diseases that include seemingly 

unrelated disorders such as LCA and RP, which have been associated with mutations in enzymes 

involved in NAD+ biosynthesis (Chiang et al., 2012; Falk et al., 2012; Koenekoop et al., 2012; 

Perrault et al., 2012) and the Krebs cycle (Hartong et al., 2008). Despite these genetic insights, 

the mechanisms underlying these conditions and what ultimately causes photoreceptor 

degeneration in these genotypically diverse disorders are poorly understood. We propose a 

model linking NAD+ biosynthesis, SIRT3/SIRT5, and metabolism in photoreceptors, which may 

connect these diverse retinal neurodegenerations at the molecular level. 

Remarkably, our studies also demonstrate that bypassing the NAMPT-catalyzed reaction 

with exogenous NMN supplementation can restore normal NAD+ levels in photoreceptor cells 
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despite NAMPT inhibition and reduce photoreceptor death in Nampt-rod/-rod mice. In 

photoreceptor cells subjected to NAMPT inhibition, NMN supplementation prevented metabolic 

dysfunction and cell death by restoring normal basal glycolytic and mitochondrial function and 

the ability to respond appropriately to metabolic stress. This therapeutic effect is likely explained 

by the importance of NAD+ not only to perform its coenzyme role in various steps of the Krebs 

cycle and glycolysis but also to maintain optimal SIRT3 activity. We show that multiple mouse 

models of retinal dysfunction, including light-induced degeneration, STZ-induced diabetic 

retinopathy, and age-associated retinal dysfunction all exhibit early retinal NAD+ deficiency. 

Moreover, the retinal dysfunction associated with light-induced degeneration can be partially 

rescued with NMN. These findings offer powerful therapeutic avenues for degenerative diseases 

of the eye and are supported by past studies exploring the therapeutic applications of NAD+ 

supplementation in light-induced degeneration (Bai and Sheline, 2013), noise-induced hearing 

loss (Brown et al., 2014), and high-fat diet- and age-induced metabolic complications (Canto et 

al., 2012; Ramsey et al., 2008; Stein and Imai, 2014; Yoshino et al., 2011). 

Once successfully implemented, this treatment strategy would be far-reaching since it 

could be implemented for multiple diseases with diverse pathogenic mechanisms, including not 

only inherited forms of retinal degenerations but also other blinding diseases characterized by a 

final pathway of photoreceptor death such as age-related macular degeneration and diabetic 

retinopathy. Given the global importance of NAD+ biosynthesis and mitochondrial dysfunction 

in neurons, our findings may also be broadly relevant to other systemic neurodegenerative 

diseases such as Alzheimer’s disease where NAD+ intermediate supplementation may be 

neuroprotective. 
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2.5 Methods 

Mice. All animal experiments were approved by the Animal Studies Committee and performed 

in accordance with the Washington University School of Medicine Animal Care and Use 

guidelines. Namptflox/flox (NamptF/F) mice were previously characterized (Rongvaux et al., 2008) 

and were provided by Dr. Shin-ichiro Imai. To generate mice lacking Nampt specifically from 

rod photoreceptors, we crossed NamptF/F mice with mice carrying one copy of the Rhodopsin-

iCre75 transgene, which were provided by Dr. Ching-Kang Jason Chen and have been 

previously characterized (Li et al., 2005). To generate mice lacking Nampt specifically from 

cone photoreceptors, we crossed NamptF/F mice with mice carrying one copy of the human 

red/green pigment-Cre (HRGP-Cre) transgene, which were provided by Dr. Yun Le and have 

been previously characterized (Le et al., 2004). We received 6-month-old and 18-month-old 

wild-type C57BL/6J mice from the National Institutes on Aging (Bethesda MD) and purchased 

streptozotocin (STZ)-induced hyperglycemic mice (C57BL/6J) from Jackson Laboratories (Bar 

Harbor ME). We also purchased SIRT3-/-, SIRT5-/-, and the appropriate strain-matched wild-type 

mice (129S1/SvImJ for SIRT3-/- and B6129SF2/J for SIRT5-/-) from Jackson Laboratories. 

 

Cells and reagents. We routinely cultured 661W cone photoreceptor-like cells, provided by Dr. 

Muayyad Al Ubaidi (Tan et al., 2004), in Dulbecco’s Modified Eagle Medium with 1 g/L 

glucose and 110 mg/L sodium pyruvate (DMEM; Thermo Fisher, Carlsbad CA) supplemented 

with 10% Fetal Bovine Serum (FBS; Sigma, St. Louis MO) and 1% penicillin-streptomycin 

(Thermo Fisher, Carlsbad CA). We prepared stock solutions of FK866 (Santa Cruz 

Biotechnology, Dallas TX) at 200 mM in DMSO. We purchased nicotinamide mononucleotide 
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(NMN) from Sigma (St. Louis MO) and dissolved it directly in cell culture media, prepared as 

described above. 

 

Real-time PCR in rod-enriched samples. We generated rod-enriched samples by vortexing 

dissected whole retinas for 60 seconds at medium speed and centrifuging the resulting 

supernatant at 12,800 g for 10 minutes. We extracted total RNA from the resulting pellet with the 

RNeasy Mini Kit (Qiagen, Valencia CA), prepared cDNA with the High Capacity cDNA 

Reverse Transcription Kit (Life Technologies, Grand Island NY), and performed PCR 

amplification of cDNA using Taqman probe-based gene expression assays (Life Technologies, 

Grand Island NY) as described previously (Kelly et al., 2007). We used probes for Nampt 

(Mm01293560_m1) and Idh3a (Mm00499674_m1) normalized to ActB (Mm00607939_s1) or 

Rho (Mm01184405_m1) with the ΔΔCT method. 

 

Retinal imaging. We performed digital color fundus photography using the Micron IIITM animal 

fundus camera (Phoenix Research Laboratories, Pleasanton CA). Prior to fundus imaging, we 

anesthetized mice with an intraperitoneal injection of 86.9 mg/kg ketamine and 13.4 mg/kg 

xylazine and administered 1.0% tropicamide eye drops (Bausch & Lomb, Tampa FL) to dilate 

the pupils. 

 

Histology and immunohistochemistry. After euthanizing the mice, we enucleated the eyes and 

fixed them overnight in 10% formalin. Next, we embedded the eyes in methacrylate and 

prepared eight to ten sections of 6-8 µm thickness cut at different planes for each eye. We 

stained slides with hematoxylin and eosin, rabbit anti-NAMPT(161-173) (B5812-200UL; Sigma, 
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St. Louis MO), and rabbit anti-cone arrestin (AB15282; Millipore, Billerica MA). We acquired 

images with an Olympus FV1000TM upright confocal microscope with UV-sensitive (405), 

multi-Argon (458, 488 & 513) & Helium-Neon (543 & 633) lasers, and a Plan Apo N 60x oil 

objective (N.A.=1.42). 

 

Electroretinography. We performed electroretinography (ERG) as previously described 

(Hennig et al., 2013) by using the UTAS-E3000 Visual Electrodiagnostic System running EM 

for Windows (LKC Technologies, Gaithersburg MD). We extracted quantitative measurements 

from the ERG waveforms using an existing Microsoft Excel macro that defines the a-wave 

amplitude as the difference between the average pre-trial baseline and the most negative point of 

the average trace and defines the b-wave amplitude as the difference between this most negative 

point to the highest positive point, without subtracting oscillatory potentials. 

 

Photopic visual acuity. We measured mouse photopic visual acuity under standard photopic 

conditions (1.85 log cd m-2) by testing the optokinetic reflex with the OptoMotryTM System 

(CerebralMechanics) as described previously (Kolesnikov et al., 2011; Umino et al., 2008). 

 

Transmission electron microscopy. To perform transmission electron microscopy, we dissected 

enucleated eyes to remove the cornea and lens, and fixed eye cups for 4 hours at room 

temperature in 2% paraformaldehyde/2.5% glutaraldehyde (Polysciences, Warrington PA) 

diluted in 100 mM sodium cacodylate (pH 7.2). We then washed the fixed eye cups in cacodylate 

buffer and post-fixed them in 1% osmium tetroxide (Polysciences) for 1 hour. We then rinsed the 

postfixed eye cups extensively in deionized H2O prior to en-bloc staining with 1% aqueous 
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uranyl acetate (Ted Pella, Redding CA) for 1 hour. Following several rinses, we dehydrated the 

stained eye cups with a graded series of ethanol solutions and embedded them in Eponate 12 

resin (Ted Pella). We cut 95 nm sections with a Leica Ultracut UCT ultramicrotome (Leica 

Microsystems, Bannockburn IL), stained the sections with uranyl acetate and lead citrate, and 

imaged them on a JEOL 1200 EX transmission electron microscope (JEOL USA, Peabody MA) 

equipped with an AMT 8 megapixel digital camera (Advanced Microscopy Techniques, Woburn 

MA). 

 

Metabolomic analysis. We isolated retinas at the same time of day after restricting oral nutrient 

intake for 4 hours. We pooled 6 retinas per group and snap-froze them in liquid nitrogen. We 

then added ammonium bicarbonate-buffered solution to the tissue pellets and transferred these 

tissue suspensions to tubes for subsequent metabolite extraction. We extracted intracellular 

metabolites and culture media samples into cold methanol:acetonitrile (ACN):water (H2O), dried 

them, derivatized them to their tert-butyldimethylsilyl esters (tBDMS), and then analyzed them 

on an Agilent 7200 GC-quadrupole-time of flight (QTOF)-MS operating in electron impact 

ionization mode. We dried an aliquot of each extract and dissolved it in ACN:H2O for 

subsequent LC-QTOF-MS analysis. We performed metabolite set enrichment analysis with 

MetaboAnalyst 3.0 (Xia et al., 2015) by inputting the list of dysregulated metabolites with a 

statistically significant difference (corrected P-value < 0.05) and a fold change > 1.10. These 

data were processed with the over representation algorithm and the metabolic pathway-

associated metabolite set library. 
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Reductive capacity assay. To quantify reductive capacity, we used the Cell Proliferation 

Reagent WST-1 (Roche Applied Science, Indianapolis IN) according to manufacturer’s 

instructions. In short, we washed cells once with PBS after the desired treatment and replaced the 

media with fresh media containing the WST-1 assay solution at a 1:10 dilution. After 2 hours of 

incubation at 37°C, we measured absorbance at 450 nm with the SpectraMax 190 Absorbance 

Microplate Reader (Molecular Devices, Sunnyvale CA). 

 

Cell survival assay. To determine cell survival, we used the cell-permeant dye calcein AM 

(Thermo Fisher, Carlsbad CA) according to manufacturer’s instructions. In short, we washed 

cells once with PBS after the desired treatment and replaced the media with calcein AM diluted 

in PBS (working concentration of 2 µM). After 30 minutes at 37°C, we measured fluorescence at 

485 nm excitation/520 nm emission with the Infinite 200 PRO (Tecan, Männedorf Switzerland). 

 

Quantification of NAD+ & ATP levels with HPLC. To quantify the NAD+ and ATP levels of 

mouse retina, pooled rod-enriched isolates, or 661W cells, we performed reverse-phase high-

performance liquid chromatography (HPLC) as described previously (Yoshino and Imai, 2013). 

We quantified NAD+ and ATP levels based on the peak area on the HPLC spectrogram relative 

to a standard curve, and normalized these values to tissue weights for retinas, number of retinas 

for rod-enriched isolates, or based on cell number. 

 

OCR and ECAR measurements. We performed detailed metabolic characterization of 661W 

cells after NAMPT inhibition using an XF96 Extracellular Flux Analyzer (Seahorse Bioscience, 

Billerica MA). After the desired treatment, we washed the cells three times and left them in 180 
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µL of prewarmed bicarbonate-free DMEM (pH 7.4). After 30-60 minutes in a non-CO2 

incubator, we simultaneously measured oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR) to quantify oxidative respiration and glycolytic flux, respectively, both 

at baseline and after sequential treatments of 1.5 µM oligomycin, 1.0 µM carbonyl cyanide 4-

(trifluoromethoxy) phenylhydrazone (FCCP), and a combination of 1.0 µM antimycin A and 1.0 

µM rotenone. Each 5-minute measurement period was preceded by 2 minutes of mixing and a 1-

minute pause; we made 3 sequential measurements per treatment condition. 

 

SIRT3-5 and Nampt knockdown in 661W cells. We transfected 661W cells with custom LNA 

longRNA GapmeRs reagents (Exiqon, Woburn MA) targeting SIRT3, SIRT4, or SIRT5 at a final 

concentration of 100 nM, and commercially available siRNA targeting Nampt (Mm_Pbef1_5; 

Qiagen, Valencia CA) at a final concentration of 50 nM. In short, we seeded 661W cells and 

allowed them to adhere for 30 minutes. We prepared the transfection complexes by incubating 

the appropriate GapmeR/siRNA with Lipofectamine RNAiMAX transfection reagent 

(Invitrogen, Grand Island NY) for 5 minutes at room temperature (1.0 µl or 2.4 µl of RNAiMAX 

per well for the 96-well and 24-well plate formats, respectively). We confirmed knockdown 

efficiency with real-time PCR. 

 

Light-induced degeneration (LID). We performed light-induced degeneration as described 

previously (Grimm and Reme, 2013). In short, we dilated pupils with two sequential drops of 

1.0% atropine sulfate and 1.0% tropicamide (Bausch & Lomb, Tampa FL), and then exposed the 

mice to 13,000 lux from fluorescent lights suspended directly over the mice. We placed the mice 

in clear plastic cages that were surrounded on all sides with reflective aluminum foil and re-
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dilated pupils with two additional drops every 2 hours. We assessed retinal function 4 days 

following light-induced degeneration by ERG as described above. All the mice we tested carried 

the RPE65Leu/Leu variant, making them equally vulnerable to light-induced degeneration (Wenzel 

et al., 2001). 

 

Krebs cycle enzymatic activity assays. We performed retinal dissociation by incubating 

dissected retinas in 12 U/ml papain (Sigma, St. Louis MO) and 5 mM L-cysteine in DMEM for 

30 minutes on a small vibrating aquarium pump at room temperature. After washing away 

residual papain with 5 exchanges to fresh DMEM, we triturated the samples with fire-polished 

Pasteur pipets. We then separated rod photoreceptors with the EasySEP Mouse PE Positive 

Selection Kit (Stem Cell Technologies, Vancouver Canada) and PE-conjugated anti-CD73 

antibodies (Miltenyi Biotec, Bergisch Gladback Germany). We measured the enzymatic activity 

of NAD+-dependent isocitrate dehydrogenase (NAD-IDH/IDH3), alpha-ketoglutarate 

dehydrogenase (AGDH), and malate dehydrogenase (MDH) in these rods with assay kits from 

Sigma (St. Louis MO) according to the manufacturer’s instructions. We normalized enzymatic 

activity to total protein and/or viable rod cell number. 

 

Western Blotting for mitochondrial protein acylation. We isolated mitochondria from 661W 

cells as described previously (Frezza et al., 2007). We denatured mitochondrial lysates in 

NuPAGE LDS Sample Buffer and NuPAGE Sample Reducing Agent (Thermo Fisher, Carlsbad 

CA) for 10 minutes at 70°C, loaded them into 4-12% Novex Bis-Tris Protein Gels, and then ran 

them at 50 V for 15 minutes followed by 150 V for 60 minutes. We transferred the gel to a 0.2 

µm nitrocellulose membrane (Bio-Rad, Hercules CA) in transfer buffer (192 mM glycine, 25 nM 
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Tris-base, 10% methanol) for 60 minutes at a constant current of 400 mA. We blocked the 

membranes for 60 minutes at room temperature with 5% (w/v) bovine serum albumin (BSA; 

Sigma) in TBS with 0.05% Tween-20 (0.05% TBST). We then stained the membranes overnight 

at 4°C with 1:1,000 anti-acetyllysine (#9441; Cell Signaling Technology, Danvers MA), 1:1,000 

anti-succinyllysine (PTM-401; PTM BioLabs, Chicago IL), 1:1,000 anti-malonyllysine (PTM-

901; PTM BioLabs), or 1:1,000 anti-glutaryllysine (PTM-1151; PTM BioLabs) diluted in 

blocking buffer. We then washed the membranes and incubated them for 60 minutes at room 

temperature with the appropriate secondary antibody conjugated to either IRDye 800CW or 

IRDye 680LT (LI-COR, Lincoln NE) diluted 1:5,000 in blocking buffer. We detected proteins 

and analyzed the band densities with the Odyssey Infrared Imaging System (LI-COR). We 

normalized protein loading per lane with the Pierce BCA Protein Assay Kit (Thermo Fisher, 

Carlsbad CA) and used anti-COX IV (4D11-B3-E8) antibody (#11967; Cell Signaling 

Technology) as the loading control. 

 

SIRT3 and SIRT5 activity assays. We measured the SIRT3 activity and SIRT5 activity of 

mitochondrial isolates from 661W cells with commercially available kits (Abcam, Milton 

Cambridge; Enzo Life Sciences, Farmingdale NY; respectively) according to manufacturer’s 

instructions. We did not add exogenous SIRT3/5 or NAD+ to the reaction mixture to allow us to 

accurately quantify native deacylase activity. 

