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In my dissertation, I focus on theoretical and empirical asset pricing from a Bayesian model com-

parison perspective.

In the first Chapter, revisiting the framework of Barillas and Shanken (2018), BS henceforth,

we show that the Bayesian marginal likelihood-based model comparison method in that paper is

unsound: the priors on the nuisance parameters across models must satisfy a change of variable

property for densities that is violated by the Jeffreys priors used in the BS method. Extensive

simulation exercises confirm that the BS method performs unsatisfactorily. We derive a new class

of improper priors on the nuisance parameters, starting from a single improper prior, which leads

to valid marginal likelihoods and model comparisons. The performance of our marginal likelihoods

is significantly better, allowing for reliable Bayesian work on which factors are risk factors in asset

pricing models.

In the second Chapter, starting from the twelve distinct risk factors in four well-established

asset pricing models, a pool we refer to as the winners, we construct and compare 4,095 asset

pricing models and find that the model with the risk factors, Mkt, SMB, MOM, ROE, MGMT, and

PEAD, performs the best in terms of Bayesian posterior probability, out-of-sample predictability,

and Sharpe ratio. A more extensive model comparison of 8,388,607 models, constructed from the
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twelve winners plus eleven principal components of anomalies unexplained by the winners, shows

the benefit of incorporating information in genuine anomalies in explaining the cross-section of

expected equity returns.
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Chapter 1

On Comparing Asset Pricing Model

Siddhartha Chib, Xiaming Zeng, and Lingxiao Zhao1

In this paper we revisit the framework of Barillas and Shanken (2018), BS henceforth, and show

that the Bayesian marginal likelihood-based model comparison method in that paper is unsound.

In particular, we show that in this comparison of asset pricing models, in which the nuisance

parameters {η j} across models are connected by invertible mappings, the priors on the nuisance

parameters across models must satisfy a certain change of variable property for densities that is

violated by the off-the-shelf Jeffrey’ priors used in the BS method. Hence, the BS “marginal

likelihoods” each depend on an arbitrary constant, which voids the ranking of models by the size

of the marginal likelihoods and invalidates any conclusions drawn from such a method about the

underlying data-generating process (DGP). In the online appendix of their paper, BS discuss an

alternative method for calculating marginal likelihoods with their improper priors, which they call

the permutation method. This more involved method is not used in the paper but, as we show

below, it is also unsound and as a result leads to invalid marginal likelihoods.

1Siddhartha Chib (corresponding author, chib@wustl.edu) is at the Olin Business School, Washington University
in St. Louis. Xiaming Zeng is an Investment Professional. Lingxiao Zhao is at the Department of Economics,
Washington University in St. Louis. We are grateful to the Editor (Stefan Nagel) and two anonymous reviewers for
their constructive and helpful comments.

1
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We conduct extensive simulation exercises using two experiments. In the first, we match eight

potential risk factors to the excess market return (Mkt), size (SMB), value (HML), profitability

(RMW) and investment (CMA) factors proposed by Fama and French (1993, 2015), the profitabil-

ity (ROE) and investment (IA) factors in the q-factor model proposed by Hou, Xue, and Zhang

(2015), and the Carhart (1997) momentum (MOM) factor. In the second, we match twelve po-

tential risk factors to the eight factors above as well as the Asness and Frazzini (2013) quality

minus junk (QMJ) factor, the Pastor and Stambaugh (2003) liquidity (LIQ) factor, the Frazzini and

Pedersen (2014) betting against beta (BAB) factor, and another version of value factor (HMLD)

proposed by Asness, Frazzini, and Pedersen (2019). Given the prejudged status of the Mkt factor

as a risk factor, we have 27 = 128 candidate models in the first experiment and 211 = 2,048 candi-

date models in the second. We repeat our comparison exercises over 100 simulated replications of

the data for sample sizes of 600, 1,200 and 12,000, 120,000 and 1.2 million for each of 30 (55) true

DGPs in the first (second) experiment. In the first experiment the BS method has some success

when the sample size is 1.2 million, but in the second experiment the BS method fails to locate any

of the true DGPs even once in 100 replications for any sample size, including the epic sample size

of 1.2 million.

In a significant advance, we derive a new class of improper priors on the nuisance parameters,

starting from a single improper prior, with the property that the improper priors in this class nec-

essarily share the same arbitrary constant c. This class of priors leads to valid marginal likelihoods

and, in turn, valid model comparisons. The construction of this class of improper priors is summa-

rized in Proposition 2 below. As we detail, the ability of the resulting marginal likelihoods to pick

the true DGPs is significantly better.

We also discuss an extension of our method to the more general class of model comparisons

in which the status of the Mkt factor as a risk factor is also in doubt. Chib and Zeng (2019) have

recently developed a method for conducting such comparisons that is based on proper priors, each

derived from a single proper prior, and student-t distributions of the factors. The approach in this

2



paper, though closely related to that of Chib and Zeng (2019), requires fewer prior inputs, and

together pave the way for reliable Bayesian work on which factors are risk factors in asset pricing

models.

The rest of the paper is organized as follows. In Section I, we outline the BS method for cal-

culating marginal likelihoods. In Section II we discuss the issues that arise in calculating marginal

likelihoods with improper priors, and in Proposition 2 we provide a class of improper priors on

nuisance parameters that lead to valid marginal likelihoods. In Section III, we derive the priors

and marginal likelihoods that satisfy Proposition 2 (which we refer to as the Chib, Zeng, and Zhao

priors and marginal likelihoods) for the problem of comparing asset pricing models. Section IV

contains further critical discussion of the BS method, and Section V and VI present results from

extensive simulation experiments on the performance of the BS and Chib, Zeng, and Zhao meth-

ods, respectively. Section VII concludes. Appendices contain additional details relevant for the

discussion in the main text.

1.1 BS Method

In the method of BS, one starts with a collection of K (traded) potential risk factors. The market

factor (Mkt) is one of these K factors and is prejudged to be a risk factor. We will relax this

assumption in our method below. A particular asset pricing model arises by choosing one or more

of the remaining K−1 factors as risk factors. The model-space thus contains J = 2(K−1) models.

Let M j, j = 1,2, ...,J, represents any one of the possible models. It is defined by the vector of

risk factors {Mkt, f j} of size L j and the vector of non-risk factors f ∗j of size (K−L j). Note that

f is indexed by j because what goes into f is what varies across models. Then, letting t denote a

particular point in the sample, t = 1,2, ...,n, each model in the model-space is given by

f j,t = α j + β jMktt + ε j,t , ε j,t ∼NL j−1(0,Σ j)

3



f ∗j,t =
(

β
∗
j,m B∗j, f

)Mktt

f j,t

+ ε
∗
j,t , ε

∗
j,t ∼NK−L j (0,Σ∗j),

where an intercept vector is absent from the f ∗j,t model because of the pricing restrictions and the

error terms ε j,t and ε∗j,t are assumed to be mutually independent and independently distributed

across t. Lowercase letters denote vectors and uppercase letters matrices (of dimensions that are

suppressed for convenience). Let β
∗
j, f = vec(B∗j, f ) denote the column-vectorized form of B∗j, f , and

σ j = vech(Σ j) and σ∗j = vech(Σ∗j) the half or unique element vectorizations of the two covariance

matrices. Then the parameters of M j are

θ j = (α j,β j,β
∗
j,m,β

∗
j, f ,σ j,σ

∗
j) ∈Θθ j ,

of which

η j =
(

β j,β
∗
j,m,β

∗
j, f ,σ j,σ

∗
j

)
are the nuisance parameters of M j. We let Θθ j and Θη j denote the parameter spaces of θ j and η j,

respectively, these being obvious by context.

BS suppose that the prior density of θ j is given by

pBS(θ j|M j) = πBS(α j|M j,η j)ψBS(η j|M j), (1.1.1)

where

πBS(α j|M j,η j) = NL−1(α j|0,kΣ j) (1.1.2)

ψBS(η j|M j) = |Σ j|−L j/2|Σ∗j |−(K−L j+1)/2 (1.1.3)

and k > 0 controls the spread of the prior on α j. Thus, in this prior πBS(α j|M j,η j) is a proper den-

4



sity and ψBS(η j|M j) is an improper density (which comes from Jeffreys rule). The proportionality

sign of this improper density is replaced by equality because BS set the constant of proportionality

to one.

Under this prior, BS calculate the marginal likelihood of each of the J models. The marginal

likelihood is the integral of the sampling density (the likelihood function) with respect to the prior.

If we let

y1:T = ( f 1, f ∗1, ..., f T , f ∗T )

denote the sample data on the factors over T time periods, the marginal likelihood of M j is given

by the expression

m(y1:T |M j) ,
∫

Θη j

∫
Θα j

p(y1:T |M j,θ j)π(α j|M j,η j)ψ(η j|M j)dθ j, (1.1.4)

which because of the independence of the errors and the independence of the priors, can be split

into two pieces as follows:

m(y1:T |M j) = m( f 1:T |M j)m( f ∗1:T |M j),

where each term on the right-hand side (RHS) is in closed form under the above assumptions. BS

take the log of m(y1:T |M j), j = 1, ...,J, to screen for the best model.

1.2 Marginal Likelihoods with Improper Priors

In general, improper priors invalidate Bayesian model comparisons by marginal likelihoods. An

improper prior is one whose integral over the parameter space is not finite. As a result, multiplying

an improper density by any arbitrary positive constant produces the same improper density. In other

words, because ψBS(η j|M j) is an improper distribution, c jψBS(η j|M j) is the same improper prior

5



for any c j > 0. This means that the marginal likelihood is indeterminate since it depends on an

arbitrary c j > 0.

Fixing c j at some value does not (in general) solve the problem because the resulting Bayes

factor depends on that choice. Thus, the choice of BS,

c j = 1 , j = 1,2, ...,J,

is not a panacea. In defense of this choice, in footnote 9 of their paper, BS make a reference

to nuisance parameters that are common across models. It is known that improper priors can be

used in the calculation of the marginal likelihood for parameters that are common across models

and that have the same support in each model. To see this, suppose that the nuisance parameters

η j = (β j,β
∗
j,m,β

∗
j, f ,σ j,σ

∗
j) do not vary by model, and that their parameter spaces Θη are also

common across models. In that case,

m(y1:T |M j) =
∫

Θη

∫
Θα j

p(y1:T |M j,θ j)π(α j|M j,η)cψ(η)dθ j. (1.2.1)

Thus, in comparing any two models, since the same constant c appears in the prior density of the

common nuisance parameters, the constant c cancels out. This simple argument is the basis of the

following proposition.

PROPOSITION 1. If the nuisance parameters are common across models and have the same

support in each model, then the collection of marginal likelihoods

{ m(y1:T |M1) , ..., m(y1:T |MJ)}

with a common improper prior on the common nuisance parameter are valid and comparable.

The setting of BS, however, does not correspond to this common parameter-common support

case because the nuisance parameters η j do, in fact, vary by model, and the parameter spaces on

6



which the improper prior is defined also vary by model. This can be easily seen from the model

formulation. In the BS method each nuisance parameter is given its own Jeffreys prior that has its

own constant (c j = 1), which renders the marginal likelihoods indeterminate.

For improper priors to work, the improper priors must be such that they necessarily share the

same constant across models. How can one make the different priors share the same constant

when the nuisance parameters differ? This can be achieved by taking advantage of the fact that

the nuisance parameters
{

η j
}

in this problem are connected by invertible maps. Chib and Zeng

(2019) exploit this feature to derive proper priors across models from a single proper prior. In the

current context with improper priors, we proceed as follows.

• We first derive the invertible map, as well as the Jacobian of the transformation, that connects

the nuisance parameters η1 of a model that we call M1, and the nuisance parameters η j of

a generic model that we refer to as M j.

• Next we give the nuisance parameters η1 of M1 a Jeffreys prior.

• Then, for every other model j > 1, we derive the prior on η j by a change of variable from

that single prior density.

The resulting improper prior densities then necessarily share the same constant, which means

that marginal likelihoods calculated with these priors are valid and comparable as that common

constant appears in each marginal likelihood and, hence, cancels out in taking ratios or log differ-

ences. This construction, which is new to the literature, is stated next.

PROPOSITION 2. Consider a collection of J models M1, ...,MJ . Suppose that the nuisance

parameters η1 of model M1 are connected to the nuisance parameters η j of M j ( j > 1) by the

invertible mapping η j = g j(η1), with the inverse mapping given by

η1 = g−1
j (η j). (1.2.2)

7



Let

cψ(η1|M1)

denote an arbitrary chosen improper prior on η1 in model M1 with an arbitrary constant c. Let

ψ̃(η j|M j) = cψ(g−1
j (η j)|M1)

∣∣∣∣∣det

(
∂g−1

j (η j)

∂η ′j

)∣∣∣∣∣ , j = 2,3, ...,J, (1.2.3)

denote the improper priors obtained by the change of variable formula from the first prior, where

the last term is the absolute value of the Jacobian of the transformation. Finally, let

m(y1:T |M1) =
∫

Θη1

∫
Θα1

p(y1:T |M1,θ 1)π(α1|M1,η1)cψ(η1|M1)dθ 1

and

m̃(y1:T |M j) =
∫

Θη j

∫
Θα j

p(y1:T |M j,θ j)π(α j|M j,η j)ψ̃(η j|M j)dθ j (1.2.4)

denote the marginal likelihoods of M1 and M j, j > 1, computed using cψ(η1|M1) and ψ̃(η j|M j),

respectively. Then the collection of marginal likelihoods

{m(y1:T |M1), m̃(y1:T |M2), ..., m̃(y1:T |MJ)}

are valid and comparable.

The proof of this proposition is straightforward. Inserting the definition of the improper prior

ψ̃(η j|M j) into m̃(y1:T |M j), we get

m̃(y1:T |M j) =
∫

Θη j

∫
Θα j

p(y1:T |M j,θ j)π(α j|η j)cψ(g−1
j (η j)|M1)

∣∣∣∣∣det

(
∂g−1

j (η j)

∂η ′j

)∣∣∣∣∣d(α j,η j).

(1.2.5)

Since the same constant c appears in the RHS of each marginal likelihood in the collection, the

marginal likelihoods are comparable.
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It is worth noting that a reader of this paper argued that the priors in the BS collection are valid

because the nuisance parameters are connected by invertible maps. As proof of this claim, the

reader used a change-of-variable argument. This proof is incorrect, however, because the improper

priors in the BS collection do not take advantage of the invertible mapping, but the idea that the

change of variable property should play a role is relevant, though, as we have shown, the change

of variable property has to be enforced on the priors across models, as it is not an automatic

consequence of the invertible mapping between the nuisance parameters.

To emphasize the latter point, what Proposition 2 states is that the improper priors across

models have to be constructed from the prior of one model by the change of variable formula

for densities. Provided one follows this construction, the same constant c appears on the RHS of

each marginal likelihood. Any improper prior across models that is not constructed in this way

will violate the change of variable condition and hence necessarily entail an arbitrary constant,

rendering the marginal likelihood comparison void.

1.3 Improper Priors and Valid Marginal Likelihoods

We now derive the collection of improper priors that respect Proposition 2 and calculate the

marginal likelihoods with these priors. To derive the class of priors according to the construction

given in Proposition 2, we first derive the invertible map that connects the nuisance parameters

η1 of a model we call M1 and the nuisance parameters η j of a generic model that we refer to as

M j. We then derive the Jacobian of the transformation, followed by the prior density of η j by the

construction given in Proposition 2. We refer to the priors and marginal likelihoods that emerge

from our method as the Chib, Zeng, and Zhao (CZZ) priors and marginal likelihoods.

1.3.1 Derivation of the CZZ Priors

To facilitate the calculations, we specify the J = 2(K−1) models
{
M j
}J

j=1
as follows.

9



• M1 denotes the model in which all K factors are risk factors, following Chib and Zeng

(2019),

• M j, j = 2,3, ...,J−1, denotes the models in which {Mkt, f j} are the risk factors (i.e., f j is

nonempty), and

• MJ denotes the model in which {Mkt} is the only risk factor (i.e., f J is empty).

