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Humans are remarkable in their ability to perform highly complicated behaviors with ease and 

little conscious thought. Successful speech comprehension, for example, requires the 

collaboration of multiple sensory, perceptual, and cognitive processes to focus attention on the 

speaker, disregard competing cues, correctly process incoming audio stimuli, and attach meaning 

and context to what is heard. Investigating these phenomena can help unravel crucial aspects of 

human behavior as well as how the brain works in health and disease. However, traditional 

methods typically involve isolating individual variables and evaluating their decontextualized 

contribution to an outcome variable of interest. While rigorous and more straightforward to 

interpret, these reductionist methods forfeit multidimensional inference and waste data resources 

by collecting identical data in every participant without considering what is the most relevant for 

any given participant. Methods that can optimize the exact data collected for each participant 

would be useful for constructing more complex models and for optimizing expensive data 

collection. Modern tools, such as mobile hardware and large databases, have been implemented 
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to improve upon traditional methods but are still limited in the amount of inference they can 

provide about an individual. To circumvent these obstacles, a novel machine learning framework 

capable of quantifying behavioral functions of multiple variables with practical amounts of data 

has been developed and validated. This framework is capable of linking even loosely related 

input domains and measuring shared information in one comprehensive assessment.   

The work described in this thesis first evaluates this framework for active machine learning 

audiogram (AMLAG) applications. AMLAG customizes the generalized framework to 

efficiently, accurately, and reliably estimate audiogram functions. Audiograms provide a 

measure of hearing ability for each ear in the inherently two-dimensional domain of frequency 

and intensity. Where clinical methods rely on reducing audiogram acquisition to a one-

dimensional assessment, AMLAG has been previously verified to provide a continuous, two-

dimensional estimate of hearing ability in one ear. 

Modeling two ears that are physiologically distinct but are defined in the same frequency-

intensity input domain, AMLAG was extended to bilateral audiogram acquisition. Left and right 

ears are traditionally evaluated completely unilaterally. To realize potential gains, AMLAG was 

generalized from two unilateral tests to a single bilateral test. The active bilateral audiogram 

allows observations in one ear to simultaneously update the model fit over both ears. This thesis 

shows that in a cohort of normal-hearing and hearing-impaired listeners, the bilateral audiogram 

converges to its final estimates significantly faster than sequential active unilateral audiograms.  

The flexibility of a framework capable of informative individual inference was then evaluated 

for dynamically masked audiograms. When one ear of an individual can hear significantly better 

than the other ear, assessing the worse ear with loud probe tones may require delivering masking 
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noise to the better ear in order to prevent the probe tones from inadvertently being heard by the 

better ear. Current masking protocols are confusing, laborious and time consuming. Adding a 

standardized masking protocol to the AMLAG procedure alleviates all of these drawbacks by 

dynamically adapting the masking to an individual’s specific needs. Dynamically masked 

audiograms are shown to achieve accurate threshold estimates and reduce test time compared to 

current clinical masking procedures used to evaluate individuals with highly asymmetric hearing, 

yet can also be used effectively and efficiently for anyone. 

Finally, the active machine learning framework was evaluated for estimating cognitive and 

perceptual variables in one joint assessment. Combining a verbal N-back and speech-in-noise 

assessment, a joint estimator links two disjoint assessments defined by two unique input domains 

and, for the first time, offers a direct measurement of the interactions between two of the most 

predictive measures of cognitive decline. Young and older healthy adults were assessed to 

investigate age-related adaptations in behavior and the inter-subject variability that is often seen 

in low-dimensional speech and memory tests. The joint cognitive and perceptual test accurately 

predicted standalone N-back but not speech-in-noise performance. This first implementation did 

not reveal significant interactions between speech and memory. However, the joint task 

framework did provide an estimate of participant performance over the entire two-dimensional 

domain without any experimenter-observed scoring and may better mirror the challenges of real-

world tasks. While significant age-related differences were apparent, substantial within group 

variance led to evaluating joint test performance in predicting individual differences in neural 

activity.  

Speech-in-noise tests may activate non-auditory specific networks of the brain as age and task 

difficulty increase. Some of these regions are domain-general networks that are also active 
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during verbal working memory tests. Functional brain images were collected during an in-

scanner speech-in-noise test for a portion of the joint test participants. Individual brain activity at 

regions of interest in the frontoparietal, cingulo-opercular, and speech networks was correlated to 

performance on the joint speech and memory test. No significant correlations were found, but the 

joint estimation of neural, cognitive, and perceptual behaviors through this framework may be 

possible with further test adaptations. Generally, the lack of significant findings does not detract 

from the feasibility and utility of a generalized framework that can accurately model complex 

cognitive, perceptual, and neural processes in individuals. As demonstrated in this thesis, high-

dimensional, individual testing procedures facilitate the direct assessment of complicated human 

behaviors empowering equitable, informative, and effective test methods. 
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Chapter 1: Introduction and Motivation 

1.1 Motivation: The Need for Individual-Specific Models 

Fast and accurate individual assessments of cognition and perception have the potential to 

change the way clinical medicine and scientific research are conducted. Previous research shows 

that individual differences in cognition and perception can indicate functional changes in brain 

activity, occasionally disputing long-held assumptions (for example, Lafer-Sousa, Hermann, & 

Conway, 2015; Wallisch, 2017). However, current methods are formulated to interpret 

potentially informative variance as noise or error when computing population-based analysis. 

Often, data deemed to be too distant from the majority trend is removed from analysis 

completely. If not, all data are averaged together, potentially obscuring the predictive power of 

any one point. But, on occasion, highly variable data may result from informative individual 

differences in a participant’s specific life context that could inform the results. In these cases, 

removing participants from a data set or averaging their results together with the majority group 

will prevent potentially important research conclusions from being considered.  

This is demonstrated in a series of recent studies identifying significant individual differences in 

the activation of whole brain functional magnetic resonance imaging (fMRI) networks (Gordon, 

Laumann, Adeyemo, & Petersen, 2017; Gordon, Laumann, Gilmore, et al., 2017; Laumann et al., 

2015; Marek et al., 2018; Mueller et al., 2013). Earlier studies were vital in revealing the central 

tendencies of specific neural networks, like the default mode network, but individual specificity 

could not be researched due to the perceived cost of data collection, be it in scan time or resource 

scarcity. However, technical advancements and the commitment of the research community have 
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paved the way for extensive data collection to be done in individual brains and has empowered 

the examination of individual differences in neural networks. Consequently, replicable, 

individual-specific features of many brain systems have been identified. Group averaged results 

smooth away disparate imaging data, but focusing on individual brain systems provides the 

foundation to explore individual-specific neural function or connectivity and its relation to 

personality, aging, and disease. These studies demonstrate that group averaged results do not 

always fully represent an individual and may be concealing revelatory facets of neural systems. 

Relying solely on group level analysis could limit the applicability of fMRI data-driven 

conclusions, and there is merit in considering individual differences in neural organization. 

Besides brain networks, the last 20 years witnessed an emerging body of research across 

disciplines implicating socioeconomic class, cultural upbringing, race, gender, or even musical 

training in impacting basic cognitive and perceptual behaviors (for example, Aneshensel, Ko, 

Chodosh, & Wight, 2012; Kagan, 2018; Krecic-Shepard et al., 2000; Magee, Blum, Lates, & 

Jusko, 2001; McFarland, 2017). Most concerningly, when researchers and clinicians fail to 

incorporate individual life context into their studies, critical medical decisions can be affected. A 

recent study by Obermeyer et al (2019) revealed implicit racial bias in the proprietary algorithms 

used to determine health care needs and the distribution of additional care support programs to 

patients. This outcome resulted from the algorithm’s intentional exclusion of race as a predictive 

factor combined with the manufacturer’s decision to predict health care costs above other metrics 

(such as avoidable future costs). A more equitable algorithm estimating a multidimensional 

variable that combines a prediction of patient health and avoidable future costs was suggested. 

Simply omitting predictor variables can perpetuate model bias. However, without the ability to 
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determine the most relevant predictive factors and the flexibility to incorporate multidimensional 

estimates into the model, this particular health disparity would have continued indefinitely.  

Decontextualizing human behavior based on a small vector of pre-selected features is proving to 

be problematic in real-world applications. It is becoming apparent that approaches considering 

individual context in addition to group-level analysis are necessary to successfully link the 

results of basic science research to relevant and practical applications. This is even more critical 

in view of the current push for reproducible science. As a result of numerous pervasive 

shortcomings in experimental design, analysis, and publication culture, many previously 

published results have failed to be reliably reproduced (Ioannidis, 2005; Open Science 

Collaboration, 2015). In 2016, the NIH recognized that one gap in reproducible research is the 

historically inadequate consideration of a basic individual factor, sex, as a predictive variable. 

Study proposals are now mandated to explicitly address sex as a biological variable (National 

Institute of Health, 2016). Sex and race are just two examples of individual-specific variables 

that have been ignored to the detriment of the research community and the advancement of 

useful, scientifically sound outcomes. The reality is probably much bleaker, as it is challenging 

to determine a priori which individual-specific variables should be included in current models. 

Researchers try to incorporate diversity into their subject pool and perform statistical measures to 

ensure the predictive power of their study, but the uniqueness of life experience, genetics, and 

other identifying features means any one person cannot be fully represented by a cohort (Rose, 

Rouhani, & Fischer, 2013). Narrowing the scope of investigation to ignore the complexity of the 

human experience not only makes it difficult to reproduce results in a new cohort, but it limits 

our understanding of basic science, affects patient outcomes, and may introduce unexpected bias. 
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1.2  Motivation: The Limitations of Current 

Multidimensional Models 

Most complex human behaviors, including speech comprehension and working memory tasks, 

are inherently multidimensional (Cacace & McFarland, 2013; McFarland, 2017). Unfortunately, 

high-dimensional models cannot often be constructed for individuals because of the immense 

data requirements—psychophysical and psychometric tests require a large amount of data in 

order to draw robust conclusions for individual participants.  

Despite technological advancements, researchers are limited in how many queries can be made 

in one experiment. Multidimensional measures very quickly encounter what is referred to as the 

‘curse of dimensionality’ or ‘big p, small N’ bottlenecks. Namely, increasing the dimension of the 

feature space being assessed necessitates an exponential increase in the number of observations 

needed to make substantial claims and avoid overfitting the data (Alyass, Turcotte, & Meyre, 

2015; Barbour, 2019; Johnstone & Titterington, 2009). Necessarily, current methods are largely 

constrained to delivering a series of unidimensional behavioral tests, meaning, testing one 

domain at a time without context. This procedure ensures subjects do not fatigue, which would 

lead to excessive errors or lapses. Accumulated data can fit a model to relate the observed 

behavior directly to the single dimension of the domain being assessed. Studies aiming to 

explore the possible interactions between unidimensional measures are limited to deploying 

numerical methods after data are collected in order to determine correlations between stimulus 

features.  

Parametric models, such as generalized linear models, and advanced machine learning methods 

are commonly implemented to determine the relationships between multiple input domains. 
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These models can capture interactions but may require predictor variables to be determined 

empirically based on large amounts of data already collected. Even innovative, high-dimensional 

machine learning methods require extensive computing resources, time, and large data sets. Still, 

they essentially reduce participants to a set of pre-selected features. Additionally, most models 

are inflexible in that once they are trained under an assumed function, all predictions on unseen 

data are restricted to the specific model definition. There is little room for individuals or subsets 

of a cohort to adapt the model in real time.  

Although favored because data collection is more feasible and highly controlled experiments are 

easier to interpret, unidimensional methods waste data collection resources by collecting 

identical data in every participant, without considering what is the most relevant data for any 

given participant. Methods to investigate the interactions of multiple stimulus dimensions are 

severely underpowered, and many complex behaviors, such as working memory and speech 

comprehension, are not adequately modeled by current methods (Paivio, 2014; Read, 2015). 

Relying on correlation measures to hypothesize about the profoundly intricate aspects of 

complex human behavior is often reductionist, and verifying that any given correlation is 

accurate or meaningful is burdensome (Varoquaux & Poldrack, 2019). Effectively modeling 

multidimensional behaviors would make efficient use of data collecting resources by reducing 

redundant queries probing overlapping domains and would provide more informative estimates 

of complex, individual behaviors. 

1.3  Concluding Remarks 

Adapting algorithms and developing models capable of multidimensional, individual inference 

requires time and tools that many research and clinical teams do not have. The burden must be 
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on researchers and clinicians to discover methods capable of incorporating individual differences 

in a reasonable time and with enough detail to inform clinical decisions. A framework that can 

assess only the most informative features for any given participant, while allowing those exact 

features to vary from participant to participant, would allow for equitable, informative, and 

effective testing procedures.  

To that end, a novel machine learning framework has been developed. This framework employs 

a Gaussian process (GP) Bayesian inference method along with active learning techniques to 

model multidimensional input domains with practical amounts of data. Collecting more 

informative data in less time, this machine learning framework can address some of the 

shortcomings of conventional methods. The GP framework can flexibly encode relationships 

between domain spaces in real time rather than estimating the relevant parametric form after data 

collection. Prior beliefs can be incorporated into the framework, but, given the appropriate 

definitions, the GP can adapt to observed data and is not restricted to experimenter assumptions 

about the underlying structure of the data. Active learning techniques can optimize data 

collection for each participant by choosing the most informative next point to probe given all of 

the previously collected data in that participant. Individual test sessions can vary in what data are 

observed to best model the domain of interest. Making efficient use of data and exploiting the 

advantages of an iterative, Bayesian inference algorithm, multidimensional behaviors can be 

estimated in individuals. 

The thesis work presented here leverages this active machine learning GP framework to model 

complex, individual behaviors in perception and cognition. Concepts relevant to this thesis will 

be introduced in Chapter 2. Chapter 3 will extend a previously validated application of the GP 
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framework in audiogram acquisition in one ear to estimate bilateral audiogram functions. 

Bilateral audiogram estimation represents a four-dimensional space and efficiently performs 

simultaneous assessments of two ears in one test. Chapter 4 will evaluate the flexibility of a 

framework capable of informative individual inference by extending machine learning 

audiogram acquisition to include dynamically masked audiograms, which typically requires long 

test times for a small set of patients. Chapters 3 and 4 will have demonstrated the flexibility and 

efficiency of a framework capable of multidimensional, individual inference for perceptual 

behaviors that are physiologically distinct but are similarly defined. Chapter 5 will extend the 

framework from modeling multidimensional, individual behaviors in perception (hearing ability) 

to estimate perceptual and cognitive variables in one joint assessment. Combining a verbal N-

back and speech-in-noise assessment, a joint estimator links two disjoint assessments defined by 

two unique input domains and, for the first time, offers a direct measurement of the interactions 

between two of the most predictive measures of cognitive decline. Chapter 6 will evaluate joint 

test performance in predicting individual differences in neural activity.   
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Chapter 2: Background 

2.1 Inference Background 

Human discovery is predicated on the principle that underlying systems govern most experienced 

phenomena. An understanding of these systems is developed and tested based on observations 

about the world. Using these observations, inferences can be made that predict the consequences 

of future actions. Mathematical models have been developed to formalize these inquiries and 

approximate the properties of latent systems based on a set of observations. 

Psychophysics studies the relationship between measurable physical properties and their 

behavioral response. Typically, data are collected by systematically adjusting a feature of a 

universally understood stimulus and recording the corresponding behavioral response (Fechner, 

1860). Data are often fitted to a psychometric function. Psychometric functions help decipher 

how sensory information is encoded and how perception is affected by varying stimulus features 

(Read, 2015). In its simplest form, a psychometric function is a unidimensional sigmoid 

modeling the probability of participant detection or discrimination of stimuli across the input 

domain (Figure 2.1).  

 
Figure 2. 1: Example of a psychometric function. The 50% threshold is indicated by a green star. Stimuli 

presented at levels above threshold have a higher probability of being detected. 
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Psychometrics attempt to quantitatively measure cognitive processes by means of behavioral 

assessment. Many psychometric tests assign a participant a score that, when considered with 

respect to a larger population, quantifies an aspect of an individual’s cognitive ability. 

Standardized educational testing and intelligence tests are demonstrative of psychometric 

assessments in the real world. In research, psychometric tests are often used to ascertain the 

properties of a population in order to describe the underlying systems of cognition and to 

categorize ‘normal’ function.  

Both traditional psychophysical and psychometric assessments demand large amounts of data to 

be collected. Useful perceptual models often necessitate individual estimates of the interactions 

between variables being studied, and robustly estimating unidimensional psychometric functions 

requires substantial data in individual participants. This is almost never done in cognitive 

models. While both could leverage distributions across populations, cognitive models have 

focused almost exclusively on that. Population-based models are sensitive to the properties of the 

larger group. Differences within and between populations may alter the reliability of a measure 

and could lead to inaccurate inferences (Cooper, Gonthier, Barch, & Braver, 2017). To address 

this concern, researchers must ensure that their study pools are sufficiently large and 

representative of the population to power reproducible conclusions. Thus, intersubject inference 

often requires data to be collected in large or fairly homogeneous populations. Informative 

intrasubject inference is therefore challenging in many cognitive tests because cohort-level 

analysis is often a prerequisite to meaningful individual inference.  
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Intersubject variability inference can always be peformed with intrasubject variability models, 

but the converse is not true. Therefore, improving the process of forming intrasubject models 

would have broad impact. 

2.2 Machine Learning Background 

2.2.1  General Machine Learning Background 

Due to their ability to deduce meaning from large, complex sets of data, machine learning 

methods have become popular in a wide variety of applications from finance to health care to 

neural networks. Machine learning has become an umbrella term that encompasses a variety of 

methods and, for clarity, has been subdivided into supervised and unsupervised learning.  

In supervised machine learning methods, the previously observed relationships between features 

of data and the resulting output measurements are used to train models to predict unobserved 

measurements. A wide variety of supervised machine learning algorithms have been developed 

to model complicated datasets. Models can be parametric or non-parametric. Parametric models 

make assumptions about the shape and characteristics of the underlying function, 𝑓, simplifying 

the prediction process. Necessarily, parametric models constrain the form of the underlying 

function, which can limit the fit of the model to the data. Non-parametric models offer more 

complex modeling and usually require substantially more computational effort and observed data 

to train. An advantage of non-parametric models is that 𝑓 can be deduced from the features 

observed and can still accurately fit the data even if confident prior assumptions of 𝑓 cannot be 

made. 
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Further classifying machine learning methods, supervised learning can be subdivided into 

regression and classification techniques. Regression endeavors to define the function, 𝑓, that 

relates a set of feature variables to the dependent measurements extracted from a finite set of 

observations. The value of unobserved measurements can then be predicted based on 𝑓. 