 

Statistics. We performed statistical testing with GraphPad Prism (Version 6.0), using the 

appropriate test for each data set. Prior to all data analysis, we assessed the normality of the data 
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graphically and with the Kolmogorov-Smirnov test and, when necessary, used appropriate non-

parametric alternatives. We defined statistical significance as a P-value < 0.05. 
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Figure 2.1. Nampt-rod/-rod mice exhibit severe retinal degeneration. (A) Rod-specific deletion of Nampt caused 
significant reduction in Nampt mRNA expression from rod-enriched retinal isolates (N=7 isolates/group; Mann-
Whitney U test). (B) Nampt-rod/-rod retinas had lower NAD+ levels than NamptF/F retinas (N=5-8 retinas/group; 2-
tailed, unpaired t-test). (C) Rod-enriched retinal isolates from Nampt-rod/-rod mice had lower NAD+ levels than those 
from NamptF/F mice (N=9-10 pooled samples/group; 1-tailed, unpaired t-test). (D) Representative fundus images 
from Nampt-rod/-rod mice demonstrated severe signs of retinal degeneration including vascular attenuation and optic 
nerve atrophy. (E) Representative retinal sections from Nampt-rod/-rod mice at 6 weeks stained with hematoxylin & 
eosin showed significantly reduced outer nuclear layer thickness (see arrows) with secondary retinal degeneration. 
(F-H) Nampt-rod/-rod mice exhibited impaired retinal function on ERG (N=5 NamptF/F mice/10 Nampt-rod/-rod mice; 2-
way mixed ANOVA with Bonferroni post-hoc test), and reduced photopic visual acuity (I; N=5-6 mice/group; 2-
tailed, unpaired t-test). Graphs depict mean + S.E.M. (A-C, I) or mean ± S.E.M. (F-H) (* P < 0.05; ** P < 0.01; *** 
P < 0.001; # P < 0.0001). 
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Figure 2.2. Nampt-cone/-cone mice exhibit cone-specific degeneration. (A) Cone-specific deletion of Nampt caused 
reduced intracellular NAMPT staining (red) in cone photoreceptors stained with cone-arrestin (green) and the 
nuclear DAPI stain (blue). (B) Representative fundus images from Nampt-cone/-cone mice demonstrated retinal pigment 
epithelial cell mottling (arrows) and optic nerve atrophy (arrowhead) consistent with mild retinal degeneration. (C-
E) Nampt-cone/-cone mice also exhibited impaired retinal function on ERG (N=8-10 mice/group; 2-way mixed ANOVA 
with Bonferroni post-hoc test) and reduced photopic visual acuity (F; N=4 mice/group; Mann-Whitney U test). 
Graphs depict mean + S.E.M. (F) or mean ± S.E.M. (C-E) (* P < 0.05; ** P < 0.01; # P < 0.0001). 
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Figure 2.3. Exogenous NMN protects against retinal degeneration in mice lacking Nampt and may have efficacy 
against diverse retinal degenerative diseases. (A-C) Nampt-rod/-rod mice receiving daily intraperitoneal injections of 
150 mg/kg NMN beginning at P5 had improved retinal function on ERG (N=12 vehicle/5 NMN; 2-way mixed 
ANOVA with Bonferroni post-hoc test) compared to vehicle-treated mice, consistent with relative preservation of 
the outer nuclear layer on histology (D; see arrows). (E-G) Nampt-cone/-cone mice receiving daily intraperitoneal 
injections of 150 mg/kg NMN beginning at P5 also had improved retinal function on ERG (N=9 vehicle/5 NMN; 2-
way mixed ANOVA with Bonferroni post-hoc test). Retinal NAD+ deficiency is a feature of multiple mouse models 
of retinal dysfunction, including light-induced degeneration (H; N=10-12/group; 2-tailed, unpaired t-test), 
streptozotocin-induced diabetic retinopathy (I; N=5/group; 2-tailed, unpaired t-test), and age-associated retinal 
dysfunction (J; N=5/group; 2-tailed, unpaired t-test). Graphs depict mean + S.E.M. (H-J) or mean ± S.E.M. (A-C, E-
G) (* P < 0.05; ** P < 0.01; *** P < 0.001; # P < 0.0001).



 
50 

 

 

Figure 2.4. NAD+ deficiency disrupts retinal energy homeostasis and can be rescued with exogenous NMN. (A-C) 
Wild-type mice (129S1/SvImJ) receiving intraperitoneal injections of 300 mg/kg NMN were more resilient against 
light exposure (N=8/group; 2-way mixed ANOVA with Bonferroni post-hoc test) compared to vehicle-treated mice. 
(D) Representative electron microscopy images of retinas from 4-week old Nampt-rod/-rod mice revealed mitochondria 
that are rounded, disorganized, and with loss of cristae compared to those from NamptF/F mice. (E) Nampt-rod/-rod 
retinas also exhibited significant disruption of numerous metabolic pathways on metabolite set enrichment analysis. 
Graphs depict mean ± S.E.M. (A-C) (* P < 0.05). 
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Figure 2.5. NAMPT inhibition causes metabolic dysfunction and photoreceptor death. (A-B) NAMPT inhibition 
with 20 µM FK866 caused loss of reductive capacity in 661W cone photoreceptor-like cells by 24 hours and 48 
hours (N=15/group from three independent experiments; 1-way ANOVA with Tukey post-hoc test). (C-D) This 
metabolic dysfunction caused cell death by 48 hours (N=14/group from three independent experiments; 1-way 
ANOVA with Tukey post-hoc test). The effects of NAMPT inhibition were rescued with 100 µM NMN (A-B, D). 
(E) NAMPT inhibition with 20 µM FK866 led to a significant reduction in total NAD+ in photoreceptor cells by 6 
hours, which was restored to near-normal levels with 100 µM NMN (N=3/group; 1-way ANOVA with Tukey post-
hoc test). (F) 24 hours of 20 µM FK866 treatment led to undetectable levels of NAD+ (N.D. = not detected), which 
once again was restored with 100 µM NMN (N=5-7/group). (G) NAMPT inhibition also caused ATP depletion but 
in a delayed time frame relative to NAD+ depletion (N=4/group). (H-I) FK866-treated photoreceptor cells had 
reduced oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) at baseline, impaired ECAR 
acceleration after oligomycin treatment, and impaired OCR acceleration after FCCP treatment (N=15-16/group from 
representative experiment; 2-way mixed ANOVA with Bonferroni post-hoc test). 100 µM NMN restored normal 
metabolic responses (H-I). (J) NAD+-dependent isocitrate dehydrogenase (NAD-IDH/IDH3) activity was reduced in 
rods isolated from Nampt-rod/-rod mice compared to those isolated from NamptF/F mice, even when sufficient NAD+ 
was added to the reaction mixture (N=6/group from three independent experiments; 2-tailed, unpaired t-test) and 
despite similar Idh3a expression levels (K; N=11-13/group from three independent experiments; 2-tailed, unpaired t-
test). (L-M) The activities of other NAD+-dependent enzymes alpha-ketoglutarate dehydrogenase (AGDH; 
N=5/group from three independent experiments; Mann-Whitney U test) and malate dehydrogenase (MDH; 
N=7/group from three independent experiments; 2-tailed, unpaired t-test) in rods from Nampt-rod/-rod mice were 
restored with exogenous NAD+. Graphs depict mean + S.E.M. (A-F, J-M) or mean ± S.E.M. (G-I) (* P < 0.05; ** P 
< 0.01; *** P < 0.001; # P < 0.0001; red: vehicle versus FK; blue: FK versus FK+NMN). 



 
52 

 

 
Figure 2.6. SIRT3 and SIRT5 are essential for photoreceptor survival. (A) Individual SIRT3 and SIRT5 knockdown 
but not SIRT4 knockdown caused significant loss of reductive capacity relative to negative control (NC); combined 
SIRT3/SIRT5 knockdown caused significantly more loss of reductive capacity than individual knockdowns, which 
could not be rescued with NMN (N=6/group from representative experiment; 1-way ANOVA with Tukey post-hoc 
test). (B) Individual SIRT3 and SIRT5 knockdown but not SIRT4 knockdown caused significant cell death relative 
to negative control (NC); combined SIRT3/SIRT5 knockdown caused significantly more cell death than individual 
knockdowns, which could not be rescued with NMN (N=18/group from three independent experiments; 1-way 
ANOVA with Tukey post-hoc test). (C) Individual and combined SIRT3/SIRT5 knockdowns recapitulated NAD-
IDH dysfunction compared to negative control (NC; N=3/group from three independent experiments; 1-way 
ANOVA with Tukey post-hoc test). (D-F) Mice lacking SIRT3 and SIRT5 (SIRT3KOSIRT5KO) were significantly 
more vulnerable to light-induced degeneration (LID) compared to SIRT3hetSIRT5het mice, while SIRT3KOSIRT5het 
and SIRT3hetSIRT5KO mice exhibited intermediate vulnerability to LID (N=5-7 mice/group; 2-way mixed ANOVA 
with Bonferroni post-hoc test). Graphs depict mean + S.E.M. (A-C) or mean ± S.E.M. (D-F) (* P < 0.05; ** P < 
0.01; *** P < 0.001; # P < 0.0001; ^ P < 0.05 relative to both SIRT3KD and SIRT5KD; red: SIRT3hetSIRT5het versus 
SIRT3KOSIRT5KO; brown: SIRT3KOSIRT5het versus SIRT3KOSIRT5KO; grey: SIRT3hetSIRT5KO versus 
SIRT3KOSIRT5KO). 
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Figure 2.7. NAD+ deficiency impairs mitochondrial sirtuin function. (A-B) NAMPT inhibition caused selective 
mitochondrial protein hyperacetylation (N=4 biological replicates from two independent blots; 1-way ANOVA with 
Tukey post-hoc test). (C-D) NAMPT inhibition caused only modest changes in mitochondrial protein succinylation 
(N=6 biological replicates from three independent blots; 1-way ANOVA with Tukey post-hoc test). (E) NAD+ 
deficiency impaired SIRT3 activity (N=6/group; 2-tailed, unpaired t-test) but not SIRT5 activity (F; N=15-16/group; 
2-tailed, unpaired t-test). Graphs depict mean + S.E.M. (B, D-F) (** P < 0.01; *** P < 0.001). 
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3.1 Summary 

Macrophage aging is pathogenic in numerous diseases, including age-related macular 

degeneration (AMD), a leading cause of blindness in older adults. Although prior studies have 

explored the functional consequences of macrophage aging, less is known about its cellular basis 

or what defines the transition from physiologic aging to disease. Here, we show that despite their 

frequent self-renewal, macrophages from old mice exhibited numerous signs of aging, such as 

impaired oxidative respiration. Transcriptomic profiling of aged murine macrophages revealed 

dysregulation of diverse cellular pathways, especially in cholesterol homeostasis, that manifested 

in altered oxysterol signatures. Although the levels of numerous oxysterols in human peripheral 

blood mononuclear cells and plasma exhibited age-associated changes, plasma 24-

hydroxycholesterol levels were specifically associated with AMD. These novel findings 

demonstrate that oxysterol levels can discriminate disease from physiologic aging. Furthermore, 

modulation of cholesterol homeostasis may be a novel strategy for treating age-associated 

diseases in which macrophage aging is pathogenic. 
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3.2 Introduction 

Age-related macular degeneration (AMD) is a leading cause of blindness in adults over 

50 years of age in industrialized nations (van Leeuwen et al., 2003). Early AMD is characterized 

by the presence of lipoproteinaceous deposits or drusen under the retinal pigment epithelium 

(RPE) and/or thickening of Bruch’s membrane. Although early AMD is not always associated 

with vision loss, it is a major risk factor for progression to one of two forms of advanced AMD: a 

dry form, characterized by death of RPE cells called geographic atrophy (GA) that eventually 

leads to death of overlying photoreceptors, or wet (neovascular) AMD, characterized by 

abnormal vascular proliferation underneath the retina called choroidal neovascularization (CNV). 

While both advanced dry and wet AMD can cause vision loss, wet AMD accounts for a 

significant fraction of the vision loss associated with AMD (Ferris et al., 1984) and can often be 

acute and catastrophic. 

The current mainstay therapies for wet AMD focus on combating abnormal angiogenesis 

by blocking vascular endothelial growth factor (VEGF) with targeted anti-VEGF agents. These 

treatments stabilize disease in a majority of patients and significantly improve visual outcomes in 

30-40% of wet AMD patients (Inoue et al., 2016; Kim et al., 2016; Sarwar et al., 2016). 

However, these therapies often require frequent visits for repeated intraocular injections, which 

place a significant burden on patients and caregivers (Haller, 2013). Moreover, repeated 

intravitreal injections are also associated with risks of their own, such as infection, scleral 

thinning, and long-term visual acuity loss due to continued atrophy of the RPE and 

photoreceptors (Sarwar et al., 2016; Zinkernagel et al., 2015). Perhaps more importantly, anti-

VEGF agents do not address the pathophysiology that causes wet AMD (Sene et al., 2015). 

Therefore, there is need for further research to clarify the molecular and cellular mechanisms 
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involved in the transition from physiologic aging to AMD and to understand the pathogenesis 

underlying the progression from early to wet AMD, which may lead to novel strategies for 

targeted intervention. 

In the past few decades, we and others have demonstrated that macrophages, key cells of 

the innate immune system, play important roles in the pathogenesis of wet AMD (Apte et al., 

2006; Espinosa-Heidmann et al., 2003; Sakurai et al., 2003). Moreover, it has become 

increasingly clear that the ability of macrophages to polarize to different activation states is an 

important factor affecting whether macrophages promote health or disease (Mosser and Edwards, 

2008). Depending on dynamic tissue signals and the surrounding micro-environment, 

macrophages can polarize to a classical pro-inflammatory (M1-like) phenotype, an alternative 

anti-inflammatory (M2-like) phenotype, or some intermediate between these two extremes (Sica 

and Mantovani, 2012). To further complicate matters, the identity of the specific activators that 

cause macrophage polarization may also affect the macrophage phenotype (Murray et al., 2014). 

Previously, we reported that aged macrophages tend to skew to the anti-inflammatory 

M2-like phenotype and are less able to inhibit abnormal angiogenesis (Kelly et al., 2007). 

Furthermore, aged macrophages exhibit both impairments in cholesterol efflux (Sene et al., 

2013) and abnormalities in IL-10 and downstream STAT3 signaling pathways that contribute to 

this age-associated drift towards M2-like polarization (Nakamura et al., 2015). These age-

associated impairments in cholesterol efflux and other lipid-related pathways may have 

mechanistic consequences in disease pathogenesis (Sene and Apte, 2014). This possibility is 

supported by the fact that polymorphisms in lipid-related genes, such as hepatic lipase (LIPC), 

ATP-binding cassette transporter member 1 (ABCA1), and cholesterol ester transfer protein 

(CETP), are associated with advanced AMD (Neale et al., 2010). Moreover, drusen, a clinical 
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feature of early AMD, are lipid-rich, further supporting our hypothesis that dysregulated lipid 

homeostasis contributes to AMD. Despite these advances, the global programmatic changes that 

occur during macrophage aging need further elucidation. It is also unclear what subset of these 

changes are associated with physiologic aging or are pathologic and contribute to age-associated 

disease. 

In this study, we sought to delineate the cellular pathways involved in macrophage aging 

and identify potential markers that may distinguish age-associated changes that are physiologic 

versus those that promote age-associated disease. Our results suggest that impaired cholesterol 

homeostasis in macrophages is a central process perturbed during aging and that these changes 

lead to changes in oxysterol signatures that can distinguish AMD from physiologic aging. These 

findings may allow physicians to monitor progression of disease with quantifiable serum markers 

and may potentially lead to novel therapeutic strategies not only for AMD but also for other age-

associated diseases in which alternatively-activated macrophages are pathogenic. 

 

3.3 Results 

Peritoneal macrophages from old mice exhibit features of aging 

Under steady-state conditions, tissue-resident macrophages are maintained through 

constant replacement or self-renewal. In many tissues, including the peritoneal cavity, there is 

extensive replacement of macrophages as quickly as every 3 weeks (Hashimoto et al., 2013). 

Therefore, we sought to determine whether macrophages isolated from old (i.e., 18-month-old) 

wild-type mice exhibited features of cellular aging when compared to macrophages isolated from 

young (i.e., 3-month-old) wild-type mice despite this short replenishment cycle. 
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Mitochondrial dysfunction is a well-established hallmark of aging, and in many tissues, 

there is an age-dependent decrease in mitochondrial oxygen consumption (Lopez-Otin et al., 

2013). To determine whether peritoneal macrophages from old mice exhibit mitochondrial 

dysfunction, we measured the oxygen consumption rate (OCR) of peritoneal macrophages 

isolated from 3-month-old and 18-month-old mice. The baseline OCR of peritoneal macrophages 

from old mice was significantly lower than that of peritoneal macrophages from young mice 

(Figure 3.1A), indicating reduced basal oxidative respiration. Although both young and aged 

peritoneal macrophages appropriately exhibited a reduction in OCR after treatment with the ATP 

synthase inhibitor oligomycin, young peritoneal macrophages maintained a somewhat higher 

residual OCR (Figure 3.1A). In contrast, both young and aged peritoneal macrophages 

demonstrated similar maximal oxidative respiration in response to the uncoupling agent FCCP 

(Figure 3.1A). The difference between the baseline OCR and the OCR after oligomycin 

treatment represents ATP-linked respiration. Aged peritoneal macrophages exhibited 

significantly reduced ATP-linked respiration (Figure 3.1B), indicating mitochondrial 

dysfunction. 

Moreover, previous studies report that exposing macrophages to lipopolysaccharide 

(LPS) considerably alters their bioenergetic profile (Tavakoli et al., 2013). Furthermore, such a 

metabolic switch is required for macrophage activation and affects its subsequent inflammatory 

status (Huang et al., 2014; Tavakoli et al., 2013; Vats et al., 2006). We observed distinct 

mitochondrial respiratory profiles when comparing young and aged, LPS-treated peritoneal 

macrophages:  aged peritoneal macrophages exhibited a reduced OCR at baseline, despite 

maintaining similar responses to oligomycin and FCCP (Figure 3.1C). Again, aged peritoneal 

macrophages exhibited significantly reduced ATP-linked respiration (Figure 3.1D). 
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Cumulatively, these data demonstrate that mitochondrial oxidative metabolism is considerably 

impaired in peritoneal macrophages isolated from old mice both at baseline and in response to 

LPS. 

Furthermore, we evaluated the expression of the aging marker p16INK4a, which is a known 

senescence marker in bone marrow-derived macrophages (Randle et al., 2001) and has been 

shown to accumulate in rodent and human tissues during aging (Krishnamurthy et al., 2004; 

Nielsen et al., 1999; Zindy et al., 1997). We found that p16INK4a mRNA expression was 

significantly elevated in aged peritoneal macrophages compared to young peritoneal 

macrophages (Figure 3.1E). Collectively, these results confirm that despite their constant 

renewal, peritoneal macrophages from old mice exhibit multiple quantifiable signs of aging, 

including mitochondrial dysfunction and increased expression of the senescence marker, 

p16INK4a. 