We now apply the construction given in Proposition 2. By definition, M1 is the model

f 1,t = α1 + β 1Mktt + ε1,t , ε1,t ∼NK−1 (0,Σ1) (1.3.1)

with f ∗1,t empty. Let σ1 = vech(Σ1). Then the nuisance parameters of M1 are given by

η1 = (β 1,σ1) .

Next, consider model M j, j = 2,3, ...,J−1, which we can write as

f j,t = α j + β jMktt + ε j,t , ε j,t ∼NL j−1(0,Σ j) (1.3.2)

f ∗j,t =
(

β
∗
j,m B∗j, f

)Mktt

f j,t

+ ε
∗
j,t , ε

∗
j,t ∼NK−L j (0,Σ∗j) (1.3.3)

with nuisance parameters given by

η j =
(

β j,β
∗
j,m,β

∗
j, f ,σ j,σ

∗
j

)
.

Plugging the model in (1.3.2) into (1.3.3), we get

f ∗j,t = B∗j, f α j +
(

β
∗
j,m + B∗j, f β j

)
Mktt +

(
ε
∗
j,t + B∗j, f ε j,t

)
. (1.3.4)
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Vectorising equations (1.3.2) and (1.3.4), we have that

 f j,t

f ∗j,t

=

 α j

B∗j, f α j

+

 β j

β
∗
j,m + B∗j, f β j

Mktt + ε̃ j,t , (1.3.5)

where

ε̃ j,t ∼NK−1

0,

 Σ j Σ jB∗′j, f

B∗j, f Σ j Σ∗j + B∗j, f Σ jB∗′j, f


 .

Comparing the parameters of equations (1.3.1) and (1.3.5), we see that the nuisance parameters of

M1 and M j, j = 2,3, ...,J−1, are related as follows:

β 1 =

 β j

β
∗
j,m + B∗j, f β j

 (1.3.6)

Σ1 =

 Σ j Σ jB∗′j, f

B∗j, f Σ j Σ∗j + B∗j, f Σ jB∗′j, f

 , (1.3.7)

or in vech form,

σ1 =


σ j(

Σ j⊗ IK−L j

)
β
∗
j, f

σ∗j + vech
(

B∗j, f Σ jB∗′j, f
)
 . (1.3.8)

The set of vector equations in (1.3.6) and (1.3.8) constitute the inverse map η1 = g−1
j (η j). The

determinant of the Jacobian of this transformation can now be derived. By derivations given in

Appendix B, we have that ∣∣∣∣∣det

(
∂g−1

j (η j)

∂η ′j

)∣∣∣∣∣= |Σ j|K−L j .

Following the construction in Proposition 2, let the prior on η1 in model M1 be the Jeffreys im-
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proper prior

cψ(η1|M1) = c|Σ1|−
K
2 .

Then, by the rule for the determinant of a partitioned matrix applied to (1.3.7), the prior of η j in

model M j, j = 2,3, ...,J−1, is

ψ̃(η j|M j) = cψ(g−1
j (η j)|M1)

∣∣∣∣∣det

(
∂g−1

j (η j)

∂η ′j

)∣∣∣∣∣
= c
(

det(Σ j)det
(

Σ∗j + B∗j, f Σ jB∗′j, f −B∗j, f Σ jΣ
−1
j Σ jB∗′j, f

))−K
2 |Σ j|K−L j

= c|Σ j|−
2L j−K

2 |Σ∗j |−
K
2 .

Finally, consider model MJ , which can be written as

f ∗J,t = β
∗
J,mMktt + ε

∗
J,t , ε

∗
J,t ∼NK−1(0,Σ∗J). (1.3.9)

This model is just a special case of M j ( j 6= 1). It can be easily seen that the Jacobian is equal to

one, which implies that the prior of ηJ in model MJ is given by

ψ̃(ηJ|MJ) = cψ(g−1
J (ηJ)|M1)

∣∣∣∣∣det

(
∂g−1

J (ηJ)

∂η ′J

)∣∣∣∣∣
= c|Σ∗J |−

K
2 .

We have thus proved the following new result.

PROPOSITION 3. Let the first model M1 in equation (1.3.1) have the improper prior on η1

given by

cψ(η1|M1) = c|Σ1|−
K
2 ,
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where c is an arbitrary constant. Then the prior of η j in M j, j = 2,3, ..,J−1, given by

ψ̃(η j|M j) = c|Σ j|−
2L j−K

2 |Σ∗j |−
K
2

and that of ηJ in MJ given by

ψ̃(ηJ|MJ) = c|Σ∗J |−
K
2

satisfy Proposition 2 and lead to comparable marginal likelihoods.

The simplicity of this result should be noted.

1.3.2 CZZ Marginal Likelihoods

The valid marginal likelihoods for models M1, ...,MJ can now be derived. We assume that the

prior of α j|M j,η j is the same as in (1.1.2). These marginal likelihoods are in closed form for

every model in the model-space. As explained in Proposition 2, the constant c is arbitrary. In the

expressions below we set it to equal one. We use the identity of the marginal likelihood introduced

in Chib (1995) to simplify the computations of the marginal likelihoods. The calculations are

tedious but straightforward, and hence are suppressed.

Consider the typical model M j ( j 6= 1,J). The log marginal likelihood can be split into two

pieces (because of the independence of the errors and the independence of the priors) as follows:

log m̃(y1:T |M j) = log m̃( f j,1:T |M j) + log m̃( f ∗j,1:T |M j), (1.3.10)

where the first term on the RHS is

−
(K−L j)(L j−1)

2
log 2−

(T −1)(L j−1)

2
log π−

(
L j−1

)
2

log k

−
(
L j−1

)
2

log |W |−
(
T + L j−K−1

)
2

log |Ψ j|+ log ΓL j−1

(
T + L j−K−1

2

)
, (1.3.11)
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the second term is

(K−L j)(L j−1)

2
log 2−

(K−L j)(T −L j)

2
log π

−
(
K−L j

)
2

log |W ∗j |−
(T −1)

2
log |Ψ∗j |+ log ΓK−L j

(
T −1

2

)
, (1.3.12)

and

X ′X =
T

∑
t=1

(1 Mktt)′(1 Mktt) , Λ−1 =

k−1 0

0 0


W = X ′X + Λ−1 , W ∗j =

T

∑
t=1

(Mktt f ′j,t)
′(Mktt f ′j,t)

Ψ j =
T

∑
t=1

( f j,t− α̂ j− β̂ jMktt)( f j,t− α̂ j− β̂ jMktt)′+ (α̂ j β̂ j)
(
X ′XW−1Λ−1

)α̂
′
j

β̂
′
j


Ψ∗j =

T

∑
t=1

( f ∗j,t− β̂
∗
j,mMktt− B̂

∗
j, f f j,t)( f ∗j,t− β̂

∗
j,mMktt− B̂

∗
j, f f j,t)

′.

In these expressions the hat symbol denotes the least square estimates, and Γd(·) denotes the d-

dimensional multivariate gamma function. Finally, for M1 the log marginal likelihood is given by

(1.3.11), and for MJ it is given by (1.3.12).

The computations typically take a few seconds to scan our model-space of 2,048 models in the

twelve-factor case.

1.3.3 CZZ Marginal Likelihoods: General Case

We briefly note that our method can be extended in two directions: (1) to the more general class of

asset pricing model comparisons where the status of the Mkt factor as a risk factor is also in doubt,

as in the recent work of Chib and Zeng (2018) where marginal likelihoods are computed based on

proper priors and student-t distributions of the factors, and (2) to the case in which the intercept
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term in the model of the risk factors is given a model-specific prior. This second extension is also

motivated by the work of Chib and Zeng (2018).

Let f̃ denote the set of risk factors, and let f ∗denote the set of non-risk factors. The model that

we describe here differs from those above because Mkt can now enter into f̃ or f ∗. Also note that

f̃ can never be empty, which means that the total number of models in the model-space is given by

J̃ = 2K−1. As above, suppose that in M1 all K factors are risk factors,

f̃ 1,t = α̃1 + ε̃1,t , ε̃1,t ∼NK (0,Σ1) . (1.3.13)

Let σ1 = vech(Σ1). Then the nuisance parameters of M1 are simply

η1 = σ1 .

In model M j, j = 2,3, ..., J̃, let f̃ j denote the risk factors with dimension L j× 1 and let f ∗j

denote the non-risk factors with dimension (K−L j)×1. This model is given by

f̃ j,t = α̃ j + ε̃ j,t , ε̃ j,t ∼NL j

(
0,Σ j

)
(1.3.14)

f ∗j,t = B∗j, f f̃ j,t + ε
∗
j,t , ε

∗
j,t ∼NK−L j

(
0,Σ∗j

)
(1.3.15)

with nuisance parameters

η j =
(

β
∗
j, f ,σ j,σ

∗
j

)
,

where β
∗
j, f = vec(B∗j, f ), σ j = vech(Σ j), and σ∗j = vech(Σ∗j). By calculations that we suppress, we

can prove the following result.

PROPOSITION 4. Let model M1 in equation (1.3.13) have the improper prior on η1 given by

cψ(η1|M1) = c|Σ1|−
K+1
2 ,
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where c is an arbitrary constant. Then the priors of η j in M j, j = 2,3, .., J̃, given by

ψ̃(η j|M j) = c|Σ j|−
2L j−K+1

2 |Σ∗j |−
K+1
2

satisfy Proposition 2 and lead to comparable marginal likelihoods.

Next, instead of supposing that α̃ j has a NL j (0,kΣ j) prior in which the mean vector is zero,

and that the constant k is common across models, we suppose that α̃ j has the model-specific prior

α̃ j|M j ∼NL j (α̃ j0,k jΣ j) , j = 1,2, ..., J̃,

where the prior mean α̃ j0 and the multiplier k j are determined from a training sample (a sample of

data prior to the sample used for the model comparisons). In our applications, the training sample

consists of the first tr = 0.1 (tenth) of the data. If we let nt = tr×T denote the size of the this

training sample data, then

α̃ j0 = n−1
t

nt

∑
t=1

f̃ j,t , (1.3.16)

which is the average of the risk factors in the training sample data. To determine the model-specific

multiplier k j, we calculate Σ̂ j0, the least square estimate of Σ j in the training sample, and Vj0, the

negative inverse Hessian over α̃ j, from the log of the marginal likelihood of the training sample

observations f̃ 1:nt
(conditioned on α̃ j but marginalized over Σ j):

log m̃( f̃ 1:nt
|M j, α̃ j) = log

∫
p( f̃ 1:nt

|M j, α̃ j,Σ j)π(Σ j|M j)dΣ j.

After omitting terms that do not involve α̃ j, the above expression can be written as

−
(
nt + L j−K

)
2

log det

(
nt

∑
t=1

( f̃ j,t− α̃ j)( f̃ j,t− α̃ j)
′

)
.

The Hessian matrix (a L j× L j matrix) of the latter function can be computed numerically. Our
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choice of k j is the average of the (element-by-element) ratio of the diagonal elements of Vj0 and

Σ̂ j0,

k j = mult×L−1
j sum

(
diag

(
Vj0
)
/diag

(
Σ̂ j0

))
, j = 1,2, ..., J̃, (1.3.17)

where mult = 1−tr
tr is a multiplier that adjusts for the different sizes of the training and estima-

tion samples. We can now prove the following proposition about the marginal likelihoods for the

estimation sample.

PROPOSITION 5. Under the collection of priors in Proposition 4, with c set equal to one, and

α̃ j|M j ∼NL j (α̃ j0,k jΣ j), the marginal likelihood of model M j, j = 2,3, ..., J̃, on the log-scale is

given by

log m̃(ynt+1:T |M j) = log m̃( f̃ j,nt+1:T |M j) + log m̃( f ∗j,nt+1:T |M j), (1.3.18)

where the first term on the RHS is

−
(K−L j)L j

2
log 2−

T̃ L j

2
log π−

L j

2
log(T̃ k j + 1)

−
(
T̃ + L j−K

)
2

log |Ψ j|+ log ΓL j

(
T̃ + L j−K

2

)
, (1.3.19)

the second term is

(K−L j)L j

2
log 2−

(K−L j)(T̃ −L j)

2
log π

−
(
K−L j

)
2

log |W ∗j |−
T̃
2

log |Ψ∗j |+ log ΓK−L j

(
T̃
2

)
, (1.3.20)

and the log marginal likelihood of M1 defined in (1.3.13) is given by (1.3.19). In these expressions,

T̃ = (T −nt) and

Ψ j =
T

∑
t=nt+1

( f̃ j,t− ˆ̃α j)( f̃ j,t− ˆ̃α j)
′+

T̃
T̃ k j + 1

(
ˆ̃α j− α̃ j0

)(
ˆ̃α j− α̃ j0

)′
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W ∗j =
T

∑
t=nt+1

f̃ j,t f̃
′
j,t , Ψ∗j =

T

∑
t=nt+1

( f ∗j,t− B̂
∗
j, f f̃ j,t)( f ∗j,t− B̂

∗
j, f f̃ j,t)

′.

As above, the hat symbol denotes the least square estimates, but now calculated using the data

beyond the training sample, and Γd(·) denotes the d-dimensional multivariate gamma function. We

emphasize that these marginal likelihoods correspond to the more general model comparison prob-

lem, where the status of the Mkt factor as a risk factor is also in doubt. Although we do not report

any results in this paper from applying Proposition 5, our experiments show that the model-specific

prior α̃ j|M j ∼NL j (α̃ j0,k jΣ j) produces performance gains of up to 20%, for smaller sample sizes,

compared to the marginal likelihoods of Proposition 5 based on α̃ j|M j ∼NL j (0,kΣ j). Thus, it is

our recommendation that future work using our method rely not only on the general model given

here but also on the model-specific prior defined by (1.3.16) and (1.3.17).

1.4 Further Comments about the BS Method

It is clear from our Proposition 3 that the off-the-shelf BS Jeffreys priors are different from the

priors dictated by Proposition 2, in particular, the BS method’s priors involve arbitrary constants

that do not cancel out in the calculation of the marginal likelihoods. The reason is that the BS

method uses separate Jeffreys priors that are unrelated to the across-models change of variable

formula that is used in the construction of Proposition 2. In fact, BS do not derive the general

mapping between pairs of models, nor do they derive the general form of the Jacobian of the

transformation. Without this information, the required collection of improper priors given in our

Proposition 3 cannot be constructed.

1.4.1 Example

Consider an example with three factors, say, the excess market return (Mkt), size (SMB), and

value (HML) factors. In this case, there are four possible pricing models that need to be compared
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simultaneously. Let us consider two of these four models.

In the first model, M1, suppose that all three factors {Mkt, HML SMB} are the risk factors.