Classification, on the other hand, defines the function, 𝑓, that separates the observed data into a 

proper grouping scheme with respect to the selected features. Delineating cats from fish based on 

the number of legs is a simple example. The probability of future observations belonging to 

either of the groups can be calculated from 𝑓. The work in this thesis employs classification and 

regression of a non-parametric, supervised learning model: a Gaussian process (GP) model. 

2.2.2   Gaussian Process Framework 

A GP is a set of random variables such that any subset sampling exhibits a multivariate Gaussian 

distribution (Rasmussen & Williams, 2006). Being Gaussian in nature, any function drawn from 

a GP is fully explained by its mean and covariance function. The mean function describes the 

central tendency of the underlying function while the covariance function accounts for its 

structure. Any parameters of the mean and covariance functions are referred to as 

hyperparameters. Hyperparameters can be learned or fixed and can encode information about the 

domain or retain an uninformative distribution. Hyperparameters that are learned as the 

algorithm iterates allow the shape of the estimated function to change in global structure as more 

data are observed. The flexibility of a GP is evidenced in the freedom to represent the covariance 

and mean functions in any functional form that best reflects the assumptions over the latent 

function being modeled. GPs can be used for regression and, with modification, for 

classification. 



12 

 

GPs are capable of capturing nonlinear relationships between the input and output data, and 

application-specific prior beliefs of the underlying function can be incorporated through prior 

distributions (Rasmussen & Williams, 2006). In the framework used in this thesis, observed data 

condition a GP prior using Bayesian inference.  

Bayesian Inference 

Bayesian inference techniques have become increasingly popular in building models of 

perception, cognition, and neural processes (for reviews see Chater, Oaksford, Hahn, & Heit, 

2010; Parr, Rees, & Friston, 2018). Many well-designed models attempt to isolate the 

phenomenon they are observing, aiming to maximize the confidence in which they postulate an 

underlying system’s properties. However, the complex systems that govern cognitive and 

perceptual behaviors are often dynamic and must contend with epistemological variance in any 

observed data. Bayesian inference, unlike other methods, is equipped to incorporate noisy 

observations directly into model design. Fundamental beliefs about the latent system can be 

encapsulated into a prior distribution, and a carefully chosen likelihood function can model how 

observations are generated (including assumptions of variance). As data are observed, Bayesian 

inference applies Bayes’ Theorem to derive a posterior distribution that describes the updated 

beliefs about the underlying system (Bayes & Price, 1763; Jaynes, 2003). The posterior 

distribution takes into account the observational model and the prior assumptions and returns a 

prediction of uncertainty. Bayesian inference performs well even with relatively small data sets. 

Additionally, it is straightforward to iteratively update the model as new data are collected. In 

this case, the posterior distribution is reassigned as the prior distribution and updated using the 

new likelihood function that incorporates a new observation. Being a composite measure, neither 

the prior distribution nor the likelihood function enforces complete control over the shape of the 
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posterior distribution. Iterative implementations allow the model to adjust and deviate as new 

data dictate. 

In the GP framework, the prior distribution, which is a GP, and the likelihood function are 

updated via Bayesian inference as data are observed. The resulting posterior distribution is also a 

GP, which becomes the new prior in the next iteration of data collection. Unlike many machine 

learning methods, GPs specify a posterior probability distribution of the underlying function for 

every point in the input domain. The posterior probability provides a confidence estimation of 

the model. The mean of the posterior distribution denotes the best prediction of the underlying 

function given all inputs. The uncertainty of the estimation can be represented by the variance of 

the posterior. Besides being non-parametric, the choice of an iterative Bayesian inference GP 

framework is advantageous in that it pairs well with active sampling techniques. Active sampling 

optimizes model performance by selecting the most informative next point at which to query. An 

acquisition function encapsulates the specific active sampling technique and defines what 

qualifies as the ‘most informative’ data to be sampled. In this thesis, the acquisition function is 

based on the posterior distribution’s variance when used in regression. For classification, new 

points are queried according to Bayesian active learning by disagreement, which minimizes the 

entropy of the posterior distribution (Garnett, Osborne, & Hennig, 2013; Houlsby, Huszar, 

Ghahramani, & Lengyel, 2011). In this way, each new query embodies the point at which the 

model is most uncertain given the previous stimulus and response pairs.  

This new framework can model a single psychometric function, improving on previous models 

by employing GPs and active sampling. This is referred to as disjoint estimation. Disjoint 

estimation resembles traditional psychometric models in that it samples and estimates within the 
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same input domain. Disjoint estimation is incredibly flexible in that it can estimate a standard, 

low-dimensional psychometric function over a continuous domain. Or, disjoint estimation can be 

used on complex, high-dimensional domains previously unexplored (combining speech-in-noise 

and working memory, for example). 

The GP framework is an iterative, Bayesian inference framework that can model non-parametric 

relationships between input data and observed measurements. Prior information can be encoded 

in the mean and covariance functions, and new data can be efficiently queried based on active 

learning techniques. The GP framework is designed to be flexible and efficient, even with small 

amounts of data. This enables intrasubject variability models that can scale to high-dimensional 

input domains while maintaining an efficiency and accuracy comparable to low-dimensional 

assessments.  

2.3 Audiology Background 

The initial applications of the machine learning framework have focused on the pure-tone 

audiogram. Pure-tone audiograms are the most commonly used assessment of hearing ability and 

represent a complex, yet well understood input domain. Accordingly, they are an ideal choice to 

validate new testing methodology.  

2.3.1   Hughson-Westlake Audiograms 

Pure-tone audiograms are inherently two-dimensional as each tone is defined by its frequency 

and intensity. Current clinical methods reduce audiogram estimation to a series of 

unidimensional tests, discretizing the frequency dimension. Pure-tone audiograms measure the 

lowest intensity at which an individual can detect a pure tone for a given set of frequencies. 

Typically, frequencies are selected at octave or half-octave intervals from 250 Hz to 8000 Hz 
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(American Speech-Language-Hearing Association, 2005). Tone intensities are often measured in 

units of hearing level (HL), which are calculated relative to their offset from a population-

representative ‘normal’ hearing curve. Audiograms deliver tones with intensities from −20 dB 

HL to 100 – 120 dB HL, depending on the frequency, in 5 dB increments (American Speech-

Language-Hearing Association, 2005). Clinically, a threshold at a fixed frequency is estimated 

by systematically varying the intensity of the tone delivered based on the individual’s reported 

response following the Hughson-Westlake audiogram (HWAG) procedure (Figure 2.2a) (Carhart 

& Jerger, 1959; Hughson & Westlake, 1944).  

At each frequency, the initial tone is presented at a level that is expected to be easily detected. 

Subsequent tones are delivered at lower and lower intensities until the tone is no longer reported 

as audible. At this point the intensity level is increased until it again reaches a level detected by 

the listener. When an individual’s response switches from ‘heard’ to ‘not heard’ it is considered a 

reversal. Adaptive up-down staircase methods are commonly used to estimate models of 

perception and cognition. In audiometry, this modified up-down method determines the 70.7% 

threshold of detection based on the averaged intensity of the reversals (Carhart & Jerger, 1959; 

Hughson & Westlake, 1944). This procedure is repeated for each frequency and for each ear. 

HWAG cannot provide a continuous threshold estimate of hearing ability across the frequency 

domain, but must linearly interpolate between discrete frequency estimates (Figure 2.2b). It 

follows that HWAG must determine the threshold estimate of one frequency before proceeding 

with subsequent frequencies, and incomplete frequency estimates cannot be exploited to improve 

the final threshold estimate. On average, pure-tone HWAG administered in the clinic require 

~100 tone presentations to obtain a six-octave audiogram threshold estimation for both ears 
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(Song et al., 2015). Details of an individual’s pathology (for example: narrow notched-shaped 

loss) can be missed if it occurs solely between the frequencies estimated (Kwak & Kwak, 2007). 

Simply adding more frequencies to the audiogram is often not practical as test time increases 

linearly with the number of frequencies estimated. Additionally, each frequency estimation often 

begins with highly uninformative stimuli, delivering tones well above threshold (see Figure 

2.2a).  

 
Figure 2. 2: Hughson-Westlake Audiogram (HWAG) procedure. Red diamonds denote ‘not heard’ 

responses, blue pluses denote ‘heard’ responses. A) Example of tones and responses for one frequency. 

Reversals between the ‘heard’ and ‘not heard’ responses determine the threshold. This procedure is 

repeated for each frequency. B) The final audiogram is a linear interpolation between discrete frequency 

threshold estimates. 

 

 

Automated audiometry methods present the opportunity for standardization and uniformity of 

hearing assessments regardless of patient hearing status. While manual HWAG is considered the 

clinical standard for threshold estimation, automated and adaptive techniques have demonstrated 

similar accuracy and reliability to manual audiometry (Ho, Hildreth, & Lindsey, 2009; 

Mahomed, Swanepoel, Eikelboom, & Soer, 2013; Shojaeemend & Ayatollahi, 2018; Swanepoel, 

Mngemane, Molemong, Mkwanazi, & Tutshini, 2010). These methods have yet to see 

widespread adoption. 
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2.3.2   Hearing Loss Categorization 

Hearing ability can be categorized as normal hearing, symmetric hearing loss, and asymmetric 

hearing loss (Figure 2.3). Normal hearing is defined as threshold estimates between -20 dB and 

15 dB at all frequencies. As the name implies, symmetric hearing loss refers to individuals with 

left and right ear thresholds within 10 dB of one another, matched at all frequencies. Asymmetric 

hearing loss individuals present with a minimum difference between left and right thresholds of 

10 dB at three contiguous frequencies or a 15 dB difference at any two or more frequencies 

(Margolis & Saly, 2008).  

 
Figure 2. 3: Hearing ability categorization. Red circles denote right ear thresholds; blue X’s denote left 

ear thresholds. A) Normal hearing. All thresholds are between −20 and 20 dB HL. B) Symmetric hearing 

loss. Left and right ear thresholds matched for frequency are within 10 dB of each other. C) Asymmetric 

hearing loss. Left and right ear thresholds matched for frequency are greater than 10 dB different for at 

least three contiguous frequencies. Two or more non-contiguous frequencies greater than 15 dB 

difference is also considered asymmetric hearing loss. 

 

 

Sound can be transmitted through air or through bone vibrations. Bone-conducted sound is heard 

directly by the inner ear and bypasses the outer and middle ear components. Sound waves 

transmitted through the air, on the other hand, pass through the eardrum before traveling to the 

cochlea and auditory nerve. Air- and bone- conduction audiograms assess the functionality of 

each pathway. Hearing loss can also be subdivided according to which part of the ear is 
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damaged. Damage to the outer or middle ear is considered conductive loss. Individuals with 

conductive loss are identified by normal bone-conduction thresholds despite air-conduction 

hearing loss, also known as an air-bone gap (Figure 2.4b). Inner ear damage to hair cells in the 

cochlea or the auditory nerve is classified as sensorineural hearing loss. Most symmetric hearing 

loss individuals have sensorineural loss (Dubno, Eckert, Lee, Matthews, & Schmiedt, 2013; Ho 

et al., 2009). Since damage to the inner ear obstructs sound transmission through bone and air 

pathways, sensorineural hearing loss is defined by bone-conduction thresholds that are similar to 

air-conduction thresholds, or a lack of an air-bone gap (Figure 2.4a). Mixed hearing loss refers 

to individuals with both conductive and sensorineural loss in the same ear. Individuals with 

mixed hearing loss are identified by an air-bone gap in which bone-conduction thresholds are not 

normal (Figure 2.4c). 

 
Figure 2. 4: Types of hearing loss. Red circles denote right ear air-conduction thresholds, red triangles 

denote right ear bone-conduction threshold. Bone-conduction thresholds are typically only tested at 

frequencies between 500 and 4000 Hz. A) Sensorineural loss. Bone-conduction thresholds are within 10 

dB of air-conduction thresholds at all frequencies. B) Conductive hearing loss. Bone-conduction 

thresholds are near normal despite air-conduction loss. This is called an air-bone gap. C) Mixed hearing 

loss. Bone-conduction thresholds are not normal but there is still an air-bone gap. 

2.3.3   Cross Hearing 

Useful audiograms depend on confident threshold estimates for each ear. One challenge to this 

procedure is when the cross-hearing of tones occurs. Cross hearing arises when loud tones 
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presented to the test ear cross over and are heard by the non-test ear via bone conduction through 

the skull (Martin & Blosser, 1970). If a tone presented to the test ear is actually heard by the non-

test ear, what was intended to be an independent assessment of the test ear’s hearing ability is 

now confounded by the contralateral ear’s response. In such cases, the estimated threshold of the 

test ear is artifactually lower than the true threshold. 

A sound delivered to the test ear will lose some intensity as it travels to the contralateral ear, and 

it arrives at the non-test ear at a reduced sound level compared to its starting intensity. Interaural 

attenuation reflects the amount of sound energy that dissipates as the tone travels from the 

ipsilateral test ear to the contralateral non-test ear. Because interaural attenuation varies for each 

individual based on the dimensions of their skull, transducers used, frequency of the sound, and 

other testing factors, current compensatory testing methods rely on a conservative estimate of 

interaural attenuation for each transducer. For supra-aural and circumaural headphones, 40 dB is 

used across all frequencies (Brännström & Lantz, 2010; C. R. Smith, 1968). Having less contact 

with the skull, insert headphones have a higher estimated interaural attenuation of 50 dB – 75 dB 

depending on the frequency tested (M C Killion, Wilber, & Gudmundsen, 1985; Munro & 

Contractor, 2010; Sklare & Denenberg, 1987). Tones are conventionally considered at risk of 

cross-hearing only if their intensities are greater than the interaural attenuation estimate plus the 

hearing threshold of the non-test ear. 

To offset the effects of cross-hearing, narrowband noise is introduced to the non-test ear to mask 

any potential cross tone detection in that ear (Denes & Naunton, 1951; Hood, 1960; Studebaker, 

1964). Current methods do not assess the need for masking until after initial unmasked threshold 

estimates are determined. Only frequencies with significantly asymmetric left and right ear 
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thresholds after this testing are suspected to be incorrect due to contralateral ear responses. A 

masking procedure is then employed to re-estimate the thresholds at the identified frequencies. 

Because measuring the actual interaural attenuation at each frequency is impractical with 

conventional testing, a complex yet generic protocol must be used to re-evaluate the threshold 

estimates and achieve effective masking levels without overmasking (i.e., allowing the masker to 

cross over and affect tone detection in the test ear). One method to administer masking requires 

multiple iterations of re-establishing the threshold in the test ear while systematically adjusting 

the amount of masking in the non-test ear (Hood, 1960). Optimized methods requiring fewer 

iterations have been proposed (C. R. Smith, 1968; Turner, 2004a, 2004b) but are similarly 

constrained by the need to perform masking after initial unmasked audiograms are completed, 

thus substantially increasing true threshold estimation time. 

Only individuals with severely asymmetric hearing or air-bone gaps are at risk for cross-hearing. 

In individuals with a small air-bone gap due to low asymmetry or symmetric hearing, any cross-

tone is below the bone-conduction thresholds of the non-test ear and does not affect the test-ear 

audiogram. As a rule of thumb, masking is required when either:  

1) 𝐴𝑖𝑟 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇𝑒𝑠𝑡𝐸𝑎𝑟 − 𝐵𝑜𝑛𝑒 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑛𝑇𝑒𝑠𝑡𝐸𝑎𝑟  ≥ 𝑖𝑛𝑡𝑒𝑟𝑎𝑢𝑟𝑎𝑙 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 

2) 𝐴𝑖𝑟 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑇𝑒𝑠𝑡𝐸𝑎𝑟 − 𝐴𝑖𝑟 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑛𝑇𝑒𝑠𝑡𝐸𝑎𝑟     ≥ 𝑖𝑛𝑡𝑒𝑟𝑎𝑢𝑟𝑎𝑙 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 

2.3.4   Active Machine Learning Audiogram 

The Barbour lab has developed and validated a Gaussian process machine learning framework 

for audiogram acquisition, the active machine learning audiogram (AMLAG). AMLAG, as 

shown in Figure 2.5, delivers continuous threshold estimates over the entire frequency domain 

in fewer tone presentations than conventional methods (Song et al., 2015). Analyzing over one 
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million audiograms in the National Institute for Occupational Safety and Health database, strong 

concordance was found between neighboring frequencies (Figure 2.6) (Barbour, DiLorenzo, et 

al., 2019). AMLAG is capable of exploiting the shared information between adjacent frequencies 

where HWAG cannot, significantly reducing test time.  

 
Figure 2. 5: Final audiogram acquired with AMLAG. Red diamonds denote ‘not heard’ responses and 

blue pluses denote heard responses. Threshold estimate is continuous across the frequency domain. Tones 

are optimally selected near threshold. 

 

 

AMLAG deploys active machine learning to estimate an individual’s threshold audiogram. The 

current implementation of AMLAG is an iterative, Bayesian inference GP classification method. 

An uninformative prior distribution allows the model to adjust according to the observed data 

without the constraint of any threshold assumptions. Future implementations could employ a 

more informative prior such as a previous audiogram or a population or sub-population average. 

An uninformative prior is used in this work with the intent of demonstrating the flexibility of the 

GP model to accurately assess hearing ability in individuals with no prior knowledge and to 

serve as a worst-case limit on model efficiency.  
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Figure 2. 6: Concordance correlation of 1,000,000+ NIOSH audiogram thresholds between A) arbitrary 

frequencies and B) adjacent frequencies. Threshold at a particular frequency could be used to speed up 

estimation of thresholds at adjacent frequencies. AMLAG does this, but conventional methods do not. 

 

 

The observed data is a binary variable encoding an individual’s response (or lack of response) to 

a detection task. Similar to HWAG, a listener is tasked to response when a tone is detected. 