 

Aged macrophages exhibit impaired cholesterol homeostasis 

To determine the specific cellular processes that are perturbed in aged macrophages, we 

profiled the transcriptomes of young and aged macrophages with the GeneChip Mouse Gene 1.0 

ST Array (Affymetrix, Santa Clara, CA). We found that 1,080 probe sets were significantly 

differentially expressed in aged versus young macrophages (Figure 3.2A; P < 0.05, FDR < 

0.20). The twenty protein-coding genes that were up- or downregulated with the highest fold 

change in aged versus young macrophages are presented in Table 3.1. To determine whether the 

identities of the dysregulated genes were associated with defects in particular pathways or 

cellular processes, we filtered for genes with a 1.50-fold-change cutoff (22.1%, N = 239) and 

then performed gene ontology (GO) and pathway map analysis with MetaCoreTM (Clarivate 
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Analytics, Philadelphia, PA). Of interest, the first, second, and tenth most significant GO 

processes implicated were sterol biosynthesis, cholesterol biosynthesis, and cholesterol 

metabolism, respectively (Figure 3.2B). Consistently, cholesterol biosynthesis was the most 

significant pathway implicated by the altered transcriptomic profile of aged macrophages 

(Figure 3.2C). As expected, the transcriptomic profile of aged macrophages also suggested 

disruptions in numerous other immune response pathways (Figure 3.2C). Overall, these results 

clearly indicate that cholesterol homeostasis is significantly perturbed during macrophage aging. 

Given that numerous genes were dysregulated in aged peritoneal macrophages, we sought 

to identify candidate transcription factors (TFs) that may regulate the aging process. Therefore, 

we performed interactome analysis to identify over-connected TFs, which may regulate the 

observed transcriptomic changes in aged macrophages. Of interest, two of the top five most 

significantly overconnected TFs were sterol regulatory element-binding protein 1 and 2 

(SREBP1/SREBP2; Figure 3.2D), which are known master regulators of cholesterol and lipid 

homeostasis. These two TFs had connectivity ratios of 14.73 and 15.15, respectively, indicating 

~15-fold overrepresentation of their known targets. These findings support our assertion that 

global lipid homeostatic mechanisms are impaired in aged macrophages. 

 To determine the specific aspects of cholesterol homeostasis that are impaired in aged 

macrophages, we analyzed the expression profile of 113 lipid-related genes in young and aged 

macrophages with a custom quantitative PCR array (Applied Biosystems). We were able to 

detect expression of 86.7% (N = 98) of the genes we tested and found that 30 of these 98 

cholesterol-related genes (30.6%) had significantly different expression in aged versus young 

macrophages (Table 3.2). When we subdivided these lipid-related genes broadly by their cellular 

function, we observed that they encompassed diverse biological processes, including 
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cholesterol/lipid biosynthesis, elimination, transport, and uptake, among other processes. These 

findings once again confirmed that aged peritoneal macrophages exhibit global impairments in 

their ability to maintain cholesterol and lipid homeostasis. 

 

Aged macrophages have altered intracellular oxysterol content 

We previously reported that aged macrophages have higher levels of intracellular 

cholesterol related to impaired efflux (Sene et al., 2013), suggestive of the global changes in 

cholesterol homeostatic mechanisms described above. The oxidation of cholesterol to generate 

oxidized derivatives of cholesterol, or oxysterols, serves a crucial purpose to facilitate 

elimination of excess cholesterol. However, oxysterols themselves also play important signaling 

roles in regulating cholesterol homeostasis (Spann and Glass, 2013) and inflammation (Poli et 

al., 2013) and may therefore promote disease. In addition, aberrant oxysterol production can be a 

sign of increased oxidative stress, which is known to be pathogenic in AMD (Datta et al., 2017). 

Since our transcriptomic profiling demonstrated that impaired cholesterol homeostasis is a 

hallmark feature of aged macrophages, we sought to explore whether these changes were 

associated with altered oxysterol signatures, which would not only provide mechanistic insight 

into why there is impaired cholesterol homeostasis but also identify a potential approach for 

detecting defective cholesterol homeostasis. 

Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we measured the 

most abundant oxysterols, including 4β-hydroxycholesterol (4β-HC), 7-ketocholesterol (7-KC), 

and cholestane-3β,5α,6β-triol (C-triol) in young and aged peritoneal macrophages. We found that 

aged peritoneal macrophages contained more 4β-HC and 7-KC compared to young peritoneal 

macrophages, both at baseline and after treatment with 25 or 50 µg/ml oxidized LDL (oxLDL) 
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(Figures 3.3A and 3.3B). Aged peritoneal macrophages also had increased C-triol content at 

baseline and after treatment with oxLDL, but the difference was statistically significant only 

after treatment with 50 µg/ml oxLDL (Figure 3.3C). To account for the possibility that these 

increases in intracellular oxysterols may have been influenced by environmental factors, we also 

tested a separate cohort of young and aged mice that were housed at the same animal facility. 

Consistent with our original findings, these aged peritoneal macrophages also had increased 

levels of 4β-HC, 7-KC, and C-triol after treatment with 50 µg/ml oxLDL (data not shown). 

These findings demonstrate that aged peritoneal macrophages have increased intracellular 

oxysterols upon challenge with oxLDL and that this difference is likely an effect of age rather 

than environmental factors. 

We also measured the oxysterol content in the supernatant of peritoneal macrophages to 

determine whether increased intracellular oxysterol content was associated with increased 

oxysterol secretion. Although some comparisons were statistically significant due to low within-

group variance, the levels of 4β-HC, 7-KC, and C-triol were qualitatively similar in the 

supernatant of both young and aged peritoneal macrophages both at baseline and after treatment 

with oxLDL (Figures 3.3D, 3.3E, and 3.3F). Of note, the levels of 4β-HC and 7-KC detected in 

equivalent dilutions of oxLDL were similar to those detected in the supernatants of both young 

and aged peritoneal macrophages (Figures 3.3D and 3.3E), suggesting that any differences in 

the secretion of these two oxysterols were likely masked by the oxysterols present in the oxLDL 

itself. 

Our finding of increased intracellular oxysterols in the absence of changes in extracellular 

levels suggested that there is increased oxysterol synthesis associated with aging rather than 

changes in uptake. In support of this hypothesis, we previously reported that young and aged 
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macrophages have similar capacity to influx Dil-labeled oxLDL (Sene et al., 2013). Furthermore, 

using flow cytometry, we found that surface expression of CD36, a receptor for oxLDL uptake, 

was similar in young and aged peritoneal macrophages (Figures 3.3G, 3.3H, and 3.3I), 

supporting that differences in intracellular oxysterols were not likely due to differences in 

uptake. 

To determine whether these aging-associated changes in oxysterol signatures were 

specific to elicited peritoneal macrophages, we also measured intracellular oxysterol content and 

secretion in young and aged splenic macrophages as an example of a tissue-resident macrophage. 

We found that aged splenic macrophages had similar patterns of increased intracellular 

oxysterols (Figures 3.4A, 3.4B, and 3.4C) with minimal changes in extracellular oxysterols 

(Figures 3.4D, 3.4E, and 3.4F). These findings indicate that impaired cholesterol homeostasis is 

associated with detectable alterations in the oxysterol signatures in aged macrophages of multiple 

origins. 

 

PBMC and plasma oxysterol signatures are altered with age in humans 

We have previously demonstrated that aged murine macrophages exhibit functional shifts 

that are associated with their tendency to promote AMD (Apte et al., 2006; Nakamura et al., 

2015; Sene et al., 2013). However, it remains unclear which subset of the age-associated changes 

described above promotes disease rather than being a part of physiologic aging. To discriminate 

between these physiologic versus pathologic changes, we assessed whether PBMCs and plasma 

samples from healthy human subjects also exhibited changes in oxysterol signatures with age 

and whether these changes were different in AMD patients. We chose to process the human 
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samples minimally without cell sorting or cultures to explore how these oxysterol signatures 

could be used clinically. Demographic information of the human subjects is shown in Table 3.3. 

In addition to measuring the same oxysterols we measured in murine peritoneal 

macrophages (i.e., 4β-HC, 7-KC, and C-triol), we were also able to quantify levels of two 

additional enzymatically generated oxysterols, 24-hydroxycholesterol (24-HC) and 27-

hydroxycholesterol (27-HC), which were below the limit of detection in the murine samples. Of 

interest, we observed a statistically significant negative correlation between age and PBMC 7-

KC levels (Figure 3.5A; Spearman R = -0.2964, P = 0.0204), PBMC C-triol levels (Figure 

3.5A; Pearson R = -0.3068, P = 0.0171), and PBMC 24-HC levels (Figure 3.5B; Pearson R = -

0.3058, P = 0.0165). There was no association between age and PBMC 4β-HC levels (Figure 

3.5A; Spearman R = -0.0356, P = 0.7853) or PBMC 27-HC levels (Figure 3.5B; Pearson R = -

0.0012, P = 0.9930). Additionally, we observed a significant positive correlation between age 

and plasma C-triol levels (Figure 3.5C; Pearson R = 0.2818, P = 0.0278). Although not 

statistically significant, there was a trend (0.05 < P < 0.10) toward a positive correlation between 

age and plasma 4β-HC levels (Figure 3.5C; Spearman R = 0.2170, P = 0.0930). There was no 

statistically significant correlation between age and plasma 7-KC levels (Figure 3.5C; Spearman 

R = 0.1172, P = 0.3683), plasma 24-HC levels (Figure 3.5D; Spearman R = 0.0394, P = 0.7631), 

or plasma 27-HC levels (Figure 3.5D; Pearson R = 0.1601, P = 0.2177). Overall, these findings 

suggest that healthy humans also exhibit age-associated alterations in oxysterol signatures, likely 

reflecting changes in cholesterol homeostasis. 
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Plasma 24-hydroxycholesterol distinguishes AMD from physiologic aging 

To further characterize the relationship between age-associated oxysterol signatures and 

age-related disease, we recruited human patients with early or advanced neovascular (wet) AMD 

and measured their PBMC and plasma oxysterol levels (Figures 3.6A, 3.6B, 3.6C, 3.6D, 3.6E, 

3.6F, 3.6G, 3.6H, 3.6I, and 3.6J). While AMD patients were significantly older than non-AMD 

control subjects, there was no difference between the groups on the basis of gender (Table 3.3). 

On average, AMD patients had decreased PBMC 7-KC levels compared to non-AMD controls 

(Figure 3.6B) but no differences in the other PBMC oxysterol levels (Figures 3.6A, 3.6C, 3.6D, 

and 3.6E). Moreover, AMD patients had elevated plasma 4β-HC levels (Figure 3.6F), elevated 

plasma C-triol levels (Figure 3.6H), elevated plasma 24-HC levels (Figure 3.6I), and a trend 

(0.05 < P < 0.10) towards elevated plasma 27-HC levels (Figure 3.6J) compared to non-AMD 

controls. There was no difference in plasma 7-KC levels (Figure 3.6G). 

Given the known association between AMD and age and the significant age difference 

between our two groups, we performed binary logistic regression to precisely model the 

relationship between PBMC or plasma oxysterol levels and AMD after controlling for age and 

gender (Table 3.4). We selected PBMC 7-KC, plasma 4β-HC, plasma C-triol, and plasma 24-

HC levels as candidates for further analysis since these were the oxysterols that were 

significantly different between AMD patients and controls. The binary logistic regression model 

for a PBMC oxysterol AMD signature included age, gender, and untransformed PBMC 7-KC. 

The overall model was statistically significant (LR Χ2 = 34.0, df = 3, P < 0.001) and had good fit 

(Χ2 = 9.6, df = 8, P = 0.294). As expected, age was significantly associated with AMD (P < 

0.001) with a beta coefficient of 0.098, indicating that each additional year of age was associated 
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with increased odds of having AMD (aOR = 1.10; 95% CI = 1.05 to 1.16). However, after 

controlling for age and gender, PBMC 7-KC levels were not associated with AMD (P = 0.140). 

The binary logistic regression model for a plasma oxysterol AMD signature included 

forced entry of age and gender and selection of any combination of the candidate plasma 

oxysterol species through automated forward selection (Table 3.5). The final model was 

statistically significant (LR Χ2 = 44.9, df = 3, P < 0.001), had good fit (Χ2 = 14.2, df = 8, P = 

0.078), and included age, gender, and plasma 24-HC levels. As expected, age was significantly 

associated with AMD (P < 0.001) with a beta coefficient of 0.107, indicating that each additional 

year of age was associated with increased odds of having AMD (aOR = 1.113; 95% CI = 1.06 to 

1.17). Of significant interest, even after controlling for age and gender, 24-HC levels were highly 

associated with AMD (P < 0.001) with a beta coefficient of 11.327, indicating that each 

additional 0.1-unit increase in relative plasma 24-HC levels was associated with a 3.10-fold 

increase in odds of having AMD (95% CI = 1.66 to 5.79). To determine the efficacy of plasma 

24-HC levels as a potential marker for AMD, we generated a receiver operating characteristic 

(ROC) curve and found that the area under the ROC curve (AUC) was 0.866 (95% CI = 0.793 to 

0.939), indicating good discrimination. 

Furthermore, we performed conjunctive analysis to evaluate the clinical utility of using 

plasma 24-HC to discriminate between AMD patients and non-AMD subjects across varying 

ages. We divided patients into tertiles by plasma 24-HC levels and by age (i.e., above versus 

below median), tabulating the AMD prevalence in each conjoined cell (Table 3.6). This analysis 

demonstrated a clear stepwise increase in prevalence of AMD in subjects above the median age 

going from the lowest to the highest tertile of plasma 24-HC (i.e., from 47.1% to 66.7% to 

76.2%; Figure 3.7A). We observed a similar increase in AMD prevalence in subjects below the 
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median age based on plasma 24-HC tertile (i.e., from 10.5% to 19.0% to 38.5%). These findings 

support the notion that plasma 24-HC levels can distinguish between the changes in oxysterols 

expected during physiologic aging versus those that suggest risk of AMD. 

To determine the clinical utility of plasma 24-HC levels compared to existing clinical 

measures of lipid homeostasis, we next analyzed whether plasma 24-HC levels were correlated 

with total plasma cholesterol levels in the subjects for whom this information was available. In 

these subjects (N = 37), plasma 24-HC was indeed correlated with total plasma cholesterol (r = 

.659, P < 0.001). We therefore performed a subanalysis by generating a binary logistic regression 

for the outcome of AMD with forced entry of plasma 24-HC levels, total plasma cholesterol, age, 

and gender. This model was statistically significant (LR Χ2 = 27.2, df = 4, P < 0.001) and had 

good fit (Χ2 = 2.6, df = 7, P = 0.921). Of interest, total plasma cholesterol levels were not 

associated with AMD (aOR = 1.014; 95% CI = 0.97 to 1.06; P = 0.547). Remarkably, even after 

controlling for total plasma cholesterol, age, and gender, plasma 24-HC remained highly 

associated with AMD (P = 0.044) with a beta coefficient of 19.308, indicating that each 

additional 0.1-unit increase in relative plasma 24-HC levels was associated with a 6.90-fold 

increase in odds of having AMD (95% CI = 1.05 to 45.09). Despite the limited sample size 

available for this subanalysis, these findings suggest that human plasma 24-HC has strong 

diagnostic value compared to the existing measure of total plasma cholesterol. 

Given the heterogeneity of the clinical progression of AMD and our interest in 

identifying factors that may predict transition to advanced disease, we also examined whether 

plasma 24-HC levels differed significantly when subdividing AMD patients into early AMD and 

advanced neovascular AMD patients. We did not detect a statistically significant difference in 

plasma 24-HC levels in early AMD versus advanced neovascular AMD patients (Figure 3.7B). 
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Therefore, although 24-HC may be associated with AMD, it does not appear to have utility for 

predicting disease progression. 

 

3.4 Discussion 

In this study, we identified that despite their self-renewal, macrophages from old mice 

exhibit signs of aging, such as defects in mitochondrial oxidative respiration, that are not 

observed in macrophages from young mice. Consistent with these functional changes, aged 

macrophages exhibit an altered transcriptomic profile, especially in genes involved in cholesterol 

homeostasis. These findings build on our previous study reporting that Abca1 expression is 

significantly reduced in aged macrophages, leading to impaired cholesterol efflux (Sene et al., 

2013). We further demonstrate that impairments in cholesterol homeostatic mechanisms are not 

restricted solely to efflux but globally affect numerous pathways, including biosynthesis, 

elimination, transport, and regulation. Interestingly, aged macrophages exhibited simultaneous 

downregulation and upregulation of different genes with similar functions in cholesterol-related 

pathways (Table 3.2), indicating broad and complex dysregulation of cholesterol homeostasis. 

Our hypothesis that impaired cholesterol metabolism in aged macrophages contributes to 

AMD pathogenesis is consistent with numerous epidemiological studies that have established 

that parameters related to lipid status, such as baseline high-density lipoprotein-cholesterol 

(HDL-C) and total serum cholesterol, affect risk of AMD development and progression (Burgess 

and Davey Smith, 2017; Tomany et al., 2004; Yip et al., 2015). Moreover, one past genome-wide 

association study reported that polymorphisms in lipid-related genes such as LIPC, ABCA1, and 

CETP are associated with advanced AMD (Neale et al., 2010). These findings have led to the 

hypothesis that statins, cholesterol-lowering drugs used for cardiovascular disease, may affect 
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the development or progression of AMD (Hall et al., 2001). The findings of one non-randomized 

study suggest that high-dose statins may indeed reduce some high-risk features of AMD (Vavvas 

et al., 2016), although large randomized studies are necessary to confirm these findings (Apte, 

2016) given that numerous other studies report conflicting results (Gehlbach et al., 2016). 

Cumulatively, these conflicting findings highlight that the relationship between aging, impaired 

cholesterol homeostasis, and AMD is complex and warrants further investigation. 