The factor model is now

HMLt

SMBt


︸ ︷︷ ︸

f ∗t :2×1

=

α1,h

α1,s


︸ ︷︷ ︸

α∗1:2×1

+

β1,hm

β1,sm


︸ ︷︷ ︸

β
∗
1:2×1

Mktt + ε
∗
t , ε t ∼N

0,

σ2
1,h σ1,hs

σ1,hs σ2
1,s


︸ ︷︷ ︸

Σ1:2×2

 . (1.4.1)

In this case, the nuisance parameters are

η1 =
(
β1,hm,β1,sm,σ

2
1,h,σ1,hs,σ

2
1,s
)
, (1.4.2)

which is of size five. From (1.1.3), we have that

ψBS(η1|M1) =
1(

σ2
1,hσ2

1,s−σ2
1,hs

)3/2
. (1.4.3)

In the second model, M2, suppose that {Mkt,HML} are the risk factors. In this case, the factor

model is given by

HMLt︸ ︷︷ ︸
f t :1×1

= α2,h︸︷︷︸
α2:1×1

+ β2,hm︸ ︷︷ ︸
β2:1×1

Mktt + εt , εt ∼N (0, σ
2
2,h︸︷︷︸

Σ2:1×1

) (1.4.4)

SMBt︸ ︷︷ ︸
f ∗t :1×1

=

(
β ∗2,sm β ∗2,sh

)
︸ ︷︷ ︸

β
∗
2:1×2

 Mktt

HMLt

+ ε
∗
t , ε

∗
t ∼N (0, σ

∗2
2,s︸︷︷︸

Σ∗2:1×1

), (1.4.5)

where the first subscript of the parameter indicates the model. The specification for SMB has no

intercept term due to the pricing restrictions. The set of nuisance parameters in this model is of
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size five and is given by

η2 =
(
β2,hm,β

∗
2,sm,β

∗
2,sh,σ

2
2,h,σ

∗2
2,s
)
. (1.4.6)

The prior density of η2 from (1.1.3) is

ψBS(η2|M2) =
1

σ2
2,h

1

σ∗22,s
. (1.4.7)

The inverse mapping g−1
2 (·) in (1.2.2) can be derived by substituting the model of HML into

that of SMB in model M2 and comparing terms with those in model M1. By elementary algebra

we get

β1,hm = β2,hm (1.4.8)

β1,sm = β
∗
2,sm + β

∗
2,shβ2,hm

σ
2
1,h = σ

2
2,h

σ1,hs = β
∗
2,shσ

2
2,h

σ
2
1,s = β

∗2
2,shσ

2
2,h + σ

∗2
2,s, (1.4.9)

where ∣∣∣∣∣det

(
∂g−1

j (η j)

∂η ′2

)∣∣∣∣∣= σ
2
2,h. (1.4.10)

We can now easily check that the BS prior of η2 in M2, given in (1.4.7) above, is not equal to

the required prior in (1.2.3):

ψBS(η2|M2) =
1

σ2
2,h

1

σ∗22,s
(1.4.11)

6= ψ̃(η2|M2) = ψBS(g−1
j (η j)|M1)σ

2
2,h (1.4.12)

=
1(

σ2
2,hσ∗22,s

) 3
2

σ
2
2,h =

1

σ2,hσ∗32,s
. (1.4.13)
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Therefore, because ψBS(η2|M2) 6= ψ̃(η2|M2), Proposition 2 is violated.

1.4.2 Permutation Method

A reader of our paper argued that the method given by BS in the appendix of their paper is im-

mune to the flaw discussed above. This method, which is called the permutation method, is more

involved and is not used by BS in the analysis given in their paper. We show that, unfortunately,

the permutation method also involves arbitrary constants that do not cancel out.

Consider a three-factor world consisting of Mkt, SMB, and HML. Since Mkt is always a risk

factor, there are 2! = 2 possible permutations. In the first permutation the factors are ordered as

P1 = {Mkt, HML, SMB}, and in the second they are ordered as P2 = {Mkt, SMB, HML}. Under

P1, three nested models can be shown to arise by suitably restricting the parameters of the model

HMLt = a + bMktt + e (1.4.14)

SMBt = c + dMktt + gHMLt + u. (1.4.15)

For instance, the model M1|P1 (Mkt, HML, SMB are risk factors) arises by setting a 6= 0 and

c 6= 0, M2|P1 (Mkt, HML are risk factors) arises by setting a 6= 0 and c = 0, and M3|P1 (Mkt

is the only risk factor) arises by setting a = 0 and c = 0. Since these models are nested, they

share the same nuisance parameters. Proposition 1 applies and, for example, the constant c1 (here

the subscript 1 denotes the first permutation) can be carried through for the computation of the

marginal likelihoods of these models. Under P2, three nested models can be shown to arise by

suitably restricting the parameters of the model

SMBt = a′+ b′Mktt + e′ (1.4.16)

HMLt = c′+ d′Mktt + g′SMBt + u′. (1.4.17)
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For instance, the model M1|P2 (Mkt,SMB, HML are risk factors) arises by setting a′ 6= 0 and

c′ 6= 0, M2|P2 (Mkt, SMB are risk factors) arises by setting a′ 6= 0 and c = 0, and M3|P2 (Mkt

is the only risk factor) arises by setting a′ = 0 and c′ = 0. Again, in comparing these three models,

the constant c2 can be used in the improper prior because this situation corresponds to that of

Proposition 1. Notice also that M1|P1 and M1|P2 are the same model, as are M3|P1 and

M3|P2. Thus, according to Proposition 1, one can replace c2 with c1 in calculating the marginal

likelihoods of M1|P2 and M3|P2.

The problem arises in this method in comparing the two distinct models M2|P1 and M2|P2,

which lie in two different permutations, because these are not nested by the same model. We are

now in the situation corresponding to Proposition 2. The nuisance parameters of these models can

be linked, but as we know the Jeffreys prior for BS for the parameters in M2|P2 will not satisfy

the change of variable condition, which invalidates the marginal likelihood comparison. In other

words, the hidden constants c1 and c2, which are not relevant in comparing the models within

a given permutation, now do not cancel out, invalidating the comparison of models M2|P1 and

M2|P2. The problem gets worse as the number of factors increase. For example, with 12 factors,

there are 11! = 39,916,800 possible permutations and numerous models across those permutations

for which the BS priors across permutations violate the change of variable condition. Numerical

experiments confirm that, besides being numerically unwieldy, the permutation method suffers

from the same performance issues as the method used by BS in their paper. Thus, both methods,

the one used by BS in their paper and the one mentioned in their online appendix, are unsound and

cannot be used to find risk factors in asset pricing. To avoid duplication in our findings, however,

in the next section we maintain our focus on the method that is used by BS in their paper.
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1.5 Performance of BS Method

In their paper BS do not provide simulation evidence on the performance of their marginal likeli-

hoods to screen for the correct model. Rectifying this omission is the first order of business. We

construct two experiments that mimic real-world factors and situations, apply the BS method for

different true DGPs and sample sizes, and report on what we find. The first experiment involves

eight factors and a model-space of J = 128 models. This is a relatively small-scale problem that

should be easy to get right. In this case, we consider 33 DGPs to ensure that our results are not

specific to one particular DGP in the model-space. For each DGP, we run the experiment 100

times for several sample sizes, which go up to T = 1.2 million. We then record the percentage of

times (in those 100 replications) that the true DGP is selected by the BS marginal likelihood. The

second experiment follows the same approach for K = 12 factors and an associated model-space

of J = 2,048 models. In this setting, we consider 55 DGPs. For each of these 55 DGPs, we run

the experiment 100 times, calculating the marginal likelihood of each of the 2,048 models, and we

record the percentage of times the true DGP is selected. These experiments are again conducted

for different values of T , where start from T = 600 and go up to T = 1.2 million. We also subject

our new method to the same set of experiments.

1.5.1 Eight-Factor Experiment: J = 128

In our first experiment, we consider a problem with eight factors. Our simulations proceed as

follows. We match eight factors to the excess market return (Mkt), size (SMB), value (HML),

profitability (RMW), and investment (CMA) factors proposed by Fama and French (1993, 2015),

the profitability (ROE) and investment (IA) factors in the q-factor model proposed by Hou, Xue,

and Zhang (2015), and the Carhart (1997) momentum (MOM) factor. In this setting, there are

27 = 128 possible models depending on the assumption made about the collection of factors that

go into f t (the Mkt factor always being included as one of those factors). To ensure that the results
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do not depend on a particular DGP, we consider 33 different DGPs for generating the data. For

each DGP, we generate 100 replicated data sets. For each of these data sets, we calculate the BS

“marginal likelihoods” of the 128 candidate models to see if the true DGP is selected. We repeat

these steps for each of the 33 DGPs.

In Table 1.1 we report the percentage of times (in 100 replications of data for each true model)

that the true DGP is selected for sample sizes of size T = 600, 1,200, 12,000, 120,000, and

1,200,000 based on the “marginal likelihood” criterion of BS.

The true DGPs are listed by row, and following BS, the value of k in equation (1.1.2) is given

by

k = (Sh2
max−Sh(Mkt)2)/7, (1.5.1)

where Sh(Mkt) is the Sharpe ratio of the simulated Mkt factor, Shmax = τ × Sh(Mkt), and τ is

set to 3. We have also tried other values of τ mentioned in BS: 1.25, 1.5, and 2. In each case

the associated selection percentages of these are no higher than those with τ = 3. The “marginal

likelihood” approach of BS does not select any of the 33 true models even once in 100 replications

for samples up to T = 12,000, which corresponds to a thousand years of data. The method has

some success in detecting a few DGPs for the two largest samples sizes, but this success pertains

to sample sizes that are unattainable in practice. One does not observe even this limited success in

the next set of experiments with twelve potential risk factors.

1.5.2 Twelve-Factor Experiment J = 2,048

The performance of the “marginal likelihood” method of BS worsens as the model-space is en-

larged. To illustrate this point, we provide extensive results from our second experiment with

twelve potential risk factors. The overall experiment and implementation are similar to those for

the eight-factor experiment.

We match our twelve factors to the eight factors in the first experiment, as well as the Asness
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This table reports the simulation results on the performance of the BS method with eight potential risk
factors. The model-space consists of J = 128 models. Each row represents a particular DGP for generating
the data. Numerical entries are the percentage of times the true DGP is selected among the 128 candidate
models in a repeated sampling experiment, for each of five different sample sizes (indicated by column)
and for each of 33 different DGPs (indicated by row). Following BS, k = (Sh2max−Sh(Mkt)2)/7, where Sh
refers to the sharp ratio and Shmax = 3×Sh(Mkt).

Barillas and Shanken (2018)

Risk factors in the true model T = T = T = T = T =
600 1,200 12,000 120,000 1,200,000

Mkt SMB RMW IA MOM 0 0 0 0 0
Mkt RMW IA MOM 0 0 0 0 0
Mkt IA MOM 0 0 0 0 0
Mkt HML ROE MOM 0 0 0 0 25
Mkt SMB RMW CMA MOM 0 0 0 0 0
Mkt RMW CMA MOM 0 0 0 0 0
Mkt CMA MOM 0 0 0 0 0
Mkt SMB HML RMW MOM 0 0 0 0 17
Mkt HML RMW MOM 0 0 0 0 17
Mkt SMB RMW MOM 0 0 0 36 92
Mkt RMW MOM 0 0 0 41 94
Mkt HML MOM 0 0 0 0 52
Mkt MOM 0 0 0 60 94
Mkt SMB ROE IA 0 0 0 0 0
Mkt ROE IA 0 0 0 0 0
Mkt SMB RMW IA 0 0 0 0 0
Mkt RMW IA 0 0 0 0 0
Mkt IA 0 0 0 0 0
Mkt SMB CMA ROE 0 0 0 0 0
Mkt CMA ROE 0 0 0 0 0
Mkt SMB HML ROE 0 0 0 0 32
Mkt HML ROE 0 0 0 0 38
Mkt SMB ROE 0 0 0 31 93
Mkt ROE 0 0 0 31 91
Mkt SMB RMW CMA 0 0 0 0 0
Mkt RMW CMA 0 0 0 0 0
Mkt CMA 0 0 0 0 0
Mkt SMB HML RMW 0 0 0 0 30
Mkt HML RMW 0 0 0 0 38
Mkt SMB RMW 0 0 0 42 92
Mkt RMW 0 0 0 43 96
Mkt HML 0 0 0 0 61
Mkt 0 0 0 60 97

Table 1.1

and Frazzini (2013) quality minus junk (QMJ) factor, the Pastor and Stambaugh (2003) liquidity

(LIQ) factor, the Frazzini and Pedersen (2014) betting against beta (BAB) factor, and another

version of value factor (HMLD) proposed by Asness et al. (2019). We now have 211 = 2,048

possible models depending on the assumption made about the collection of factors that go into

f t . As in our first experiment, the parameters of the DGP are fixed at the maximum likelihood
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This table reports the simulation results on the performance of the BS method with twelve potential risk
factors. The model-space consists of J = 2,048 models.

Barillas and Shanken (2018)

Risk factors in the true model T = T = T = T = T =
600 1,200 12,000 120,000 1,200,000

Mkt SMB RMW IA MOM 0 0 0 0 0
Mkt RMW IA MOM 0 0 0 0 0
Mkt IA MOM 0 0 0 0 0
Mkt HML ROE MOM 0 0 0 0 0
Mkt SMB RMW CMA MOM 0 0 0 0 0
Mkt RMW CMA MOM 0 0 0 0 0
Mkt CMA MOM 0 0 0 0 0
Mkt SMB HML RMW MOM 0 0 0 0 0
Mkt HML RMW MOM 0 0 0 0 0
Mkt SMB RMW MOM 0 0 0 0 0
Mkt RMW MOM 0 0 0 0 0
Mkt HML MOM 0 0 0 0 0
Mkt MOM 0 0 0 0 0
Mkt SMB ROE IA 0 0 0 0 0
Mkt ROE IA 0 0 0 0 0
Mkt SMB RMW IA 0 0 0 0 0
Mkt RMW IA 0 0 0 0 0
Mkt IA 0 0 0 0 0
Mkt SMB CMA ROE 0 0 0 0 0
Mkt CMA ROE 0 0 0 0 0
Mkt SMB HML ROE 0 0 0 0 0
Mkt HML ROE 0 0 0 0 0
Mkt SMB ROE 0 0 0 0 0
Mkt ROE 0 0 0 0 0
Mkt SMB RMW CMA 0 0 0 0 0
Mkt RMW CMA 0 0 0 0 0
Mkt CMA 0 0 0 0 0
Mkt SMB HML RMW 0 0 0 0 0
Mkt HML RMW 0 0 0 0 0
Mkt SMB RMW 0 0 0 0 0
Mkt RMW 0 0 0 0 0
Mkt HML 0 0 0 0 0
Mkt 0 0 0 0 0
Mkt QMJ 0 0 0 0 0
Mkt LIQ 0 0 0 0 0
Mkt BAB 0 0 0 0 0
Mkt HMLD 0 0 0 0 0
Mkt MOM QMJ 0 0 0 0 0
Mkt IA QMJ 0 0 0 0 0
Mkt QMJ HMLD 0 0 0 0 0
Mkt MOM QMJ HMLD 0 0 0 0 0
Mkt MOM QMJ LIQ 0 0 0 0 0
Mkt CMA MOM LIQ 0 0 0 0 0
Mkt IA MOM QMJ 0 0 0 0 0
Mkt CMA LIQ BAB 0 0 0 0 0
Mkt SMB HML RMW QMJ 0 0 0 0 0
Mkt RMW CMA MOM BAB 0 0 0 0 0
Mkt CMA ROE BAB HMLD 0 0 0 0 0
Mkt RMW QMJ BAB HMLD 0 0 0 0 0
Mkt RMW CMA MOM LIQ BAB 0 0 0 0 0
Mkt RMW ROE QMJ BAB HMLD 0 0 0 0 0
Mkt HML RMW IA MOM BAB HMLD 0 0 0 0 0
Mkt HML RMW IA MOM BAB HMLD 0 0 0 0 0
Mkt HML RMW IA MOM BAB HMLD 0 0 0 0 0
Mkt HML ROE IA LIQ BAB HMLD 0 0 0 0 0

Table 1.2
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(ML) values to ensure that the generated data resemble the real data. After checking the statistical

significance of the risk factors for each of the 2,048 possible models using methods described in

Appendix A, there are 567 models that are possible DGPs in this setting.

To conserve space, we do not report results for each of the 567 DGPs (this information is

available from us up on request). For each of the 567 DGPs, we generate 100 data sets for a total

of 56,700 data sets. For each of these data sets we calculate 2,048 “marginal likelihoods” using

the method of BS, one for each of the 2,048 possible models, and then record the percentage of

times the true DGP is selected. The results show that the BS method does not select the correct

model even once across the 567 DGPs for any sample size, including the sample size of 1.2 million.

Table 1.2 reports the results for 55 of the 567 DGPs, where 33 of these DGPs are the same as those

in the first experiment above, and 22 are with the new factors included in the current experiment.

1.6 Performance of the CZZ Method

For comparison, we replicate the above set of experiments using the same set of DGPs and the same

data sets, based on the CZZ marginal likelihood method. The results reported in Tables 1.3 and

1.4, for the eight-factor and twelve-factor experiments, respectively, show that the performance of

the CZZ method is significantly better even when confronted with meager sample sizes of T = 600

and 1,200. These results demonstrate clearly the performance gains from using the CZZ priors and

marginal likelihoods.