AMLAG tones are selected from the frequency and intensity domain defined by semitone octave 

frequencies from 250 Hz to 8000 Hz and 1 dB intensity increments ranging from –20 to 100 dB 

HL. After each observation of tone response, the posterior distribution is updated to reflect all 

responses that have been observed up to this point. The posterior distribution reflects the 

probability that a tone will belong to the “heard” group. The mean of the posterior distribution 

signifies the psychometric function in that it produces the probability of detecting a tone 

specified by a given frequency and intensity (Figure 2.7a). The class boundary between “heard” 

and “unheard” responses is calculated at the 0.707 detection probability and corresponds to the 

HWAG threshold estimation. Variance of the posterior distribution suggests the model’s 

uncertainty (Figure 2.7b). New frequency-intensity pairs are selected according to Bayesian 

 

 

Advisors on Science and Technology 2008; Collins and Varmus 2015). While these approaches have tremendous poten-

tial for many applications, they all suffer from the same methodological drawback, which is that inference is only evalu-

ated following data collection. This is particularly but not uniquely true in the behavioral sciences. Because most behav-

ioral data—particularly psychometric data—are acquired sequentially, accumulating enough measurements from each 

person in a cohort and enough examples within a cohort to use existing or emerging methods can be prohibitive. 

The most common resolution of this problem in the behavioral sciences is to dramatically simplify the estimator and 

norming measurements. Generalized intelligence values, for example, are composite measures determined from a test 

battery of individual unidimensional tests that must be applied to many individuals in order to interpret the scores from 

any particular individual. This reductionism allows interaction among input variables to be assessed only after all data are 

collected. Similar approaches are used in perceptual tests such as the audiogram. Sequential queries force acquisition to 

occur in linear time, which leads to impractically large acquisition times needed to estimate interaction terms within 

subjects using standard tools such as the general linear model or GLM (Nelder and Wedderburn 1972). Even when armed 

with large amounts of data before measurements are taken from a new individual, existing methods are largely incapable 

of using this information to improve acquisition speed or inference quality. 

The audiogram provides an excellent test case 

to clarify these shortcomings and set the stage to 

demonstrate our innovation while solving a current 

problem. Figure 2 reveals that knowing detection 

threshold at one audiogram frequency provides 

substantial information about detection thresholds 

at adjacent frequencies (Masterson, Tak, et al. 

2013; Masterson, Deddens, et al. 2015). HWAG 

has no flexibility to use this information to speed 

testing, however, other than to modify the intensity 

of the first tone delivered at any given frequency. 

For this reason, the length of time necessary to 

acquire a 2D audiogram for one ear with HWAG 

linearly increases with the number of frequencies. 

Our active machine learning audiogram 

(AMLAG) explicitly learns the correlations in au-

dibility between tone frequency and intensity as the 

test progresses, exploiting these relationships to 

speed acquisition (Song, Wallace, et al. 2015; 

Song, Garnett, et al. 2017). It does so by deploying 

principles of active learning to determine where 

subsequent queries would be most informative 

given the inference up to that point (Cohn, Atlas, et 

al. 1994). This technique works exactly as 

originally designed and is already in use by 

multiple research groups to assess the hearing of 

their subjects. AMLAG currently proceeds one ear 

at a time, however. 

As seen in Figure 3, knowing detection 

threshold at a particular frequency in a subject’s 

ear provides substantial information about the 

detection threshold at the same frequency in the 

other ear—considerably more information, in fact, 

than knowing detection thresholds at adjacent 

frequencies (c.f., Figure 2). Once again, 

performing HWAG on the second ear would add linearly to acquisition time because it cannot take full advantage of this 

information. A sophisticated psychometric estimator might couple the two ears together into a single 4D input space and 

proceed with a full search, but such an approach faces multidimensional estimation challenges that scale with increasing 

input dimensions (DiMattina 2015). In other words, a conventional multidimensional estimator such as a GLM designed 

to take into account shared variability of audiogram thresholds may still not achieve practical efficiency for the 4D case 

and almost certainly could not do so as input dimensionality grew further with more complex stimuli or tasks. 

 
Figure 2: Concordance correlation of 1,000,000+ NIOSH audiogram 

thresholds between arbitrary frequencies (A) and adjacent frequencies 

(B). Threshold at a particular frequency could be used to speed 

estimation of thresholds at adjacent frequencies. Machine learning 

audiometry does this, but conventional methods do not. 

 

Figure 3: Concordance correlation of 1,000,000+ NIOSH audiogram 

thresholds between unpaired ears (A) and between each subject’s ears 

(B). Thresholds of one ear could be used to speed estimation of 

thresholds at the other ear in any given subject. Conjoint machine 

learning audiometry does this, but conventional methods do not. 
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active learning by disagreement such that each successive stimulus is optimally chosen to best 

inform the model (Figure 2.7c). Because new points are always selected to be most informative, 

AMLAG very quickly focuses its sampling on the frequency and intensity pairs where the 

probability of tone detection is close to 0.5.  

 
Figure 2. 7: Illustration of the sampling algorithm used by the Gaussian process (GP) for AMLAG. A) 

Posterior mean is computed by the GP using the sampled points. Red diamonds indicate the tone was 

inaudible; blue pluses, audible. B) Posterior uncertainty is computed by the GP using the sampled points, 

and the point of maximum uncertainty is identified (purple star). C) The point of maximal uncertainty is 

queried for listener audibility (black arrow). Once it is determined that the listener did not hear this tone, 

the updated set of points is used by the GP to re-compute the posterior mean with a more elevated 

threshold near the frequency of that tone. 

 

 

AMLAG uses a constant mean function ( 𝜇(𝑥) = 𝑐 ) and a composite covariance function 

(𝐾(𝑥, 𝑥′) = 𝐾𝜔(𝑥, 𝑥′) + 𝐾𝜄(𝑥, 𝑥′)) that integrates audiology-specific assumptions of the 

frequency (𝜔) and intensity (𝜄) domains. As a tone increases in intensity, its probability of being 

heard also increases. Thus, a monotonically increasing linear covariance function was placed in 

the intensity dimension:  𝐾𝐼(𝑥, 𝑥′) = 𝑠1 ∙ (𝐼 ∙ 𝐼′). To ensure a sigmoidal probability function, 𝐾𝐼 

is transformed with a cumulative Gaussian likelihood. The frequency domain is assumed to be 

smooth and continuous, dictating the choice of a squared exponential function: 𝐾𝜔(𝑥, 𝑥′) = 𝑠2
2 ∙
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exp (−
(𝜔−𝜔′)

2

2ℓ2 ). The hyperparameters of the mean function (𝑐) and the covariance functions 

(scalar factors 𝑠1 and 𝑠2 and length constant ℓ), are learned by gradient descent.  

By iteratively querying a listener at optimized points in the frequency-intensity domain, 

AMLAG’s posterior distribution always represents the model’s best prediction of a listener’s 

hearing ability and an audiogram threshold estimate can be made at after any iteration.  

2.4 Speech-in-Noise Background  

Speech-in-noise tests are a psychophysical measure of speech comprehension ability in the 

presence of background noise. While pure-tone audiograms measure audibility thresholds to 

define hearing type and configuration, speech-in-noise tests more accurately represent auditory 

challenges encountered outside of experimentally controlled environments (Taylor, 2003). Pure-

tone audiometry is often not very predictive of a subject’s speech comprehension in noise (M C 

Killion & Niquette, 2000; Moore et al., 2014). Instead, specific assessments have been developed 

to test this perceptual ability directly. 

2.4.1   Speech-in-Noise Assessments  

Comprehension of speech that is acoustically degraded by noise is quantified using a signal to 

noise ratio (SNR). The lower the SNR, the more prominent the competing noise and the more 

difficult the perceptual test. While the exact parameters may vary, speech-in-noise tests require a 

listener to repeat back a stimulus presented at systematically adjusted or fixed SNRs (Egan, 

1948; Fletcher, 1929). If enough data are collected, the relationship between the successful 

repetition of the stimulus and the SNR can be modeled with a psychometric function. Similar to 

pure-tone audiogram acquisition, adaptive speech-in-noise assessments often utilized staircase 



25 

 

methods to determine the SNR at which a specific percentage of the stimuli are correctly 

repeated. SNRs in adaptive speech-in-noise tests typically range from –15 dB SNR to 15 dB 

SNR with normal hearing listeners performing at the 50% threshold near 0 dB SNR. While the 

50% threshold is a commonly selected threshold level, successful comprehension in noisy 

environments requires greater than 50% understanding, motivating a higher threshold level to be 

considered (Robinson & Casali, 2003). Alternatively, if observed data are fitted to a 

psychometric function, multiple performance levels can be estimated. Fixed speech-in-noise 

assessments present stimuli at predetermined SNRs and record the percentage of stimuli 

correctly repeated back by the listener. The advantage of fixed speech-in-noise tests is their 

ability to directly assess the listener’s performance in SNRs commonly encountered outside of 

the laboratory (Le Prell & Clavier, 2017). Most speech-in-noise assessments must be scored by a 

human observer either during the assessment or at a later time if the responses were recorded.  

There is no standardized speech-in-noise assessment. Frequently used stimuli are single words, 

sentences, or even phonemes. Word-based stimuli have a variety of manipulatable defining 

features. Among others, they can vary in frequency, familiarity, syllables, or phonological 

neighborhoods. Similarly, background noise can vary from test to test. Common choices of 

background noise are white noise, noise filtered to match the speaker’s speech spectrum (referred 

to as speech-shaped noise), or speech babble. Stimulus choice and noise type alters the 

perceptual challenge (Brungart, Sheffield, & Kubli, 2014; Le Prell & Clavier, 2017). It is likely 

that a listener’s performance will differ with varying speech-in-noise parameters; although their 

threshold SNR between tests would be highly correlated (Spyridakou & Bamiou, 2015).  



26 

 

2.4.2   Neural Components of Speech-in-Noise Assessments 

Speech processing is a complex task that requires multiple, hierarchical stages to successfully be 

performed (Davis & Johnsrude, 2003; Okada et al., 2010; Peelle, Johnsrude, & Davis, 2010). 

Primary auditory cortex processes auditory aspects of speech and are sensitive to the acoustic 

structure of incoming stimuli. Bilateral superior temporal gyrus, left inferior frontal gyrus, and 

other temporal lobe regions near the auditory cortex allow access to the mental lexicon and maps 

speech to stored semantic representations that attach meaning to incoming sound (Davis & 

Johnsrude, 2003; Narain et al., 2003; Scott Blank, Catrin, Rosen, Stuart, and Wise, Richard J.S., 

2000). The exact nature of linguistic property processing and the degree of acoustic sensitivity is 

still debated and is an area of active research. 

By modifying the test parameters, speech-in-noise measures can offer a cognitively demanding 

perceptual test (Heinrich, Schneider, & Craik, 2008; Rudner, Foo, Rönnberg, & Lunner, 2007). 

As the task difficulty escalates, cognitive resources beyond purely perceptual systems are 

thought to contribute to behavior  (Figure 2.8) (Peelle, 2018). Attentional control and executive 

functions assist performance as test challenge increases and the listener must concentrate their 

focus on the target stimulus (Wingfield, Tun, & Mccoy, 2005). Proposed theories on speech 

comprehension suggests that working memory resources inevitably engage when listening to 

noisy speech stimuli, even if comprehension is ultimately successful (Rönnberg, 2003; 

Rönnberg, Rudner, Foo, & Lunner, 2008). In these models, speech unencumbered by background 

noise is quickly processed through the auditory-perceptual network and meaning is attached by 

accessing long-term memory storage. When speech is degraded, listeners need to store and 

process incoming signals for an extended time compared to clear speech. Working memory 
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resources can then offset the ambiguity caused by degraded stimuli by inferring meaning and 

context from surrounding signals. 

Brain imaging during speech-in-noise tests at high levels of perceived difficulty show boosted 

activity in the frontoparietal network (Davis & Johnsrude, 2003; Peelle, 2018; Wingfield et al., 

2005). The frontoparietal network consists of regions in the frontal and parietal lobes and is 

active in a myriad of domain-general functions and executive functions of some working 

memory models (Marek & Dosenbach, 2018). Also active is the cingulo-opercular network (Erb, 

Henry, Eisner, & Obleser, 2013; Vaden et al., 2016, 2013). This network is commonly associated 

with performance or error monitoring (Vaden, Kuchinsky, Ahlstrom, Dubno, & Eckert, 2015; 

Vaden, Teubner-Rhodes, Ahlstrom, Dubno, & Eckert, 2017). Notably, increased activity is 

observed even before the listener’s performance begins to suffer, and activity in this network 

may predict future successful speech comprehension (Vaden et al., 2013). Generally, there is 

evidence that domain-general resources lend cognitive support to aid in performance 

maintenance during speech-in-noise tests as they increase in task challenge. The nature of that 

support has yet to be fully determined. 

One manipulation of test challenge used in this thesis is in the intentional selection of a stimuli’s 

phonological neighborhood. Phonological neighborhoods are defined as groups of words that 

differ by only one phoneme (Luce & Pisoni, 1998; Marslen-Wilson & Tyler, 1980). Studies 

contend that words stemming from dense phonological neighborhoods create more demand on 

cognitive and perceptual resources compared to words with few phonological neighbors (Chen, 

Vaid, Boas, & Bortfeld, 2011). One cause of increased cognitive demand might be the extra 
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inhibition required to select the correct word from similar competing words in the mental 

lexicon.  

 
Figure 2. 8: Brain regions active during successful speech comprehension. A) Speech networks active 

during all speech comprehension. B) domain-general regions thought to support challenging speech 

comprehension that are also active during working memory tests. 

 

2.4.3   Speech-in-Noise Assessments and Age 

As people age, speech comprehension can be relatively well preserved, even in the presence of 

age-related cognitive and perceptual decline (Peelle, Troiani, Wingfield, & Grossman, 2010; 

Wingfield & Grossman, 2006; Wingfield, Mccoy, Peelle, Tun, & Cox, 2006). One hypothesis is 

that additional cognitive resources are recruited to support auditory processing (Lin et al., 2011; 

Pichora-Fuller, Schneider, & Daneman, 1995; Tun, Mccoy, & Wingfield, 2009). Age-related 

compensation from domain-general cognitive operations is similar to the neuronal recruitment 

observed in complex speech-in-noise tests perceived as challenging. In older adults, SNRs that 

result in correct responses may already be recruiting neural resources that are not necessary in 

younger adults exhibiting similar task performance. As task difficulty increases, neural resources 

are more quickly exhausted and performance more readily deteriorates compared to younger 

subjects (Harris, Dubno, Keren, Ahlstrom, & Eckert, 2009; Moore et al., 2014; Peelle, Troiani, et 

al., 2010; Pichora-fuller, Schneider, & Daneman, 2006). Designing a test that can explore the 

diverse cognitive demands of speech comprehension in the presence of competing background 

A)                                                           B)

Speech Network

Frontoparietal

Network

Cingulo-opercular 

Network



29 

 

noise can help determine how the brain prioritizes and supports task performance in healthy 

aging.  

2.5 Working Memory Assessments 

Multiple theories on the exact construct of working memory are debated in the current literature 

(Baddeley, 1986; Cowan, 1999; Nairne, 1990; Postle, 2006). One of the most cited paradigms is 

Baddeley’s component model. Under this system for working memory, a central executive 

mechanism directs the limited attentional resources and dictates access to long-term memory 

storage. Stimulus specific sub-systems process visual information through the visuospatial 

sketchpad or auditory information through the phonological loop. An episodic buffer has been 

proposed to assist with grouping incoming information into related chunks, mediate between the 

visuospatial sketchpad and phonological store, and access long-term memory support (Baddeley, 

2000).  

Verbal working memory, which is implicated in speech-in-noise tasks, primarily stores and 

manipulates incoming verbal information via the phonological loop, central executive processes, 

and the episodic buffer. The phonological loop maintains a verbal trace of the, stimulus and, 

through silent articulation, keeps it active in memory (Baddeley, 2003). 

Many behavioral methods have attempted to assess working memory. A defining feature of such 

tests is the temporary storage and manipulation of incoming information. Working memory can 

retain a limited number of incoming stimuli (Miller, 1956), referred to as working memory 

capacity. As a test nears a subject’s working memory capacity, response time and accuracy begin 

to suffer (B. M. J. Kane & Engle, 2002).  
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2.5.1  N-back Assessments 

One commonly implemented measure for working memory is the N-back test (Jaeggi, 

Buschkuehl, Perrig, & Meier, 2010; Kirchner, 1958). An N-back test presents a series of stimuli, 

and the participant must recall if the current stimulus had been presented N presentations ago. 

Like speech-in-noise assessments, there is no standardized N-back test. The load, or the N of the 

N-back test, typically varies from a 0- to a 4-back. Higher loads are possible but less frequently 

implemented. Participants may be asked to response only when they identify a positive match, or 

they may be asked provide a binary (yes/no) response after every stimulus presentation. Many N-

back assessments include foils in their test design. Foils are repetitions of stimuli previously 

presented that do not match the current N-back target. For example, during a 3-back test a foil 

could be two stimuli presented back-to-back (a 1-back presentation in a 3-back test). Foils help 

deter participants from simply matching previously presented stimuli based on recognition. The 

number of N-back loads, the number of targets and foils, as well as the stimuli used vary from 

study to study. Visuospatial, visual, or verbal N-backs are commonly used and assess different 

aspects of working memory. Purely auditory-verbal N-backs, with no visual component, appear 

to be more rare, however (Hancock, LaPointe, Stierwalt, Bourgeois, & Zwaan, 2007; Monk, 

Jackson, Nielsen, Jefferies, & Olivier, 2011). 

N-back tests have strong face validity as a working memory measure evidenced by the need to 

maintain, update, match, and encode the set of N previous stimuli (Jonides et al., 1997). A main 

appeal of the N-back as a working memory test is that it is straightforward to increase working 

memory load by increasing the N of the N-back. Load manipulation produces robust increases in 

reaction time and errors (Jaeggi et al., 2010). 
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A series of recent studies have focused on the validity of the N-back test as a psychometric 

measure of working memory. Weak correlations between N-back and complex span tests have 

extrapolated that different aspects of working memory are engaged by these two tests (M. J. 

Kane, Conway, Miura, & Colflesh, 2007). However, N-back accuracy and reaction time correlate 

with validated measures of task switching and updating, interference control, attention, and 

processing speed (Gajewski, Hanisch, Falkenstein, Thönes, & Wascher, 2018) substantiating it as 

a useful measure of a hard-to-define construct. 