In this study, we found that in aged murine macrophages, a transcriptomic profile 

suggesting impaired cholesterol homeostasis was associated with aberrant intracellular oxysterol 

levels, especially when the macrophages were treated with oxLDL. In many immune cells, 

oxysterols can directly regulate liver X receptor (LXR) transcriptional activity, which can 

modulate cellular lipid metabolism and the immune response, especially in inflammation-

associated diseases (Spann and Glass, 2013). For example, 27-HC, the most prevalent oxysterol 

in atherosclerotic lesions, has been shown to promote atherosclerosis by inducing inflammation 

(Umetani et al., 2014). Therefore, in addition to being a surrogate marker for impaired 

cholesterol homeostasis, altered oxysterol production may itself play a pathogenic role in 

promoting cholesterol dysregulation. We found that, similar to murine macrophages, human 

PBMC and plasma samples also demonstrated age-dependent changes in oxysterols. Although 

the directionality of these age- and disease-associated changes did not correspond perfectly, our 

data suggest that broad dysregulation of cholesterol homeostasis in both aging and disease is 

associated with altered oxysterol signatures. 

These findings build on recent reports that monocytes isolated from patients with 

neovascular AMD exhibit an altered immune-related transcriptomic signature (Grunin et al., 

2016) and that these cells, when activated into macrophages, demonstrate proangiogenic 
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characteristics that may contribute to disease pathogenesis (Hagbi-Levi et al., 2017). Past studies 

have also shown that in the outer retina, accumulation of cholesterol oxidation products such as 

7-KC can disrupt the immune environment and transform resident macrophages into disease-

promoting cells (Indaram et al., 2015). Specifically, uptake of 7-KC in microglial cells results in 

decreased production of neurotrophic growth factors and increased expression of angiogenic 

mediators that promote pathologic CNV (Indaram et al., 2015). 

How to distinguish whether changes in oxysterol signatures define aging, disease, or both 

is of great interest, as defects in lipid metabolism are a shared feature of multiple diseases. As an 

example, certain oxysterols and their metabolites have been shown to be specific biomarkers for 

Niemann-Pick type C (NPC) disease, an inherited lysosomal storage disease (Jiang et al., 2016; 

Porter et al., 2010). In this study, we found that after controlling for age and gender, plasma 24-

HC was significantly associated with AMD. Despite our modest sample size (N = 107), these 

findings suggest that 24-HC is a strong candidate for an oxysterol that distinguishes AMD from 

physiologic aging. Our subanalysis revealed that plasma 24-HC remained highly associated with 

AMD even after controlling for total plasma cholesterol, highlighting its diagnostic value. Larger 

prospective studies are necessary to validate these findings and identify additional markers of 

risk. 

Cumulatively, our findings highlight that impaired cholesterol homeostasis is a key 

pathway perturbed in aged macrophages and that oxysterol signatures in patient samples can 

distinguish AMD from physiologic aging. Ultimately, these findings may not only improve our 

ability to diagnose disease but also identify novel targets in cholesterol homeostasis that may be 

targeted in novel therapeutic approaches. 
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3.5 Methods 

Animals. All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) and performed in accordance with the Washington University School of 

Medicine Animal Care and Use guidelines. We obtained old (i.e., ~18-month-old), female wild-

type C57BL/6J mice from the National Institute on Aging (Bethesda, MD) and compared them 

to strain-matched young (i.e., ~3-month-old), female wild-type C57BL/6J controls. We 

harvested peritoneal macrophages five days after elicitation with a 2-ml intraperitoneal injection 

of 4% thioglycollate broth (Sigma-Aldrich, St. Louis, MO). We harvested splenic macrophages 

by performing positive magnetic cell separation with the PE selection kit (Stem Cell 

Technologies) and PE anti-F4/80 monoclonal antibody (clone: BM8; eBioscience, Waltham, 

MA), following manufacturer’s instructions. We cultured peritoneal and splenic macrophages in 

GibcoTM RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA) supplemented with 

10% fetal bovine serum (FBS; Atlanta Biologicals, Flowery Branch, GA) and 1% penicillin-

streptomycin (Thermo Fisher Scientific). When indicated, we treated macrophages with 25 or 50 

µg/ml of oxidized LDL (oxLDL; Alfa Aesar, Haverhill, MA) for 24 hours prior to further 

analysis. 

 

OCR measurements. To perform metabolic characterization, we measured the oxygen 

consumption rate (OCR) of peritoneal macrophages as a surrogate marker for oxidative 

respiration with the XF96 Extracellular Flux Analyzer (Seahorse Bioscience, North Billerica, 

MA). In short, we plated peritoneal macrophages in Seahorse XF96 cell culture microplates 
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(Seahorse Bioscience) at 100,000 cells per well. On the morning of the experiment, we washed 

the cells and replaced the media with Seahorse assay media (Seahorse Bioscience) supplemented 

with 25 mM glucose (Sigma-Aldrich, St. Louis, MO) and 1 mM sodium pyruvate (Thermo 

Fisher Scientific) and adjusted the pH to 7.4. After incubation in a non-CO2 incubator at 37°C 

for 1 hour, we measured OCR at baseline and after sequential treatment with the following 

chemicals from the Mito Stress Test Kit (Seahorse Bioscience): 3 µM oligomycin, 5 µM 

carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), and 1 µM rotenone/antimycin 

A (rot/AA). Each cycle consisted of 2 minutes of mixing and a 1-minute pause, followed by a 5-

minute measurement period; we repeated each cycle 3-4 times. We normalized the background 

for all measurements by subtracting the average OCR of each sample after treatment with 

rot/AA. 

 

Gene expression analysis. We extracted total RNA from peritoneal macrophages with the 

RNeasy Mini Kit (Qiagen) and prepared cDNA with the High-Capacity Reverse Transcription 

Kit (Applied Biosystems), following manufacturer’s instructions. We performed quantitative 

PCR amplification of cDNA using either the TaqMan® probe-based gene expression assay for 

p16INK4a (Mm00494449_m1; Applied Biosystems) or custom TaqMan® Array Plates (Applied 

Biosystems) for lipid-related genes. In all cases, we used the ΔΔCT method, normalizing to Actb, 

18sRNA, Gapdh, or the geometric mean of a combination of these endogenous controls. 

 

Transcriptome expression profiling. We isolated total RNA from peritoneal macrophages with 

the mirVana Kit (Ambion), performed cDNA amplification with the Ovation® Pico Kit 
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(NuGEN, San Carlos, CA), and performed target labeling with the Encore® Biotin Kit 

(NuGEN), according to manufacturer's instructions. We then performed whole transcriptome 

profiling of young and aged peritoneal macrophages using Mouse Gene (MoGene) 1.0 ST arrays 

processed with Affymetrix Expression Console (v1.3.1.187) at standard settings (RMA 

background correction, median polish summarization, and quantile normalization) to generate 

intensity values. We assigned each probeset of the MoGene 1.0 array a detection call of ‘mean + 

2×SD’ of the negative controls. We performed data quality control to identify potential outliers 

by principal component analysis (PCA) plot and hierarchical clustering, as well as by quality 

control (QC) metrics (all probeset RLE means > 0.25) in Expression Console. From this QC, we 

omitted one sample in the young peritoneal group. We then filtered data by probeset type 

(“main” in MoGene 1.0) and by detection call (any probesets without a ‘detected’ call in any of 

the samples were removed). Any probeset without a gene symbol in the MoGene 1.0 data was 

also removed. 18,066 MoGene 1.0 probesets (from the total of 35,556) were kept for further 

analysis. We analyzed the data using the R package “limma” and generated gene lists based on 

P-values and false detection rate (FDR) q-values. We performed gene ontology (GO), pathway 

map, and interactome analyses with MetaCoreTM (Clarivate Analytics, Philadelphia, PA). 

 

Flow cytometry. We plated peritoneal macrophages on untreated Petri dishes and allowed them 

to adhere overnight. The next morning, we lifted cells by incubating for 5 minutes in ice-cold 

Dulbecco’s phosphate-buffered saline (DPBS; Thermo Fisher Scientific) without calcium or 

magnesium and scraping gently. We next filtered cells through a 40 µm cell strainer, washed 

them with DPBS, and resuspended them in DPBS containing 5% FBS, 10 mM HEPES, 1 mM 

EDTA, and TruStain fcXTM antibody (BioLegend, San Diego, CA). We stained 105 to 106 cells 
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with APC anti-mouse CD36 (clone: HM36; BioLegend), PE/Cy7 anti-mouse CD64 (clone: X54-

5/7.1; BioLegend), and PE anti-mouse F4/80 (clone: BM8; eBioscience) antibodies for 20 

minutes on ice. We then washed and resuspended cells in DPBS and acquired data on a BD X-20 

or BD LSR II flow cytometer (BD Biosciences, San Jose, CA). We analyzed and visualized data 

with FlowJo v10. 

 

Human subjects. This study was approved by the Human Research Protection Office of 

Washington University School of Medicine and adhered to the Declaration of Helsinki. We 

obtained informed consent from all subjects prior to blood collection. To purify peripheral blood 

mononuclear cells (PBMCs) and plasma, we performed density gradient centrifugation with BD 

Vacutainer CPTTM Cell Preparation Tubes (Franklin Lakes, NJ), following manufacturer’s 

instructions. We classified patients as no AMD, early AMD, or wet AMD based on established 

clinical criteria (Ferris et al., 2005). Early AMD patients had either moderate drusen (>63 µm) or 

pigment changes in at least one eye but no CNV or GA in either eye at the time of sample 

collection. Wet AMD patients had CNV in at least one eye at the time of sample collection. We 

stored all samples at -80°C until further analysis. To determine the appropriate sample size, we 

performed an a priori power analysis with G*Power 3.1 (Faul et al., 2007). Estimating an effect 

size d of 0.6 based on pilot experiments, we calculated that we needed 94 subjects with an 

allocation ratio of 1.5:1 to detect a significant difference between the groups at the two-sided α = 

0.05 level with 80% power. For the subanalysis, we performed chart review to identify the 

closest total plasma cholesterol measurement obtained within 3.5 years of the date of sample 

collection. 
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Oxysterol profiling by LC-MS/MS. We extracted and quantified oxysterol levels from murine 

peritoneal macrophage pellets, the supernatant of murine peritoneal macrophages, human PBMC 

cell pellets, and human plasma samples as previously described (Jiang et al., 2011). Briefly, we 

added deuterated oxysterols to the samples as internal standards and then extracted oxysterols 

with methanol. We derivatized the extracted oxysterols and their internal standards with N,N-

dimethylglycinate (DMG) to increase MS sensitivity. We performed oxysterol analysis with a 

Shimadzu 20AD HPLC system (Kyoto, Japan) and a LeapPAL autosampler coupled to a tandem 

mass spectrometer (API 4000; Applied Biosystems) operated in MRM mode. We used positive 

ion ESI mode for detection of the derivatized oxysterols, injecting study samples in duplicate for 

data averaging. We conducted data processing with Analyst 1.5.1 (Applied Biosystems) and 

determined relative levels of each oxysterol by comparing its measurement with that of its 

corresponding deuterated internal standard. We normalized the murine macrophage oxysterol 

levels to cell number, murine supernatant levels to volume, human PBMC oxysterol levels to 

protein content, and human plasma oxysterol levels to volume. To normalize human samples 

processed on different days, we used one of the patient samples as an internal control. 

 

Statistics. We performed statistical analysis as indicated in the figure legends with Prism 5 

(GraphPad Software) or SPSS Statistics Version 23 (IBM, Armonk, NY). We assessed the 

normality of our data graphically and with the Kolmogorov-Smirnov test and used appropriate 

non-parametric alternatives when necessary. We considered P < 0.05 to be statistically 

significant. To model the relationship between PBMC and plasma oxysterol signatures and 

AMD, we generated binary logistic regression models. Our model included the following 

predictor variables: age at the time of sample collection, gender, and PBMC/plasma oxysterol 
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levels. For the subanalysis, we generated an additional binary logistic regression model, which 

included the following predictor variables: age at time of sample collection, gender, plasma 24-

HC levels, and total plasma cholesterol. For all regression models, we assessed fit with the 

Hosmer-Lemeshow lack-of-fit test and performed diagnostics by examining Cook’s distances, 

leverages, and residual deviances. The final reported models had six omitted cases based on 

sensitivity analysis. We checked for problems with collinearity by examining variance inflation 

factors (VIF). We used an unadjusted α of 0.05 for the binary logistic regression. 
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Figure 3.1. Peritoneal macrophages from old mice exhibit quantifiable signs of aging. (A) Aged peritoneal 
macrophages had reduced oxygen consumption rate (OCR) both at baseline (N = 9/group; 2-tailed, unpaired 
Welch’s t-test) and in response to oligomycin (N = 11-12/group; 2-tailed, unpaired t-test) and significantly reduced 
ATP-linked respiration (B; N = 9/group; 2-tailed, unpaired Welch’s t-test). (C) Lipopolysaccharide (LPS)-treated 
aged peritoneal macrophages also had impaired mitochondrial bioenergetics at baseline (N = 8-12/group; 2-tailed, 
unpaired Welch’s t-test) and significantly reduced ATP-linked respiration (D; N = 6-9/group; 2-tailed, unpaired t-
test) compared to LPS-treated young peritoneal macrophages. (E) Aged peritoneal macrophages had increased 
mRNA expression of the senescence marker p16INK4a (N = 10/group; 2-tailed, unpaired t-test). Open circles depict 
individual data points; horizontal lines depict mean ± SEM (A-E) (* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 
0.0001). 
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Figure 3.2. Transcriptomic profiling of aged peritoneal macrophages. (A) Aged peritoneal macrophages display 
numerous transcriptomic changes, which suggest perturbations in various gene ontology (GO) processes (B) and 
pathway maps (C). (D) Interactome analysis revealed numerous overconnected transcription factors (TFs) whose 
known gene targets were overrepresented in the genes we identified as dysregulated in aged versus young 
macrophages. 
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Figure 3.3. Aged peritoneal macrophages have abnormal oxysterol content. (A-C) Aged peritoneal macrophages 
contained significantly more intracellular 4β-hydroxycholesterol (4β-HC) and 7-ketocholesterol (7-KC) than their 
young counterparts at baseline and after treatment with 25 or 50 µg/ml oxidized LDL (oxLDL) (N = 5/group; 2-way 
ANOVA) and significantly more intracellular cholestane-3β,5α,6β-triol (C-triol) after treatment with 50 µg/ml 
oxLDL (N = 5/group; 2-way ANOVA with Bonferroni post-hoc test). (D-F) Although some comparisons were 
statistically significant due to low within-group variance, the supernatant of young and aged peritoneal macrophages 
contained qualitatively similar levels of 4β-HC, 7-KC, and C-triol both at baseline and after treatment with oxLDL 
(N = 5/group; 2-way ANOVA with Bonferroni post-hoc test). (G) Representative flow cytometry plot from young 
and aged peritoneal macrophages showing gating on macrophage markers CD64 and F4/80. (H-I) Young and aged 
peritoneal macrophages exhibited similar CD36 surface expression. Isotype staining (iso) was identical between 
groups (N = 5/group; 2-tailed, unpaired t-test). Open circles depict individual data points; horizontal lines depict 
mean ± SEM (A-F, I) (*** P < 0.001). 
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Figure 3.4. Aged splenic macrophages (SM) have abnormal oxysterol content. (A-C) Aged SM contained 
significantly more intracellular 4β-hydroxycholesterol (4β-HC), 7-ketocholesterol (7-KC), and cholestane-3β,5α,6β-
triol (C-triol) compared to their young counterparts after treatment with 50 µg/ml oxidized LDL (oxLDL) (N = 
3/group; 1-tailed Mann-Whitney U test). (D-F) The supernatant of young and aged SM contained similar levels of 
4β-HC, 7-KC, and C-triol both at baseline and after treatment with oxLDL (N = 3/group; 2-tailed Mann-Whitney U 
test). Open circles depict individual data points; horizontal lines depict mean ± S.E.M. (A-F) (* P < 0.05).  
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Figure 3.5. Age affects human peripheral blood mononuclear cell (PBMC) and plasma oxysterol signatures. (A-B) 
There was a significant negative correlation between age and PBMC 7-KC levels, PBMC C-triol levels, and PBMC 
24-HC levels in healthy human subjects. (C-D) There was a significant positive correlation between age and plasma 
C-triol levels and a trend towards a positive correlation between age and plasma 4β-HC levels. Open circles depict 
individual data points; lines depict the best-fitting linear regression line (A-D; r = Pearson product-moment 
correlation coefficient; rs = Spearman rank-order correlation coefficient). 
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Figure 3.6. Age-related macular degeneration (AMD) patients have altered peripheral blood mononuclear cell 
(PBMC) and plasma oxysterol signatures. (A-J) We measured PBMC and plasma levels of 4β-HC, 7-KC, C-triol, 
24-HC, and 27-HC. AMD patients (N = 44-45) had decreased PBMC 7-KC levels (B; 2-tailed Mann-Whitney U 
test), elevated plasma 4β-HC levels (F; 2-tailed Mann-Whitney U test), elevated plasma C-triol levels (H; 2-tailed 
Mann-Whitney U test), elevated plasma 24-HC levels (I; 2-tailed Mann-Whitney U test), and a trend towards 
elevated plasma 27-HC levels (J; 2-tailed, unpaired t-test) compared to non-AMD controls (N = 61). Open circles 
depict individual data points; horizontal lines depict mean ± 95% confidence intervals (A-J) (* P < 0.05; ** P < 
0.01; *** P < 0.001). 
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Figure 3.7. Plasma 24-HC levels discriminate age-related macular degeneration (AMD) from physiologic aging. (A) 
We divided patients into tertiles by plasma 24-HC and by age (i.e., above versus below median age) and found that 
individuals in the highest tertile of plasma 24-HC who were also above median age (top right) had the highest AMD 
prevalence. Horizontal dashed grey lines demarcate plasma 24-HC tertiles; the vertical dashed grey line indicates the 
median age. (B) We did not observe a statistically significant difference in plasma 24-HC levels in early AMD 
patients versus advanced neovascular (wet) AMD patients (N = 21 early AMD; 24 wet AMD; 2-tailed, unpaired t-
test). Open circles depict individual data points (A-B); horizontal lines depict mean ± 95% confidence intervals (B). 
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Table 3.1. Top ten up- and down-regulated genes in aged versus young peritoneal macrophages. 