1.7 Conclusion

In this paper, we show that the “marginal likelihood” approach of Barillas and Shanken (2018)

is unsound on account of its reliance on off-the-shelf Jeffreys improper priors on model-specific

nuisance parameters. These priors do not satisfy the required across-models change of variable
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This table reports the simulation performance of the CZZ method with eight potential risk factors. The
model-space consists of J = 128 models. Each row represents a particular DGP for generating the data.
Numerical entries are the percentage of times the true DGP is selected among the 128 candidate models in
a repeated sampling experiment, for each of five different sample sizes (indicated by column) and for each
of 33 different DGPs (indicated by row). Following BS, k = (Sh2max−Sh(Mkt)2)/7, where Sh refers to the
sharp ratio and Shmax = 3×Sh(Mkt).

CZZ method

Risk factors in the true model T = 600 T = 1,200 T = 12,000

Mkt SMB RMW IA MOM 62 80 91
Mkt RMW IA MOM 53 72 91
Mkt IA MOM 55 69 85
Mkt HML ROE MOM 45 65 91
Mkt SMB RMW CMA MOM 57 70 96
Mkt RMW CMA MOM 59 74 88
Mkt CMA MOM 51 76 86
Mkt SMB HML RMW MOM 54 75 96
Mkt HML RMW MOM 53 71 89
Mkt SMB RMW MOM 49 61 91
Mkt RMW MOM 49 68 88
Mkt HML MOM 54 70 87
Mkt MOM 51 68 83
Mkt SMB ROE IA 61 68 91
Mkt ROE IA 51 69 85
Mkt SMB RMW IA 61 74 90
Mkt RMW IA 57 69 87
Mkt IA 48 60 84
Mkt SMB CMA ROE 59 69 91
Mkt CMA ROE 51 69 84
Mkt SMB HML ROE 65 76 90
Mkt HML ROE 51 72 86
Mkt SMB ROE 56 75 93
Mkt ROE 49 71 84
Mkt SMB RMW CMA 50 66 92
Mkt RMW CMA 52 68 87
Mkt CMA 51 65 83
Mkt SMB HML RMW 51 69 90
Mkt HML RMW 46 69 84
Mkt SMB RMW 42 61 83
Mkt RMW 52 67 84
Mkt HML 54 66 83
Mkt 49 64 89

Table 1.3

formula, formulated in our Proposition 2, and hence depend on arbitrary constants that invalidate

the model comparison by marginal likelihoods.

In a notable advance, we derive a new class of improper priors on the nuisance parameters that

follow the construction given in Proposition 2 and hence lead to valid marginal likelihoods and

model comparisons. The empirical performance of our new marginal likelihoods is significantly
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This table reports the simulation performance of the CZZ method with twelve potential risk factors. The
model-space consists of J = 2,048 models.

CZZ method

Risk factors in the true model T = 600 T = 1,200 T = 12,000

Mkt SMB RMW IA MOM 36 47 79
Mkt RMW IA MOM 19 42 75
Mkt IA MOM 28 31 75
Mkt HML ROE MOM 17 34 74
Mkt SMB RMW CMA MOM 26 42 79
Mkt RMW CMA MOM 23 44 78
Mkt CMA MOM 29 39 75
Mkt SMB HML RMW MOM 21 39 81
Mkt HML RMW MOM 20 40 74
Mkt SMB RMW MOM 26 45 82
Mkt RMW MOM 31 38 79
Mkt HML MOM 35 42 73
Mkt MOM 29 38 71
Mkt SMB ROE IA 36 46 77
Mkt ROE IA 24 35 74
Mkt SMB RMW IA 33 43 78
Mkt RMW IA 25 38 75
Mkt IA 24 37 69
Mkt SMB CMA ROE 34 45 78
Mkt CMA ROE 27 35 71
Mkt SMB HML ROE 33 47 74
Mkt HML ROE 28 42 74
Mkt SMB ROE 32 41 84
Mkt ROE 27 40 73
Mkt SMB RMW CMA 28 47 76
Mkt RMW CMA 27 37 72
Mkt CMA 28 39 73
Mkt SMB HML RMW 24 40 78
Mkt HML RMW 27 40 76
Mkt SMB RMW 27 40 79
Mkt RMW 27 41 71
Mkt HML 22 46 74
Mkt 31 46 79
Mkt QMJ 27 38 77
Mkt LIQ 33 44 75
Mkt BAB 29 39 74
Mkt HMLD 25 33 72
Mkt MOM QMJ 30 41 75
Mkt IA QMJ 30 34 79
Mkt QMJ HMLD 30 37 73
Mkt MOM QMJ HMLD 30 43 75
Mkt MOM QMJ LIQ 26 51 85
Mkt CMA MOM LIQ 26 50 78
Mkt IA MOM QMJ 24 40 77
Mkt CMA LIQ BAB 19 47 82
Mkt SMB HML RMW QMJ 39 49 86
Mkt RMW CMA MOM BAB 23 45 81
Mkt CMA ROE BAB HMLD 19 45 79
Mkt RMW QMJ BAB HMLD 41 49 78
Mkt RMW CMA MOM LIQ BAB 25 43 82
Mkt RMW ROE QMJ BAB HMLD 46 55 87
Mkt HML RMW IA MOM BAB HMLD 42 57 82
Mkt HML RMW IA MOM BAB HMLD 43 50 86
Mkt HML RMW IA MOM BAB HMLD 39 62 87
Mkt HML ROE IA LIQ BAB HMLD 37 57 82

Table 1.4
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better. This new method allows for reliable Bayesian work on which factors are risk factors in asset

pricing models.
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Chapter 2

Winners from Winners: A Tale of Risk

Factors

Siddhartha Chib1, Dashan Huang2, Lingxiao Zhao3, Guofu Zhou4

2.1 Introduction

The question of which risk factors best explain the cross-section of expected equity returns contin-

ues to draw attention on account of the large importance of this topic for theoretical and empirical

finance (Cochrane, 2011). Along with the market factor, hundreds of additional risk factors have

emerged (Harvey, Liu, and Zhu, 2016, Hou, Xue, and Zhang, 2017), and the set of possible such

factors continues to grow. Rather than add to this list, we ask a straightforward question: could

we start with the risk factor collections that have generated support in the recent literature, take

1Olin School of Business, Washington University in St. Louis, 1 Bookings Drive, St. Louis, MO 63130. e-mail:
chib@wustl.edu.

2Lee Kong Chian School of Business, Singapore Management University, 50 Stamford Road, Singapore 178899.
e-mail: dashanhuang@smu.edu.sg.

3Department of Economics, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130. e-mail:
lingxiao@wustl.edu.

4Olin School of Business, Washington University in St. Louis, 1 Bookings Drive, St. Louis, MO 63130. e-mail:
zhou@wustl.edu
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the union of the factors in those collections as the pool of winners, and then find a new set of risk

factors (winners from winners) that gather even more support from the data, on both statistical and

financial grounds?

To answer this question, in what we call the tale of risk factors, we consider the four risk factor

collections that we believe have spawned consensus support within the profession, namely those in

the papers by Fama and French (1993, 2015, 2018), Hou, Xue, and Zhang (2015), Stambaugh and

Yuan (2017), and Daniel, Hirshleifer, and Sun (2020). These collections, which cover the market,

fundamental and behavioral factors, listed by author initials and risk factor abbreviations, are as

follows5:

• FF6 collection: {Mkt, SMB, HML, RMW, CMA, MOM};

• HXZ collection: {Mkt, SMB, IA, ROE};

• SY collection: {Mkt, SMB, MGMT, PERF};

• DHS collection: {Mkt, PEAD, FIN}

In the first part of the analysis, the winners model scan, we focus on the set of these winners,

and ask what collection of winners from winners emerge when each factor is allowed to play

the role of a risk factor, or a non-risk factor, to produce different groupings of risk factors in a

combinatorial fashion. Each grouping consists of a collection of factors that are risk factors in that

grouping, and a complementary collection (the remaining factors) that are not risk factors in that

grouping. We compare the resulting set of 4,095 asset pricing models, each of which is internally

consistent with its assumptions of the risk factors, from a Bayesian model comparison perspective

(Avramov and Chao, 2006, Barillas and Shanken, 2018, Chib and Zeng, 2019, Chib, Zeng, and

Zhao, 2020).

Our first main result, from the winners model scan, is that a six-factor model, consisting of

Mkt, SMB, MOM, ROE, MGMT, and PEAD from the twelve factors, gets the most support from
5There are slight differences in these collections in relation to the size factor, which we ignore for simplicity.
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the data. This model is closely followed by a second model, a seven-factor model that has PERF as

an additional risk factor, and a third model, a five-factor model, that does not have MOM as a risk

factor. In terms of probabilities, these models have posterior model probabilities of around 0.13,

0.11, 0.10, respectively. Though one would have liked to witness even more decisive posterior sup-

port for the best model, this is unrealistic on a large model space composed of models constructed

from factors that are a prior winners. Nevertheless, the data evidence is clear in isolating the win-

ners from winners as the posterior probability distribution beyond the top three slumps sharply.

For example, the posterior probabilities of the fourth and fifth-best models are around 0.03, and

the sixth is about 0.025. The posterior probabilities of the remaining models in the model space

barely register, being roughly of the same size as the prior probability of 1/4,095 = 0.00025, and

even below.

Interestingly, models with the same risk factor set as FF6, HXZ, SY, and DHS do not appear in

the top model set. As we demonstrate later, this relative under performance stems from a failure to

clear an internal consistency condition. We say the risk factor set of a particular model satisfies an

internal consistency condition if its risk factors can price the set of non risk factors in that model

without incurring a penalty. In other words, a penalty is incurred, and the marginal likelihood

suffers if the constraint that the intercepts in the conditional model of the non risk factors, which

by the assumption must be all zero, is binding. If the constraints are not binding, then its marginal

likelihood is significantly higher. Empirically, we find that the FF6, HXZ, SY, and DHS risk factor

sets fail this internal consistency condition, while the risk factor sets of our three top factor models

pass it.

We also document the performance of top models on other important statistical and economic

dimensions. For one, we examine the performance of the top models in forecasting out-of-sample.

Also, we compare the Sharpe ratios of the mean-variance portfolio constructed from the risk factors

of the top models, and the Sharpe ratios of the portfolios from the risk factors in the FF6, HXZ,

SY, and DHS collections. We find that the top models perform well in all comparisons.
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In the second part of our analysis, in what we call the winners plus genuine anomalies model

scan, we consider a more extensive model comparison of 8,388,607 asset pricing models, con-

structed from the twelve winners plus eleven principal components of anomalies unexplained by

the winners, the genuine anomalies. The general question is to see if one can get an improved set

of risk factors by considering models that involve the set of winners and additional factors based on

the genuine anomalies, i.e., anomalies that cannot be explained by the winners. We show that from

the set of 125 anomalies in Green, Hand, and Zhang (2017) and Hou, Xue, and Zhang (2017),

only twenty anomalies cannot be explained by the winners. These constitute the set of genuine

anomalies. For our winners plus anomalies model scan, we construct our different asset pricing

models from the twelve winners and the first eleven principal components (PCs) of the genuine

anomalies. In other words, each of the twelve winners, and each of the eleven PC’s, is allowed to

play the role of a risk-factor or a non-risk factor, leading to a model space of 223−1 possible asset

pricing models that we compare by using our Bayesian model comparison technique.

In this analysis, our tactic of reducing the 125 anomalies to the set of twenty genuine anoma-

lies can be viewed as a dimension-reduction strategy. Furthermore, our idea of converting these

anomalies to the space of principal components, is another element of the same strategy. Little

is lost (and much is gained) by converting the genuine anomalies to PCs since, in either case, the

genuine anomalies, or PCs, are portfolios of assets. What is important, however, is that we retain

the identity of our winners, thus allowing us to understand whether the PC factors provide incre-

mental information for pricing assets. And if so, whether the winners from the winners model scan

continue to be risk factors in this broader space of models.

Our second main result, from the winners plus genuine anomalies scan, shows that there is

much to gain by incorporating information in the genuine anomalies. For example, the Sharp

ratios increase by more than 30%, which shows the benefit of incorporating information in genuine

anomalies in explaining the cross-section of expected equity returns. Nonetheless, the risk factors

from the winners set are the key risk factors, even though some prove to be redundant.
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Our paper is part of a new wave of Bayesian approaches to risk factor selection. For instance,

Kozak, Nagel, and Santosh (2020) focus on PC factors that are constructed from well-known

factors and anomaly factors, and utilize interesting economic priors to isolate the relevant PCs

in a classical penalized regression estimation. In contrast to their study, we retain the identity of

the winners and construct PCs only from the genuine anomalies and approach the estimation from

a fully Bayesian perspective. Bryzgalova, Huang, and Julliard (2019) is also part of this new wave

of Bayesian work which delivers, for each factor, the marginal posterior probability that that factor

is a risk factor, while our approach is concerned with the question of which collection of factors

are jointly risk factors.

This paper adds broadly to the recent Bayesian literature in finance, for example, Pástor (2000),

Pástor and Stambaugh (2000), Pástor and Stambaugh (2001), Avramov (2002), Ang and Timmer-

mann (2012), and Goyal, He, and Huh (2018).

The rest of the paper is organized as follows. In Section 2, we briefly outline the methodology

that we use to conduct our model comparisons. In Section 3, we consider the winners model scan,

and in Section 4 the winners plus genuine anomalies model scan. Section 5 and Section 6 contain

results and Section 7 concludes.

2.2 Methodology

Suppose that the potential risk factor set is denoted by f t : K×1, where t denotes the t-th month.

We now allow each factor to play the role of a risk factor (i.e., an element of the stochastic dis-

count factor), or a non-risk factor, to produce different groupings of risk factors in a combinatorial

fashion. Starting with K initial possible risk factors, there are, therefore, J = 2K− 1 possible risk

factor combinations (assuming that the risk-factor set cannot be empty). Each of these risk factor

combinations defines a particular asset pricing model M j, j = 1, ...,J.

Consider now a specific model M j, j = 1, ...,J consisting of the risk factors x j,t : kx, j×1, and
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the complementary set of factors (the non risk factors) w j,t : kx, j× 1, where K = kx, j + kw, j. By

definition, factors are risk factors if they are in the stochastic discount factor M j,t . Following

Hansen and Jagannathan (1991), we specify the SDF as

M j,t = 1−λ
′
x, jΩ

−1
x, j
(
x j,t−E[x j,t ]

)
, (2.2.1)

where bx, j , Ω−1
x, j λ x, j : kx, j× 1 are the unknown risk factor loadings, and Ωx, j : kx, j× kx, j is the

covariance matrix of x j. Enforcing the pricing restrictions implied by the no-arbitrage condition

E[M j,tx′j,t ] = 0 and E[M j,tw′j,t ] = 0

for all t, we get that E[x j,t ] = λ x, j, and E[w j,t ] = Γ jλ x, j, for some matrix Γ j : kw, j× kx, j. If we

assume that the joint distribution of (x j,w j) is Gaussian, then the latter pricing restrictions imply

that under a marginal-conditional decomposition of the factors, M j has the restricted reduced form

given by

x j,t = λ x, j + εx, j,t , (2.2.2)

w j,t = Γ jx j,t + εw·x, j,t , (2.2.3)

where the errors are block independent Gaussian

 εx, j,t

εw·x, j,t

∼NK

0,

Ωx, j 0

0 Ωw·x, j


 , (2.2.4)

and Ωw·x, j : kw, j× kw, j is the covariance matrix of the conditional residuals εw·x, j,t .

The goal of the analysis is to calculate the support for these models, M j, j = 1, ...,J, given the

sample data on the factors. To explain how this is done, we start with the prior distributions of the
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parameters across models.

The parameters of model M j are given by

θ j , (λ x, j,η j),

where λ x, j are the risk premia parameters, and η j = (Γ j,Ωx, j,Ωw·x, j) are nuisance parameters.