2.5.2  Neural Components of N-back Assessments 

Brain imaging studies have widely used the N-back to examine activation associated with verbal 

working memory. Activity in frontoparietal and the cingulo-opercular networks is often found, 

regardless of N-back modality (Chein & Fiez, 2010; Honey et al., 2002; B. M. J. Kane & Engle, 

2002; Owen, McMillan, Laird, & Bullmore, 2005), and activity is highly sensitive to the 

manipulation of memory load (Braver et al., 1997; Jonides et al., 1997). 

The dorsolateral regions of the prefrontal cortex are suspected to participate in a wide array of 

working memory processing including monitoring and maintaining incoming stimuli (Owen, 

1997; Wang et al., 2018). Activity in this region has been particularly implicated for being a key 

contributor to N-back performance (Barbey, Koenigs, & Grafman, 2013; Braver et al., 1997; 

Rodriguez-Jimenez et al., 2009). As previously mentioned, activation in the cingulo-opercular 

network is usually reflected in performance monitoring, attention, and increased test effort 

(Barch et al., 2001; Vaden et al., 2017). Working memory assessments, generally, and N-back 

tests, specifically, often see additional activation in other brain regions and deactivation in 

default mode networks. The extent of neural activation seems to vary with different N-back 
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parameters, and elucidating how each region contributes to overall performance is a persistent 

goal of the field.  

 Overall, the N-back test is a good candidate for probing working memory as demonstrated by its 

proven validity as a psychometric measure and the correlated activation of brain regions 

governing specific aspects working memory. 

2.5.3  N-back Assessments and Age 

Verbal working memory capacity is highly variable across individuals (DeCaro, Peelle, 

Grossman, & Wingfield, 2016; B. M. J. Kane & Engle, 2002). As one ages, an individual’s 

working memory capability declines, but variability within age cohorts remain (DeCaro et al., 

2016). This variability and the wide range of contributing brain regions make it difficult to assert 

generalizations beyond an overall shift in performance. Individual differences in cognitive 

decline, life experience, and neural connectivity compound the challenge of teasing out exactly 

which mechanisms underlie age-related shifts in working memory. However, similar to the 

resource strain in complex speech-in-noise tasks, it is hypothesized that additional domain-

general resources are recruited to assist working memory tasks at the onset of age-related decline 

(Grady, 2013; Kirova, Bays, & Lagalwar, 2015; Peelle, Troiani, et al., 2010; Wingfield & 

Grossman, 2006). Specifically, the N-back test has been shown to closely measure age-related 

shifts in executive and attentional control. Older adults consistently have longer reaction times as 

well as lower working memory capacities (Braver & West, 2008; Gajewski et al., 2018; Mattay 

et al., 2006). Neuroimaging of young and older adults has revealed differences in brain activation 

during N-back tests. Older adults frequently display bilateral brain activation compared to young 

adults who depict more specialized, left-lateralized activation (Mattay et al., 2006; Nyberg, 
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Dahlin, Stigsdotter Neely, & BÄckman, 2009; Reuter-Lorenz et al., 2000). The additional neural 

recruitment is thought to help older adults maintain performance as they age.  

2.6 Working Memory and Speech-in-Noise 

It has been suggested that age-related changes in cognition are predicated on deficits in sensory 

processing (Humes, Busey, Craig, & Kewley-port, 2013; Humes, Kidd, & Lentz, 2013). In the 

case of verbal working memory tests, one must consider the possibility that a decline in auditory 

processing is contributing to shifts in both brain function and behavior. Age-related decline in 

hearing ability has been identified as a direct predictor of future cognitive function and 

Alzheimer’s Disease progression (G. a Gates, Anderson, Feeney, Susan, & Larson, 2008). Given 

that deficits in memory are also a reliable predictor of cognitive decline, examining the 

relationship between memory and hearing ability may provide further insight to age-related 

changes in health and disease.  

The current methods of measuring speech-in-noise and verbal working memory treat these 

behaviors as two completely separate constructs. Advancements made with neuroimaging 

indicate a much more intricate theory where domain-general resources entwine these two 

measures to support function throughout the lifespan. A test that evaluates both of these abilities 

together has potential value as a more sensitive behavioral test of brain function than separate 

tests. 

2.7 Concluding Remarks 

The work presented in this thesis integrates concepts from machine learning, psychometric and 

psychophysical model design, and individual differences in neural activity to evaluate a machine 
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learning framework that can perform joint estimation of perceptual, cognitive, and neural 

processes. 
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Chapter 3: Bilateral Audiogram 

Note: The research presented in this chapter has been published in Acta Acustica (Heisey, 

Buchbinder, & Barbour, 2018). 

3.1 Introduction 

Hearing naturally involves two ears, though clinicians and researchers typically evaluate one ear 

at a time, resulting in two independent, unilateral audiograms. As described in Chapter 2, 

AMLAG provides a compelling method to evaluate hearing ability in the two-dimensional 

domain of frequency and intensity. AMLAG can be used to optimize data acquisition for each ear 

independently, leading to substantial efficiency gains (Song et al., 2015). Proceeding sequentially 

by ear, AMLAG efficiently and accurately estimates the hearing thresholds across each ear’s 

stimulus domain separately. Although human sound transduction is not physiologically linked 

between the ears, the ears do share many features in common, including genetics, physical 

proximity, lifetime sound exposure, blood supply, downstream neural processes, etc. Therefore, 

one might expect thresholds between most individuals’ two ears to be similar. This indeed is the 

case, with 50% concordance between left and right ear thresholds in over 1 million working-age 

adults (Figure 3.1) (Barbour, DiLorenzo, et al., 2019; Masterson et al., 2013). The similarity 

between two ears could represent additional information usable to speed model estimation 

concurrently in both ears with a conjoint estimator. 
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Figure 3. 1: A) Pairs of audiogram thresholds derived from ears in the same individual (“paired”) yield 

high positive concordance. B) Pairs of audiogram thresholds deriving from ears in different individuals 

(“unpaired”) yield concordance much closer to 0, though still with a tendency toward positive values. 

 

 

A conjoint psychometric estimator is defined as one that updates the model fit of two or more 

psychometric functions from observations over the stimulus domain of one of them. In this way, 

even loosely related input domains can be linked together and shared covariance between input 

domains can be exploited. Conjoint estimators are distinct from disjoint estimators, which are 

traditional estimators that observe and model in the same input domain; unilateral AMLAG uses 

disjoint estimation. The extension to conjoint estimation is possible because the method used to 

implement the probabilistic classifier is a Bayesian kernel method capable of learning nonlinear 

relationships between variables of interest. As long as the input domains share some 

interrelationship, a method that can learn and exploit this information could produce accurate 

multidimensional estimates in less time.  

The first logical psychoacoustic conjoint estimator to develop is the bilateral audiogram, where 

observations from one ear mutually reinforce hearing estimates of the contralateral ear. 
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Effectiveness of such an estimator is predicted from high average similarity between paired ears. 

This Chapter shows that bilateral audiogram estimation delivers accurate hearing thresholds in 

significantly less time than serial unilateral estimation for a variety of hearing loss and hearing 

asymmetry profiles. 

3.2 Methods 

3.2.1  Participants 

Twenty subjects were recruited for this study, 6 with normal hearing and 14 with known 

sensorineural hearing loss ranging from moderate to profound loss. All participants provided 

informed consent prior to testing. The experimental protocol was approved by the Human 

Research Protection Office of Washington University.  

Two of the 20 subjects failed to complete any AMLAG test due to a hardware misconfiguration. 

For three subjects an algorithmic error in tone delivery prevented one or more tests from 

executing correctly. Incomplete tests were removed from analysis. Two subjects had profound 

hearing loss in their right ears with hearing thresholds above the highest sound level delivered. 

Of the 40 ears that entered the study, 30 were included for analysis, 15 left ears and 15 right ears. 

Participants with normal hearing and symmetric and asymmetric hearing loss were recruited; 

however, care was taken to ensure that all participants were not at risk for cross hearing. 

3.2.2  Procedure 

Three air-conduction AMLAGs were administered to each subject: one disjoint unilateral right 

ear, one disjoint unilateral left ear, and one conjoint bilateral. Test order was randomized. 

Listeners were seated within a sound isolation booth, and all auditory stimuli were delivered 
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using a Dell XPS laptop computer running custom MatLab code and Etymotic Research 3A 

insert earphones paired with a DragonFly Black 32-bit DAC (AudioQuest, Irvine, CA). Stimulus 

delivery and data acquisition were performed with the Bonauria online audiometry platform 

(Barbour, Howard, et al., 2019). Listeners were asked to remove any hearing-assist devices prior 

to data collection and an otoscopic observation was performed to confirm that there was no 

concerning ear canal occlusion in either ear. 

Each stimulus consisted of a three-pulse sequence of 200-ms pure tones with silent inter-pulse 

intervals of 200 ms. Listeners were instructed to press a button whenever they detected a tone 

presentation. Each tone had a frequency between 250 and 8000 Hz in semitone increments and a 

level between –20 and 100 dB HL in 1 dB increments. Right, left, and bilateral audiograms 

delivered a total of 50, 50, and 100 tones, respectively. To prevent listeners from anticipating 

stimulus presentations, tone deliveries were separated by a randomized silent interval between 3 

and 8 seconds. Each response was logged as “Heard” if occurring within 2000 ms of stimulus 

onset or “False Positive” otherwise. If no response was recorded within 2000 ms following 

stimulus onset, a “Not Heard” response was logged. 

3.2.3  Bilateral AMLAG 

Bilateral AMLAG adapts the GP classification model defined in unilateral AMLAG. The ith 

stimulus xi for the bilateral audiogram is augmented from unilateral tone frequency and intensity 

to include a third discrete “ear” dimension: 𝑥𝑖 = (𝜔𝑖 , 𝐿𝑖 , 𝑒𝑖). The GP kernel function was derived 

from prior knowledge about the behavior of audiograms. Like unilateral AMLAG, bilateral 

AMLAG uses a constant mean function: 𝜇(𝑥) = 𝑐. The composite covariance kernel 

incorporates the bilateral “ear” dimension: 𝐾(𝑥, 𝑥′) = 𝐾𝑒(𝑥, 𝑥′)(𝐾𝜔(𝑥, 𝑥′) + 𝐾𝐿(𝑥, 𝑥′)). 
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Bilateral AMLAG estimates hearing ability in two ears that are not physiologically the same but 

share the same two-dimensional input domain of frequency and intensity. Logically, prior beliefs 

that determined the frequency and intensity kernels, (𝐾𝜔(𝑥, 𝑥′) 𝑎𝑛𝑑 𝐾𝐿(𝑥, 𝑥′)), in unilateral 

AMLAG dictated the use of the same frequency and intensity covariance functions in bilateral 

AMLAG. Namely, a linear covariance function in the intensity dimension and a squared 

exponential in frequency. Covariation between all pairs of inputs in ear 1, all pairs in ear 2, and 

all pairs between the ears is reflected in a discrete conjoint kernel: 

. Hyperparameter s12 is referred to as the conjoint correlation and 

quantifies the psychometric function similarity between the ears. Fixing s12 = 0 creates a disjoint 

kernel for each ear, which leads to two independent model fits and is identical to unilateral 

AMLAG.  

In querying a participant’s audiogram, the conjoint estimator determines in which ear to deliver 

the tone as well as the frequency and intensity of tone delivered. Each next stimulus
 
is selected 

by Bayesian active learning to elicit the subject’s response
 
that will maximize the information 

gain given all previous data and hyperparameters. Hyperparameter learning occurs by gradient 

descent and is initiated after one heard and one not-heard response has been recorded for each 

ear being tested. The posterior mean function of the GP is calculated after each probe tone and 

represents point estimates of detection probability as a function of tone frequency and sound 

intensity (i.e., the psychometric function). Detection probability at 0.5 was used as an estimation 
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of detection threshold. Lapses, guesses, and other nonstationarities, such as criterion drift, were 

not modeled in this implementation of AMLAG. 

3.2.4  Data Analysis  

Analysis was performed utilizing an offline version of AMLAG written in custom Matlab code. 

At every query, bilateral AMLAG updates the model of both left and right ears. To compare 

bilateral AMLAG to unilateral AMLAG tests, all threshold estimates were analyzed as paired 

ears, each pair was probed with 100 tones (50 from each ear’s unilateral test combined, 100 tones 

for the bilateral test). Paired sample t-test were used to analyze statistical significance in the 

differences between unilateral and bilateral AMLAG convergence.  

3.3 Results 

One individual participant’s intermediate threshold estimates for each AMLAG type are shown 

in Figure 3.2. Both disjoint and conjoint tests converged to similar threshold estimates at the 

final tone count. For this subject, conjoint AMLAG learned that both ears share similar hearing 

functions and used that information to more quickly construct an accurate model. 

 
Figure 3. 2: Hearing thresholds for both ears of Subject 1 measured two ways: serial disjoint unilaterally 

(red dashed) and concurrent conjoint bilaterally (blue solid). Final estimates are similar for the two 

methods. Tone counts are for both ears combined 
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To quantify the relative performance of the unilateral and bilateral estimators, the threshold 

functions estimated after 100 tones were averaged for each AMLAG type. The mean absolute 

difference between that function and a threshold function estimated by each AMLAG following 

every tone increment could then be used to determine the convergence rate of the two models. 

Figure 3.3 shows these results for one subject. Both disjoint and conjoint methods achieve 

thresholds near their final estimates within a relatively small number of tones, consistent with 

previous studies. Under the conditions tested, disjoint estimates tend to vary more with early tone 

counts.  

 
Figure 3. 3: Average absolute difference in thresholds between the final estimate at 100 tones and 

estimates with each incremental tone. Variation can be seen between convergence of the two methods, but 

in general, the conjoint estimator tends to achieve its final threshold estimate with fewer tones. Tone 

counts are for both ears combined. 

 

 

The relative performance of the two AMLAG types for this population was evaluated by 

averaging the threshold difference curves for all ears, as shown in Figure 3.4. As predicted, 

conjoint estimation considering both ears concurrently approaches its final threshold estimate 

values significantly more quickly than disjoint estimation (p = 2.5×10–12, paired-sample t test). 

The transition to final estimate is also smoother for the conjoint estimator. The two methods tend 



42 

 

to deliver similar estimates, as evidenced by the small mean absolute differences at high tone 

counts. AMLAG has previously been shown to reliably deliver threshold estimates similar to 

those of Hughson-Westlake audiometry in fewer tone deliveries (Song, 2015). Following 100 

tones for both ears combined, the mean absolute threshold difference between conjoint and 

disjoint estimates was 5.0 dB. 

 
Figure 3. 4: Average absolute population difference in threshold functions between the final estimate at 

100 tones and estimates with each incremental tone. The conjoint estimator achieves its final threshold 

estimate with significantly fewer tones. Tone counts are for both ears combined. Disjoint estimation 

achieves near-final threshold estimates after about 60 tones (i.e., 30 tones per ear) while conjoint 

estimation converges after about 30 tones (i.e., 15 tones/ear). 

 

 

Implementing the conjoint estimator improves the relative convergence rate for all subjects, 

regardless of hearing type. Figure 3.5 compares the performance of AMLAG for subjects with 

asymmetric and symmetric hearing. In both cases, conjoint estimation requires significantly 

fewer tones (asymmetric: p = 3.1×10–11; symmetric: p = 3.1×10–8; paired-sample t test). The 

mean concordance between all subjects’ ear pairs in this cohort was 0.50, which is similar to the 

population mean of 0.46 (Figure 3.1). 
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Figure 3. 5: Average absolute subpopulation difference in threshold functions between the final estimate 

at 100 tones and estimates with each additional tone. Asymmetric hearing subjects take longer to 

converge, on average. However, the conjoint estimator outperforms disjoint estimation. Tone counts are 

for both ears combined. 

 

 

Similar analysis when the population is separated into normal-hearing (n=8) and hearing loss (n 

= 22) ears also reveals that conjoint estimation requires significantly fewer tones than disjoint 

estimation in both cases (normal: p = 2.9×10–6; hearing loss: p = 1.7×10–11; paired-sample t test) 

(Figure 3.6). 

 
Figure 3. 6: Average absolute subpopulation difference in threshold functions between the final estimate 

at 100 estimates with each additional tone. Conjoint estimation converges for subjects with normal 

hearing and with hearing loss. Tone counts are for both ears combined. 
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Further, ears were arbitrarily paired from different heads across six additional participants, giving 

each participant one insert earphone and one response button with instructions to respond 

whenever they heard a tone. With only 70% of the tones, the conjoint threshold estimates for 

different-head ear pairs matched the disjoint threshold estimates of those ears similarly to the 

results observed in same-head ear pairs (Figure 3.7).  

 
Figure 3. 7 Average absolute subpopulation difference in threshold functions between the final estimate at 

100 tones and estimates with each incremental tone. In this case, each ear of the ear pair belonged to 

different participants (“disparate”). Conjoint estimation converged to similar estimates as disjoint 

estimation in these cases where the individual domains were completely independent. Shared variation 

between these ears results from the laws of physics and human biology. 

 

3.4 Discussion 

Bilateral audiometry differs from conventional audiometry by considering both ears 

simultaneously in real time as the test is being conducted. Tones are delivered to either ear as 

directed by the algorithm while the subject is instructed to respond whenever he or she hears a 

tone. While stimuli are delivered to each ear independently, inference is drawn for both ears 

simultaneously. Strong or weak concordance between the hearing functions of an individual’s 

two ears may exist depending on multiple factors. Because bilateral audiometry learns the shared 

variation between ears for each subject, it uses this information to speed the test, even under 

discordant conditions (c.f., Figure 3.5). Simulations indicate that bilateral audiometry should 
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achieve accuracy consistent with serial unilateral audiometry with only about 60% of the tone 

count (Barbour, DiLorenzo, et al., 2019). The current results in humans show similar gains. 

Conjoint AMLAG convergence is nearly an order of magnitude faster than traditional HWAG 

testing time (Song et al., 2015). Additionally, optimization for traditional methods is limited due 

to the constraint of testing one ear and one frequency at a time. Subject anticipation of tone 

delivery in such cases due to rhythmic testing patterns can lead to false positives. “Roving ear” 

tone presentations in the bilateral audiogram did not lead to systematically different threshold 

estimates than the “fixed ear” tone presentations in the unilateral audiogram (mean signed 

difference of conjoint minus disjoint thresholds was 1.1 dB). 

Often, collecting audiograms can be time consuming and tiring for the patient, which can lead to 

erroneously missed tones from nonstationarities such as attention lapses or criterion drift. 