Probeset ID Gene symbol Fold changea  P-value FDR 
10463355 Scd2 -3.645 .0007 .0667 
10506571 Dhcr24 -2.522 .0001 .0361 
10347748 Acsl3 -2.406 .0003 .0497 
10560702 Ceacam19 -2.266 <.0001 .0307 
10403413 Idi1 -2.070 .0018 .0952 
10544273 Clec5a -1.996 .0006 .0634 
10482762 Idi1 -1.977 .0021 .1006 
10420668 Mir15a -1.969 .0016 .0924 
10424349 Sqle -1.969 <.0001 .0115 
10527920 Cyp51 -1.967 .0012 .0851 
     
10582879 Csprs  3.771 <.0001 .0258 
10538126 Gimap4  4.368 .0052 .1382 
10551025 Cd79a  6.435 .0018 .0957 
10429520 Ly6d  6.483 .0028 .1104 
10466172 Ms4a1  7.480 .0025 .1050 
10392142 Cd79b  7.764 .0004 .0552 
10458278 Mzb1 9.573 .0002 .0469 
10523359 Cxcl13  11.166 .0015 .0918 
10531724 Plac8  11.549 .0006 .0634 
10429564 Ly6a  12.571 <.0001 .0306 
aAged versus young peritoneal macrophages (negative fold-change reflects 
decreased expression in aged macrophages relative to young macrophages. 
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Table 3.2. Expression profiling of lipid-related genes in aged and young macrophages. 

Cellular function Gene symbol Fold changea  P-valueb 
Biosynthesis Fads2 -1.545 .050 
 Fads3 1.299 .050 
 Fdft1 -3.831 .050 
 Fdps -1.885 .050 
 Hmgcs2 3.122 .050 
 Prkaa2 2.773 .046 
 Scd1 -1.895 .050 
Elimination Cyp11a1 -9.342 .050 
 Cyp7b1 2.515 .046 
 Cyp27a1 -1.473 .050 
 Hadhb -1.984 .050 
 Lpl 1.496 .050 
 Tbxas1 1.249 .050 
Leukotriene signaling Lta4h -1.314 .050 
 Alox5ap -1.919 .050 
Transport Apoa1 -6.985 .046 
 Apof -6.089 .050 
 Slc16a6 -1.459 .050 
 Slc27a1 -1.659 .050 
 Slc27a3 -4.402 .050 
 Stard4 -1.306 .050 
Uptake Cxcl16 -1.927 .050 
 Olr1 -2.340 .050 
 Pcsk9 -1.903 .050 
 Stab2 -3.008 .046 
Other or multiple functions Adfp 2.102 .050 
 Alox15 5.797 .050 
 Fabp4 1.338 .050 
 Nr0b2 -3.911 .037 
 Nr1h3 -1.561 .050 
aAged versus young peritoneal macrophages (negative fold-change reflects 
decreased expression in aged macrophages relative to young macrophages); 
bSignificant by 2-tailed Mann-Whitney U test. 
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Table 3.3. Demographic and clinical characteristics of human subjects. 

Demographic parameter Control AMD P-value 
Age, median (range) 64.09 (21.59-87.07) 74.11 (47.87-100.50) <.0001a 
Sex, N    
     Male 37 23 .3781b 
     Female 25 22  
AMD status, N    
     No AMD 62 0 N/A 
     Early AMD 0 21  
     Advanced neovascular AMD 0 24  
aSignificant by 2-tailed Mann-Whitney U test; bNon-significant by Χ2 test. 
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Table 3.4. Beta coefficients from PBMC binary logistic regression model. 

Predictor variable aOR (eβ) 95% CI of eβ P-value 
Age 1.103 1.049 to 1.161 <.001 
Female gender .893 .335 to 2.381 .821 
PBMC 7-KC levels, 1-unit .351 .087 to 1.412 .140 
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Table 3.5. Beta coefficients from plasma binary logistic regression model. 

Predictor variable aOR (eβ) 95% CI of eβ P-value 
Age 1.113 1.055 to 1.174 <.001 
Female gender .390 .119 to 1.282 .121 
Plasma 24-HC levels, .1-unit 3.104 1.66 to 5.79 <.001 
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Table 3.6. AMD as a function of age and plasma 24-HC levels. 

  Age 
  Below median Above median Total 

Plasma 
24-HC 

Lowest tertile 2/19 (10.5%) 8/17 (47.1%) 10/36 (27.8%) 
Middle tertile 4/21 (19.0%) 10/15 (66.7%) 14/36 (38.9%) 
Highest tertile 5/13 (38.5%) 16/21 (76.2%) 21/34 (61.8%) 
Total 11/53 (20.8%) 34/53 (64.2%) 45/106 (42.5%) 
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Chapter 4: 
Macrophage microRNA-150 Promotes Pathological 
Angiogenesis as seen in Age-Related Macular Degeneration 
 
 
This chapter is adapted from a manuscript published in JCI Insight. 
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4.1 Summary 

Macrophage aging is pathogenic in diseases of the elderly, including age-related macular 

degeneration (AMD), a leading cause of blindness in older adults. However, the role of 

microRNAs, which modulate immune processes, in regulating macrophage dysfunction and 

thereby promoting age-associated diseases is underexplored. Here, we report that microRNA-150 

coordinates transcriptomic changes in aged murine macrophages, especially those associated 

with aberrant lipid trafficking and metabolism in AMD pathogenesis. Molecular profiling 

confirmed that aged murine macrophages exhibit dysregulated ceramide and phospholipid 

profiles compared to young macrophages. Of translational relevance, upregulation of 

microRNA-150 in human peripheral blood mononuclear cells was also significantly associated 

with increased odds of AMD, even after controlling for age. Mechanistically, microRNA-150 

directly targets stearoyl-CoA desaturase-2, which coordinates macrophage-mediated 

inflammation and pathologic angiogenesis, as seen in AMD, in a vascular endothelial growth 

factor (VEGF)-independent manner. Together, our results implicate microRNA-150 as 

pathogenic in AMD and provide novel molecular insights into diseases of aging.
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4.2 Introduction 

Macrophages are critical effector cells of the innate immune system. Multiple groups, 

including our own, have reported that macrophages from aged mice demonstrate a functional 

drift compared to those isolated from young mice. For example, aged macrophages exhibit 

epigenomic changes, leading to reduced autophagic capacity (Khalil et al., 2016), and are 

defective in their ability to fight viral infections due to reduced phagocytic activity (Wong et al., 

2017). Moreover, aged macrophages are skewed towards a proangiogenic gene and cytokine 

expression profile, which leads to dysregulated inflammation and inability to inhibit pathological 

angiogenesis (Kelly et al., 2007). Aged macrophages also exhibit impaired cholesterol efflux due 

to decreased Abca1 expression, leading to intracellular cholesterol accumulation and pathologic 

vascular proliferation (Sene et al., 2013). Age-associated macrophage dysfunction has been 

proposed to contribute to the pathogenesis of numerous diseases of aging, including age-related 

macular degeneration (AMD) and atherosclerosis (Sene and Apte, 2014). In addition, age-

associated changes in microglia, the major resident immune cell in the retina with similar 

phagocytic functions, may also promote AMD (Ma and Wong, 2016). 

AMD is a leading cause of blindness in industrialized nations (van Leeuwen et al., 2003) 

and displays a complex disease course characterized, initially, by accumulation of cholesterol-

rich deposits known as drusen underneath the retina (Sene and Apte, 2014; Sene et al., 2015). 

Though drusen themselves do not typically cause vision loss, they are a risk factor for 

progression to one of two forms of advanced AMD: advanced neovascular (wet) AMD, 

characterized by pathologic subretinal angiogenesis, or advanced dry AMD, characterized by 

geographic atrophy secondary to loss of retinal neurons and underlying cells. Both forms of 

advanced AMD can cause debilitating blindness, though wet AMD is responsible for a 
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significant portion of the vision loss associated with AMD (Ferris et al., 1984). While anti-

vascular endothelial growth factor (VEGF) therapies have revolutionized treatment options for 

wet AMD, an important subset of patients is un- or under-responsive to these therapies (Sene et 

al., 2015). Of interest, genome-wide association studies show that polymorphisms in lipid-related 

genes, including hepatic lipase (LIPC), ATP-binding cassette transporter member 1 (ABCA1), 

and cholesterol ester transfer protein (CETP), are associated with advanced AMD (Neale et al., 

2010), supporting the idea that impaired cholesterol homeostasis contributes to AMD 

pathogenesis. 

Impaired cholesterol homeostasis also contributes to the pathogenesis of atherosclerosis. 

Atherosclerotic plaque formation begins when circulating monocytes adhere to the vascular 

endothelium, migrate to the sub-endothelial space, and differentiate into macrophages that take 

up lipids and become foam cells (Gerrity, 1981; Gerrity et al., 1979). Past studies have 

demonstrated that the activation/polarization state of macrophages is important for predicting 

plaque phenotype and stability (Chinetti-Gbaguidi et al., 2015; Peled and Fisher, 2014). For 

example, in patients with hypercholesterolemia, macrophages polarize to a more 

proinflammatory state, which could predispose to plaque formation (Fadini et al., 2014). 

Moreover, macrophage cholesterol efflux capacity in human patients is a clinically relevant 

predictor of atherosclerotic coronary artery disease (Ishikawa et al., 2015), suggesting that 

perturbations in cholesterol homeostasis promote disease. Remarkably, atherosclerotic plaques 

and drusen have similar lipid compositions (Crabb et al., 2002; Curcio et al., 2009; Kramsch et 

al., 1971; Mullins et al., 2000), unifying the pathogenic pathways underlying these diseases. 

Based on these similarities, some have proposed that it may be possible to repurpose statins, 
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lipid-lowering drugs used to treat atherosclerosis, for treating AMD (Apte, 2016; Vavvas et al., 

2016), although not all studies have yielded the same conclusions (Gehlbach et al., 2016). 

Despite these advances in our understanding of the phenotype of aged macrophages and 

how such changes contribute to age-associated diseases, the molecular mechanisms by which 

macrophages drift towards the disease-promoting phenotype remain poorly understood. Given 

the immense spectrum of these changes in aged macrophages, we hypothesized that microRNAs 

(miRs) may regulate the transcriptome of macrophages and thereby the transition of 

macrophages to a disease-promoting phenotype. The ability of miRs to target multiple genes 

makes them strong candidates as molecular regulators that skew macrophages towards a disease-

promoting phenotype. Previous studies have examined the miR signatures of AMD by profiling 

eye fluids, such as human vitreous humor and plasma, providing phenotypic characterization, but 

have failed to provide mechanistic insights into the underlying disease etiology (Grassmann et 

al., 2014; Menard et al., 2016). Therefore, further elucidation of the target genes of these miRs, 

the affected cell types, and the molecular pathways involved is necessary for a more complete 

understanding of disease pathogenesis. 

In this study, we sought to identify one or more miR(s) that regulate the disease-

promoting programmatic changes in macrophages that are associated with AMD. Our results 

demonstrate that miR-150 is highly upregulated both in disease-promoting murine macrophages 

and in human peripheral blood mononuclear cells from AMD patients. Moreover, we show that 

miR-150 regulates macrophage-mediated inflammation and pathologic angiogenesis 

independently from vascular endothelial growth factor (VEGF) by targeting stearoyl-CoA 

desaturase-2 (Scd2), suggesting that it regulates the transition of macrophages from a healthy 

profile to the AMD-promoting phenotype. Ultimately, these findings provide insight into the 
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mechanisms underlying the pathological programmatic changes in aged macrophages and may 

lead to the identification of novel therapeutic targets and candidate biomarkers. 

 

4.3 Results 

Aged macrophages have distinct cholesterol-responsive microRNA networks 

 Since miRs can regulate numerous target genes, we hypothesized that miRs may globally 

regulate the macrophage’s response to exogenous cholesterol. We first sought to identify 

cholesterol-responsive miRs by performing a microarray, comparing untreated macrophages 

versus macrophages treated with acetylated LDL (acLDL) or oxidized LDL (oxLDL). We 

previously showed that aged and young macrophages handle cholesterol differently and that aged 

macrophages demonstrate altered capacity to metabolize cholesterol (Sene et al., 2013). As such, 

we profiled aged and young macrophages separately to accurately capture the response of these 

cells to exogenous cholesterol. In young macrophages, ten miRs were similarly downregulated in 

response to both acLDL and oxLDL (Figure 4.1A). In contrast, in aged macrophages, five miRs 

were similarly dysregulated in response to both acLDL and oxLDL, three downregulated and 

two upregulated (Figure 4.1B). These findings suggest that in macrophages, miRs are altered 

after exposure to cholesterol and may indeed orchestrate the macrophage’s response to 

cholesterol. Furthermore, these findings suggest that the distinct miR responses in aged versus 

young macrophages may underlie their distinct responses to exogenous cholesterol. 

We hypothesized that in addition to these cholesterol-responsive miRs, there may be a 

separate network of miRs that regulate the broad spectrum of differences between disease-

promoting, aged macrophages and young macrophages. Such miRs must not only demonstrate 

altered expression with aging but also have consistent dysregulation regardless of treatment with 
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cholesterol. Five miRs were upregulated in aged macrophages and maintained the same pattern 

of dysregulation in aged versus young macrophages after treatment with acLDL or oxLDL 

(Figure 4.1C). MiR-150 was the strongest candidate for further study given that it had the 

highest fold change in aged versus young macrophages and since the others did not validate after 

further characterization. 

 

miR-150 is upregulated in aged macrophages of diverse origins 

 To validate the microarray data, we performed quantitative real-time PCR (qPCR) with 

independent samples. Indeed, aged peritoneal macrophages (PMs) had nine-fold increased miR-

150 expression at baseline compared to young PMs (Figure 4.1D). To determine whether this 

phenomenon was lineage-specific, we also measured miR-150 expression in splenic 

macrophages (SMs) and bone marrow-derived macrophages (BMDMs). Similar to PMs, we 

found that aged SMs (Figure 4.1E) and BMDMs (Figure 4.1F) exhibited three-fold higher 

expression of miR-150 at baseline compared to young SMs and BMDMs. Next, we sought to 

confirm that miR-150 upregulation in aged macrophages is unaffected by exposure to exogenous 

cholesterol or lipopolysaccharide (LPS). Indeed, aged PMs treated with acLDL, oxLDL, or LPS 

exhibited higher miR-150 expression than similarly treated young PMs (Figure 4.1G). Likewise, 

oxLDL- and LPS-treated aged BMDMs also had higher miR-150 expression compared to 

similarly treated young BMDMs (Figure 4.1H). Cumulatively, these findings provide strong 

evidence that miR-150 upregulation may indeed skew macrophages towards the disease-

promoting, aged phenotype. 
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miR-150 overexpression reprograms the macrophage transcriptome 

We next sought to determine the mechanism by which miR-150 skews macrophages 

towards the aged phenotype. To elucidate the cellular processes and pathways regulated by miR-

150, we performed RNA-Sequencing (RNA-Seq) to identify the transcriptomic networks 

dysregulated under conditions of miR-150 overexpression, comparing young macrophages 

transfected with miR-150 mimic (miR-150OE) to young macrophages transfected with a non-

targeting negative control mimic (NC). From RNA-Seq, we obtained an average of 35,607,314 

reads per sample (N = 11), and of these, an average of 32,535,035 reads (91.4%) mapped to the 

mouse genome (Mus_musculus reference build Ensembl_R76). We performed hierarchical 

clustering, revealing clear differences between the transcriptomes of miR-150OE and NC-

transfected peritoneal macrophages (Figure 4.2A). 

To determine the subset of these miR-150-regulated genes that are also dysregulated in 

aged macrophages, we overlaid the RNA-Seq results onto the results of a previous microarray 

we performed comparing aged versus young macrophages (see Chapter 3). The intersection 

between these gene lists identifies genes dysregulated in aged murine macrophages that may be 

regulated by miR-150 upregulation. We identified 160 commonly dysregulated genes with a |fold 

change| > 1.2 both in miR-150OE versus NC-transfected macrophages and in aged versus young 

macrophages. To determine whether these genes suggested abnormalities in specific pathways, 

which may provide insight into the mechanism by which miR-150 upregulation promotes age-

associated disease, we performed pathway analysis with MetaCore for enrichment by gene 

ontology (GO) processes, process networks, and pathway maps (Figures 4.2B, 4.2C, and 4.2D). 

Numerous diverse GO processes were enriched for, indicating that miR-150 regulates broad 

cellular pathways in macrophages (Figure 4.2B). Of interest, inflammation and immune 
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response process networks were five of the nine most enriched process networks (Figure 4.2C). 

These findings confirm that there is immune dysregulation in aged macrophages associated with 

miR-150 upregulation. Remarkably, aberrant lipid trafficking and metabolism in AMD was the 

third most enriched pathway map (Figure 4.2D), validating our hypothesis that miR-150 

regulates the transition of macrophages to the AMD-promoting phenotype.  

 

Disease-promoting macrophages have altered phospholipid and ceramide profiles 

 In AMD, the interaction between dysregulated macrophage cholesterol homeostasis and 

aging is implicated in the pathophysiology of disease. To better understand this relationship, we 

performed lipidomics to determine whether aged macrophages have altered lipid profiles as 

possible consequences of aberrant lipid trafficking and metabolism. We focused on components 

of the plasma membrane, including ceramides and phospholipids, since the composition and 

organization of the plasma membrane have been shown to regulate macrophage function (Wei et 

al., 2016). Aged macrophages contained significantly more long-chain Cer(16:0) than young 

macrophages but similar levels of very long-chain Cer(22:0) and Cer(24:0) (Figure 4.3A). 

Consistent with increased Cer(16:0), we observed a significant decrease in both the 

Cer(22:0)/Cer(16:0) and Cer(24:0)/Cer(16:0) ratios in aged versus young macrophages (Figure 

4.3B). These findings indicate that aged macrophages exhibit remodeling of their ceramide 

composition from very long-chain to long-chain species. 

In the phosphatidylglycerol (PG) class, PG-D16:0-18:1 was the only detectable species, 

and there was no significant difference in content between aged and young macrophages (Figure 

4.3C). However, numerous individual species were detected for each of the other phospholipid 

classes. Overall, aged macrophages contained more total phosphatidylcholine (PC; Figure 4.3D) 
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and more total phosphatidylethanolamine (PE; Figure 4.3E) than young macrophages but similar 

total phosphatidylinositol (PI; Figure 4.3F) and similar total phosphatidylserine (PS; Figure 

4.3G). Further analysis of the individual species within each phospholipid class by 2-way, 

repeated-measures ANOVA revealed a significant interaction between the main effects of 

species identity and age for all four phospholipid classes (Figures 4.3H, 4.3I, 4.3J, and 4.3K), 

indicating that the increased total PC and total PE in aged macrophages were driven by increases 

in specific species within these phospholipid classes. Post-hoc testing showed that the 

significantly increased species were generally phospholipids containing fatty acids with multiple 

double bonds, suggesting a shift toward unsaturated fatty acids (Figures 4.3H, 4.3I, 4.3J, and 

4.3K). Based on these findings, we propose that aberrant lipid trafficking and cholesterol 

metabolism in aged macrophages leads to this disruption in ceramide and phospholipid profiles, 

which may contribute to macrophage dysfunction in age-associated diseases. 