Note the key point that the dimension of these nuisance parameters equals

{kw, jkx, j + kx, j(kx, j + 1)/2 + kw, j(kw, j + 1)/2}

= {k2
x, j + k2

w, j + 2kx, jkw, j + (kx, j + kw, j)}/2

= (K2 + K)/2,

which is the same across models. Chib and Zeng (2019) exploit this fact to develop proper priors,

and Chib, Zeng, and Zhao (2020) to develop improper priors, of η j, j = 1,2, ...,J, from a single

prior distribution.

Let M1 denote the model in which all K potential risk factors are risk factors. Then, η1 just

consists of Ωx,1. Now let this parameter have the Jeffreys’ improper prior

π(Ωx,1|M1) = c|Ωx,1|−
K+1
2 . (2.2.5)

By derivations given in Chib, Zeng, and Zhao (2020), we get that the priors of η j, j > 1 are

ψ(η j|M j) = c|Ωx, j|−
2kx, j−K+1

2 |Ωw·x, j|−
K+1
2 , j > 1, (2.2.6)

where c is an arbitrary constant that by construction is the same across these priors, and, hence,

irrelevant in the comparison of models.

Finally, complete the prior distributions by supposing that, conditional on η j, the priors of λ x, j
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are the multivariate normal distributions

λ x, j|M j,η j ∼Nkx, j (λ x, j,0,κ jΩx, j),

where λ x, j,0 and κ j are model-specific hyperparameters that are determined from a training sample.

2.2.1 Marginal Likelihoods

Assume that each model M j ∈M has a prior model probability of Pr(M j) of being the correct

model. The objective is to calculate the posterior model probability Pr(M j|y1:T ), where y1:T =

( f 1, ..., f T ) is the estimation sample of the potential risk factors.

The key quantities for performing this prior-posterior update for the models in M are the

marginal likelihoods, defined as

m j(y1:T |M j) =
∫

Θ j

p(y1:T |M j,θ j)π(λ x, j|M j,η j)ψ(η j|M j)dθ j,

where Θ j is the domain of θ j,

p(y1:T |M j,θ j) =
T

∏
t=1

Nkx, j (x j,t |λ x, j,Ωx, j)Nkw, j (w j,t |Γ jx j,t ,Ωw·x, j)

is the density of the data and Nd(·|µ,Ω) is the d-dimensional multivariate normal density function

with mean µ and covariance matrix Ω.

Notice that the phrase marginal likelihood encapsulates two concepts: one that it is a function

that is marginalized over the parameters of model j, hence the word marginal; and second that it is

the likelihood of the model parameter M j, hence the word likelihood.

Under our assumptions, the log marginal likelihoods are in closed form. Specifically,

log m1(y1:T |M1) =−T K
2

log π− K
2

log(T κ1 + 1)− T
2

log |Ψ1|+ log ΓK

(
T
2

)
,
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and

log m j(y1:T |M j) =−
T kx, j

2
log π−

kx, j

2
log(T κ j + 1)−

(
T + kx, j−K

)
2

log |Ψ j|+ log Γkx, j

(
T + kx, j−K

2

)
−

(K− kx, j)(T − kx, j)

2
log π−

(
K− kx, j

)
2

log |W ∗j |−
T
2

log |Ψ∗j |+ log ΓK−L j

(
T
2

)
, j > 1 ,

where we have set c = 1 (as this choice is irrelevant, by construction), and

Ψ j =
T

∑
t=1

(x j,t− λ̂ x, j)(x j,t− λ̂ x, j)
′+

T
T κ j + 1

(
λ̂ x, j−λ x j0

)(
λ̂ x, j−λ x j0

)′
W ∗j =

T

∑
t=1

x j,tx′j,t , Ψ∗j =
T

∑
t=1

(w j,t− Γ̂ jx j,t)(w j,t− Γ̂ jx j,t)
′.

Note that the variables in hat in the above expressions are the least squares estimates calculated

using the estimation sample, and Γd(·) denotes the d dimensional multivariate gamma function.

2.2.2 Model Scan Approach

We conduct a prior-posterior analysis on the model space denoted by M = {M1,M2, . . . ,MJ}.

Assume that each model in the model space is given an uninformative and equalized prior model

probability, that is, for any j

Pr(M j) = 1/J. (2.2.7)

Applying Bayes theorem to the unknown model parameter M j, the posterior model probability is

given by

Pr(M j|y1:T ) =
m j(y1:T |M j)
J
∑

l=1
ml(y1:T |Ml)

, (2.2.8)

as the model prior probabilities in the numerator and the denominator cancel out.

Both the prior and posterior probability distributions on model space acknowledge the notion of

model uncertainty. The prior distribution on model space represents our beliefs about the models
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before we see the data. A discrete uniform prior is our default, but, of course, it is possible to

consider other prior distributions. The posterior distribution retains model uncertainty unless the

sample size is large in relation to the dimension of the model space. By this we mean that the

posterior distribution on model space will not concentrate on a single model. As T becomes

large, however, the asymptotic theory of the marginal likelihood (see, e.g., Chib, Shin, and Simoni

(2018)), implies that the posterior model probabilities will concentrate on the true model (if it is

in the set of models), or on the model that is closest to the true model in the Kullback-Leibler

distance.

Regardless of the sample size, however, the end-product of our analysis is a ranking of models

by posterior model probabilities (equivalently, by marginal likelihoods given that the denominator

in the posterior probability calculation is just a normalization constant). We indicate these ranked

models by

{M1∗,M2∗, . . . ,MJ∗}

such that

m1∗(y1:T |M1∗) > m2∗(y1:T |M2∗) > · · ·> mJ∗(y1:T |MJ∗).

This ranking provides the basis for our empirical Bayesian model comparison.

2.3 Winners Model Scan

As mentioned in the introduction, our first analysis is based on twelve factors from the studies

of Fama and French (1993, 2015, 2018), Stambaugh and Yuan (2017), and Daniel, Hirshleifer,

and Sun (2020). Details of these factors, {Mkt, SMB, HML, RMW, CMA, MOM, IA, ROE,

MGMT, PERF, PEAD, FIN}, are given in Table 2.1. While Mkt captures the overall market risk,

SMB, HML, RMW, CMA, MOM, IA, and ROE are well-known characteristic-based factors and

are constructed by sorting stocks in a relatively simple way. For those remaining novel four mis-
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pricing factors, MGMT and PERF are constructed based on average rankings of eleven anomalies

of stocks, and PEAD and FIN are related to investors’ psychology. Although the construction

and motivation of those factors are different, those twelve factors are named “winners” as they

are believed and proved to have strong power in explaining the cross-section of expected equity

returns.

The data on these winners are monthly, spanning the period from January 1974 to December

2018, for a total of 540 starting observations. Of these the last 12 months of data are held-out for

out-of-sample prediction validation purpose. For the other 528 in-sample monthly observations,

the first 10 percent is used as a training sample to construct the prior distributions of the risk premia

parameters, leaving a sample size of T = 475 as estimation sample.

2.3.1 Two special cases

To understand how the framework is applied, consider first the model in which all twelve winners

are risk factors. In this case, model M1 (say), the general model reduces to

x1,t = λ x,1︸︷︷︸
12×1

+εx,1,t , εx,1,t ∼N12(0,Ωx,1), (2.3.1)

where x1,t = (Mkt,SMB,SML,RMW,CMA,MOM, IA,ROE,MGMT,PERF,PEAD,FIN)′t and, since

the non-risk factor collection w1,t is empty, kx,1 = 12 and Ωx,1 : 12×12.

Now consider M2 (say) with the FF6 risk factors x2,t = (Mkt,SMB,SML,RMW,CMA,MOM)′t .

Then, we have

x2,t = λ x,2︸︷︷︸
6×1

+εx,2,t , εx,2,t ∼N6(0,Ωx,2),
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while for w2,t = (IA,ROE,MGMT,PERF,PEAD,FIN)′t we have

w2,t = Γ2︸︷︷︸
6×6

x2,t + εw·x,2, t , εw·x,2, t ∼N6(0,Ωw·x,2),

where kx,2 = 6, kw,2 = 6, Ωx,2 : 6× 6, and Ωw·x,2 : 6× 6. The latter model embodies the pricing

restrictions that the assumed risk factors of this model price the non-risk factors w2,t .

There are J = 4,095 such models in the model space M . Our goal is to compare these J models

using the model scan approach described in Section 2.

2.3.2 Winners Model Scan Results

Top Model Set

To get a clear picture of the prior-posterior update on the model space M , we view each model

as a point in that space. The prior distribution of models on that space is uniform. The posterior

probabilities of the models are proportional to the product of the uniform prior and the marginal

likelihoods. We can use these posterior probabilities to plot these points (or models) in that space

in decreasing order. From Figure 2.1, which plots the posterior model probability of the top 220

models. We can see from the figure that the posterior model probabilities drop sharply beyond the

top three models. For example, the posterior probabilities of the fourth and fifth-best models are

around 0.03, and the sixth is about 0.025. The posterior probabilities of the remaining models in

the model space barely register, being roughly of the same size as the prior probability of 1/4,095

= 0.00025, and even below.

In Figure 2.2 we plot these posterior model probabilities but, this time, only for the top 5

models. We see that the top three models have a joint posterior probability of 0.3407. In a sense,

we can think of these models as being indistinguishable, or equivalent. To make this more precise,

in the notation introduction above, let M1∗ denote the highest posterior probability model. If we
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now let the Bayes factor of the best model against any other model be denoted by

B1 j =
m1∗(y1:T |M1∗)

m j∗(y1:T |M j∗)
,

then, according to Jeffreys’ scale, if B1 j ≤ 10
1
2 , the evidence supporting M1∗ over M j∗ is barely

worth mentioning. Equivalently, in terms of the log Bayes factor, the indistinguishably condition

above can be expressed as

log B1 j = log m1∗(y1:T |M1∗)− log m j∗(y1:T |M j∗)≤ 1.15.

We can, therefore, refer to M j∗ that is in the radius of the best model in this way as being indistin-

guishable from the best model.

Applying this criterion, we conclude that M1∗, M2∗, and M3∗ constitute the top model set M∗

in the winners scan, while M4∗ and M5∗ also given in Figure 2.2 are not in the top model set.

Table 2.2 shows that the six-factor model M1∗ consisting of Mkt, SMB, MOM, ROE, MGMT,

and PEAD as risk factors gets the most support from the data. This model is closely followed by

the seven-factor model M2∗ that has PERF as an additional risk factor, and the five-factor model

M3∗ that does not have MOM as a risk factor.

Interestingly, Mkt, SMB, ROE, MGMT, and PEAD, are present in each of the three top group-

ings. It appears that both fundamental and behavioral factors play an important role in pricing the

cross-section of expected equity returns. It should also be noted that the top groupings feature

between five and seven-factors, similar to the number of factors in most of the literature.

Besides, the ratio of the posterior model probability and the prior model probability of any

given model M j, denoted by Pr(y1:T |M j∗)
Pr(M j∗)

, is provided in Table 2.2. That ratio reflects the informa-

tion improvement of posterior over the same prior for M j when data are observed. Therefore it is

a good measure for evaluating the joint superiority of candidate models. For comparison, Panel
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B of Table 2.2 reports the marginal likelihoods and that ratios for M1 and models with the same

risk factor sets as CAPM, Fama and French family, HXZ, SY, and DHS. It can seen that the in-

formation improvement of each of those models is substantially smaller than that of top models.

Because M1 is also not supported by the data, we can conclude that the twelve factors together

contain information redundancies.

Parameter Updating for the Best Model of the Winners Model Scan

We now provide more details about the best model in the winners model scan M1∗, which takes

the form

M1∗ :



Mktt

SMBt

MOMt

ROEt

MGMTt

PEADt


= λ x,1∗︸︷︷︸

6×1

+εx,1∗, t , εx,1∗, t ∼N6(0,Ωx,1∗),



HMLt

RMWt

CMAt

IAt

PERFt

FINt


= Γ1∗︸︷︷︸

6×6



Mktt

SMBt

MOMt

ROEt

MGMTt

PEADt


+ εw·x,1∗, t , εw·x,1∗, t ∼N6(0,Ωw·x,1∗).

In calculating the marginal likelihood of this model, which equals 14186.43, as reported earlier in

Table 2.2, we used the prior on η1∗= (Γ1∗,Ωx ,1∗,Ωw·x,1∗) from (2.2.6) equal to |Ωx,1∗|−
1
2 |Ωw·x,1∗|−

13
2 ,
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and the proper prior of the risk premia parameters λ x,1∗ from the training sample equal to

π(λ x ,1∗|M1∗,η1∗) = N6(λ x ,1∗|λ x,1∗,0,0.1915×Ωx,1∗),

where λ x,1∗,0 = (0.0017,0.0130,0.0044,0.0041,0.0084,0.0085)′.

Under our prior distributions, it is easy to confirm that the posterior distributions π(θ j|M j,y1:T )

of parameters θ j of any given model M j have the marginal-conditional forms given by

π(Ωx, j|M j,y1:T ) = W −1
kx, j

(Ωx, j|Ψ j,T + kx, j−K), (2.3.2)

π(λ x, j|M j,y1:T ,Ωx, j) = Nkx, j (λ x, j|λ x j1,
(
1/κ j + T

)−1
Ωx, j), (2.3.3)

and

π(Ωw·x, j|M j,y1:T ) = W −1
kw, j

(Ωw·x, j|Ψ∗j ,T ), (2.3.4)

π(vec(Γ j)|M j,y1:T ,Ωw·x, j) = Nkw, j×kx, j (vec(Γ j)|vec(Γ̂ j),W ∗−1
j ⊗Ωw·x, j), (2.3.5)

where λ x, j,1 = 1
T κ j+1λ x, j,0 +

T κ j
T κ j+1 λ̂ x, j and W −1(Ψ,ν) denotes the inverse Wishart distribution

with ν degrees of freedom and scale matrix Ψ. Thus, the posterior distribution π(θ j|M j,y1:T ) is

given by the product of equations (2.3.2), (2.3.3), (2.3.4), and (2.3.5). We can apply this result to

generate a large number of simulated draws, first by sampling the marginal distribution, and then by

the conditional distribution given the draws from the marginal distributions. These sampled draws

can be used to make marginal posterior distributions of relevant parameters, and other summaries.

Applying the above sampling procedure to M1∗, we obtain the marginal posterior distributions

of the risk premia parameters λ x,1∗ , given in Figure 2.3, and the posterior means, standard devia-

tions and quantiles, given in Table 2.3. It is interesting that the posterior means of the risk premia

parameters are similar, except for that of SMB, while the posterior standard deviations of the risk

premia of Mkt and MOM are almost twice as large as the rest.
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2.3.3 Why do FF6, HXZ, SY, and DHS not win?

It is crucial and meaningful to understand why models with the same risk factor set as FF6, HXZ,

SY, and DHS do not appear in the top model set. The reason for this is interesting. Essentially,

those models do not satisfy an internal consistency condition. We say that a particular model

satisfies the internal consistency condition if its risk factors can price the set of non risk factors

in that model without incurring a penalty. In other words, a penalty is incurred, and the marginal

likelihood suffers if the constraint that the intercepts in the conditional model of the non risk

factors, which by assumption must be all zero, is binding. If the constraints are not binding, then

its marginal likelihood is significantly higher.

Consider model M j

x j,t = λ x, j + εx, j,t ,

w j,t = Γ jx j,t + εw·x, j,t ,

with risk factors x j,t and non risk factors w j,t = (w j,1,t , . . . ,w j,kw, j,t)
′ with dimension kw, j×1. Now

for each non risk factor w j,i,t , i = 1,2, . . . ,kw, j, we compare the two models,

Mi
j,0 : w j,i,t = γ

′
j,ix j,t + ε j,i,t (2.3.6)

and

Mi
j,1 : w j,i,t = α j,i + γ

′
j,ix j,t + ε j,i,t (2.3.7)

using marginal likelihoods. If the log marginal likelihood of the second model does not exceed that

of the first model by more than 1.15, then, by an application of Jeffreys’ rule, we can conclude that

imposing the zero α j,i pricing restriction does not result in a marginal likelihood penalty. Stated

yet another way, this means that the non risk factor w j,i can be priced by the risk factor set x j of

that model M j. If this condition holds for each of the factors in w j, we conclude that the risk factor
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set of that model satisfies the ICC condition.