Traditional audiometry testing time is further extended when patients have complicated hearing 

loss in one or both ears. The conjoint estimator accurately estimates hearing loss generally and 

asymmetric hearing loss specifically using few tones, allowing less time for nonstationarities to 

affect estimates. 

It is important to note that similarity between the ears is not required for an effective bilateral 

audiogram procedure. If a conjoining hyperparameter value of 0 best accounts for a subject’s 

data, the result will mathematically be two unilateral audiograms. Even under these conditions, 

however, conjoint estimation could be faster than disjoint estimation over finite input domains 

because the learned dissimilarity may be useful to induce more appropriate sampling. 
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The vast majority of clinical and experimental tests begin by formally ignoring previous 

knowledge and proceeding to collect data with no prior assumptions. This situation exists either 

because incorporating priors into existing tests is impossible due to test construction, 

philosophically undesirable for fear of bias, or both. The audiogram is no different. As a result, 

considerable audiometric information is discarded that could be used to improve audiogram test 

accuracy and speed. 

The large amount of paired and unpaired ear data in the NIOSH database indicate that 

information exists from the contralateral ear that could be quite useful for incorporating into 

measures of the ipsilateral ear. HWAG provides a limited mechanism to do so, as the only real 

flexibility in the test available to the clinician or experimenter is the starting sound level. 

Machine learning audiometry, on the other hand, can exploit prior information by design. Active 

GP estimation is able to determine correlations between variables in real time as data are 

accumulated. While a person’s two ears are not themselves physiologically linked, they do share 

many things in common. GP inference therefore represents an excellent method for exploiting 

these correlations for improving test accuracy and efficiency. 

3.5 Concluding Remarks 

Bilateral audiometry has demonstrated the value of the conjoint estimation approach for 

improving hearing threshold estimation efficiency. A multidimensional, bilateral test was able to 

model hearing ability more efficiently than unilateral testing, without sacrificing accuracy, for all 

participants in this study, regardless of hearing ability. Because any kernelized psychometric 

function model can be conjoined to any other kernelized model with this formulation, potential 

benefits can be extended well beyond hearing.  
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Chapter 4: Dynamically Masked Audiograms 

Note: The research presented in this chapter has been accepted for publication in Ear and 

Hearing. 

4.1 Introduction 

In most audiology practices today a clinician manually obtains pure-tone hearing thresholds 

following a procedure that was recommended as the standard for audiometric testing 60 years 

ago (Carhart & Jerger, 1959; Hughson & Westlake, 1944): HWAG (for details, see Chapter 2). 

This adaptive up-down staircase method continues to be emphasized in the most recent clinical 

guidelines (American Speech-Language-Hearing Association, 2005) and is valued for being fast 

and reliable for many patients. A particular case where manual HWAG is inadequate, however, 

is for individuals with asymmetric hearing where cross hearing is likely to occur (see Chapter 2). 

While only a subset of the general population, for them contralateral masking is an essential 

component of hearing assessment, aiding in differential diagnosis and hearing loss management 

decisions. Unfortunately, masking is a time-consuming process and is often cited as one of the 

most challenging procedures for audiologists to learn (Gumus, Gumus, Unsal, Yuksel, & 

Gunduz, 2016; Hamil, 2016; Ho et al., 2009; Sanders & Rintelmann, 1964; Valente, 2009; 

Yacullo, 2015). No universally accepted masking standard or guideline exists. In the most recent 

surveys of audiologic practices conducted by the American Academy of Audiology (Martin, 

Armstrong, & Champlin, 1994; Martin, Champlin, & Chambers, 1998), researchers noted that 

audiologists were using a broad range of masking methods and further determined that over half 

of the respondents were using inappropriate masking procedures. 
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AMLAG has been shown to be as accurate as and more efficient than manual HWAG methods 

for normal and hearing loss populations (Barbour, Howard, et al., 2019; Song et al., 2015). In 

Chapter 3, bilateral AMLAG successfully learned the hearing thresholds of left and right ears in 

one test regardless of hearing ability. No test adaptations were necessary to efficiently estimate 

hearing thresholds for all participants in the study. Participants with diverse hearing abilities 

were recruited for that study; however, care was taken to ensure that no participant was at risk 

for cross hearing. To truly develop useful individualized measures of perception, assessments 

must be able to accommodate not just those who are outside of the ‘normal’ range, but those for 

whom traditional testing protocols are insufficient with currents methods. 

To that end, a dynamic masking protocol has been integrated into AMLAG to create the masked 

AMLAG. Dynamic masking adds additional complexity to the existing GP framework and 

demonstrates the utility in leveraging an algorithm that adapts to each participant in real time. 

Unlike masking during manual audiometry, masked AMLAG presents suitable masking noise to 

the non-test ear throughout the entire audiogram test procedure. Every tone presented to the test 

ear is paired with masking noise in the non-test ear. Masking noise levels are derived from a 

combination of the interaural attenuation estimate and the intensity of the test ear tone. Every 

audiogram becomes a masked audiogram, and accurate thresholds are estimated directly because 

cross hearing is dynamically eliminated. AMLAG so rapidly homes in on hearing thresholds 

(Heisey et al., 2018) that individuals with fairly symmetric hearing should almost never be 

presented a suprathreshold masking noise, making masked and unmasked AMLAG procedurally 

equivalent for this large population. The work presented here shows that an active machine 



49 

 

learning framework provides multidimensional, individualized assessments without sacrificing 

accuracy, efficiency, or complexity of the behavior being modeled. 

4.2 Methods 

4.2.1  Participants 

This study was approved by the Human Research Protection Office at Washington University 

School of Medicine. A total of 29 participants (20 females, 9 males) were recruited using the 

Research Participant Registry at Washington University in St. Louis. Participants were required 

to be at least 18 years of age and proficient English speakers. The 28 participants who reported 

their age were between 21 and 83 years of age (mean 43, SD 20). Informed consent and a 

voluntary demographic form were obtained from each individual prior to beginning the study. 

Two participant’s right ears were excluded from analysis due to a temporary equipment 

malfunction. 

4.2.2  Equipment 

All testing was performed in a sound-treated booth. The unmasked and masked AMLAG tests 

were administered using a Dell XPS laptop computer. Tones were delivered through TDH-50P 

Telephonic supra-aural headphones connected to an AudioQuest Dragonfly Red USB digital-to-

analog converter. An external mouse was connected through a USB port and functioned as the 

response button. Manual HWAG was performed by a student audiologist using a Grason Stadler 

GSI AudioStar Pro two-channel clinical audiometer. Thresholds were obtained using TDH-50P 

Telephonic supra-aural headphones, a bone oscillator, and a response button. The computer 

audio output was calibrated to match the output of the audiometer. 
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4.2.3  Experimental Procedure 

The 29 participants were split into two experimental groups according to their reported hearing 

ability. The first group consisted of nine participants with self-reported normal hearing, 

designated as No Loss (NL). The remaining 20 participants reported some degree of hearing 

deficit and were designated as Hearing Loss (HL). The cohort with hearing loss exhibited a 

variety of etiologies based upon the relationships between their air-conduction and bone-

conduction audiograms, including sensorineural loss, conductive loss and mixed losses (see 

Chapter 2 for details concerning hearing loss categorization). 

NL participants completed a left and right unmasked AMLAG and a left and right masked 

AMLAG. HL participants were first given a manual left and right HWAG with appropriate 

masking protocol, if needed, to determine their hearing loss profiles. Then they were given left 

and right masked AMLAGs. 

Unmasked and Masked AMLAG Protocol 

Unmasked and masked AMLAG tests were implemented directly on the computer using custom 

Matlab code. The unmasked AMLAG procedure has previously been described in detail (see 

Chapter 2 and Song et al., 2015). Three-pulse sequences of 200 ms pure tones, with frequencies 

in semitone increments between 250 and 8000 Hz and sound levels from –20 to 100 dB HL, 

were presented with interpulse intervals of 200 ms. Inter-sequence intervals were randomized 

and ranged from 0.5 to 3 seconds in order to prevent predictability. 

Participants were instructed to click the left mouse button whenever they heard a tone, even if it 

was very soft. They were informed that the frequency, or pitch, would change between each tone 

sequence and that there could be relatively long periods of silence. Participants were instructed 
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to ignore any wind or white noise they heard and were reminded to only click the mouse when 

they heard a pure tone. All participants were asked after each ear’s test if they had heard any 

wind or white noise. Their responses to this question were recorded.  

Any normally worn hearing devices were removed, and headphones were placed after 

instructions were given. Participants were seated so that they could not see the computer screen, 

and the order of the ears tested was randomized by the experimenter. Each AMLAG test 

consisted of a total of 100 tone sequences per ear and began with seven tones randomly selected 

from the median threshold values for normal hearing: 10 dB HL at 500 Hz, 5 dB HL at 1000 Hz, 

10 dB HL at 2000 Hz, 10 dB HL at 3000 Hz, 15 dB HL at 4000 Hz, 15 dB HL at 6000 Hz, and 

15 dB HL at 8000 Hz. Median normal hearing thresholds were obtained from a dataset of 1.1 

million individuals developed by the NIOSH Occupational Hearing Loss Surveillance Project, 

Division of Surveillance, Hazard Evaluations and Field Studies (Masterson et al., 2013). If none 

of the seven population median threshold tones were heard, the algorithm employed Halton 

sampling until a heard tone response was recorded. Halton sampling ensures broad sampling 

across all frequencies and intensities (Song, Garnett, & Barbour, 2017). Following the first heard 

tone response, active sampling was initiated and the remaining tones were queried according to 

Bayesian active learning by disagreement (Song et al., 2017). For ears where no heard tone was 

ever indicated, all of the remaining tones were ultimately selected by Halton sampling. 

Masked AMLAG presented 1/3 octave narrowband noise to the contralateral non-test ear while 

simultaneously presenting a three-pulse sequence of tones to the test ear. This procedure was 

performed for every tone presentation, even if a participant would not typically require masking. 

Masking noise began randomly in the 250 – 1500 ms interval before the onset of the pure-tone 
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sequence and remained on for a total of 3.0 – 5.5 sec. The noise ramped on for 100 ms at the 

beginning of the intersequence interval and ramped off during the final 100 ms. All masking 

noise presentations began seamlessly at the conclusion of the preceding noise presentation, 

centered at the frequency of the test-ear tone and presented at 40 dB below the tone’s 

presentation level. This masking presentation level is based on a conservative interaural 

attenuation level of 40 dB for supra-aural headphones (Yacullo, 2015). 

Manual HWAG Protocol 

HWAGs were conducted manually by a student audiologist. During manual HWAG, participants 

heard pulsed pure tones through headphones and were instructed to press a button whenever they 

heard a tone, even if it was very soft. Air conduction thresholds were obtained for each ear at the 

standard octave frequencies (250, 500, 1000, 2000, 4000, and 8000 Hz) using the modified HW 

procedure. Bone conduction thresholds were obtained at 250, 500, 1000, 2000, and 4000 Hz 

using the same protocol as air conduction thresholds described above.  

Masking for air conduction was performed when the air conduction threshold of the test ear was 

worse than the bone or air conduction threshold of the non-test ear by greater than or equal to 40 

dB. To ensure the non-test ear was not responding to the tone, narrowband noise was presented 

at a suprathreshold level. Specifically, 10 dB was added to the air conduction threshold of the 

non-test ear and presented as narrowband noise. The true air conduction threshold of the test ear 

was then found using the plateau method (Hood, 1960; Martin et al., 1998; Yacullo, 2015). A 

true threshold was determined when a participant responded to a tone after the noise was raised 

by 5 dB three times. In other words, when the participant heard the tone even after the noise was 

increased by a total of 15 dB.  
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Masking for bone conduction was performed when there was a difference of greater than or 

equal to 15 dB between the air and bone conduction thresholds of the test ear. In addition to the 

bone oscillator, a supra-aural headphone was placed such that it covered the non-test ear but the 

test-ear remained unobstructed. Similar to masking for air conduction, 10 dB was added to the 

air conduction threshold of the non-test ear and presented as narrowband noise. The occlusion 

effect must be considered when testing masked bone conduction at 250, 500, and 1000 Hz, 

however (Edgerton & Klood, 1977; Valente, 2009). To compensate for the occlusion effect, an 

additional 20 dB of narrowband noise was added to the initial masking level at 250 Hz. An 

additional 15 dB of noise was added at 500 Hz and 10 dB was added at 1000 Hz. The true bone 

conduction threshold of the test ear was then found using the plateau method. 

Extended details on the masking procedure and other experimental details can be found at 

https://osf.io/64qd7/ 

4.2.4  Data Analysis 

AMLAG returns a continuous estimate of the probability of hearing any frequency-intensity pair 

in the stimulus domain. Hearing thresholds at octave frequencies were determined at the 0.707 

detection probability to match the standard probability of detection for HWAG estimates. Any 

threshold estimate that was greater than 100 dB HL was designated as a “no response” at that 

frequency. 

The unmasked and masked AMLAG thresholds were compared at the standard audiogram 

frequencies for Group NL. Efficiency and accuracy of the masked AMLAG were assessed via 

comparison to the unmasked AMLAG. Individual ears were evaluated by comparing the mean 

signed difference, mean absolute difference and root mean square difference between unmasked 

https://osf.io/64qd7/
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and masked AMLAG. To assess the efficiency of masked AMLAG, the mean tone counts and 

testing times required for left and right ear threshold estimation were determined and compared 

to unmasked AMLAG. The effects of dynamic contralateral masking on a participant’s test 

experience were determined by calculating the number, percentage and maximum sound level of 

masking noise presentations delivered above the non-test ear threshold, as well as post-test 

interviews. 

All Group HL analysis compared masked AMLAG and manual HWAG thresholds at the 

standard audiogram frequencies. Accuracy and efficiency of masked AMLAG was assessed via 

comparison to manual HWAG. Analysis of Group HL was identical to that of Group NL but 

compared masked AMLAG threshold estimates to manual HWAG estimates. 

To better analyze the effects of dynamic masking, Group HL analysis was subdivided according 

to masking needs. Eight participants with highly asymmetric hearing loss between the two ears 

required masking by conventional guidelines (see Chapter 2) and were separated into subgroup 

HL-HA. The 12 other Group HL participants had a low asymmetric hearing loss not requiring 

masking and were separated into subgroup HL-LA. This subdivision enabled determination of 

the impact of dynamic masking on audiogram acquisition for participants who would not 

otherwise require masking. It further allowed the analysis of dynamic masking effects for the 

participant subgroup that would benefit most from a more effective and standardized masking 

implementation. 
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4.3 Results 

4.3.1  Group NL Analysis 

Masked AMLAG thresholds estimated in Group NL listeners were consistent with thresholds 

estimated by unmasked AMLAG, which has been previously validated as equivalent in accuracy 

to HWAG (Barbour, Howard, et al., 2019; Heisey et al., 2018; Song et al., 2015). The similarity 

of unmasked AMLAG and masked AMLAG threshold estimates at the standard audiogram 

frequencies across all tests within Group NL is depicted in Bland-Altman plots in Figure 4.1 

(Bland & Altman, 1999). Differences do not appear to be a function of threshold magnitude. 

Means and 90% limits of agreement (1.645 × standard deviations) are depicted. Mean signed 

differences are close to 0, as would be expected if the two tests were evaluating the same 

underlying physiological process. 

 
Figure 4. 1: Bland-Altman plots at the 6 frequencies of threshold comparison for unmasked AMLAG 

(“Test1”) versus masked AMLAG (“Test2”) in Group NL. Mean signed difference (MSD) in dB is 

indicated numerically and by a horizontal dashed line in each plot. Limit of agreement (LOA) in dB is 

indicated numerically and by 2 horizontal dotted lines in each plot. LOA is computed as 1.645 × the 

standard deviation of the signed differences, reflecting the central 90% of the estimated distribution. 
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Additional numerical summaries are given for Group NL in the Chapter 4 Supplemental at 

https://osf.io/64qd7/. Previously published studies have demonstrated that variability in pure-

tone manual HWAG thresholds obtained with supra-aural transducers in the age range studied 

here are considered clinically relevant only when exceeding 10 dB, and mean deviations within 5 

dB are commonly cited as clinically acceptable (Landry & Green, 1999; Mello, Silva, Gil, & 

Ram, 2015; Stuart, Stenstromb, Tompkins, & Vandenhoff, 1991). The mean absolute difference 

between masked and unmasked AMLAG was under 5 dB at all frequencies with an overall mean 

of 3.4 ± 2.7 dB. Collectively, these results indicate that masked AMLAG yields threshold 

estimates comparable in value to unmasked AMLAG in normal hearing individuals. 

Table 4. 1: Average number of tones and minutes required to achieve threshold estimates for each 

participant, Group NL (N = 9 participants 

  Mean ± SD Tone Count Mean ± SD Number of Minutes 

Group NL participants    

 Unmasked AMLAG  37 ± 15 4.0 ± 1.6 

 Masked AMLAG  34 ± 12 3.7 ± 1.3 

 

All AMLAG tests in this study were designed to deliver 100 tone presentations per ear in order 

to ensure confident final threshold estimates. Previous research has demonstrated that unmasked 

AMLAG often converges to a threshold estimate within 5 dB of the final threshold estimate in 

considerably fewer than 100 tone presentations per ear (Heisey et al., 2018; Song et al., 2015). 

For each participant in Group NL, the total number of tone presentations and average time for 

unmasked and masked AMLAG to converge to a threshold estimate within 5 dB of the final 

https://osf.io/64qd7/
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estimation in both ears were calculated (Table 4.1). Figure 4.2 shows the mean absolute 

difference between the threshold estimate at each tone presentation and the final estimate after 

100 tones averaged across all Group NL ears. It demonstrates a very similar convergence profile 

for both tests in this group. 

 

Figure 4. 2: Average ± standard deviation absolute difference in threshold estimates between the final 

estimate at 100 tones and estimates with each incremental tone presentation for unmasked and masked 

AMLAG (Group NL). Values are for each ear. 