 

miR-150 upregulation is associated with age-related macular degeneration in humans 

 To assess the translational relevance of these findings, we recruited human patients with 

early AMD or advanced neovascular (wet) AMD and non-AMD controls in a case-control study 

design. Demographic and clinical information of the participants are shown in Table 4.1. From 

these patients, we collected peripheral blood mononuclear cells (PBMCs), which contain 

monocytes, and quantified miR-150 copy number in these samples. On average, AMD patients 

had significantly higher PBMC miR-150 levels compared to control subjects (Figure 4.4A). 

When we subdivided AMD patients into early AMD and wet AMD groups, we observed higher 

PBMC miR-150 levels in early AMD patients compared to controls and in wet AMD patients 

compared to controls (Figure 4.4B). There was, however, no significant difference in PBMC 
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miR-150 levels between early and wet AMD patients (Figure 4.4B). These findings suggest that 

increased PBMC miR-150 levels are associated with developing AMD but not with disease 

progression. We next sought to determine whether age affected PBMC miR-150 levels since 

AMD patients tended to be older than non-AMD controls (Table 4.1). We found that there was 

no significant correlation between age and PBMC miR-150 levels in AMD patients (rs = 0.1596, 

P = 0.3066) or in control subjects (rs = -0.2002, P = 0.1157) (Figure 4.4C), suggesting there is 

no significant association between PBMC miR-150 levels and age. 

To model the relationship between PBMC miR-150 levels and AMD status and to 

rigorously control for a possible – albeit unlikely – effect of age, we generated a binary logistic 

regression model with the predictor variables of age, gender, and log10-transformed PBMC miR-

150 levels and the outcome of AMD. The overall model was statistically significant (LR Χ2 = 

47.4, df = 3, P < 0.001) and had good fit (Χ2 = 9.4, df = 8, P = 0.311). As expected, age was a 

significant predictor of AMD (P < 0.001) with a beta coefficient of 0.082, indicating that each 

additional year of age was associated with increased odds of having AMD (aOR = 1.086; 95% 

CI = 1.04 to 1.13). Of significant interest, even after controlling for the effects of age and gender 

on miR-150 levels, log10-transformed PBMC miR-150 levels were highly associated with AMD 

(P < 0.001) with a beta coefficient of 3.367, indicating that each additional 10-fold increase in 

PBMC miR-150 levels was associated with a 29.0-fold increased odds of having AMD (95% CI 

= 5.9 to 141.5). To determine the efficacy of PBMC miR-150 levels as a potential marker of 

AMD, we generated a receiver operating characteristic (ROC) curve and found that the area 

under the ROC curve (AUC) was 0.860 (95% CI = 0.788 to 0.933), indicating good 

discrimination. 
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Furthermore, we performed conjunctive analysis to illustrate the relationship between 

PBMC miR-150 levels, age, and the outcome of AMD. We divided patients into tertiles by 

PBMC miR-150 levels (cutoffs of 4.5×106 and 9.5×106 copies/ng RNA) and by age (i.e., above 

versus below median of 67.47 years), tabulating the AMD prevalence in each conjoined cell 

(Table 4.2). This analysis demonstrated a clear stepwise increase in prevalence of AMD going 

from the lowest to the highest tertile of PBMC miR-150 levels in participants both above median 

age (i.e., from 18.8% to 53.8% to 87.5%) and below median age (i.e., from 15.8% to 17.4% to 

45.5%). These findings strongly support the notion that increased PBMC miR-150 levels are 

associated with AMD. This trend held true both above and below median age, making it highly 

unlikely that the differences in PBMC miR-150 levels in AMD patients versus non-AMD 

controls were solely due to the fact that the AMD patients were, on average, older in age.  

 

miR-150 directly targets stearoyl-CoA desaturase-2 and promotes pathologic angiogenesis 

To understand the mechanism by which miR-150 promotes macrophage dysfunction, we 

sought to identify direct miR-150 targets. Since miRs canonically downregulate their gene 

targets, we filtered for commonly downregulated genes (fold change < -1.2) both in miR-150OE 

and NC-transfected macrophages and in aged versus young macrophages. This strategy 

identified 36 initial putative target genes (Table 4.3). We further narrowed this list by 

eliminating genes that either did not appear in any of six target identification databases or did not 

contain a seed sequence in their 3′ UTR. We performed qPCR in aged versus young 

macrophages on the remaining 26 genes. Of these 26 genes, eight showed significant 

downregulation in aged macrophages (Figures 4.5A and 4.5B). Of interest, two of the eight 

genes that were significantly downregulated in aged macrophages are known to play key roles in 
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fatty acid biosynthesis: fatty acid synthase (Fasn) and stearoyl-CoA desaturase-2 (Scd2). We 

confirmed that both genes were indeed downregulated in miR-150OE macrophages versus NC-

transfected macrophages (Figures 4.5C and 4.5D). To determine the functional effect of Fasn 

and Scd2 deficiency, we performed siRNA knockdown of these gene targets in macrophages and 

assessed the inflammation status and angiogenic potential of these macrophages by PCR array. 

We confirmed siRNA knockdown of Fasn and Scd2 by qPCR (Figures 4.5E and 4.5F). Fasn-

deficient macrophages exhibited upregulation of only Ptgs2 and Tnf (Figure 4.5G) and no 

upregulation of proangiogenic factors (Figure 4.5H). On the other hand, Scd2-deficient 

macrophages were abnormally activated with upregulation of numerous proinflammatory 

markers (Figure 4.5I) and proangiogenic factors (Figure 4.5J). Of interest, Vegfa expression 

was not altered (Figure 4.5J), suggesting that Scd2-mediated regulation of macrophage function 

is independent from vascular endothelial growth factor (VEGF). These results suggest that Scd2 

may be an important direct target of miR-150, providing a mechanism by which miR-150 

regulates macrophage function. 

Next, we performed dual-reporter assays to confirm that miR-150 can directly regulate 

Scd2 expression. The Scd2 gene contains two canonical miR-150 seed sequence target sites in its 

3′ UTR: a 7mer-A1 (UGGGAGA) and an offset 6mer (UUGGGA) (Figure 4.6A). As expected, 

co-transfection of a plasmid with the Scd2 3′ UTR cloned downstream of a secreted Gaussia 

luciferase (GLuc) and miR-150 mimic led to decreased GLuc activity compared to co-

transfection of the same plasmid with a non-targeting mimic (Figure 4.6B). Removing the 7mer-

A1 target site (mutant1) significantly reduced the extent to which miR-150 co-transfection 

reduced GLuc activity (Figure 4.6C). In contrast, removing the offset 6mer target site (mutant2) 

did not change the negative regulatory effect of miR-150 co-transfection on GLuc activity 
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(Figure 4.6C). These findings suggest that the 7mer-A1 site is the dominant target site to which 

miR-150 binds to regulate Scd2 expression, while the offset 6mer site plays a less important role. 

To determine whether downregulation of Scd2 may promote pathological angiogenesis as 

seen in wet AMD, we measured the extent to which Scd2-deficient macrophages inhibited 

choroidal neovascularization (CNV) in a well-established murine model of injury-induced 

angiogenesis in the eye. Although host macrophages play an important role in regulating CNV, 

we have previously demonstrated that intravitreal injection of functional macrophages can 

augment the anti-angiogenic effect (Apte et al., 2006). Therefore, we performed laser injury to 

induce CNV and injected Scd2-deficient or NC-transfected macrophages intravitreally by 

adoptive transfer immediately after injury. Adoptively transferred Scd2-deficient macrophages 

were not able to inhibit choroidal neovascularization as effectively as NC-transfected 

macrophages (Figures 4.6D and 4.6E). This phenomenon was independent of VEGF since 

VEGF mRNA expression and protein secretion was not increased in Scd2-deficient macrophages 

(Figures 4.5H and 4.6F). To confirm these in vivo results, we also generated mice lacking Scd2 

in myelomonocytic cells, including macrophages, with the Cre-lox system (Scd2-m/-m). In 

agreement with our adoptive transfer experiments, Scd2-m/-m mice had larger CNV complexes 

after laser injury compared to floxed controls (Scd2f/f) (Figures 4.6G and 4.6H). In contrast, 

mice lacking Fasn in myelomonocytic cells (Fasn-m/-m) and floxed controls (Fasnf/f) had similar 

CNV complex sizes after laser injury (Figures 4.6I and 4.6J). These findings confirm that Scd2 

plays an important role in regulating macrophage function in the context of pathological 

angiogenesis. 

Together, these findings indicate that Scd2 downregulation secondary to miR-150 

upregulation in aged macrophages promotes macrophage dysfunction and pathological 
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angiogenesis, providing a mechanism by which miR-150 can direct macrophages towards an 

aged, disease-promoting, and proangiogenic phenotype (Figure 4.7). Our human data confirm 

the translational relevance of these findings in AMD pathogenesis. 

 

4.4 Discussion 

In this study, we report that miR-150 is upregulated in aged murine macrophages of 

diverse origins and directs aged macrophages towards a disease-promoting phenotype 

characterized by abnormal activation and promotion of pathologic angiogenesis. miR-150 was 

previously reported to play important roles in controlling B-cell differentiation by targeting the 

transcription factor c-Myb (Xiao et al., 2007). Moreover, miR-150 has been reported to regulate 

de novo lipogenesis by targeting Fasn and other lipid-related genes in mammary epithelium 

(Heinz et al., 2016). Here, we uncover a novel role for miR-150 in macrophages to regulate 

cholesterol metabolism and lipid trafficking genes involved in AMD based on our RNA-Seq 

results. In agreement, other miRs have been shown to regulate cholesterol homeostasis. For 

example, miR-33 (Rayner et al., 2011; Sene et al., 2013), miR-302a (Meiler et al., 2015), and 

miR-19b (Lv et al., 2014) regulate reverse cholesterol transport by modulating Abca1 expression. 

Consistent with their impaired cholesterol metabolism and lipid trafficking, we report that 

aged macrophages with miR-150 upregulation have associated alterations in ceramide and 

phospholipid profiles. These results build on our previous finding that aged macrophages have 

impaired cholesterol efflux (Sene et al., 2013). Specifically, aged macrophages have a reduced 

ratio of very long-chain to long-chain ceramides. Ceramides are important signaling molecules in 

macrophages that modulate cellular responses in many pathways, including inflammation 

(Schilling et al., 2013). Different molecular ceramide species have been shown to be 



 
107 

 

significantly associated with mortality in coronary artery disease patients independently of 

traditional risk factors (Tarasov et al., 2014), highlighting their importance in disease 

pathogenesis. Additionally, we demonstrate that aged macrophages have alterations in 

phospholipid composition in multiple classes. Of interest, both ceramides and phospholipids are 

important components of the plasma membrane, and the composition and organization of the 

plasma membrane have been shown to be important for modulating cholesterol-dependent 

signaling networks involved in inflammation (Wei et al., 2016). 

We propose that broad disruptions in plasma membrane lipids secondary to miR-150 

upregulation in aged macrophages modulate the inflammatory status of aged macrophages and 

thereby predispose them toward a disease-promoting, proangiogenic phenotype. Our lipidomic 

analysis shows that aged macrophages possess a complex profile of altered lipid composition 

with remodeling toward long-chain ceramides and a shift towards phospholipids containing 

unsaturated fatty acids. We provide further insight by demonstrating that one molecular 

mechanism by which miR-150 regulates lipid metabolism in macrophages is by directly targeting 

Scd2. This gene catalyzes the rate-limiting step in the formation of monounsaturated fatty acids 

and has been shown to be important in lipid synthesis during early skin and liver development 

(Miyazaki et al., 2005). Our data establish that Scd2 is also evidently important in macrophage 

function, as Scd2-deficient macrophages exhibit abnormal activation and promote pathological 

angiogenesis. Although Scd2 deficiency alone might be expected to cause accumulation of 

phospholipids containing saturated fatty acids in aged macrophages, we did not observe this 

pattern in our lipidomic analysis, suggesting that Scd2 deficiency does not drive alterations in 

lipid composition alone. We propose instead that the combination of Scd2 deficiency and 

changes in other lipid-related genes causes the altered lipid profile of aged macrophages. 
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Of translational relevance, our study provides strong evidence that miR-150 plays a role 

in AMD pathogenesis. Specifically, our data indicate not only that AMD patients have higher 

PBMC miR-150 levels than control participants but also that increased PBMC miR-150 is 

significantly associated with increased odds of AMD in a gender- and age-adjusted binary 

logistic regression model. Although miR-150 levels were associated with disease in human 

PBMCs, there was no clear relationship between miR-150 levels and age, unlike in murine 

macrophages, highlighting a difference between murine and human macrophages. 

Overall, our findings are timely given a recent report that showed that there is an increase 

in the number of choroidal macrophages in human eyes with AMD (McLeod et al., 2016), 

strongly implicating a pathogenic role for macrophages in disease. Moreover, our findings may 

partially explain why activated macrophages derived from neovascular AMD patients have 

proangiogenic characteristics (Hagbi-Levi et al., 2017; Nakamura et al., 2015). While other 

groups have suggested endothelial miR-150 may suppress pathologic ocular neovascularization 

(Liu et al., 2015; Shen et al., 2008), our findings highlight a distinct, macrophage-specific role 

for miR-150 that, in fact, promotes pathological ocular neovascularization. These differences are 

not surprising given that miRs can act in a cell-specific manner. Ultimately, these findings open 

up novel therapeutic vistas for miR-based therapies for AMD. Moreover, understanding the 

mechanisms that cause macrophage aging and how aging contributes to AMD also has broad 

applicability to other age-associated diseases by educating us about critical unifying pathways 

that drive their pathobiology. 
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4.5 Methods 

Animals. We obtained 18-month-old, wild-type C57BL/6J mice from the National Institute on 

Aging (Bethesda, MD) and compared them to strain-matched, young (i.e., 2- to 3-month-old) 

wild-type controls. We obtained mice with floxed Fasn alleles (Fasnf/f) (Chakravarthy et al., 

2005) from Clay Semenkovich (Washington University School of Medicine, St. Louis, MO) and 

mice with floxed Scd2 alleles (Scd2f/f) (Lai et al., 2017; Masuda et al., 2015) from Hide 

Tsukamoto (Keck School of Medicine of the University of Southern California, Los Angeles, 

CA). We crossed these floxed mice with mice carrying the lysozyme M-Cre (LysMcre) 

transgene (Clausen et al., 1999) to generate mice with myelomonocytic-specific deletion of Fasn 

(Fasn-m/-m) and Scd2 (Scd2-m/-m). We harvested PMs, SMs, and BMDMs from female mice at the 

ages indicated and used equal proportions of male and female mice for laser-injury CNV 

experiments. Unless otherwise specified, we used mice that were 2-3 months of age for 

experimentation. 

 

Macrophages. We harvested PMs from mice five days after elicitation with 4% thioglycollate 

(Sigma, St. Louis, MO). We harvested SMs from mice by mincing spleens with a sharp razor 

blade, incubating in spleen dissociation medium (Stem Cell Technologies, Vancouver, Canada) 

for 30 minutes at room temperature and performing magnetic cell separation with the PE 

selection kit (Stem Cell Technologies) and PE-conjugated F4/80 monoclonal antibody (clone: 

BM8; eBioscience, Waltham, MA), following manufacturer’s instructions. We cultured PMs and 

SMs in RPMI 1640 medium (Thermo Fisher, Waltham, MA) supplemented with 10% fetal 

bovine serum (FBS; Atlanta Biologicals, Lawrenceville, GA) and 1% penicillin-streptomycin 

(Thermo Fisher). Additionally, we generated bone marrow-derived macrophages (BMDM) by 
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culturing bone marrow aspirates from mice in RPMI 1640 medium (Thermo Fisher) 

supplemented with 20% L929-conditioned medium, 10% FBS (Atlanta Biologicals), 1% 

GlutaMAX (Thermo Fisher), and 1% penicillin-streptomycin (Thermo Fisher). Monocytes were 

allowed to differentiate for one week prior to experimentation. When indicated, we treated 

macrophages with 25 µg/ml oxidized LDL (oxLDL; Intracel, Frederick, MD) for 24 hours, 25 

µg/ml acetylated LDL (acLDL; Intracel, Frederick, MD) for 24 hours, or 100 ng/ml 

lipopolysaccharide (LPS; Sigma, St. Louis, MO) for 24 hours. 

 

MicroRNA microarray. We profiled microRNA (miR) expression of young and aged peritoneal 

macrophages that 1) were left untreated, 2) treated with 25 µg/ml acLDL for 24 hours, or 3) 

treated with 25 µg/ml oxLDL for 24 hours (total of 6 groups; 3 treatments × 2 ages). We 

extracted RNA with the mirVana miRNA isolation kit (Thermo Fisher), determining quantity 

and quality of the RNA with a 2100 BioAnalyzer and the Total RNA Pico kit (Agilent 

Technologies, Santa Clara, CA). All samples (N = 24) had RNA Integrity Numbers > 9.5. We 

labeled each sample with FlashTagTM Biotin HSR RNA Labeling Kits (Affymetrix, Santa Clara, 

CA) to prepare them for the GeneChip® miRNA 3.0 Array. We processed the array results with 

Affymetrix Expression Console (v1.3.1.187) at standard settings (RMA background correction, 

median polish summarization, and quantile normalization) to generate intensity values with a 

second set of data produced without quantile normalization. We filtered the data by probeset type 

and by detection call and removed probesets without a ‘detected’ call in any of the 24 samples; 

after this filtering, we retained 1,093 of the initial 1,966 probesets for further statistical analysis. 