Our analysis shows that models with the same risk factor sets as CAPM, Fama and French

family, HXZ, SY, and DHS do not satisfy ICC. Specifically, the single Mkt factor cannot explain

the remaining 11 non risk factors. The risk factor sets of the Fama and French family models can

explain at most one non risk factor (IA). The risk factor set of HXZ can explain all of the Fama and

French factors, but cannot explain MGMT and PEAD. The risk factor sets of SY and DHS models

cannot explain one non risk factor, PEAD and MGMT, respectively. In contrast, the top models

in M∗ satisfy the ICC condition fully, which helps to explain why those models rank high in the

winners model scan.

2.3.4 Prediction

It is worthwhile to consider how well the top models perform out-of-sample. From the Bayesian

perspective, an elegant way to examine this question is by calculating the predictive likelihood

for a set of future observations. This predictive likelihood, which like the marginal likelihood, is

a number when evaluated at a particular sample of future observations, can be used to rank the

predictive performance of each model in the model space.

To define the predictive likelihood, let π(θ j|M j,y1:T ) denote the posterior distributions of the

parameters θ j of M j, and let y(T +1):(T +12) = ( f T +1, ..., f T +12) denote 12 months of held-out out-

of-sample data on those winners. Then, for any given model M j, the predictive likelihood is

defined as

m j

(
y(T +1):(T +12)|M j,y1:T

)
=
∫

Θ j

p(y(T +1):(T +12)|M j,θ j)π(θ j|M j,y1:T )dθ j,

where

p(y(T +1):(T +12)|M j,θ j) =
12

∏
s=1

Nkx, j (x j,T +s|λ x, j,Ωx, j)Nkw, j (w j,T +s|Γ jx j,T +s,Ωw·x, j)

47



is the out-of-sample density of the factors given the parameters. We can compute this integral by

Monte Carlo. Taking draws {θ (1)
j , ...,θ

(G)
j } from π(θ j|M j,y1:T ), with G being a large integer, we

calculate the predictive likelihood as the Monte Carlo average

m j

(
y(T +1):(T +12)|M j,y1:T

)
=

1

G

G

∑
g=1

p(y(T +1):(T +12)|M j,θ
(g)
j ).

Table 2.4 reports the log predictive likelihoods of the top three models as well as those com-

peting models. We can see that the top three models also have larger predictive likelihoods, which

means that they outperform the competing models on the predictive dimension.

2.4 Winners Plus Genuine Anomalies Model Scan

We now show that there are some benefits to including additional potential risk factors along with

the winners. There are many additional risk factors to draw upon and the approach we describe

can be used with any set of additional potential risk factors. For our analysis here we focus on the

125 anomalies in Green et al. (2017) and Hou, Xue, and Zhang (2017). These anomalies, which

are re-balanced at an annual or quarterly frequency, exclude anomalies that are re-balanced at a

monthly frequency, because the latter cease to be anomalies once transaction costs are taken into

account (Novy-Marx and Velikov, 2016, Patton and Weller, 2020). All these portfolios are value-

weighted and held for one month. Just as in the case of the winners, we have monthly observations

on these anomalies spanning the period from January 1974 to December 2018, for a total of 540

observations. We partition these observations into out-of-sample and in-sample, which consists of

the training sample and the estimation sample, just as in Section 3.

What we aim to show is that whether there is information in these anomalies that can be

captured to produce better statistical performance (in terms of marginal likelihoods) and higher

Sharpe-ratios of portfolios built from the best fitting risk-factors. In order to show this, we rec-
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ognize that the winners are already carefully vetted factors and, therefore, the anomalies that are

allowed to enter the pool of augmented potential risk factors must be those that cannot be priced by

these winners. This point helps to limit the dimension of the model space and allows us to design

a full model scan approach, as we now detail.

2.4.1 Genuine Anomalies

The model space with all 125 anomalies is 2137, which is astronomically large. However, it is

unnecessary to consider such a large model space because many of the anomalies can actually be

priced by the winners. In fact, Harvey, Liu, and Zhu (2016) and Hou, Xue, and Zhang (2017) have

cast doubt on the credibility of these anomalies and Cochrane (2011) has raised similar concerns.

The first step, therefore, is to eliminate anomalies that are not genuine anomalies. An anomaly

is a genuine anomaly if it cannot be priced by the winners. Here is how we sort this issue out.

Let zi, i = 1,2, . . . ,125, denote the anomalies. Let x = (Mkt, SMB, HML, RMW, CMA, MOM,

IA, ROE, MGMT, PERF, PEAD, FIN) denote the twelve winners. Now for each anomaly zi as the

response, and x as the covariates, we estimate two models, one without an intercept and one with:

Mi
0 : zi,t = γ

′
i xt + εi,t , εi,t

i.i.d.∼ N (0,σ2
i ) (2.4.1)

and

Mi
1 : zi,t = αi + γ

′
i xt + εi,t εi,t

i.i.d.∼ N (0,σ2
i ). (2.4.2)

In estimating these models, the first 10 percent of the data are used as a training sample to

pin down the hyperparameters of the proper prior distributions. We then use standard Bayesian

Markov chain Monte Carlo methods to estimate model on the remaining 90 percent of the data,

y1:T . The log marginal likelihood of each model is computed by the Chib (1995) method. Denote

these marginal likelihoods by log mi
0(y1:T |Mi

0) and log mi
1(y1:T |Mi

0). Then, based on the Jeffreys
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(1961) scale, if the following condition holds

log mi
1(y1:T |Mi

1)− log mi
0(y1:T |Mi

0) > 1.15, (2.4.3)

then x is not able to price zi. In this case, we assert that zi is a genuine anomaly; otherwise zi is not

a genuine anomaly.

Applying the procedure described above, twenty genuine anomalies emerge, namely, acc, age,

currat, hire, lev, quick, salecash, sgr, Em, Lbp, dFin, Cop, Lfe, SA, sue, cash, OLAQ, CLAQ,

TBIQ, and BLQ. Details about these anomalies are given in Table 2.5.

2.4.2 The Potential Risk Factor Set

Now instead of conducting our model scan on the original twelve winners and these twenty genuine

anomalies, which leads to a model space of around four billion models (232−1 = 4,294,967,295),

we apply a second dimension reduction step by converting the genuine anomalies to principal

components (with the rotated mean added back in), of which we then consider the first eleven

that explain in total approximating 91% of the variation in the genuine anomalies, as can be seen

from Table 2.6. This set, of the twelve winners and the first eleven PCs of the genuine anomalies,

constitutes our potential risk factor set which we use to launch our extended risk factor analysis.

We note that this strategy of blending of winners and the PCs in this way appears to be new to

the literature. By this strategy, we are able to limit the model space to a reasonable dimension (of

around eight million models), while simultaneously avoiding the problem of working with twenty

correlated PCs that are also quite correlated with the winners. For instance, some anomalies are

related to leverage (currat, lev, quick, Lbp, and BLQ) and some are linked to sales status (salecash

and sgr). Considering two groups of risk factors in this way, where some are in their original form

and some are PCs, appears to be novel. It allows us to show the value of including anomalies as

potential risk factors.
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We also note that the idea of transforming our genuine anomalies into their corresponding

principal components is similar to Kozak, Nagel, and Santosh (2020) who argued that “a relatively

small set of principal component from the universe of potential characteristics-based factors can

approximate the SDF quite well.” Our idea is related, but distinct, as we keep the key factors (the

winners) as is, but only covert the less important (the genuine anomalies) into principal compo-

nents.

We emphasize again that our approach of reducing the 125 anomalies to the set of twenty

genuine anomalies is a dimension-reduction strategy. Furthermore, our idea of converting these

anomalies to the space of principal components, is another element of that same strategy. Of

course, whether as anomalies, or as PC’s, these factors are portfolios of assets. We believe that it is

meaningful and useful to retain the identity of the winners, thus allowing us to understand whether

the PC factors provide incremental information for pricing assets.

2.5 Winners Plus Genuine Anomalies Model Scan Results

2.5.1 Top Model Set

Starting with the potential risk factor set of dimension K̃ = 23, twelve winners plus eleven PCs,

and applying the methodology given in Section 2, we calculate the marginal likelihood of each of

the J̃ = 8,388,607 models in M̃ . Converting these marginal likelihoods into posterior model prob-

abilities, the ratios of these posterior model probabilities and the prior model probability (assumed

equal to 1/J̃ ) can be calculated. The ratio, Pr(ỹ1:T |M̃ j∗)

Pr(M̃ j∗)
, defined earlier in Section 3.2.1, makes it

easier to see which models receive more support from the data. We report these ratios for the top

220 models in Figure 2.4, in which the dashed blue vertical line represents the cutoff of the top

model set.

The top model set, denoted by M̃∗ as in Section 3.2.1, can be defined in relation to the best
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model M̃1∗. A model is in the top model set if its distance to the best model on the log marginal

likelihood scale is less than 1.15. These 29 models, along with the including associated risk factor

sets, log marginal likelihoods, and the ratios of posterior model probability and prior model prob-

ability are provided in Panel A of Table 2.7. The risk factors common to all these top models are

Mkt, MOM, ROE, PEAD, MGMT, PC1, PC4, and PC5. We also note that the risk factors that are

common to the top 3 models in the winners model scan, {Mkt, SMB, ROE, PEAD, MGMT}, are

also the risk factors that are common to the top 29 models in the extended model scan except that

SMB is replaced by MOM, which is also risk factors of the top 2 models of the winners scan.

Parameter Updating for the Best Model of the Winners Plus Genuine Model Scan

We now provide more details about the best model in the winners plus genuine model scan M̃1∗,

in which the risk factor set is given by x̃1∗,t = (Mkt,RMW,MOM, IA,ROE,MGMT,PEAD,FIN,

PC1,PC3,PC4,PC5,PC7)′t and the non risk factor set is given by w̃1∗,t = (SMB,HML,CMA,PERF,

PC2,PC6,PC8,PC9,PC10,PC11)′t :

M̃1∗ : x̃1∗,t = λ̃ x,1∗︸︷︷︸
13×1

+ε̃x,1∗, t , ε̃x,1∗, t ∼N13(0, Ω̃x,1∗),

w̃1∗,t = Γ̃1∗︸︷︷︸
10×10

x̃1∗,t + ε̃w·x,1∗, t , ε̃w·x,1∗, t ∼N10(0, Ω̃w·x,1∗).

Similar to Section 3.2, the prior and posterior statistics, i.e. prior mean, posterior mean, posterior

standard deviation, posterior median, 2.5% quantile, and 97.5% quantile for the risk premia λ̃ 1∗

are provided in Table 2.8.

2.5.2 Internal Consistency Condition

Just as in Section 3.3, we can see that 27 out of 29 models in the top model set M̃∗ satisfy the ICC

condition completely. The two exceptions occur for M16∗ which is unable to explain IA and M16∗
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which is unable to explain RMW. In constrast, models with the same risk factor sets as CAPM,

Fama and French family, HXZ, SY, and DHS deviate from ICC further, leaving out 13, 12, 10, 9,

5, 5, and 4 non-risk factors unexplained. Moreover, none of models with the same risk factor sets

as the top three models in the winners scan can explain PC1, PC2, and PC3.

2.5.3 Prediction

Similar to Section 3.4, it is important to consider how well the winning model performs out-of-

sample and we compute the predictive likelihood for a set of future observations ỹ(T +1):(T +12) =

( f̃ T +1, ..., f̃ T +12) denote 12 months of out-of-sample data on the winners and principal compo-

nents. Table 2.9 reports the log predictive likelihoods for top models in M̃∗ as well as models with

the same risk factor sets as CAPM, Fama and French family models, SY and DHS. We can tell that

those top models do not fail out of sample.

2.6 Economic Performance: Sharpe Ratios

Now suppose that based on the identity of the risk factors in (say) the best model M̃1∗ of the win-

ners plus genuine anomalies model scan, namely, Mkt, RMW, MOM, IA, ROE, MGMT, PEAD,

FIN, PC1, PC3, PC4, PC5, and PC7, we construct an optimal mean-variance portfolio of these risk

factors together with a risk-free asset. Similarly, we construct the optimal mean-variance portfolios

from the risk factors in M̃1, M1 CAPM, Fama and French family, HXZ, SY, and DHS collections,

as well as the risk factors of top models of the winners model scan. This leads to the important

question: how do the Sharpe ratios of those different portfolios compare?

We construct these different portfolios in the following manner. Consider model M j with

associated risk factors x j. Given the data y1:T , consider calculating the predictive mean of x j,T +1

E[x j,T +1|M j,y1:T ] , x j,T +1|T =
∫

x j,T +1Nkx, j (x j,T +1|λ x, j,Ωx, j)π(θ j|M j,y1:T )dθ jdx j,T +1,
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which by changing the order of the integration can be seen to just equal the posterior mean of λ x, j

x j,T +1|T = λ̂ x, j ,
∫

Θ j

λ x, jπ(θ j|M j,y1:T )dθ j,

and the predictive covariance of x j,T +1

Ωx, j,T +1|T ,
∫

(x j,T +1−x j,T +1|T )(x j,T +1−x j,T +1|T )′Nkx, j (x j,T +1|λ x, j,Ωx, j)π(θ j|M j,y1:T )dθ jdx j,T +1,

which by the law of iterated expectations for covariances simplifies to the sum of the posterior

mean of Ωx, j and the posterior variance of λ x, j:

Ωx, j,T +1|T =
∫

Θ j

Ωx, jπ(θ j|M j,y1:T )dθ j +
∫

Θ j

(λ x, j− λ̂ x, j)(λ x, j− λ̂ x, j)
′
π(θ j|M j,y1:T )dθ j.

Of course, both these quantities are straightforwardly estimated from the output of the simulation

of the posterior density π(θ j|M j,y1:T ). Given these predictive moments, with certain calculations,

the Sharpe ratio of the optimal mean-variance portfolio of the factors in x j plus a risk-free asset is

available as

Sh j =
(

λ̂
′
x, jΩ

−1
x, j,T +1|T λ̂ x, j

) 1
2
.

In Table 2.10 we report the Sharpe ratios of risk-factor portfolios based on several asset pricing

models. In Panel A we consider the risk factor sets of the top models in M̃∗, in Panel B for the

risk factor sets of the top models in M∗, and in Panel C for the M̃1, M1, CAPM, Fama and French

family, HXZ, SY, and DHS models.

Looking at the results in Panel B and C, we can see that the Sharpe ratios are much higher for

the top models from the winners scan than those from some of the existing asset pricing models.

Comparing the results in Panel A and Panel B, we see that the top models from the winners plus

genuine anomalies model scan provide even higher Sharpe ratios. Taken together, if we consider
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the best performing DHS model as the benchmark from Panel C, we can see that the models in M∗

have about 17% higher Sharpe ratios, and the models in M̃∗ have about 49% higher Sharpe ratios.

Finally, in the winners model scan, all twelve winners can achieve a Sharpe ratio of 0.56,

whereas investing in the seven winners of winners in M2∗ gives a Sharpe ratio of 0.55. And in

the winners plus genuine anomalies model scan, investing in those top risk factor sets produces a

Sharpe ratio as high as 0.70 while investing in all twelve winners plus eleven PCs gives 0.71. From

these close Sharpe ratios we can make two useful conclusions. First, the portfolios of risk factors

from the top models perform as well as those from the complete set of risk factors or; in other

words, there is some information redundancy in the potential risk factor set. Second, the marginal

likelihood ranking and the Sharpe ratio ranking of models are aligned.

2.7 Conclusion

Our paper makes a contribution to the literature on Bayesian risk factor selection. Starting from the

twelve distinct risk factors in Fama and French (1993, 2015, 2018), Hou, Xue, and Zhang (2015),

Stambaugh and Yuan (2017), and Daniel, Hirshleifer, and Sun (2020), we construct and compare

4,095 asset pricing models and find that the top models with the highest posterior model prob-

abilities have six risk factors, superior out-of-sample predictive performance, and higher Sharpe

ratios. We show also that both fundamental and behavioral risk factors appear in our top model

set, highlighting the importance of behavioral factors in pricing and investment decision making.