 

 

At each tone presentation, masked AMLAG presented narrow band noise in the ear contralateral 

to the ear being tested. Because AMLAG so rapidly identifies putative thresholds and spends 

most of its sampling effort at nearby intensities, the paired masking noise level was almost 

always subthreshold and therefore expected to be undetectable by the non-test ear (Table 4.2 

and Figure 4.3). To determine if dynamic masking subjectively altered the test experience, 

participants were asked following each AMLAG test (unmasked and masked) if they had heard 

any white noise and if so, in which ear they had heard it. Of the 36 automated audiogram 

assessments for Group NL, five tests were identified by participants as having presented 

detectable white noise in the non-test ear. Three of those five were actually unmasked AMLAG 
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tests with no noise delivery at all, and the reported perception most likely was due to occlusion 

effects. The two masked AMLAG tests during which the participants noted hearing white noise 

were both tests in which suprathreshold masking levels were presented to the non-test ear. The 

participants commented that the masking noise was not distracting and described the noise as 

“soft.” 

Table 4. 2: Masking noise above non-test ear threshold, Group NL (N = 18 ears) 

Total number of masks 1800 

Masks above non-test ear threshold 3 

Percent of masks above non-test ear threshold 0.17 

Maximum level above non-test ear threshold (dB) 12.0 

 

 

 

 
Figure 4. 3: Intensities of masking noise delivered over non-test ear threshold for all three experimental 

groups. 
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4.3.2  Group HL Analysis 

The accuracy of masked AMLAG was evaluated at standard audiogram frequencies relative to 

manual HWAG and averaged across all tests for Group HL. The similarity of masked AMLAG 

and HWAG threshold estimates at the standard audiogram frequencies across all tests is depicted 

in Bland-Altman plots in Figure 4.4 for group HL-LA and Figure 4.5 for Group HL-HA. Means 

and 90% limits of agreement are again depicted. Differences generally do not appear to be a 

function of threshold magnitude, though the variability in differences appears to be higher with 

higher thresholds for 4 kHz, Group HL-LA. Given that this trend was not found at adjacent 

frequencies or for 4 kHz in other groups, it seems likely to reflect participant sampling. The large 

outlier at the highest threshold for 1 kHz, Group HL-LA, may be attributable to this participant’s 

self-reported tinnitus, and is a scenario worthy of further investigation. 

 
Figure 4. 4: Bland-Altman plots at the 6 frequencies of threshold comparison for HWAG (“Test1”) versus 

masked AMLAG (“Test2”) in Group HL-LA. Plot details are identical to Figure 1. 
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Figure 4. 5: Bland-Altman plots at the 6 frequencies of threshold comparison for HWAG (“Test1”) versus 

masked AMLAG (“Test2”) in Group HL-HA. Plot details are identical to Figure 4.1. 

 

 

Group HL-LA and Group HL-HA numerical summaries are given at https://osf.io/64qd7/. Once 

again, mean signed differences near 0 imply that one test is not biased in its threshold estimates 

relative to the other. The small mean absolute differences between masked AMLAG and HWAG 

convey that the tests consistently deliver similar estimates. Group HL-LA had a mean absolute 

difference of 4.9 ± 4.5 dB and Group HL-HA had a 2.6 ± 3.1 dB difference. These results are 

within the published variability of 5-10 dB shown between traditional and other automated 

audiometry assessments (Shojaeemend & Ayatollahi, 2018). 

In addition to estimating accurate pure-tone thresholds, masked AMLAG was able to generate 

these thresholds with significantly fewer tone presentations (p = 3.92 × 10–3 for Group HL-LA, p 

= 2.95 × 10–4 for Group HL-HA, paired t-tests) and significantly more quickly than manual 

https://osf.io/64qd7/
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HWAG (p = 5.48 × 10–2 for Group HL-LA, p = 5.66 × 10–4 for Group HL-HA, paired t-tests). 

The efficiency of masked AMLAG was evaluated through a comparison of the average number 

of tone presentations and the average test time required to estimate thresholds within 5 dB of the 

final threshold estimates relative to manual HWAG’s final threshold determinations. Because left 

and right threshold estimates are necessary to determine masking needs for HWAG, ears were 

analyzed as left and right pairs, giving overall results for each participant. The two Group HL-

LA participants with a single excluded ear were removed from this analysis. Overall results are 

shown in Table 4.3. Masked AMLAG estimated thresholds for both ears with, on average, 64 

fewer tones per Group HL-LA participant and 136 fewer tones per Group HL-HA participant. 

For hearing losses where no masking was required during manual HWAG (Group HL-LA), the 

average masked AMLAG test time to estimate both ears for a single participant was 3.8 minutes 

faster than the average manual HWAG time. For hearing losses requiring masking during manual 

HWAG (Group HL-HA), the difference was much greater, with masked AMLAG estimating 

thresholds an average of 13.1 minutes faster than manual HWAG. Clinically, bone conduction is 

needed to determine a participant’s masking needs in the presence of an air-bone gap. 

Accordingly, both air conduction and bone conduction tone counts were included in the total 

manual HWAG convergence analysis. No Group HL participants presented an air-bone gap that 

required additional air conduction masking. Therefore, the mean number of tone presentations 

and minutes required for all HWAGs with bone-conduction assessment removed from analysis 

are also summarized in Table 4.3. 
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Table 4. 3: Average number of tones and minutes required to achieve threshold estimates for each participant, 

Group HL 

 

Similar to the analysis for Group NL, each masking noise presentation was assessed to determine 

the effect of dynamic masking on Group HL tests. Group HL-LA participants did not clinically 

require masking, and it was anticipated that much like Group NL, most masking levels would be 

presented at levels below the non-test ear threshold. On the other hand, Group HL-HA 

participants did require masking, and it was expected that masking noise would be heard in the 

test ear at suprathreshold levels. These results are shown in Table 4.4 and Figure 4.3. After each 

masked AMLAG test, participants were asked if they had heard any white noise and in which ear 

it had been heard. Listeners from Group HL-LA noted hearing masking noise in eight out of 22 

masked AMLAG tests. Six of the eight were tests in which a fraction of the tones were paired 

with masking noise levels that would have been above the contralateral ear threshold for the 

Group HL-LA participants. One participant identified masking noise during left and right 

masked AMLAG, yet analysis shows that no suprathreshold masking noise was delivered during 

either test. It is suspected that occlusion effects or tinnitus might account for the perceived noise 

Group Test N Mean ± SD 

Tone Count 

Mean ± SD 

Minutes 

Mean ± SD Tone Count: 

Air Conduction Only 

Mean ± SD Minutes: 

Air Conduction Only 

HL-LA Manual 

HWAG 

10 127 ± 36 10.7 ± 4.2 93 ± 17 6.9 ± 1.7 

HL-LA Masked 

AMLAG 

10 63 ± 31 6.9 ± 3.3 63 ± 31 6.9 ± 3.3 

HL-HA Manual 

HWAG 

8 186 ± 61 18.5 ± 6.6 114 ± 32 9.9 ± 3.4 

HL-HA Masked 

AMLAG 

8 50 ± 16 5.4 ± 1.7 50 ± 16 5.4 ± 1.7 
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heard during both tests. Nevertheless, the noise perception did not appear to interfere with testing 

procedures or results. Two AMLAG tests in Group HL-LA had tone presentations paired with 

suprathreshold masking noise delivered to a non-test ear that were not identified by the 

participant. In these tests, masking noise levels may have been infrequent or quiet enough to be 

unremarkable. All eight Group HL-HA participants reported hearing masking noise in their 

better-hearing ear during the worse-hearing test ear assessment. No masking noise was discerned 

in the worse-hearing ear. No participant in Group HL reported the onset of the masking noise to 

be distracting or to inhibit their ability to perform the task. 

Table 4. 4: Masking noise above threshold of the non-test ear, Group HL (N = 38 ears) 

 HL-LA HL-HA 

Total number of masks 2200 1600 

Masks above non-test ear threshold 25 252 

Percentage of masks above non-test ear threshold 1.14 15.8 

Maximum level above non-test ear threshold (dB) 31.5 70.0 

 

Figure 4.6 shows the mean absolute difference between the final threshold estimate at 100 tone 

presentations and each increment iteration of masked AMLAG averaged across all of Group HL, 

Group HL-LA, and Group HL-HA participants. Test results converged faster for individuals with 

normal hearing, most likely because the initial seven fixed frequency/intensity combinations 

were particularly informative for this group and enabled active learning to select tone queries 

that rapidly reduced errors. Highly asymmetric hearing thresholds can also be estimated 

relatively rapidly, presumably for the complementary reason that extremely high thresholds near 

or beyond the maximum stimulus can also be identified relatively quickly in an active testing 
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scenario. It is not surprising given this consideration that individuals with thresholds in both ears 

near the middle of the testing range would require the most test tones to achieve comparable 

accuracy. Incidentally, these individuals are exactly the patient population for whom bilateral 

audiometry can most speed up testing (Heisey et al., 2018). 

 
Figure 4. 6: Average absolute threshold differences (dB) between the final estimate at 100 tones and 

estimates at each incremental tone presentation for Group NL, Group HL-LA, and Group HL-HA masked 

AMLAG. 

 

 

Figure 4.7 visually depicts the thresholds estimated for all ears with all air conduction tests for 

this study. Participants are sorted by group (NL, HL-LA and HL-HA), and within each group by 

pure tone average of the better hearing ear. This visualization demonstrates the variety of hearing 

profiles for the participants in this study, as well as the agreement between testing procedures. 

Most agreement is high, with occasional disparities at individual frequencies. Asymmetry alone 

is not associated with the disparities because Group HL-LA exhibited the least overall agreement 

between threshold estimates and not Group HL-HA.   
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Figure 4. 7: Air conduction threshold audiograms derived from the HWAG and AMLAG procedures for 

every participant in this study, sorted first by group and then by pure-tone average of the better ear. 

Dotted lines indicate unmasked AMLAG, dashed lines indicate masked AMLAG, and solid lines indicate 

HWAG. Red lines denote right ears and blue lines denote left ears. 

 

4.4 Discussion 

Masked AMLAG demonstrated similar accuracy and improved efficiency when compared to 

unmasked AMLAG and manual HWAG. These results were observed in normal hearing, 

symmetric loss, and asymmetric loss participants. This finding is particularly important as it 

indicates that masked machine learning audiometry delivers accurate true threshold estimates 

even for patients with highly asymmetric hearing where substantial masking is required. 

Exploiting the relationships between interaural attenuation, intensity and frequency, dynamically 
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masked AMLAG achieves its test time reduction for patients with asymmetric hearing by 

eliminating the need for a separate masking step. Notably, adding contralateral masking to every 

tone does not significantly increase test time for listeners with normal or symmetric hearing. For 

most of these participants, masking levels remained below hearing thresholds and were 

undetected throughout the test. A dynamically masked audiogram therefore allows for individual 

differences in masking needs to be addressed in real time without increasing test time. 

It is important to consider that masked AMLAG was set to deliver 100 tone presentations per ear 

even if it was confident in the estimated thresholds at earlier tone counts in order to ensure the 

acquisition of complete audiogram models. Therefore, tone counts and test times were calculated 

at the point when masked AMLAG’s estimation fell within 5 dB of its final estimation. Test 

stopping criteria, such as were used previously (Song et al., 2015), are the subject of ongoing 

research. A notable difference between HWAG and AMLAG is that the former must reach the 

end of its testing procedure before a complete threshold estimate is available, while the latter 

delivers a complete estimate for any length of test, though it converges closer to a more accurate 

model as more tones are delivered (Figure 4.1). AMLAG is therefore very flexible in its test 

length and can deliver useful results even in extremely short testing scenarios, such as with 

pediatric patients. 

Manual HWAG test time and tone counts included the collection of both air conduction, bone 

conduction, and any masked thresholds. This procedure likely increased both measures 

significantly. This comparison is reasonable, however, because the manual masking protocol 

used in this study requires bone conduction thresholds to determine if air conduction masking 

was needed due to an air-bone gap. None of the HL study participants had an air-bone gap 
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requiring additional air conduction masking, so masked AMLAG has yet to be tested under those 

conditions. While masked AMLAG is currently limited to testing air conduction, it dynamically 

masks all tone presentations and, therefore, does not require bone conduction thresholds to 

effectually mask air conduction thresholds, making it more efficient than manual HWAG. To 

evaluate a more direct comparison, however, Table 4.3 is appended with tallied manual HWAG 

tone counts for this study population that only include air-conduction threshold and masking 

presentations, thereby excluding bone conduction counts from analysis. Excluding bone 

conduction tone counts highlights that masked AMLAG is already more efficient than manual 

HWAG without masking and substantially outperforms manual HWAG when masking is 

required. For Group HL-LA, masked AMLAG estimated air conduction thresholds with fewer 

tone counts but in the same number of minutes as manual HWAG. For these participants, all of 

whom did not require contralateral air conduction masking, manual HWAG benefited from the 

proficiency and adaptability of an individual clinically trained to perform audiograms. The 

current implementation of masked AMLAG has a static response window of 1.5 seconds, 

regardless of when the participant responded to the tone. Future implementations could, for 

example, commence the inter-sequence wait time immediately after recording a heard response 

to more closely mimic the actions of skilled audiologists. 

Three Group HL-HA participants had unilateral cochlear implants with no residual hearing in the 

implanted ear. For these participants, masked AMLAG for the implanted ear executed only 

Halton sampling because no heard tone was ever detected in that ear. Figure 4.8 shows the final 

left and right ear thresholds and each tone presented for one unilaterally deaf participant. While 

the tones presented in the better-hearing ear are almost all focused near the threshold estimate, 
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the ‘dead’ ear samples canvas the entire frequency/intensity domain. Because no tone was heard 

and there is no initial threshold estimate, masked AMLAG is declared to be converged to “no 

response” at every frequency if there was no threshold estimate after 15 tones. This value 

accounts for a reasonable number of tones to adequately sample the domain and deduce a 

complete lack of hearing. In an eventual clinical version of AMLAG, Halton sampling will not 

be used, and a dead ear would be determinable rapidly by active sampling. The purpose of the 

extensive sampling in the current study was to determine if dynamic masking ever failed to 

properly mask a test tone. No examples of such failure were noted in 6200 tone deliveries. Ears 

with no residual hearing almost always elicit cross-hearing and require extensive masking when 

tested, as shown in the rightmost histogram of Figure 4.3. Masked AMLAG is able to effectively 

sample throughout the domain and cancel out all cross tones without requiring any additional 

procedure.  

 
Figure 4. 8: Final masked AMLAG results for one participant (127) with a left cochlear implant and no 

residual hearing. Red diamonds denote unheard tones and blue pluses denote heard tones.The most 

intense tones at lower frequencies in the left ear were effectively masked. 
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Because AMLAG frequency and intensity levels are selected by an active learning algorithm, 

subsequent masking levels rove across the entire frequency and intensity spectrum. It is possible 

for long periods without suprathreshold masking to be followed by a tone presentation paired 

with an audible contralateral masking level. While listener performance has been shown to be 

unaffected by tones roving between frequency, intensity, and ears (Barbour, Howard, et al., 

2019; Heisey et al., 2018; Song et al., 2015), masking is unique in that tones in a test ear are 

paired with masking noise in a non-test ear. For any test stimulus, both, either, or neither sound 

might be heard by the listener. The onset of sound, be it tone or noise, requires the listener to 

discern if a response is appropriate or should be inhibited. The consistent threshold estimation 

results in all groups demonstrate that masking noise did not disorient listeners or induce false 

positives. It was anticipated that participants requiring masking would have had more masking 

protocol exposure as a part of routine manual HWAG assessments, whereas participants to 

whom masking noise is a novel experience might have struggled to ignore masking noise. Eight 

of the 22 Group HL-LA tests, however, were presented with audible masking during masked 

AMLAG. Presumably, these participants had not previously experienced audiograms that 

included any masking protocol. These unfamiliar listeners successfully completed the assessment 

and had similar results as those without any audible masking. 

Clinically, masked AMLAG offers several potential benefits compared to manual HWAG. As 

this study showed, masked AMLAG provides an opportunity for the standardization of masking, 

a challenging procedure with multiple variations that are frequently implemented incorrectly 

(Gumus et al., 2016; Hamil, 2016; Sanders & Rintelmann, 1964; Valente, 2009; Yacullo, 2015). 

Uniformity of clinical procedures is imperative in order to reduce inter-clinician variability and 
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ensure that best practices are being achieved. Automation of these methods would also allow 

technicians to perform some routine testing, providing audiologists with more time for complex 

cases and to perform other clinical duties. 

Delivering contralateral masking levels fixed relative to the ipsilateral tone yields two potential 

disadvantages. First, undermasking and overmasking are a theoretical possibility because direct 

confirmation of the proper range of masking levels is not obtained in each participant. No 

evidence of either type of masking error was apparent in this cohort’s data because thresholds 

were not systematically biased for either the better or worse ear in the HL-HA population. In 

particular, extreme asymmetry showed no evidence of systematic bias. It therefore seems 

unlikely that this simple method of fixed maskers would lead to undermasking or overmasking. 

Insert earphones with a much larger interaural attenuation would be a method to address this 

possibility directly. 

Second, previous research using AMLAG has included discussion of the unpredictable nature of 

the constituent tone sequences and corresponding difficulty for malingering patients to thwart the 

test (Song et al., 2015). The use of consistent relative contralateral noise levels that begin prior to 

tone delivery reinjects some predictability into the tone sequences for individuals with 

asymmetric hearing loss who definitely detect the maskers. The ultimate solution in this case 

may be to allow masker level to vary just as tone frequency and level do and explicitly estimate 

the frequency-dependent interaural attenuation at every test. This next-generation automated 

masking audiogram would then no longer rely on rules of thumb adopted from evaluating 

interaural attention in small numbers of individuals in the distant past. Additional bone 

conduction data may be required to properly select dynamic masking levels, but total maskers 
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delivered would decrease over the method presented here, and the unpredictability of the masker 

presentations would cement a difficult if not impossible test procedure to thwart. 

Bone conduction has been presented in this study as the source of a phenomenon that can 

confound accurate air conduction threshold estimation under some conditions. Bone conduction 

thresholds are useful in their own right, however, to aid in the differential diagnosis between 

sensorineural and conductive hearing loss (see Chapter 2). Adding pure-tone bone conduction 

threshold estimation to AMLAG would represent another advance toward efficient 

standardization. Given the demonstrated flexibility of AMLAG, doing so would be 

straightforward. It is possible that new transducer configurations may be needed in this case, 

though AMLAG may prove able to compensate for hardware limitations with an advanced 

software implementation. 

Unmasked AMLAG includes the ability to estimate the hearing thresholds of both ears 

simultaneously through bilateral testing (Barbour, DiLorenzo, et al., 2019; Heisey et al., 2018). 