To identify potential outliers, we performed principal component analysis (PCA) and 

hierarchical clustering and assessed quality control (QC) metrics from Expression Console (e.g., 
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all probeset RLE means > 0.25). This analysis identified 3 outliers, which we omitted from 

further analysis. We performed statistical analysis with the R package “limma” (Ritchie et al., 

2015) to generate lists of miRs differentially expressed in our various groups based on their p-

values and false detection rate (FDR)-adjusted p-values (i.e., q-values). The microarray data are 

available at the Gene Expression Omnibus (GEO) at NCBI under accession number GSE111323. 

 

microRNA expression profiling. For miR expression profiling, we extracted total RNA with the 

mirVana miRNA isolation kit (Thermo Fisher) and prepared cDNA with the universal cDNA 

synthesis kit II (Exiqon, Woburn, MA). We then performed qPCR using ExiLENT SYBR® 

Green master mix (Exiqon) and microRNA LNATM primer sets (Exiqon). To analyze the data, 

we used the ΔΔCT method, normalizing to U6 expression. 

 

mRNA expression profiling. For mRNA expression profiling, we extracted RNA with the 

RNeasy kit (Qiagen, Germantown, MD) and prepared cDNA with the high-capacity cDNA 

reverse transcription kit (Thermo Fisher). We then performed qPCR with TaqManTM fast 

advanced master mix (Thermo Fisher) and TaqManTM real-time PCR gene expression assays 

(Thermo Fisher). We also profiled mRNA expression with custom TaqManTM array plates 

(Thermo Fisher). We used the ΔΔCT method, normalizing to one or more housekeeping gene(s), 

as appropriate. 

 

RNA-Sequencing. We extracted total RNA from peritoneal macrophages transfected with either 

synthetic mir-150-5p or negative control (Exiqon) with TRIzol (Thermo Fisher) followed by 

column purification with the RNeasy Plus mini kit (Qiagen). We determined the quantity and 
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quality of the RNA samples with a 2100 BioAnalyzer and the Total RNA Pico kit (Agilent 

Technologies). All samples (N = 12) had RNA Integrity Numbers > 9.6. We analyzed the 

transcriptomes of peritoneal macrophages after miR-150 overexpression with RNA-Sequencing 

(RNA-Seq) with an initial input of 600 ng of total RNA per sample before mRNA enrichment 

with the rRNA Ribo-Zero rRNA removal kit (Illumina, San Diego, CA). We prepared 

sequencing libraries with standard protocols. Quality control revealed improper fragmentation of 

one sample, which was omitted from further analysis. The remaining samples (N = 11) were 

sequenced in two flowcell lanes on a HiSeq 2500 (Illumina) at the Washington University 

GTAC. We mapped the sequencing reads to the genome with STAR. Next, we performed a 

standard EdgeR and Sailfish analysis of gene-level features. We defined a significant up- or 

down-regulation as a |fold-change| > 1.20 with a false-detection rate (FDR) < 0.20. We 

performed pathway analysis for enrichment in gene ontology (GO) processes, process networks, 

and pathway maps with MetaCore (Clarivate Analytics, Philadelphia, PA). The RNA-Seq data 

are available at the Gene Expression Omnibus (GEO) at NCBI under accession number 

GSE111323. 

 

Lipidomic analysis. We suspended macrophages in PBS at 2.0×106 cells/ml and performed 

protein precipitation from 100 µl of macrophage suspension to extract ceramides, 

phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, phosphatidylglycerols, 

and phosphatidylserines. Prior to extraction, we added deuterated d5-Cer (16:0), d4-Cer (22:0), 

and d4-Cer (24:0) as internal standards for ceramides and PC (28:2), PE (32:2), PG (30:0), PI 

(32:0) and PS (28:0) as internal standards for the other lipid classes. We measured lipids with a 

Shimadzu 10A HPLC system (Kyoto, Japan) and a Shimadzu SIL-20AC HT auto-sampler 
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(Kyoto, Japan) coupled to a Thermo Scientific TSQ Quantum Ultra triple quadrupole mass 

spectrometer operated in SRM mode under ESI(+). We conducted data processing with 

XcaliburTM (Thermo Fisher). We prepared quality control (QC) samples by pooling aliquots of 

the study samples and injected them between every five samples to monitor instrument 

performance, omitting lipid species with coefficients of variance >15% in QC samples. We 

performed relative quantification by comparing the peak area ratios of the analytes to the 

corresponding internal standards. 

 

Human subjects. To isolate peripheral blood mononuclear cells (PBMCs), we performed 

density gradient centrifugation with BD Vacutainer CPTTM cell preparation tubes (Franklin 

Lakes, NJ). We stored PBMC pellets at -80°C until further analysis. We classified patients as no 

AMD, early AMD, or wet AMD based on established clinical criteria (Ferris et al., 2005). Early 

AMD patients had either moderate drusen (>63 µm) or pigment changes in at least one eye but 

no CNV or GA in either eye at the time of sample collection. Wet AMD patients had CNV in at 

least one eye at the time of sample collection. We excluded patients with pattern dystrophy, 

macular telangiectasia, dominant drusen, or central serous chorioretinopathy. 

 

Absolute microRNA-150 quantification in human PBMCs. We extracted RNA from PBMCs 

with the mirVanaTM miRNA isolation kit (Thermo Fisher) and performed reverse transcription 

(RT) with the universal cDNA synthesis kit II (Exiqon) by adding 2 µl of RNA to 2 µl of 5× 

reaction buffer, 1 µl of enzyme mix, and 5 µl of nuclease-free H2O (total volume: 10 µl). We 

diluted the cDNA to a final volume of 60 µl and performed miRCURY LNA Universal RT 

microRNA PCR by adding 4 µl of diluted cDNA to 1 µl of the appropriate primer and 5 µl of 



 
114 

 

ExiLENT SYBR Green master mix (total volume: 10 µl). To determine absolute copy number of 

hsa-miR-150-5p, we prepared standard curves with serial dilutions of synthetic hsa-miR-150-5p 

(Integrated DNA Technologies, Coralville, IA) ranging from 104 copies per 2 µl input to 1010 

copies per 2 µl input, followed by RT and PCR as above. To account for differences in RNA 

extraction and RT efficiency performed on separate occasions, we spiked in 20 fmol of synthetic 

cel-miR-39-3p (Integrated DNA Technologies) into each sample prior to RNA extraction and 

normalized to the global arithmetic mean. We normalized miR-150 copy number for each patient 

by dividing by the total RNA used for RT. 

 

miR-150 overexpression. To transiently overexpress miR-150 in peritoneal macrophages, we 

used commercially available miRCURY LNATM microRNA mimics (Exiqon), following 

standard protocols for fast-forward transfection. In short, we plated peritoneal macrophages at 

1.0×106 cells/well in 6-well plates. Two hours after plating, we prepared transfection complexes 

by combining miR mimic (20 nM) and HiPerFect transfection reagent (18 µl/well; Qiagen) in 

RPMI medium supplemented with 10% FBS (Atlanta Biologicals) and 1% penicillin-

streptomycin (Thermo Fisher), incubating for 15 minutes at room temperature before adding to 

the cells. We assessed transfection efficiency with fluorescence microscopy by visualizing FAM-

labeled microRNA mimics. 

 

miR-150 target identification. To identify miR-150 targets, we retrieved 3′ UTR sequences 

from the UCSC Genome Brower (genome.ucsc.edu; Mouse Assembly GRCm38/mm10) and 

manually searched for the presence of relevant miR-150 seed sequences (8mer site: 

UUGGGAGA; 7mer-m8 site: UUGGGAG; 7mer-A1 site: UGGGAGA; 6mer site: UGGGAG; 
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offset 6mer site: UUGGGA). Additionally, we used existing miR target identification databases: 

TargetScanMouse (Release 7.1) (Agarwal et al., 2015), DIANA-microT-CDS (Version 5.0) 

(Paraskevopoulou et al., 2013), DIANA-TarBase (Version 7.0) (Vlachos et al., 2015), miRDB 

(Wong and Wang, 2015), RNA22 (Version 2.0) (Miranda et al., 2006), and microRNA.org 

(August 2010 Release) (Betel et al., 2008). 

 

Fasn/Scd2 knockdown. To transiently knock down Fasn and Scd2, we used commercially 

available FlexiTube siRNA (Qiagen), following standard protocols for fast-forward transfection. 

In short, we plated peritoneal macrophages at 1.0×106 cells/well in 6-well plates. Two hours after 

plating, we prepared siRNA transfection complexes by combining siRNA (50 nM) and 

HiPerFect transfection reagent (18 µl/well; Qiagen) in RPMI medium supplemented with 10% 

FBS (Atlanta Biologicals) and 1% penicillin-streptomycin (Thermo Fisher), incubating for 15 

minutes at room temperature before adding to the cells. We confirmed efficient siRNA 

knockdown by qPCR. We analyzed macrophage activation and function 48 hours after 

transfection. 

 

miRNA target dual-reporter assays. We ordered custom miTargetTM 3′ UTR miRNA target 

clones from GeneCopoeia (Rockville, MD) with wild-type or mutated Scd2 3′ UTR inserted 

downstream of a secreted Gaussia luciferase (GLuc) reporter gene driven by the SV40 promoter 

and a secreted alkaline phosphatase (SEAP) reporter gene driven by a CMV promoter. We co-

transfected 293T cells (ATCC, Manassas, VA), cultured routinely in high-glucose DMEM 

(Thermo Fisher) supplemented with 10% FBS (Atlanta Biologicals), with the target clone and 

either miR-150 mimic or non-targeting negative control mimic (Exiqon), following 
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manufacturer’s instructions. In brief, we plated 293T cells in 96-well plates at 2.0×104 cells/well 

the day before transfection. On the day of transfection, we prepared transfection complexes by 

combining the target clone (100 ng/well), miR mimic (20 nM), LipofectamineTM 3000 (0.15 

µl/well; Thermo Fisher), and P3000TM reagent (0.20 µl/well) in Opti-MEMTM medium (Thermo 

Fisher) and incubating for 30 minutes at room temperature before adding to the cells. 48 hours 

after transfection, we collected the supernatant to measure GLuc activity with the Secrete PairTM 

Dual Luminescence assay kit (GeneCopoeia). We normalized for transfection efficiency by 

measuring SEAP activity. We optimized co-transfection conditions with a positive-control 

pmaxGFPTM plasmid (Lonza, Basel, Switzerland). 

 

Choroidal neovascularization (CNV) experiments. We performed laser-induced choroidal 

neovascularization as described previously (Dong et al., 2013). Briefly, we anesthetized mice 

and placed four laser spots around the optic disc (200 mW, 0.1 s, 100 µm spot size) using a slit-

lamp delivery system with a cover glass as a contact lens. Seven days after injury, we perfused 

the mice with 2,000 µl of 5 mg/ml fluorescein isothiocyanate (FITC)-dextran (M.W. 2,000,000; 

Sigma) through the left ventricle. We then enucleated the eyes and fixed them in 2% 

paraformaldehyde (PFA; Alfa Aesar, Haverhill, MA) for 30 minutes. After fixation, we washed 

the eyes with PBS and flat-mounted the RPE-choroid complex onto a glass slide. We acquired Z-

stack images of the CNV spots using an Olympus FV1000 confocal microscope (Waltham, MA) 

and processed images with ImageJ (NIH, Bethesda, MD) to generate pseudo-volumetric two-

dimensional images. After excluding laser spots that resulted in retinal, subretinal, or vitreous 

hemorrhage, we quantified pixel intensity using MetaMorph (Molecular Devices, Sunnyvale, 

CA). For immunotherapy experiments, we adoptively transferred 100,000 macrophages into each 
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eye in 2 µl PBS immediately following laser injury via intravitreal injection with a 10 µl Neuros 

Model 1701 RN syringe (point style 4) and small-hub, 31-gauge needles (Hamilton, Reno, NV). 

 

VEGF measurements. We measured VEGF secretion in supernatants from macrophages with 

the mouse VEGF Quantikine ELISA kit (R&D Systems, Minneapolis, MN), following 

manufacturer’s instructions. 

 

Statistics. We performed statistical analysis with Prism 5 (Graphpad) or SPSS Statistics 

(Version 23; IBM, Armonk, NY). We assessed the normality of our data graphically and with the 

Kolmogorov-Smirnov test, using non-parametric alternatives when appropriate. When 

comparing a single variable between two groups, we used 2-tailed t-tests or 2-tailed Mann-

Whitney U tests. For other analyses, we performed the appropriate statistical test for each type of 

data. A P-value less than 0.05 was considered significant. Open circles depict individual data 

points or individual human subjects. Box-and-whisker plots depict medians with boxes outlining 

the interquartile range and whiskers indicating the minima and maxima. 

We performed an a priori power calculation with G*Power 3.1 (Faul et al., 2007) to 

determine the appropriate sample size for our human studies. To detect a significant difference 

between AMD patients and control subjects (allocation ratio: 1.0:1.5) at the two-sided α = 0.05 

level with an estimated effect size d of 0.6 based on pilot experiments and 80% power, we 

calculated that we needed to recruit 94 subjects total. We exceeded this threshold (N = 106), 

yielding adequate statistical power to detect our anticipated difference. To model the relationship 

between PBMC miR-150 levels and AMD, we generated a binary logistic regression model. Our 

model included the predictor variables of age at the time of sample collection, gender, and log10-
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transformed PBMC miR-150 levels. We assessed model fit with the Hosmer-Lemeshow lack-of-

fit test and performed model diagnostics by examining Cook’s distances, leverages, and residual 

deviances. No cases were omitted upon sensitivity analysis. We checked for collinearity by 

examining variance inflation factors (VIF). We used an unadjusted alpha of 0.05 for the binary 

logistic regression. 

 

Study approval. All animal experiments were reviewed and approved by the Institutional 

Animal Care and Use Committee (IACUC) of Washington University in St. Louis (St. Louis, 

MO) and performed in accordance with the Washington University School of Medicine Animal 

Care and Use guidelines. The human study was reviewed and approved by the Human Research 

Protection Office of Washington University in St. Louis (St. Louis, MO) and adhered to the 

Declaration of Helsinki. We obtained informed consent from all human subjects prior to blood 