We also consider if we can get an improved set of risk factors by formulating models that in-

volve the set of winners and additional factors based on the genuine anomalies, i.e., anomalies

that cannot be explained by the winners. The framework we have developed, in which we re-

duce the 125 anomalies to the set of twenty genuine anomalies before converting these genuine

anomalies to the space of principal components, allows us to understand whether the PC factors

provide incremental information for pricing assets. An extensive comparison of 8,388,607 asset
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pricing models, constructed from the twelve winners plus eleven principal components of genuine

anomalies, shows that there is much to gain by incorporating information in the genuine anomalies.

For example, the Sharp ratios increase by more than 30%. Nonetheless, the risk factors from the

winners set are the key risk factors, even though some prove to be redundant.

The general approach that we describe in this paper has wide applications. The idea of combin-

ing well vetted factors (the winners) with the PCs of less established factors in a model comparison

setup, is likely to prove extremely useful beyond this problem to other asset categories such as

bonds, currencies and commodities, and is likely to open up many interesting avenues for further

research.
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Table 2.1: Winners Definitions

Factors Definitions

Mkt the excess return of the market portfolio
SMB the return spread between diversified portfolios of small size and big size stocks
HML the return spread between diversified portfolios of high and low B/M stocks
RMW the return spread between diversified portfolios of stocks with robust and weak profitability
CMA the return spread between diversified portfolios of the stocks of low (conservative) and high (aggressive) investment firms
MOM the momentum factor based on two prior returns
IA the investment factor based on annual changes in total assets divided by lagged total assets
ROE the profitability factor based on income before extraordinary items divided by one-quarter-lagged book equity
MGMT the mispricing factor controlled by management
PERF the mispricing factor related to performance
PEAD the short-horizon behavioral factor motivated by investor inattention and evidence of short-horizon under reaction
FIN the long-horizon behavioral factor exploiting the information in managers’ decisions to issue or repurchase equity

Figure 2.1: Top 220 Models of the Winners Model Scan
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Figure 2.2: Top 5 Models of the Winners Model Scan
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Table 2.2: Marginal Likelihoods and the Ratios of Posterior Model Probability and Prior
Model Probability of Selected Models in the Winners Model Space M
Results from the comparison of the J̃ = 4,095 models. Panel A has the results for the top three
models, and Panel B for M̃1 and models with the same risk factor sets as CAPM, FF3, FF5, FF6,
HXZ, SY, and DHS.

Risk factors logm j(y1:T |M j)
Pr(M j |y1:T )

Pr(M j)

Panel A: Top three models

Mkt, SMB, MOM, ROE, MGMT, PEAD 14186.43 527.89
Mkt, SMB, MOM, ROE, MGMT, PERF, PEAD 14186.28 454.09
Mkt, SMB, ROE, MGMT, PEAD 14186.18 413.01

Panel B: M̃1 and models with the same risk factor sets as CAPM, FF3, FF5, FF6, HXZ, SY, and DHS

12 winners 1.66×10−1

Mkt 14140.85 8.44×10−18

Mkt, SMB, HML 14140.32 4.98×10−18

Mkt, SMB, HML, RMW, CMA 14152.79 1.30×10−12

Mkt, SMB, HML, RMW, CMA, MOM 14154.45 6.87×10−12

Mkt, SMB, IA, ROE 14164.47 1.54×10−7

Mkt, SMB, MGMT, PERF 14173.32 1.07×10−3

Mkt, PEAD, FIN 14178.86 2.73×10−1

Table 2.3: Prior and Posterior Statistics of the Risk Premia Parameters of the Best of the
Winners Model Scan M1∗
Prior and posterior statistics, i.e. prior mean, posterior mean, posterior standard deviation, posterior
median, 2.5% quantile, and 97.5% quantile for the risk premia λ x,1∗ of the best model M∗1, which
has Mkt, SMB, MOM, ROE, MGMT, and PEAD as risk factors.

Prior mean Posterior mean Posterior sd Posterior median 2.5% Quantile 97.5% Quantile

Mkt 0.0017 0.0066 0.0020 0.0066 0.0026 0.0106
SMB 0.0130 0.0016 0.0013 0.0016 -0.0010 0.0043
MOM 0.0044 0.0061 0.0021 0.0061 0.0020 0.0101
ROE 0.0041 0.0058 0.0012 0.0058 0.0034 0.0081
MGMT 0.0084 0.0056 0.0013 0.0056 0.0030 0.0082
PEAD 0.0085 0.0056 0.0009 0.0056 0.0039 0.0074
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Figure 2.3: Posterior Distributions of the Risk Premia Parameters of the Best of the Winners
Model Scan M1∗

Table 2.4: Predictive Likelihoods for the Winners Model Scan
Predictive likelihoods of selected asset pricing models in winners model scan.

Risk factors logm j(y(T+1):(T+12)|M j)

Panel A: Top three models

Mkt, SMB, MOM, ROE, MGMT, PEAD 383.48
Mkt, SMB, MOM, ROE, MGMT, PERF, PEAD 383.65
Mkt, SMB, ROE, MGMT, PEAD 383.55

Panel B: Models with the same risk factor sets as CAPM, FF3, FF5, FF6, HXZ, SY, and DHS

Mkt 382.46
Mkt, SMB, HML 381.76
Mkt, SMB, HML, RMW, CMA 381.67
Mkt, SMB, HML, CMA, RMW, MOM 381.83
Mkt, SMB, IA, ROE 381.87
Mkt, SMB, MGMT, PERF 382.89
Mkt, FIN, PEAD 382.76
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Table 2.5: Surviving Anomalies Explanations

Anomalies Explanations

acc annual income before extraordinary items minus operating cash flows divided by average total assets
age number of years since first Compustat coverage
currat current assets / current liabilities
hire percent change in number of employees
lev total liabilities divided by fiscal year-end market capitalization
quick (current assets - inventory) / current liabilities
salecash annual sales divided by cash and cash equivalents
sgr annual percent change in sales (sale)
Em enterprise value divided by operating income before depreciation (Compustat annual item OIBDP)
Lbp leverage component of book to price
dFin the change in net financial assets
Cop cash-based operating profitability
Lfe labor force efficiency
SA SA index measuring financial constraint
sue the high-minus-low earnings surprise
cash cash and cash equivalents divided by average total assets
OLAQ quarterly operating profits-to-lagged assets
CLAQ quarterly cash-based operating profits-to-lagged assets
TBIQ quarterly taxable income-to-book income
BLQ quarterly book leverage

Table 2.6: Importance of Principal Components

PC1 PC2 PC3 PC4 PC5

Standard deviation 0.1143 0.0785 0.0441 0.0415 0.0408
Proportion of Variance 0.3953 0.1866 0.0590 0.0521 0.0503
Cumulative Proportion 0.3953 0.5819 0.6409 0.6930 0.7433

PC6 PC7 PC8 PC9 PC10

Standard deviation 0.0366 0.0331 0.0298 0.0282 0.0274
Proportion of Variance 0.0405 0.0332 0.0269 0.0241 0.0227
Cumulative Proportion 0.7837 0.8170 0.8438 0.8680 0.8907

PC11 PC12 PC13 PC14 PC15

Standard deviation 0.0257 0.0231 0.0218 0.0201 0.0194
Proportion of Variance 0.0200 0.0162 0.0144 0.0122 0.0113
Cumulative Proportion 0.9106 0.9268 0.9412 0.9535 0.9648

PC16 PC17 PC18 PC19 PC20

Standard deviation 0.0172 0.0162 0.0158 0.0142 0.0125
Proportion of Variance 0.0090 0.0079 0.0075 0.0061 0.0047
Cumulative Proportion 0.9737 0.9817 0.9892 0.9953 1.0000
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Figure 2.4: Top 220 Models of the Winners Plus Genuine Anomalies Model Scan
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Table 2.7: Marginal Likelihoods and Ratios of Posterior Model Probability and Prior Model
Probability of Selected Models in the Winners Plus Genuine Anomalies Model Space M̃

Risk Factors logm j(ỹ1:T |M̃ j)
Pr(ỹ1:T |M̃ j)

Pr(M̃ j)

Panel A: Top models in M̃∗

Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.85 57939.28
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 24621.72 50803.12
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.68 48969.29
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 24621.51 41429.51
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5, PC7 24621.48 40171.69
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.44 38720.10
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 24621.43 38145.58
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5 24621.21 30594.32
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5 24621.16 29262.14
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7, PC9 24621.15 28892.28
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5, PC7 24621.14 28496.78
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5, PC7 24621.11 27648.27
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5 24621.10 27321.30
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.09 27292.03
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 24621.08 26966.60
Mkt, MOM, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.07 26499.81
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 24621.02 25260.55
Mkt, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24620.99 24590.60
Mkt, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24620.90 22526.00
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 24620.86 21524.20
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC9 24620.84 21061.93
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 24620.81 20467.26
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5, PC7 24620.78 19969.41
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 24620.77 19636.23
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5 24620.73 18874.75
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 24620.71 18612.73
Mkt, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24620.71 18597.04
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC3, PC4, PC5, PC7 24620.71 18577.15
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 24620.71 18531.14

Panel B: M̃1 and models with the same risk factor sets as CAPM, FF3, FF5, FF6, HXZ, SY, and DHS

12 winners and 11 PCs 24606.63 1.71×10−9

Mkt 24560.93 2.42×10−29

Mkt, SMB, HML 24560.17 1.13×10−29

Mkt, SMB, HML, RMW, CMA 24572.01 1.57×10−24

Mkt, SMB, HML, RMW, CMA, MOM 24573.47 6.74×10−24

Mkt, SMB, IA, ROE 24583.58 1.66×10−19

Mkt, SMB, MGMT, PERF 24592.21 9.25×10−16

Mkt, PEAD, FIN 24597.68 2.20×10−13

Panel C: Models with the same risk factor sets as the top three models in the winners model scan

Mkt, SMB, MOM, ROE, MGMT, PEAD 24604.69 2.44×10−10

Mkt, SMB, MOM, ROE, MGMT, PERF, PEAD 24604.41 1.84×10−10

Mkt, SMB, ROE, MGMT, PEAD 24604.60 2.22×10−10
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Table 2.8: Prior and Posterior Statistics of the Risk Premia Parameters of the Best of the
Winners Plus Genuine Model Scan M̃1∗
Prior and posterior statistics, i.e. prior mean, posterior mean, posterior standard deviation, posterior
median, 2.5% quantile, and 97.5% quantile for the risk premia λ̃ x,1∗ of the best model M∗1, which
has Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, and PC7 as risk
factors.

Prior mean Posterior mean Posterior sd Posterior median 2.5% Quantile 97.5% Quantile

Mkt 0.0017 0.0066 0.0021 0.0066 0.0025 0.0106
RMW -0.0015 0.0036 0.0011 0.0036 0.0014 0.0057
MOM 0.0044 0.0061 0.0021 0.0061 0.0020 0.0102
IA 0.0075 0.0033 0.0009 0.0033 0.0016 0.0050
ROE 0.0041 0.0058 0.0012 0.0058 0.0034 0.0081
MGMT 0.0084 0.0056 0.0013 0.0056 0.0030 0.0082
PEAD 0.0085 0.0056 0.0009 0.0056 0.0039 0.0074
FIN 0.0077 0.0070 0.0018 0.0070 0.0034 0.0106
PC1 0.0044 -0.0006 0.0056 -0.0006 -0.0117 0.0103
PC3 0.0191 0.0082 0.0020 0.0082 0.0043 0.0121
PC4 0.0221 0.0112 0.0018 0.0112 0.0076 0.0147
PC5 0.0009 0.0013 0.0019 0.0013 -0.0024 0.0051
PC7 -0.0005 -0.0011 0.0015 -0.0011 -0.0040 0.0018
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Table 2.9: Predictive Likelihoods for the Winners Plus Genuine Anomalies Model Scan
Predictive likelihoods of selected models in the winners plus genuine anomalies model scan.

Risk factors logm j(ỹ(T+1):(T+12)|M̃ j)

Panel A: Top models in M̃∗

Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.27
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 639.36
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.46
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 639.01
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5, PC7 639.86
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.09
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 639.08
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5 639.59
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5 639.36
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7, PC9 639.32
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5, PC7 639.65
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5, PC7 639.16
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5 638.86
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.35
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 639.23
Mkt, MOM, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.53
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 638.82
Mkt, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.48
Mkt, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.41
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 639.43
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC9 639.08
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 639.25
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5, PC7 639.71
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 639.19
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5 639.42
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 638.95
Mkt, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.26
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC3, PC4, PC5, PC7 639.90
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 639.09

Panel B: M̃1 and models with risk factor sets same as CAPM, FF3, FF5, FF6, HXZ, SY, and DHS

12 winners and 11 PCs 638.61
Mkt 640.03
Mkt, SMB, HML 639.35
Mkt, SMB, HML, RMW, CMA 639.27
Mkt, SMB, HML, CMA, RMW, MOM 639.43
Mkt, SMB, IA, ROE 639.48
Mkt, SMB, MGMT, PERF 640.48
Mkt, FIN, PEAD 640.35
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Table 2.10: Sharpe Ratios
Sharpe ratios for the risk factor sets of selected asset pricing models based on G = 100,000.

Risk factors Sharpe ratios

Panel A: Risk factor sets of the top models in M̃∗

Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.69
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 0.68
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.69
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.69
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5 0.66
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7, PC9 0.69
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5, PC7 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5, PC7 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.70
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 0.68
Mkt, MOM, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 0.68
Mkt, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.67
Mkt, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 0.70
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC9 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 0.69
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5, PC7 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 0.70
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 0.68
Mkt, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 0.69

Panel B: Risk factor sets of the top three models in the winners model scan

Mkt, SMB, MOM, ROE, MGMT, PEAD 0.54
Mkt, SMB, MOM, ROE, MGMT, PERF, PEAD 0.55
Mkt, SMB, ROE, MGMT, PEAD 0.53

Panel C: Risk factor sets of M̃1, M1, CAPM, FF3, FF5, FF6, HXZ, SY, and DHS models

12 winners and 11 PCs 0.71
12 winners 0.56
Mkt 0.15
Mkt, SMB, HML 0.20
Mkt, SMB, HML, RMW, CMA 0.34
Mkt, SMB, HML, CMA, RMW, MOM 0.36
Mkt, SMB, IA, ROE 0.40
Mkt, SMB, MGMT, PERF 0.45
Mkt, FIN, PEAD 0.47
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Appendix

Appendix A

In this appendix, we describe how the 33 DGPs for generating the simulated data in the eight-factor

experiment were selected (the same process is used in the twelve-factor case, and thus for brevity

the details of that case are suppressed). Supposes that

xt = (Mkt, f t)
′

consists of {Mkt,SMB,ROE, IA}. Then the DGP is given by

Mktt = µm + εm,t , εm,t ∼N (0,σ2
m) (A1)

SMBt

ROEt

IAt


︸ ︷︷ ︸

f t :3×1

=


αs

αo

αi


︸ ︷︷ ︸
α:3×1

+


βsm

βem

βim


︸ ︷︷ ︸

β :3×1

Mktt + ε t , ε t ∼N (0, Σ︸︷︷︸
3×3

) (A2)
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HMLt

RMWt

CMAt

MOMt


︸ ︷︷ ︸

f ∗t :4×1

=



β ∗hm β ∗hs β ∗he β ∗hi

β ∗rm β ∗rs β ∗re β ∗ri

β ∗cm β ∗cs β ∗ce β ∗ci

β ∗om β ∗os β ∗oe β ∗oi


︸ ︷︷ ︸

β
∗:4×4



Mktt

SMBt

ROEt

IAt


+ ε
∗
t , ε

∗
t ∼N (0, Σ∗︸︷︷︸

4×4

). (A3)

To generate data from the DGP, we have to fix the parameters at some suitable values. A sensible

choice is to fix the parameters at the maximum likelihood (ML) values to ensure that the generated

data resemble the real data. A key point is that we should ensure that the generating DGP is a

valid model for the purpose of generating our data. By “valid model” we mean a model in which

the fitted stochastic discount factor (SDF) suggests that each assumed risk factor is statistically

significant. In other words, if we let the SDF be given by

Mt = 1−λ
′
xΩ−1

x (xt−µx),

the fitted values of b′ = λ
′
xΩ−1

x should each be significant. Otherwise, the maintained assumption

that the factors {Mkt,SMB,ROE, IA} are the risk factors would be counter to the evidence and

the data generated from such a DGP would lead to misleading model comparisons. To isolate

the models that we can use to generate the data, we find the ML estimates of b for each of the

128 models from monthly data on the aforementioned risk factors that run from January 1968

to December 2015 with 576 observations in total.6 We select these DGPs by fitting each of the

128 possible models to the actual data by ML and then checking whether any component of the

vector b′ = λ
′
xΩ−1

x is insignificant. If any component is insignificant, the collection of factors

xt = (Mkt, f t)
′ in that model are not used as a DGP in the simulation exercise.