Adding air conduction masking to this procedure is straightforward. In fact, three normal hearing 

participants were recruited in this study to demonstrate the feasibility of masked bilateral 

AMLAG. All three participants were given an unmasked and a masked bilateral AMLAG. The 

average mean signed difference of 0.10 ± 3.7 dB and average mean absolute difference of 3.0 ± 

2.0 dB between unmasked and masked bilateral AMLAG are similar to the differences seen 

between unmasked and masked unilateral AMLAG (Heisey et al., 2018). Additionally, the mean 

tone count and time to reach threshold estimates within 5 dB of the final estimate for both ears 

were 19 ± 25 tones and 2.1 ± 2.7 minutes for unmasked bilateral AMLAG, and 23 ± 20 tones and 

2.5 ± 2.2 minutes for masked bilateral AMLAG (details of bilateral masked AMLAG analysis 
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can be found at https://osf.io/64qd7/). Accurate and efficient bilateral estimation of air 

conduction thresholds for normal hearing individuals under conditions of dynamic masking 

suggests the successful extension of masked bilateral AMLAG to participants with symmetric or 

asymmetric hearing loss. 

4.5 Concluding Remarks 

The incorporation of automatic dynamic masking into AMLAG demonstrates the versatility of 

active machine learning diagnostic procedures. AMLAG finds hearing thresholds so rapidly, 

most patients will never know they are taking a masked test because all the masking noise will 

fall below their detection thresholds. For the patients with asymmetric hearing, however, masked 

AMLAG delivers true thresholds much more quickly than conventional techniques and in about 

the same time as unmasked AMLAG would require to estimate thresholds potentially 

contaminated with cross hearing. Machine learning audiometry therefore has great potential to 

enhance patient care by simultaneously standardizing a challenging clinical procedure and 

optimizing both clinician and patient time. More generally, the work presented here and in 

Chapter 3 demonstrates that the GP framework uniquely enables complex, multidimensional 

assessments capable of individual inference with practical amount of data. Of particular import, 

these methods significantly improve perceptual testing for the most vulnerable of the population 

for whom standard methods are often the most time consuming and costly. 

  

https://osf.io/64qd7/
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Chapter 5: Joint Estimation of Speech-in-

Noise and Verbal Working Memory 

5.1 Introduction 

Previous studies have elucidated that certain speech-in-noise measures correlate to verbal 

working memory tests (Akeroyd, 2008; Daneman & Merikle, 1996; McCoy et al., 2005; S. L. 

Smith & Pichora-Fuller, 2015). There are a wide variety of assessments frequently used to probe 

working memory ability and speech comprehension. Studies reporting significant correlations 

are those that require the active processing, manipulating, and storing of incoming signals during 

working memory tests and often evaluate speech comprehension in challenging environments or 

hearing-impaired cohorts (reviews in Akeroyd, 2008; Daneman & Merikle, 1996). It is theorized 

that extra cognitive effort is needed for successful speech perception in challenging 

environments, such as the extended storage of incoming signals until sufficient context or an 

individual’s mental lexicon can resolve gaps in understanding due to degraded signals. Yet, the 

exact contribution of working memory during challenging speech comprehension remains highly 

debated. Individual factors such as age, pure-tone and speech reception thresholds, and cognitive 

ability together with the lack of a widely accepted standard for working memory tests has 

hindered any universally accepted interpretation of how these constructs collaborate in 

individuals.  

To determine the interaction between noisy speech comprehension and verbal working memory, 

serial test batteries are administered to collect multiple measures in individuals with the aim of 

correlating distinct behavioral results in a meaningful way. Test batteries take time and often 

make inefficient use of data collection resources by redundantly querying participants in 
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overlapping domains. Balancing the demands of data collection with sufficiently powered 

conclusions, many assessments are designed to attempt to control for all features of the 

environment that are not being actively measured. However, specific interactions between 

speech perception and working memory are unique to individuals based on, but not limited to, 

their life experiences, genetics, cognitive abilities, and neural encoding (Samira Anderson, 

White-Schwoch, Parbery-Clark, & Kraus, 2013; DeCaro et al., 2016; Millman & Mattys, 2017; 

Peelle, Troiani, Grossman, & Wingfield, 2011; Peelle & Wingfield, 2016). Further, these 

interactions morph with age as the onset of perceptual and/or cognitive decline reallocates neural 

resources to compensate for changes in connectivity, brain structure, dedifferentiation, or 

dopamine levels (Grady, 2013). Age-related shifts are not consistent across individuals since 

cognitive ability and optimized neural strategies are longitudinal adaptations that do not fluctuate 

at a constant rate but reflect the ever-changing context of an individual’s life. Consequently, even 

in highly controlled experimental settings, it is impossible to homogenize the sample population, 

and low-dimensional test batteries show a high degree of inter-subject variability regardless of 

age (DeCaro et al., 2016; Killion & Niquette, 2000; Plomp & Mimpen, 1979). As a result, 

incremental and occasionally competing conclusions have complicated any understanding of 

how speech comprehension and working memory interact (Füllgrabe & Rosen, 2016). 

Definitively quantifying the interactions between these two measures and how it transforms with 

age is still incomplete. 

Directly measuring verbal working memory and speech-in-noise ability in one test might begin 

to disentangle the distinctive demands placed on shared resources during complex 

comprehension tasks. Until now, joint cognitive and perceptual assessments have not been 
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feasible due to extensive data collection requirements or the inability to efficiently model such a 

complex domain. Utilizing the GP inference framework, noisy speech comprehension and verbal 

working memory can be assessed in one comprehensive test. Employing an active machine 

learning model that can simultaneously measure across multiple domains allows, for the first 

time, a direct measurement of the intra-individual interactions between speech-in-noise and 

verbal working memory.  

Similar to AMLAG exploiting shared information in audiometry, an active machine learning 

method was implemented to explore and exploit shared information between noisy speech 

comprehension and verbal working memory. A joint active machine learning perceptual and 

cognitive test, or AMLPACT, directly models the interactions between speech comprehension 

and verbal working memory by estimating a participant’s performance over a complex two-

dimensional input domain. In this way, AMLPACT estimates behavior on the standalone low 

dimensional tests as well as the interactions between them.  

 AMLPACT was utilized to conduct individualized analysis of the interplay between speech-in-

noise and verbal working memory and how it adapts with age. While there are many variations 

of speech-in-noise and working memory assessments, as a first implementation of a joint speech 

and memory test, AMLPACT models an auditory naming speech-in-noise assessment and a 

verbal working memory N-back. The N-back assessment was chosen because of its extensive use 

in functional magnetic resonance imaging, which will be relevant in Chapter 6, and its validation 

as a robust measure of verbal working memory (Gajewski et al., 2018; Jaeggi et al., 2010). 

Similarly, the auditory naming test was selected because it pairs well with fMRI data collected in 

Chapter 6, and its widespread use as a measure of noisy speech comprehension. 
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In this chapter, AMLPACT was administered to young and older adults to investigate both intra-

individual and age-related variations in speech and memory behavior. Individual differences in 

how verbal working memory engages during speech-in-noise tests may help explain variances in 

speech comprehension or N-back accuracy that are not delineated by purely low-dimensional 

measures. Regardless, AMLPACT will demonstrate that high-dimensional, active machine 

learning methods are an innovative, practical option for combining cognitive and perceptual 

tests. 

5.2 Methods 

5.2.1  Participants 

Forty-four participants (18 male, 26 female) were recruited for this study. Participant were 

divided into age-based cohorts of 17 young adults whose ages were between 21 and 30 (mean 

25) and 27 older adults whose ages were between 65 to 77 (mean 72). All participants were 

native English speakers with self-reported normal hearing. Informed consent and a voluntary 

demographic form were obtained prior to the beginning of the study. Participants were recruited 

using the Research Participant Registry at Washington University in St. Louis or by referral from 

an ongoing speech-in-noise fMRI study. This study and the study used to refer participants were 

both approved by the Human Research Protection Office at Washington University.  

One young and one older participant were excluded from all analysis due to a failure to correctly 

complete the assessments. One participant was outside of the age ranges included in this study 

and was excluded from all analysis. Additionally, one older adult was recently diagnosed with 

early stages of Alzheimer’s disease. This participant's data was omitted from all healthy cohort 

analysis but is presented separately in a discussion of the possible utility of joint tasks to assess 
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performance in populations experiencing cognitive decline. Consequently, 16 young adults and 

24 older adults were included for all healthy analysis. 

It is noted that one young participant was a main contributor to the development of the N-back 

and joint memory and speech perception software. Their extensive task exposure likely impacted 

their task performance, and their data has been noted in all subsequent analysis. 

5.2.2  Procedure Overview 

Each participant was administered four to five tests, three different speech-in-noise tests (a 

standard QuickSIN and one or two auditory naming tests), an N-back working memory test, and 

the joint AMLPACT. Test order was pseudo-randomized such that the N-back and AMLPACT 

were not delivered back to back in order to relieve some of the cognitive strain from the most 

cognitively demanding tasks. Instructions were given before each assessment. Practice trials 

were provided for the N-back, QuickSIN, and AMLPACT to ensure that participants understood 

the basic mechanics of each assessment.  

Assessments were administered in a sound-treated booth. Auditory stimuli were delivered via 

circumaural headphones paired with a Dragonfly Red 32-bit DAC (AudioQuest, Irvine, CA) 

connected to a Dell XPS laptop computer. A headphone splitter allowed the experimenter to 

monitor the delivery of the auditory stimuli. The N-back working memory test required a mouse 

button response click, and an external mouse was connected via USB for the entirety of that test. 

The two auditory naming speech-in-noise assessments and AMLPACT were written in custom 

Matlab code, the standalone N-back test was written in C#, and QuickSIN was administered with 

the official QuickSIN CD (Etymotic Research, 2001). The laptop volume was set such that all 
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stimuli were delivered at or near 70 dB SPL. Before beginning the tests, participants were asked 

to determine if a set of words presented in quiet was audible. If not, the volume was increased to 

a comfortable listening level.  

All three speech-in-noise assessments asked the participant to listen and repeat a word or 

sentence to the experimenter. The experimenter recorded whether the response was correct or 

incorrect. The N-back and AMLPACT tests presented a running list of words and required the 

participant to respond only when identifying a positive N-back match. No feedback was provided 

during the test session, unless requested by the participant.  

5.2.3  Procedure for Speech-in-Noise Assessments 

The three speech-in-noise tests administered were a QuickSIN (Etymotic Research, 2001, 

Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004); a dense phonological neighborhood, 

auditory naming staircase task; and a dense phonological neighborhood, auditory naming test at 

three discrete SNRs. Thirteen participants (one young and 12 older) did not complete the discrete 

level speech-in-noise test because it was introduced to the test battery after initial recruitment 

had begun. 

A QuickSIN speech-in-noise test gives an assessment of a participant’s speech perception in the 

presence of babbled background noise (Killion et al., 2004). This test is often used clinically due 

to its short test time (1-3 minutes). During a QuickSIN test, a female talker speaks six short 

sentences, each with five target words, in the presence of four-person background babble. The 

participant repeats back the sentence, and it is scored according to how many of the target words 

are correctly repeated. The first sentence starts at an SNR of 25 dB and each following sentence 
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reduces the SNR by 5 dB, with the final sentence presented at an SNR of 0 dB. An individual’s 

SNR offset is calculated by totaling the correct target words repeated from each sentence and 

subtracting from 25.5. A practice list and two test lists were randomly selected at the beginning 

of each session. The score from the two test lists were averaged to determine the SNR loss of 

each participant. SNR loss is defined as the increase in SNR required for a participant to 

successfully identify 50% of the target words compared to normal listeners ((Etymotic Research, 

2001; Mead C. Killion et al., 2004). Two QuickSIN lists achieve test-retest accuracy of ± 1.9 dB 

at a 95% confidence interval level (Killion et al., 2004). 

The two auditory naming tasks utilized dense phonological neighborhoods to increase cognitive 

demand beyond simple SNR manipulation while keeping cognitive demand constant between 

participants. For both tests, subjects were expected to repeat back words in the presence of 

speech-shaped noise, and the test administrator recorded if a correct or incorrect response was 

given. Stimuli were chosen with equal likelihood from a set of 400 monosyllabic words matched 

for word frequency, number of phonemes, familiarity (Balota et al., 2007), and correctness 

(Brysbaert, Warriner, & Kuperman, 2014). Dense neighborhoods were defined as words with 

many neighbors (greater than 20) that differed by only one phoneme. 

In the staircase assessment, 40 words were presented, and the SNR level increased or decreased 

by 1 dB increments depending on the incorrect or correct repetition of the word. The SNR at 

which the words were correctly repeated back 50% of the time was determined by averaging the 

SNRs at which the level reversed from decreasing to increasing (the SNRs where a response 

reversed from correct to incorrect).  
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The discrete levels auditory naming task presented 10 words at +5, 0, and −5 dB SNR. 

Delivering words at SNRs that can be matched across the age groups as well as matched for 

difficulty of task (for example, perceived difficulty of +5 SNR for older adults and 0 SNR for 

young adults) allows for diverse analysis of how cognition contributes to accuracy in age and 

task difficulty. Response accuracy at each SNR level was calculated as the ratio of the number of 

correctly repeated words to the total number of words in the set. 

5.2.4  Procedure for N-back Assessment 

The verbal N-back was designed to closely match the parameters of AMLPACT. Blocks of N-

back tasks were presented with 16 audio signals, each with four positive N-back targets and four 

foils. A foil was considered any stimulus matching one presented less than N stimuli previously 

(for example, a 1- or 2-back match presented during a 3-back block). No foils were presented 

during the 1-back blocks.  

Auditory stimuli were monosyllabic words presented in quiet, all randomly chosen from the 

same word set used in the auditory naming tasks. Consecutive N-back blocks linearly increased 

memory load from a 1-back to a 7-back. Each word presentation was followed by a 2 second 

response window during which participants were instructed to press a button if a word matched 

the target word presented N previously. If a response was recorded, the next word presentation 

would begin 0.5 seconds after the recorded response. If the presented word was not a match to 

the target, they were instructed to do nothing and the next word would begin at the conclusion of 

the 2 second response window. At the end of each N-back block, participants were notified of the 

increase in memory load and asked to press a button to confirm and continue. Response accuracy 
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and response time were recorded. Response accuracy for each block was calculated as the ratio 

of the number of correct responses to the number of total possible responses in that block. 

5.2.5  Procedure for AMLPACT 

A joint speech perception and working memory assessment was developed to better reflect 

complex, real-world environments that demand simultaneous perceptual and cognitive 

processing and so that it might help to disentangle the interactions of speech-in-noise and verbal 

working memory in individuals. 

The test consisted of 20 blocks of distinct verbal N-back test items. Participants were instructed 

to press a keyboard button anytime an incoming audio signal matched the stimulus presented N 

trials previously and to ignore any non-matching signals. If a button was pressed during the 2.25 

second response window following the audio stimulus, the next stimulus was delivered 0.5 

seconds after the recorded button press. If no response was recorded, the next stimulus began at 

the conclusion of the 2.25 second response window. 

Each N-back block contained 16 audio signals with four positive N-back targets and four foils. 

No foils were presented during 1-back blocks. Audio signals were monosyllabic words chosen 

randomly from the word set used in the auditory naming tests. Each N-back block presented all 

16 words at the selected SNR. SNRs between −10 dB and +10 dB were achieved by introducing 

the stimulus word in the presence of steady, speech-shaped noise that matched the frequency 

spectrum of the talker. The noise began 0.5 seconds before the word was presented and remained 

on for 0.5 seconds after. Memory load ranged between 1-back and 7-back. An example of the 

auditory stimuli presented in three different blocks of an AMLPACT is depicted in Figure 5.1. 
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Response times and accuracies of button presses were recorded. The subject’s mean response 

accuracy for each block was calculated as the ratio of the number of correct responses to the 

number of total possible responses in that block.  

 
Figure 5. 1: An example of three blocks of AMLPACT stimuli. Each block of AMLPACT is an N-back 

paired with speech-shaped background noise presented at a set SNR. Memory load (N) and SNR are 

chosen by the GP framework to optimally sample the domain space. Each AMLPACT consists of 16 

monosyllabic words from dense phonological neighborhoods. Each block has four target words (positive 

N-back matches) and four foils (non-target matches). 

 

 

AMLPACT is an iterative, Bayesian inference, GP regression model capable of optimally 

selecting the SNR and memory load to best simultaneously explore the input domains as the test 

progresses. Every AMLPACT began with a 1-back at +10 dB SNR. Subsequent blocks adjusted 

memory load and SNR based on the uncertainty of the GP’s posterior probability and a custom 

heuristic to penalize introducing 7-back blocks too early in the assessment.  

A) 3–Back Test, SNR = +5

miceshinecakemicecake

No Response No Response No Response
(Foil)

No Response Target Word 
Response

B) 2–Back Test, SNR = 1

bagwallbagkeepkeep

No Response No Response
(Foil)

No Response No Response Target Word 
Response

C) 2–Back Test, SNR = −5

cathensithensit

No Response No Response Target Word
Response

Target Word
Response

No Response
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AMLPACT’s GP utilizes a constant mean function, 𝜇(𝑥) = 𝑐, and a composite covariance 

function, 𝐾(𝑥, 𝑥′) = 𝐾𝜔(𝑥, 𝑥′) + 𝐾𝜂(𝑥, 𝑥′) that integrates our assumptions about the memory 

load (𝜔) and SNR (𝜂) dimensions. The mean function hyperparameter, 𝑐, was set to 0.75. This is 

the threshold above which participants respond to more correct than incorrect N-back targets and 

was selected to reflect a prior belief about average participant performance. Independently, N-

back and speech-in-noise tests have a monotonically negative relationship between task difficulty 

(increasing N or decreasing SNR) and accuracy. However, this relationship may not always be 

strictly linear, and potential participant lapses dissuaded the use of linear covariance functions. 

Instead, a squared exponential covariance function was selected for both memory load and SNR 

dimensions: 𝐾𝜔(𝑥, 𝑥′) = 𝑠1
2 ∙ exp (−

(𝜔−𝜔′)
2

2ℓ1
2 ) and 𝐾𝜂(𝑥, 𝑥′) = 𝑠2

2 ∙ exp (−
(𝜂−𝜂′)

2

2ℓ2
2 ). The 

hyperparameters for the scalar factors, 𝑠1 and 𝑠2, and the length constants, ℓ1 and ℓ2, were 

learned by gradient descent on simulated data and refined on a 50 data point set of prior data 

collected on a lab member. AMLPACT set the informative hyperparameters before beginning the 

assessment of experimental participants, and subsequent hyperparameter learning was turned off.  