collection. 
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Figure 4.1. microRNA-150 is upregulated in aged macrophages of diverse origins. (A) In young macrophages, ten 
microRNAs were downregulated similarly in response to acetylated low-density lipoprotein (acLDL) and oxidized 
low-density lipoprotein (oxLDL). (B) In aged macrophages, five microRNAs were dysregulated similarly in 
response to acLDL and oxLDL. (C) In untreated (UT), acLDL-treated, and oxLDL-treated macrophages, five 
microRNAs were dysregulated similarly in aged and young macrophages under the same treatment conditions. 
microRNA-150 was upregulated in aged peritoneal macrophages (PM) (D; N=12/group; 2-tailed Mann-Whitney U 
test), aged splenic macrophages (SM) (E; N=13/group; 2-tailed Mann-Whitney U test), and aged bone marrow-
derived macrophages (BMDM) (F; N=10/group; 2-tailed, unpaired Welch’s t-test). (G) Upregulation of microRNA-
150 in aged PMs was not affected by treatment with acLDL (N=7/group; 2-tailed Mann-Whitney U test), oxLDL 
(N=7/group; 2-tailed, unpaired Welch’s t-test), or lipopolysaccharide (LPS) (N=5/group; 2-tailed Mann-Whitney U 
test). (H) Upregulation of microRNA-150 in aged BMDMs was not affected by treatment with oxLDL (N=5/group; 
2-tailed Mann-Whitney U test) or LPS (N=5/group; 2-tailed Mann-Whitney U test). Open circles depict individual 
data points; graphs depict mean ± S.E.M. (A-F) (* P < 0.05; ** P < 0.01; **** P < 0.0001).  
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Figure 4.2. microRNA-150 (miR-150) regulates inflammation and lipid metabolism in macrophages. (A) RNA-
Sequencing followed by hierarchical clustering revealed clear transcriptomic differences between macrophages 
transfected with miR-150 mimic versus those transfected with a non-targeting negative control. Pathway analysis of 
the dysregulated genes in miR-150-overexpressing macrophages that are also dysregulated in aged macrophages 
(Lin et al., unpublished observations) suggested perturbations in numerous gene ontology (GO) processes (B), 
process networks (C), and pathway maps (D). The altered transcriptomic profile of miR-150-overexpressing 
macrophages suggested dysregulation of numerous inflammation and immune response process networks (C; brown 
and purple, respectively) and aberrant lipid trafficking and metabolism in age-related macular degeneration (D; 
purple). 
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Figure 4.3. Aged macrophages have altered ceramide and phospholipid profiles. (A) Aged macrophages contained 
significantly more long-chain Cer(16:0) than young macrophages but similar levels of very long-chain Cer(22:0) 
and Cer(24:0) (N=5/group; 2-tailed, unpaired Welch’s t-test), resulting in decreased Cer(22:0)/Cer(16:0) and 
Cer(24:0)/Cer(16:0) ratios (B; N=5/group; 2-tailed, unpaired Welch’s t-test). Young and aged macrophages had 
similar phosphatidylglycerol (PG)-D16:0-18:1 content (C; N=5/group; 2-tailed, unpaired student’s t-test). Aged 
macrophages had higher total phosphatidylcholine (PC) (D; N=5/group; 2-tailed, unpaired student’s t-test) and 
higher total phosphatidylethanolamine (PE) (E; N=5/group; 2-tailed, unpaired student’s t-test) but similar total 
phosphatidylinositol (PI) (F; N=5/group; 2-tailed, unpaired Welch’s t-test) and similar total phosphatidylserine (PS) 
(G; N=5/group; 2-tailed, unpaired Welch’s t-test). Analysis of individual species revealed an interaction between 
age and species identity with increased levels of certain species but not others within each phospholipid class (H-K; 
N=5/group; 2-way, repeated-measures ANOVA with Bonferroni post-hoc test). Open circles depict individual data 
points; graphs depict mean ± S.E.M. (A-G) (* P < 0.05; ** P < 0.01; # P < 0.0001).  
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Figure 4.4.  Upregulation of microRNA-150 in human peripheral blood mononuclear cells (PBMCs) is associated 
with age-related macular degeneration (AMD). (A) AMD patients (N=43) had higher PBMC microRNA-150 copy 
numbers compared to controls (N=63; 2-tailed Mann-Whitney U test). (B) Both early AMD (N=20) and wet AMD 
patients (N=23) had higher PBMC microRNA-150 copy numbers compared to controls (N=63), but there was no 
significant difference between early and wet AMD patients (Kruskal-Wallis test with Dunn’s multiple comparison 
post-hoc test). (C) There was no correlation between PBMC microRNA-150 copy number and age in AMD patients 
or controls. Patients in the highest tertile of microRNA-150 copy number and above median age, as indicated by the 
dashed rectangle, had the highest prevalence of AMD (87.5%). Open circles depict individual human subjects (A-
C); horizontal lines depict medians (A-B) (** P < 0.01; *** P < 0.001; **** P < 0.0001; NS: non-significant). 
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Figure 4.5. microRNA-150 modulates fatty acid synthase (Fasn) and stearoyl-CoA desaturase-2 (Scd2) expression. 
(A-B) Eight of the 26 putative microRNA-150 targets had decreased expression in aged macrophages (N=6-
12/group; 2-tailed, unpaired Welch’s t-test). (C-D) microRNA-150 mimic-transfected macrophages had reduced 
expression of Fasn and Scd2 compared to non-targeting negative control (NC)-transfected macrophages 
(N=12/group; 2-tailed, unpaired student’s t-test). (E-F) Macrophages transfected with Fasn- and Scd2-targeting 
small-interfering RNA (siRNA) had reduced expression of target genes (N=4-5/group; 2-tailed, unpaired student’s t-
test). (G-H) Fasn-deficient (FasnKD) macrophages were somewhat abnormally activated but had normal expression 
of proangiogenic factors (N=14/group; 2-tailed, unpaired Welch’s t-test). (I-J) Scd2-deficient (Scd2KD) macrophages 
were abnormally activated and had increased expression of proangiogenic factors (N=10/group; 2-tailed, unpaired 
Welch’s t-test). Open circles depict individual data points; graphs depict mean ± S.E.M. (C-F) (* P < 0.05; ** P < 
0.01; *** P < 0.001; # P < 0.0001). 
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Figure 4.6. microRNA-150 directly targets Scd2 and thereby promotes pathological angiogenesis.  (A) The 3′ 
untranslated region (UTR) of Scd2 contains canonical 7mer-A1 and offset 6mer microRNA-150 binding sites. (B) 
Co-transfection of a dual-reporter plasmid with the Scd2 3′ UTR inserted downstream of a secreted Gaussia 
luciferase (GLuc) reporter gene and microRNA-150 mimic led to reduced GLuc activity compared to co-
transfection of the same plasmid with a negative-control (NC) mimic (N=10/group; 2-tailed, unpaired student’s t-
test). (C) Removing the 7mer-A1 target site (mutant1) but not the offset 6mer target site (mutant2) reduced the 
extent to which microRNA-150 co-transfection inhibited GLuc activity (N=10/group; Kruskal-Wallis test with 
Dunn’s multiple comparison post-hoc test; WT = wild-type). (D-E) Adoptively transferred Scd2-deficient (Scd2KD) 
macrophages were less able to inhibit laser injury-induced choroidal neovascularization (CNV) compared to NC-
transfected macrophages (D: representative images from N=8-11 burns/group; 2-tailed, unpaired Welch’s t-test). (F) 
In vitro VEGF secretion was not significantly increased in Scd2-deficient macrophages (N=16/group; 2-tailed, 
unpaired Welch’s t-test). (G-H) Scd2-m/-m mice exhibited larger CNV complexes after laser injury compared to 
Scd2f/f mice (G: representative images from N=8-9 burns/group; 2-tailed Mann-Whitney U test). (I-J) Fasn-m/-m and 
Fasnf/f mice had similarly sized CNV complexes after laser injury (I: representative images from N=8 burns/group; 
2-tailed Mann-Whitney U test). Scale bars represent 100 µm (D, G, I). Open circles depict individual data points; 
graphs depict mean ± S.E.M. (B, E-F, H, J) (* P < 0.05; *** P < 0.001; NS: non-significant).  
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Figure 4.7. Upregulation of miR-150 in aged macrophages causes stearoyl-CoA desaturase-2 deficiency and 
dysregulated lipid metabolism and thereby promotes pathological angiogenesis, as seen in age-related macular 
degeneration. 
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Table 4.1. Demographic and clinical characteristics of human subjects. 

Variable Control AMD P-value 
Age, mean (standard deviation)  64.57 (10.27) 75.48 (12.77) <0.001a  
Sex, N       
     Male  36 20  0.282b  
     Female  27 23   
AMD status, N       
     No AMD  63 0  N/A 
     Early AMD  0 20   
     Advanced neovascular (wet) AMD  0 23   
aSignificant by 2-tailed, unpaired Welch’s t-test; bNon-significant by Χ2 test. 
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Table 4.2. Age-related macular degeneration as a function of age and peripheral blood 
mononuclear cell (PBMC) microRNA-150 (miR-150) levels. 

 

    Age 
    Below median Above median Total 

PB
M

C
  

m
iR

-1
50

 Lowest tertile 3/19 (15.8%) 3/16 (18.8%) 6/35 (17.1%) 
Middle tertile 4/23 (17.4%) 7/13 (53.8%) 11/36 (30.6%) 
Highest tertile 5/11 (45.5%) 21/24 (87.5%) 26/35 (74.3%) 
Total 12/53 (22.6%) 31/53 (58.5%) 43/106 (40.6%) 
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Table 4.3. List of putative microRNA-150 targets. 

Gene symbol Fold change 
(aged versus young) 

Fold change 
(miR-150OE versus NC) 

3110070M22Rik -1.39 -1.86 
Aldoc -1.85 -1.30 
Atp1a3 -1.46 -1.25 
Ak8 -1.42 -1.25 
Cbx8 -1.28 -1.46 
Cd33 -1.48 -1.23 
Agap1 -1.33 -1.30 
S100a8 -1.21 -1.49 
Slc29a1 -1.30 -1.29 
Fasn -1.55 -1.20 
Ptgir -1.82 -1.21 
Gsn -1.26 -1.24 
Pygl -1.21 -1.21 
Insig1 -1.62 -1.26 
Itgax -1.84 -1.26 
Cers4 -1.24 -1.30 
Ldhb -1.25 -1.28 
Lpin1 -1.31 -1.21 
Mvd -1.77 -1.36 
Padi2 -1.45 -1.34 
Pik3r2 -1.20 -1.22 
Pnkd -1.51 -1.29 
Ptprs -1.34 -1.45 
Plxnd1 -1.43 -1.21 
Ptgir -1.82 -1.21 
Slc2a6 -1.51 -1.31 
Scarb1 -1.35 -1.22 
Stac2 -1.34 -1.28 
Scd2 -3.65 -1.30 
Sort1 -1.56 -1.24 
Tkt -1.25 -1.24 
Trim36 -1.61 -1.23 
F3 -1.39 -1.30 
Vsig8 -1.91 -1.29 
Wfs1 -1.36 -1.34 
Vwf -1.32 -1.54 
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Chapter 5: 

Conclusions 
 
 
This chapter is adapted, in part, from an invited review article published in Progress in Retinal 
and Eye Research. 
 
 
Lin JB, Apte RS. (2018). NAD+ and sirtuins in retinal degenerative diseases: A look at future 
therapies. Prog Retin Eye Res, 67:118-129. doi: 10.1016/j.preteyeres.2018.06.002. 
 
 
Writing – Original Draft: J.B.L. 
Writing – Review & Editing: J.B.L., R.S.A. 
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5.1 Summary: NAD+ in Retinal Degenerative Diseases  

A major cause of blindness is retinal degenerative diseases. Despite their heterogeneity, 

retinal degenerations typically converge on an endpoint of photoreceptor death, suggesting that 

they share common pathogenic mechanisms. To date, many studies of inherited retinal 

degenerations have focused on the genetic defects that cause photoreceptor death and blindness. 

Rationally, ensuing translational efforts have focused on gene therapy and stem cell approaches. 

However, these strategies have limitations since gene therapy must be tailored for each causative 

mutation, a challenging proposition since hundreds of causative gene mutations have been 

identified for blinding diseases. Moreover, stem cells do not prevent photoreceptor death and 

have many barriers to their development, such as tumorigenicity. 

The long-term goal of the first aim of my thesis research was to identify a unifying 

molecular mechanism in the pathogenesis of retinal degenerations that may lead to novel 

therapeutic approaches for preventing photoreceptor death regardless of its etiology. Since 

photoreceptors are highly metabolically active but have limited mitochondrial reserve, metabolic 

dysfunction may contribute to photoreceptor demise in diverse retinal diseases. Nicotinamide 

adenine dinucleotide (NAD+) is known to be important for metabolism both as a cofactor for 

dehydrogenases and as a cosubstrate for sirtuins that regulate mitochondrial function (e.g., 

SIRT3). The possibility that NAD+ biosynthesis is important for photoreceptor function is 

supported by recent studies identifying that Leber congenital amaurosis (LCA), one of the 

leading causes of childhood blindness, can be caused by mutations in the NAD+ biosynthetic 

enzyme, nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1). 

To complete the first aim of my thesis, I explored the role of NAD+ biosynthesis in 

photoreceptor survival. Using the Cre-lox system, I generated mice that lacked nicotinamide 
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phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the major NAD+ biosynthetic 

pathway beginning with nicotinamide, specifically from rod or cone photoreceptors. I found that 

these mutations caused rapid retinal degeneration, which closely mirrored the clinical course of 

retinitis pigmentosa. This vision loss could be rescued with the NAD+ intermediate nicotinamide 

mononucleotide (NMN). Furthermore, I found that Nampt deletion caused NAD+ deficiency, 

which led to glycolytic dysfunction, defects in oxidative respiration, and, ultimately, 

photoreceptor death. I further demonstrated that the NAD+-dependent mitochondrial deacylases 

SIRT3 and SIRT5 play important roles in retinal homeostasis and that NAD+ deficiency also 

causes SIRT3 dysfunction, further contributing to mitochondrial dysfunction. I also identified 

that retinal NAD+ deficiency was an early feature of multiple mouse models of retinal 

dysfunction, supporting the idea that NAD+ intermediates may be therapeutic against diverse 

retinal degenerations. These therapeutic approaches would be highly innovative, as they could 

facilitate photoreceptor survival independent of the causative mutation and may also be 

therapeutic for non-inherited, blinding diseases. These findings also have broad implications for 

other neurodegenerative diseases with associated metabolic dysfunction. Although numerous 

studies have confirmed the importance of NAD+ and sirtuins in the retina and in other tissues, 

more studies are necessary to fully unleash their translational potential. 

For example, intracellular NAD+ partitions into subcellular pools in the nucleus, 

cytoplasm, and mitochondria. No study to date has determined which subcellular pool(s) of 

NAD+ are essential for photoreceptor function. The fact that mutations in NMNAT1, the 

NMNAT isoform with nuclear function, causes blindness suggests that the nuclear NAD+ pool is 

essential for vision. However, this possibility needs to be tested rigorously. Moreover, there may 

be crosstalk and movement of NAD+ between these subcellular pools. Indeed, impaired NAD+ 
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trafficking may also play pathogenic roles in disease. Further understanding of the subcellular 

organization of NAD+ is particularly important since sirtuins, molecular sensors of NAD+ 

availability, also have a distinct pattern of subcellular organization. Therefore, it is possible that 

restrictions in NAD+ availability in certain subcellular compartments but not others may cause 

impaired activity of a specific sirtuin, which are important principles to consider when 

developing novel therapeutic approaches. 

Recent studies suggest that there is also an extracellular source of NAD+, which may 

have its own important physiological role. In fact, NAMPT has two forms: intracellular NAMPT 

(iNAMPT) and extracellular NAMPT (eNAMPT). Whereas iNAMPT localizes intracellularly 

and likely contributes to NAD+ pools to be used within the cell, eNAMPT circulates in plasma 

and in other biofluids and can regulate physiology in a systemic manner. eNAMPT (also known 

as PBEF or visfatin) was previously thought to be a cytokine or a hormone based on its 

pleiotropic effects, but further investigation revealed that these effects are caused by its robust 

NAD+ biosynthetic function (Revollo et al., 2007). Recent studies have confirmed that 

eNAMPT’s ability to regulate systemic NAD+ biosynthesis allows it to regulate distant target 

cells, including pancreatic beta cells (Revollo et al., 2007) and hypothalamic neurons (Yoon et 

al., 2015). eNAMPT may also regulate retinal physiology. 

Finally, numerous studies have tested whether NAD+ intermediates are therapeutic in 

animal models of disease (Lin et al., 2016a; Mills et al., 2016; Williams et al., 2017). Human 

clinical trials have already begun to investigate whether NAD+ intermediates improve 

cardiometabolic health (NCT03151239), treat mitochondrial diseases/myopathies 

(NCT03432871), or improve cognition in patients with mild cognitive impairment 

(NCT02942888). Many other similar studies are currently underway to evaluate the therapeutic 
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potential of NAD+ intermediates for diverse human diseases (see clinicaltrials.gov). However, 

there still remains some uncertainly regarding the in vivo pharmacokinetics of NAD+ 

intermediates. Although both NR and NMN have been shown to boost intracellular NAD+, how 

these metabolites enter the cell remains unclear. One possibility is that there is an NMN 

transporter that allows for rapid uptake of NMN directly into the cell for intracellular conversion 

into NAD+ (Yoshino et al., 2018). However, this hypothesis was challenged by a recent study 

that demonstrated that in some, but not all, tissues, extracellular NMN must first be converted to 

NR by nicotinamide riboside kinase 1 (NRK1) before it can be transported to the intracellular 

compartment (Ratajczak et al., 2016). Further studies are essential to clarify this discrepancy. 

Future randomized clinical trials designed to evaluate safety and efficacy of NMN and NR, 

especially those that compare them head to head, will be particularly informative in clarifying 

whether one of these NAD+ intermediates has superior bioavailability. 

 

5.2 Summary: Macrophage Aging and AMD 

 We and others have previously reported that macrophages play pathogenic roles in 

diverse diseases of aging, including age-related macular degeneration (AMD), a leading cause of 

blindness in older adults, especially in industrialized countries such as the United States. Aged 

macrophages tend to drift towards a proangiogenic, M2-like phenotype, permitting pathologic 

angiogenesis. Although prior studies have explored the functional consequences of macrophage 

aging, less is known about its cellular basis or what defines the transition from physiologic aging 

to disease. The long-term goal of the second aim of my thesis research was 1) to distinguish 

physiologic, ‘healthy’ changes in aged macrophages from pathogenic age-associated changes 
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that promote disease and 2) to identify one or more microRNA(s) that regulate the process of 

pathologic macrophage aging. 

I first confirmed that, despite their frequent self-renewal, macrophages from old mice 

exhibited numerous signs of aging, such as impaired oxidative respiration and increased 

expression of senescence markers. I next performed transcriptomic profiling of aged murine 

macrophages by microarray to characterize the major changes associated with macrophage 

aging. Pathway analysis revealed dysregulation of diverse cellular pathways, especially in 

cholesterol homeostasis, that manifested in altered oxysterol signatures. To assess which of these 

changes were disease-promoting, I collected human samples from human AMD patients and 

healthy controls. While certain oxysterols in human peripheral blood mononuclear cells and 

plasma exhibited age-associated changes, as in the murine samples, others such as plasma 24-

hydroxycholesterol were specifically associated with AMD after controlling for age and gender. 

These findings suggest that oxysterols can discriminate disease from physiologic aging. 

I next sought to understand the role of microRNAs, which modulate immune processes, 

in regulating macrophage dysfunction and thereby promoting age-associated diseases. I began by 

performing a microRNA microarray to identify putative candidates for microRNAs that regulate 

macrophage aging. microRNA-150 emerged as the most likely candidate, as it was upregulated 

by the highest fold change in aged macrophages of diverse origins. Next, I performed RNA-

Sequencing to assess the transcriptomic changes associated with microRNA-150 upregulation. 

Of interest, pathway analysis revealed enrichment for dysregulated genes in lipid trafficking and 

cholesterol metabolism. Molecular profiling confirmed that, consistent with impaired lipid 

homeostasis, aged murine macrophages exhibit dysregulated ceramide and phospholipid profiles 

compared to young macrophages. Of translational relevance, upregulation of microRNA-150 in 
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human peripheral blood mononuclear cells was also significantly associated with increased odds 

of AMD, even after controlling for age and gender. I generated novel insights into human disease 

by showing that microRNA-150 directly targets stearoyl-CoA desaturase-2 (Scd2), which 

coordinates macrophage-mediated inflammation and pathologic angiogenesis, as seen in AMD, 

in a vascular endothelial growth factor (VEGF)-independent manner. 

Future studies will examine the molecular mechanism by which Scd2 regulates 

macrophage inflammation. These are the topics of ongoing experimentation in the Apte Lab. 

Finally, although our human data significantly strengthen the translational relevance of our 

findings, additional studies are necessary to validate our results and should incorporate and 

control for other covariates, including but not limited to known risk factors of AMD. In 

particular, the collection of longitudinal data may provide further insight into whether oxysterols 

and/or microRNA-150 may predict risk of AMD progression. These findings would be highly 

valuable to guide clinical decision-making and improve the care clinicians can offer to patients. 

 

5.3 Conclusions 

Retinal degenerative diseases are a major cause of morbidity in the modern world. Visual 

impairment significantly diminishes the quality of life of patients. A significant challenge in 

preventing blindness caused by retinal diseases is the genetic and phenotypic heterogeneity of 

the diseases and a variable understanding of disease pathogenesis. This limited understanding 

has led to either the widespread use of drugs that treat disease manifestations in relatively late 

phases of the natural history rather than the underlying cause or, in many instances, a complete 

lack of treatment options altogether. Indeed, more research is necessary to identify novel 

therapeutics for early and targeted intervention. My thesis work advances our understanding of 
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the pathophysiology underlying photoreceptor neurodegeneration in diverse retinal degenerative 

diseases and cellular pathways that contribute to the transition from early AMD to wet AMD. 

Ultimately, these findings may lead to new therapeutic approaches for these diverse diseases and, 

perhaps, to the development of biomarkers that can be used to monitor disease progression. 
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