For each of the 128 possible models, the ML estimates of the parameters and of b are obtained

6The Mkt, SMB, HML, RMW, and CMA factors are from Kenneth French’s website.We thank the authors for
making the data available. We also thank Lu Zhang for providing us the ME, ROE, and IA factors.
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as follows. Given a particular xt = (Mkt, f t)
′ and under the pricing restrictions, any one of candidate

factor models takes the form

xt = Ωxb + ηx,t (A4)

f ∗t = β
∗xt + ε

∗
t , ε

∗
t ∼NK−L(0,Σ∗), (A5)

where ηx,t

ε∗t

∼NK

0,

Ωx 0

0 Σ∗


 . (A6)

Using the data from January 1968 to December 2015, we find the estimate of b by maximizing the

log-likelihood function of the model implied by (A4) to (A6) and calculate the variance-covariance

matrix of the estimate as the negative inverse of the Hessian matrix of the likelihood function at

the ML estimate. A model is used to generate data in our simulation experiments if each element

in b is significant at the 5% level.

Appendix B

In this appendix we give the proof of the Jacobian term used in Proposition 3.

Proof. By definition, the Jacobian is

∣∣∣∣∣det

(
∂g−1

j (η j)

∂η ′j

)∣∣∣∣∣=

∣∣∣∣∣∣∣det

 ∂β1

∂β
′
j

∂β1

∂β
∗′
j,m

∂β1

∂β
∗′
j, f

∂β1
∂σ ′j

∂β1
∂σ∗′j

∂σ1

∂β
′
j

∂σ1

∂β
∗′
j,m

∂σ1

∂β
∗′
j, f

∂σ1
∂σ ′j

∂σ1
∂σ∗′j


∣∣∣∣∣∣∣ .

Partition β 1 and σ1,

β 1 =

 β
f
1 : (L j−1)×1

β
f∗
1 : (K−L j)×1
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σ1 =


σ

f
1 :

L j(L j−1)
2 ×1

σ
f f∗
1 : (K−L j)(L j−1)×1

σ
f∗
1 :

(K−L j)(K−L j+1)
2 ×1

 ,

so that the Jacobian can be rewritten as

∣∣∣∣∣det

(
g−1

j (η j)

∂η ′j

)∣∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det
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′
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f
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j
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f f∗
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j,m

∂σ
f f∗
1
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∗′
j, f

∂σ
f f∗
1

∂σ ′j

∂σ
f f∗
1

∂σ∗′j

∂σ
f∗
1

∂β
′
j

∂σ
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1

∂β
∗′
j,m

∂σ
f∗
1

∂β
∗′
j, f
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f∗
1
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Since the partial derivatives in the first row are

∂β
f
1

∂β
′
j

= IL j−1,
∂β

f
1

∂β
∗′
j,m

= 0,
∂β

f
1

∂β
∗′
j, f

= 0,
∂β

f
1

∂σ ′j
= 0,

∂β
f
1

∂σ∗′j
= 0,

we have that
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In addition, because

∂σ
f
1

∂σ ′j
= I L j(L j−1)

2

,
∂σ

f
1

∂β
∗′
j,m

= 0,
∂σ

f
1

∂β
∗′
j, f

= 0,
∂σ

f
1

∂σ∗′j
= 0,
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we can further reduce the Jacobian to

∣∣∣∣∣det

(
∂g−1

j (η j)

∂η ′j

)∣∣∣∣∣=
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Finally, because
∂β
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1
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j,m
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1
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= I (K−L j)(K−L j+1)

2

,
∂β

f∗
1

∂σ∗′j
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∂σ
f f∗
1

∂σ∗′j
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the determinant can be evaluated as

∣∣∣∣∣det

(
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j (η j)
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)∣∣∣∣∣=

∣∣∣∣det
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f f∗
1
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∣∣∣∣det
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∂

(
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)
β
∗
j, f

∂β
∗′
j, f

)∣∣∣∣
= |Σ j⊗ IK−L j |

= |Σ j|K−L j .

Appendix C

In this appendix we provide detail for calculation of CZZ Marginal Likelihoods: General Case.

We calculate marginal likelihood using the basic marginal likelihood identity in Chib (1995): for

any θ , it holds that

m(y) =
p(y|θ )π(θ )

π(θ |y)
, (C7)
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where the numerator is just the product of the sampling density (likelihood function) and the prior

density of parameters, with all integrating constants included, and the denominator is the posterior

density of θ .

We provide Bayes update results for multivariate normal regression. For t = 1,2, . . . ,T ,

yt︸︷︷︸
d×1

= B︸︷︷︸
d×k

xt︸︷︷︸
k×1

+ et︸︷︷︸
d×1

, et
i.i.d.∼ Nd(0,Σ).

It can be rewritten as matrix form, i.e.

Y︸︷︷︸
T×d

= X︸︷︷︸
T×k

B′︸︷︷︸
k×d

+ E︸︷︷︸
T×d

,

and after taking transpose and vec we get

y = (X⊗ Id)β + e, e∼N (0, IT ⊗Σ),

where

y = vec(Y ′) and β = vec(B).

Throughout this appendix, the hat denote the least squares estimators of parameters. The least

squares estimator of B′ is given by

B̂′ = (X ′X)−1X ′y,

so

β̂ = vec
(
B̂
)

=
(
(X ′X)−1X ′⊗ Id

)
y.

Suppose that

β ∼N (β 0,D
−1
0 ),
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where D0 is precision matrix. Applying Bayes update

β |y,Σ∼N (β 1,D
−1
1 ),

where

D1 = D0 + (X ′X⊗Σ−1) and β 1 = D−1
(

D0β 0 +
(
X ′X⊗Σ−1

)
β̂ LS

)
.

In model M j, j = 2,3, ..., J̃, let f̃ j denote the risk factors with dimension L j× 1 and let f ∗j

denote the non-risk factors with dimension (K−L j)×1. The model is given by

f̃ j,t = α̃ j + ε̃ j,t , ε̃ j,t ∼NL j

(
0,Σ j

)
(C8)

f ∗j,t = B∗j, f f̃ j,t + ε
∗
j,t , ε

∗
j,t ∼NK−L j

(
0,Σ∗j

)
(C9)

and its nuisance parameters are

η j =
(

β
∗
j, f ,σ j,σ

∗
j

)
,

where β
∗
j, f = vec(B∗j, f ), σ j = vech(Σ j), and σ∗j = vech(Σ∗j). Under the collection of priors in

Proposition 4, with the value of c set equal to 1, and α̃ j|M j ∼ NL j (α̃ j0,k jΣ j), the marginal

likelihood of model M j, j = 2,3, ..., J̃, on the log-scale is given by

log m̃(ynt+1:T |M j) = log m̃( f̃ j,nt+1:T |M j) + log m̃( f ∗j,nt+1:T |M j). (C10)

To calculate the marginal likelihood on the log-scale for the top model, we apply the equation (C7)

on the log-scale

log m̃( f̃ j,nt+1:T |M j) = log p( f̃ j,nt+1:T |M j, α̃ j,Σ j)

+ log π(α̃ j|M j,Σ j) + log ψ̃(Σ j|M j)

− log π(α̃ j|M j,Σ j, f̃ j,nt+1:T )− log π(Σ j|M j, f̃ j,nt+1:T ),

(C11)
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where the first three terms are sampling density and the prior density of parameters:

p( f̃ j,nt+1:T |M j, α̃ j,Σ j) =
T

∏
t=nt+1

NL j ( f̃ j,t |α̃ j,Σ j) (C12)

π(α̃ j|M j,Σ j) = NL j (α̃ j|α̃ j0,k jΣ j) (C13)

ψ̃(Σ j|M j) = |Σ j|−
2L j−K+1

2 . (C14)

The fourth term can be obtained by applying the results of multivariate normal regression for

t = nt + 1, . . . ,T , thus

π(α̃ j|M j,Σ j, f̃ j,nt+1:T ) = NL j (α̃ j|α̃ j1,D−1
j1 ), (C15)

where

α̃ j1 =
1

T̃ k j + 1
α̃ j0 +

T̃ k j

T̃ k j + 1
ˆ̃α j and D j1 = (

1

k j
+ T̃ )Σ−1

j . (C16)

To obtain the fifth term, we calculate

p( f̃ j,nt+1:T |M j,Σ j)

=
∫

p( f̃ j,nt+1:T |M j, α̃ j,Σ j)π(α̃ j|M j,Σ j)dα̃ j

=
∫

p( f̃ j,nt+1:T |M j,a j,Σ j)π(a j|M j,Σ j)da j,

where a j = α̃ j− α̃ j0 and π(a j|M j,Σ j) = NL j (a j|0,k jΣ j). Thus

p( f̃ j,nt+1:T |M j,Σ j)

=
∫

(2π)−
T̃ L j
2 |Σ j|−

T̃
2 e−

1
2SSEe−

1
2 (a j−â j)

′(T̃ Σ−1j )(a j−â j)(2π)−
L j
2 |k jΣ j|−

1
2 e−

1
2a′j(k−1j Σ−1j )a j da j

=|T̃ k j + 1|
T̃
2 (2π)−

T̃ L j
2 |Σ j|−

T̃
2 e−

1
2 (SSE+R)∫

(2π)−
L j
2 |(k−1

j + T )−1Σ j|−
1
2 e−

1
2 (a j−â j)

′((k−1j +T)Σ−1j )(a j−â j)da j
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where the integral is equal to one and

SSE + R =
T

∑
t=nt+1

( f̃ j,t− α̃ j0− â j)
′Σ−1

j ( f̃ j,t− α̃ j0− â j) +
T̃ k−1

j

k−1
j + T̃

â′jΣ
−1â j

=tr
(

Ψ jΣ
−1
j

)

where

Ψ j =
T

∑
t=nt+1

( f̃ j,t− ˆ̃α j)
′( f̃ j,t− ˆ̃α j) +

T̃
T̃ k j + 1

( ˆ̃α j− α̃ j0)′( ˆ̃α j− α̃ j0).

Combining with ψ̃(Σ j|M j), we achieve

π(Σ j|M j, f̃ j,nt+1:T ) ∝ p( f̃ j,nt+1:T |M j,Σ j)ψ̃(Σ j|M j)

∝ |Σ|−
T̃+L j−K+L j+1

2 e−
1
2 tr(Ψ jΣ

−1
j ),

which follows an inverse Wishart distribution with degree of freedom ν = T̃ +L j−K and the scale

matrix is Ψ j. So the fifth term is given by

π(Σ j|M j, f̃ j,nt+1:T ) = I W L j (Σ j|Ψ j,ν). (C17)

Plugging equations (I.6) - (I.11) back into equation (I.5), after cancellation, we get

log m̃( f̃ j,nt+1:T |M j) =log(2π)−
T̃ L j
2 + log |T̃ k j + 1|

T̃
2 − log |Ψ j|

ν

2 + log 2
νL j
2 + log ΓL j

(
ν

2

)
=−

(K−L j)L j

2
log 2−

T̃ L j

2
log π−

L j

2
log(T̃ k j + 1)

−
(
T̃ + L j−K

)
2

log |Ψ j|+ log ΓL j

(
T̃ + L j−K

2

)
.

To calculate the marginal likelihood on the log-scale for the bottom model, we apply the equa-
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tion (C7) on the log-scale

log m̃( f ∗j,nt+1:T |M j) = log p( f ∗j,nt+1:T |M j,β
∗
j, f ,Σ

∗
j)

+ log π(β
∗
j, f |M j,Σ

∗
j) + log ψ̃(Σ∗j |M j)

− log π(β
∗
j, f |M j,Σ

∗
j , f ∗j,nt+1:T )− log π(Σ∗j |M j, f ∗j,nt+1:T ),

(C18)

where the first three terms are sampling density and the prior density of parameters:

p( f ∗j,nt+1:T |M j,β
∗
j, f ,Σ

∗
j) =

T

∏
t=nt+1

NL j ( f ∗j,t |B∗j, f f̃ j,t ,Σ
∗
j) (C19)

π(β
∗
j, f |M j,Σ

∗
j) = 1 (C20)

ψ̃(Σ∗j |M j) = |Σ∗j |−
−K+1

2 . (C21)

The fourth term can be obtained by applying the results of multivariate normal regression for

t = nt + 1, . . . ,T , thus

π(β
∗
j, f |M j,Σ

∗
j , f ∗j,nt+1:T ) = NK−L j (β

∗
j, f |β̂

∗
j, f ,D

∗−1
j1 ), (C22)

where

D∗j1 = W ∗j ⊗Σ∗−1
j and W ∗j =

T

∑
t=nt+1

f̃ j,t f̃
′
j,t (C23)

To obtain the fifth term, we calculate

p( f ∗j,nt+1:T |M j,Σ
∗
j)

=
∫

(2π)−
T̃ (K−L j)

2 |Σ∗j |−
T̃
2 e−

1
2SSE∗e−

1
2 (β j, f−β̂ j, f )′(W ∗j ⊗Σ∗−1j )(β

∗
j, f−β̂

∗
j, f )dβ

∗
j, f

=(2π)−
(T̃−L j)(K−L j)

2 |Σ∗j |−
T̃−L j

2 |W ∗j |−
K−L j

2 e−
1
2SSE∗∫

(2π)−
L j(K−L j)

2 |W ∗−1
j ⊗Σ∗j |−

1
2 e−

1
2 (a j−â j)

′(W ∗j ⊗Σ∗−1j )(a j−â j)da j
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where the integral is equal to one and

SSE∗ =
T

∑
t=nt+1

( f ∗j,t− B̂
∗
j, f f̃ j,t)Σ∗−1( f ∗j,t− B̂

∗
j, f f̃ j,t)

′

=tr
(

Ψ∗jΣ
∗−1
j

)

where

Ψ∗j =
T

∑
t=nt+1

( f ∗j,t− B̂
∗
j, f f̃ j,t)( f ∗j,t− B̂

∗
j, f f̃ j,t)

′.

Combining with ψ̃(Σ j|M j), we achieve

π(Σ j|M j, f̃ j,nt+1:T ) ∝ p( f̃ j,nt+1:T |M j,Σ j)ψ̃(Σ j|M j)

∝ |Σ|−
T̃−L j+K+1

2 e−
1
2 tr(Ψ∗j Σ

∗−1
j ),

which follows an inverse Wishart distribution with degree of freedom ν∗ = T̃ and the scale matrix

is Ψ∗j . So the fifth term is given by

π(Σ∗j |M j, f ∗j,nt+1:T ) = I W K−L j (Σ̂∗j |Ψ∗j ,ν∗). (C24)

Plugging equations (I.13) - (I.18) back into equation (I.12), after cancellation, we get

(K−L j)L j

2
log 2−

(K−L j)(T̃ −L j)

2
log π

−
(
K−L j

)
2

log |W ∗j |−
T̃
2

log |Ψ∗j |+ log ΓK−L j

(
T̃
2

)
.
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