Each block of the AMLPACT updated a posterior probability over the domain defined by the 

total set of SNR and memory load values. The posterior probability represented the model’s 

prediction of a participant’s accuracy at every SNR and N combination given the data observed. 

Figure 5.2 shows the posterior probability of a participant after 1, 5, and 20 blocks are observed. 

As more data are collected, the GP is able to further refine its prediction of a participant’s 

accuracy. 
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Figure 5. 2: The posterior probability mean of the GP after 1, 5, and 20 iterations for one participant. The 

posterior probability reflects the prior assumption of the relationships between SNR, N, and performance 

accuracy and the observed data. The posterior probability is updated as more data are observed. Queried 

points are denoted by magenta dots. 

 

5.2.6  Data Analysis 

The discrete speech-in-noise and N-back assessments were evaluated for differences between 

young and older adults using permutation tests. Subsets of the two-dimensional model at selected 

N/SNR levels were compared to the discrete working memory and speech-in-noise tests to 

validate the joint AMLPACT. Repeated-measures ANOVA was used to evaluate the effect of 

increasing memory load on AMLPACT and the N-back standalone tests. A GP and linear model 

were derived from the observed AMLPACT data. Parameters that informed the fit of the linear 

model were used to investigate the independent contributions of SNR and memory load. 

Summary measures of the GP and linear model were used to assess age-related shifts in 

performance and individual differences.  

Being a novel perceptual and cognitive task, AMLPACT’s test-retest reliability has yet to be 

determined. To that end, 10 participants (9 young and 1 older) completed two AMLPACT tests in 

two separate test sessions on different days.  
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All measures were tested for normality using the Shapiro-Wilke test as recommended for small 

sample sizes (Ghasemi & Zahediasl, 2012; Yap & Sim, 2011), and nonparametric statistical tests 

were used if the equivalence to a normal distribution could not be established for any measure 

being assessed. 

Models of AMLPACT Performance 

In this study, AMLPACT queried 20 N/SNR combinations in the two-dimensional input domain. 

Using these observations, two models were constructed to predict performance over the entirety 

of the domain. The first model is the posterior probability from the GP regression produced after 

every new query. The selection of nonlinear covariance functions allows the GP model to capture 

interactions between memory load and SNR levels within individual participants. The second 

model is a two-dimensional linear regression based on the observed points. This model enforces 

strictly linear relationships between memory load and SNR. An example of the models generated 

from one participant’s data is depicted in Figure 5.3. Both models were used to analyze 

performance to  

1) determine if a strictly linear model based on observed data is sufficient to predict 

performance and capture individual differences. 

2) explore any added benefit of a model capable of capturing nonlinearities in 

investigating the interactions of speech-in-noise and verbal N-back assessments. 

3) determine which model, if any, best predicts neural activity (see Chapter 6) 
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Figure 5. 3: The final GP and linear model of one participant after 20 observations. The observed blocks 

are denoted by magenta dots. 

 

 

Summary Measures 

To facilitate statistical analysis and interpret behavioral results, a summary measure of the two-

dimensional surface was calculated. Reducing the two-dimensional surface to a single summary 

measure, performance in young and older adults was examined to extract cohort-level analysis of 

changes in task performance due to healthy aging. Additionally, summary measures were used to 

assess individual differences and the interactions of verbal working memory and speech 

comprehension regardless of age. 

AMLPACT is a nonparametric model, so common statistical measures (such as an overall 

maximum or mean value) are not necessarily descriptive of the model’s structure. A 

nonparametric statistic was developed to succinctly summarize AMLPACT performance. 

QuickSIN, a coarse measure of each participant’s speech perception in noise, was used to 

determine the most predictive summary measure of the GP model. AMLPACT incorporates a 

speech-in-noise assessment and any summary measure chosen should be correlated to the 
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independent QuickSIN scores. A Pearson’s correlation between QuickSIN scores and a variety of 

potential summary measures including weighted and unweighted sums, weighted and 

unweighted means, the gradient and direction of maximum slope, and the area under the volume 

was calculated (see https://osf.io/64qd7/ for addition details). Overall, the mean accuracy of all 

points where performance was above 0.75 was the best predictor of QuickSIN and a reasonable 

choice to represent the GP’s and linear model’s predictions of individual AMLPACT 

performance. Performance accuracy greater than 0.75 is only possible when more correct than 

incorrect responses are recorded, dictating its use as a threshold statistic. The mean accuracy 

above 0.75 threshold was used to summarize the individual shape of each participant’s predicted 

accuracy as modeled by the GP and linear fit and to assess individual differences and predictive 

capabilities. 

5.3 Results 

5.3.1  Independent Assessments 

As expected, increasing memory load in the standalone N-back resulted in increased reaction 

time and decreased accuracy for both age groups (Figure 5.4). A repeated-measures ANOVA 

shows effects of task load on accuracy for young adults: 𝐹6,90 = 22.1, 𝑝 = 7.9 × 10−16; and 

older adults: 𝐹6,138 = 20.0, 𝑝 = 9.5 × 10−17; as well as effects of load on reaction time for 

young adults: 𝐹6,114 = 4.1, 𝑝 = 7.6 × 10−3; and older adults: 𝐹6,90 = 3.0, 𝑝 = 9.9 × 10−4. 

Overall, young adults performed at a higher accuracy compared to the older adults (permutation 

test, p = 5.9 × 10–4) but there was no significant difference in average reaction time between 

young and older participants (permutation test, p = 0.89). 

https://osf.io/64qd7/
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Figure 5. 4: Standalone N-back accuracy and reaction time for young and older adults. Accuracy declines 

and reaction time generally increases with increasing memory load. 

 

 

The speech-in-noise 50% thresholds for young adults ranged from −7 to −1 dB and older adults 

ranged from −4 to 8 dB. There were age-related differences in the mean speech-in-noise 

threshold (permutation test, p = 9.9 × 10–5) but considerable variability within each cohort 

(Figure 5.5). Similarly, performance on the auditory naming speech-in-noise levels assessment 

revealed significant age-related differences (permutation test, p = 6.0 × 10–4) (Figure 5.6). The 

average accuracy of the young adults at SNR = 0 (0.76 ± 0.07) was similar to the average 

accuracy of the older adults for words presented at SNR = +5 (0.75 ± 0.09). These results are 

consistent with the published literature on N-back and speech-in-noise assessments. 
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Figure 5. 5: Box plot of speech-in-noise 50% thresholds from standalone auditory naming test. 

 

 
Figure 5. 6: Accuracy on auditory naming test at three SNRs. Substantial differences between young and 

older adults are evident. 

 

5.3.2  Analysis of GP and Linear Model Fit and Predictive Capabilities 

A ‘leave-one-out’ cross validation evaluated the effectiveness of the GP and linear models at 

predicting the mean performance accuracy of the entire N/SNR domain. Each of the 20 

observations was left out once and the GP and linear models were trained with the remaining 19 

observations. The trained model was then used to predict the mean accuracy of the model that 

included all 20 observations. The mean absolute difference between the predicted mean accuracy 

and the realized mean accuracy was calculated across all 20 predictions and was recorded for 

each participant (Figure 5.7). Both models accurately reflect the mean accuracy; the GP model is 
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slightly less accurate with a mean absolute difference of 0.0043 ± 0.001 compared to the linear 

model mean absolute difference of 0.0038 ± 0.001. However, neither model prediction differed 

significantly from the realized mean performance (Mann-Whitney U-test, p = 0.54 and p = 0.20 

for GP and linear models, respectively). 

 
Figure 5. 7: Leave one out cross validation. Mean absolute difference between the mean accuracy and the 

predicted mean accuracy after ‘leave one out’ cross-validation of GP and linear model for each 

participant. On average, both models predict average participant performance with low error, but the 

linear model is more predictive compared to the GP model. The one young participant who had some 

AMLPACT training prior to recruitment is participant #1. 

 

 

In addition to cross validation, the negative log likelihood of the GP model and the R2  of the 

linear model were examined to measure how well the models fit the observed data. The negative 

log likelihood of the GP assesses the convergence rate of the model to the final posterior 

probability calculated with all 20 observations. It is a measure of in-sample error reduction. 

Assuming samples are representative of the entire input domain, once the negative log likelihood 

becomes asymptotic, additional observations are unlikely to significantly improve the model. At 

20 observations, the GP model is not quite asymptotic and additional observations may result in 
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greater predictive ability (Figure 5.8.A). Examining a GP model from a 55 point data set 

collected on a lab member over multiple test sessions shows that, indeed, incremental model 

improvements level out as more data are collected (Figure 5.8.B). The R2 of the linear models 

were evenly dispersed between 0.084 to 0.83 (mean: 0.49 ± 0.19) implying a lack of consistency 

in the model’s ability to fully capture the observed data regardless of age (Figure 5.9). Age-

related differences between R2 values were not significant (2-sample t-test, p = 0.19).  

 
Figure 5. 8: A) Mean negative log likelihood of the posterior probability of the GP across participants. 

Negative log likelihood is a measure of the reduction of error as more blocks of AMLPACT are observed 

and is the likelihood that models constructed with fewer than 20 observations would predict the 

performance modeled in the final posterior probability constructed from 20 observations. B) Negative log 

likelihood calculated from a 55 point data set collected on one participant over multiple sessions. As more 

blocks are observed, subsequent models improve by smaller increments. 
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Figure 5. 9: R2 of AMLPACT linear model for each participant. Young participants are represented by 

blue dots. Older participants are denoted by red dots. The mean R2 for each age group is indicated by the 

long dashes along the y-axis. Age does not appear to determine the goodness of fit of the linear model to 

the observed data (2-sample t-test, p = 0.188). A blue arrow indicates the one young participant who had 

some AMLPACT training prior to recruitment. 

 

5.3.3  Effect of Memory Load and SNR on AMLPACT Models 

The regression coefficients of the linear AMLPACT model measure the approximate contribution 

of each independent variable included in the model construct. Inspecting the regression 

coefficients assigned to memory load (N) and SNR, it is apparent that the memory load 

dominates participant performance (Figure 5.10). The mean regression coefficients assigned to 

the memory load dependent variable was –0.035 ± 0.015 (mean t-statistic, p-value = 0.023) and 

to SNR was 0.0024 ± 0.0032 (mean t-statistic, p-value = 0.36). The high p-value assigned to the 

SNR variable indicates that the SNR coefficient does not contribute to participant performance in 

a statistically significant manner given the other terms in the model. The signs of the mean 

regression coefficients indicate that increasing memory load decreases performance accuracy 

(negative coefficient) while increasing SNR increases accuracy (positive coefficient). It is worth 

noting that while the positive mean coefficient of the SNR variable does indicate that increasing 

SNR results in increasing accuracy generally, 7 of the 40 participants (1 young, 6 older) had SNR 
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coefficients less than 0. It is counterintuitive that a participant would perform better on a N-back 

block with more competing noise as opposed to less when memory load is kept constant. It is 

more probable that the negative weights are a result of participant lapses or a shortcoming in task 

design. The current implementation of AMLPACT does not have the built-in capability to 

accommodate lapses, and this is an area for future research.  

 
Figure 5. 10: Regression coefficients of the linear regression model fit for: 

Accuracy ~ 𝛽0 +  𝛽1 ∗ 𝑆𝑁𝑅 +  𝛽2 ∗ 𝑁 

Where A) shows 𝛽1 weights and B) shows 𝛽2. Subjects are sorted by 𝛽1. The mostly positive 𝛽1 reflects 

that increasing SNR increases performance accuracy while the mostly negative weight of 𝛽2 reflects that 

increasing memory load decreases performance accuracy. Blue arrows indicate the one young participant 

who had some AMLPACT training prior to recruitment. 

 

 

To investigate the influence of memory load and SNR on the GP model, the two-dimensional 

posterior probability was collapsed down to the respective memory load and SNR dimensions 

(Figure 5.11). The average change in predicted accuracy with respect to each dimension could 

then be evaluated. Performance accuracy declined as a function of increasing memory load from 

0.93 ± 0.040 at 1-back blocks to an accuracy of 0.73 ± 0.070 at 7-back blocks (repeated-

measures ANOVA: 𝐹6,234 = 159.1, 𝑝 = 1.2 × 10−79). Unlike the linear model, predicted 
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accuracy as modeled by the GP was affected by decreasing SNR. Accuracy at the most favorable 

SNR = +10 dB was 0.82 ± 0.072 and accuracy at SNR = −10 dB was 0.77 ± 0.067 (repeated-

measures ANOVA: 𝐹20,780 = 8.6, 𝑝 = 2.2 × 10−23). The implications of these findings will be 

discussed further in Discussion. 

 
Figure 5. 11: Predicted performance accuracy collapsed down to A) memory load and B) SNR 

dimensions across all participants. Performance changes with respect to memory load (A) but not SNR 

(B). 

 

 

5.3.4  Effect of Speech-in-Noise Thresholds on AMLPACT Performance 

AMLPACT evaluated speech-in-noise ability by presenting words in varying levels of 

background noise. Participants varied in their ability to successfully comprehend speech at 

challenging SNRs as seen in Figure 5.5 and Figure 5.6. As a result, some blocks delivered words 

that were acoustically degraded to such a degree as to be unintelligible for participants. To 

examine the effect of intelligibility on individual AMLPACT performance, each AMLPACT 

model was divided with respect to the 50% signal-to-noise threshold, as determined by the 

staircase auditory naming task. Each participant’s predicted performance could then be analyzed 

according to blocks paired with SNRs above or below individual signal-to-noise thresholds.  
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For many participants, accuracy increased slightly when blocks were paired with background 

noise above the participant’s 50% threshold (Figure 5.12). A greater improvement was seen for 

the young cohort with most participants improving when words were presented above their 

threshold for both models (mean improvement in accuracy of 0.037 and 0.037 for the GP and 

linear models, respectively). Older participants had more mixed results with generally less 

improvement when words were presented at favorable SNRs (mean improvement in accuracy of 

0.022 and = 0.020 for the GP and linear models, respectively). Overall, consistent with section 

5.2.1, words presented at favorable SNRs seemed to have a small but significant effect on 

AMLPACT performance accuracy. A two-sample t-test confirms that performance accuracy is 

significantly different during blocks paired with noise above participant’s individual speech-in-

noise threshold compared to blocks paired with noise below a participant’s threshold (GP: p = 

0.033 and linear: p = 0.036). 

 
Figure 5. 12: Increase in accuracy, per participant, during blocks of AMLPACT paired with background 

noise above each participant’s speech-in-noise threshold compared to blocks of AMLPACT paired with 

noise below each participant’s threshold, as determined by the speech-in-noise standalone assessment, for 

A) the GP model (young participants improved, on average, 0.037 while older participants improved 

0.022) B) the linear model of performance. (young participants improved, on average, 0.037 while older 

participants improved 0.020). GP and linear models are very similar. Blue arrows indicate the one young 

participant who had some AMLPACT training prior to recruitment. 
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5.3.5  Correlation of AMLPACT Summary Measures with Independent 

Assessments 

To justify the use of AMLPACT to examine both cognitive and perceptual behaviors, it must be 

confirmed that AMLPACT offers a measure of a participant’s speech-in-noise and working 

memory ability. This was assessed using a Pearson’s correlation coefficient between 

AMLPACT’s summary measures for the GP and linear model and the independent speech-in-

noise and N-back assessments. Both GP and linear summary measures showed a significant 

correlation between mean standalone N-back accuracy (GP r = 0.54, p = 3.1 × 10–4; linear r = 

0.60, p = 4.3 × 10–5), a participant’s signal-to-noise 50% threshold (GP r = –0.46, p = 0.003; 

linear r = –0.49, p = 0.001), and the mean accuracy on the discrete levels speech-in-noise 

assessment (GP r = 0.32, p = 0.01; linear r = 0.49, p = 0.009). 

5.3.6  AMLPACT Slices Predict Independent N-back Performance 

Before examining the individual differences and the interactions of speech-in-noise and working 

memory, AMLPACT was first validated with respect to the N-back assessment. Predicted 

participant performance at slices of the two-dimensional GP and linear model were compared to 

participant performance on the independent N-back test. Setting the SNR to the most favorable 

level (SNR = +10 dB) and memory load to span the domain (N = 1 to 7), a slice of the two-

dimensional predictive surface was extracted for every participant. While not in quiet, this slice 

most represents the discrete, words-in-quiet N-back test by minimizing the competing 

background noise. 

Performance on the AMLPACT slice matched performance on the standalone N-back test for 

most memory loads (Figure 5.13). The mean difference between performance accuracy on the 

independent N-back and the predicted performance accuracy at the highest SNR slice of the GP 



97 

 

model was −0.0054 ± 0.031 while the linear model mean difference was −0.016 ± 0.029. Table 

5.1 shows the mean signed difference ± standard deviations for all memory loads. A two one-

sided t-test evaluated the equivalency of the predicted accuracy of each model to the observed 

accuracy on the standalone test at each N-back load. The predicted accuracy of the GP model 

was statistically equivalent to the accuracy of the stand-alone N-back at all memory loads except 

for N = 2 and N = 3. The linear model was statistically equivalent at all memory loads except for 

N = 2, N = 3 and N = 4. See https://osf.io/64qd7/ for the two one-sided t-test p-values for all 

memory loads for each model evaluated.  

 
Figure 5. 13: Comparison of accuracy on standalone N-back and a slice of the AMLPACT model at the 

most favorable SNR (+10) for young and older adults. A) The GP model and B) linear model. The GP 

model better predicts standalone N-back accuracy for young and older adults. 

 

 

The GP model more accurately predicted the performance of the older cohort compared to the 

linear model and both models were comparable in their prediction of young adult performance 

https://osf.io/64qd7/
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(See Table 5.1 and https://osf.io/64qd7/ for details). Similar to the discrete N-back results 

(section 5.3.1), both models predicted statistically significant higher performance accuracy in 

young adults compared to older adults (2-sample t-test, p = 9.67 × 10–6 and p = 0.005 for the GP 

and linear slices, respectively).  

Table 5. 1: Mean Signed Difference Between Predicted Accuracy on AMLPACT Slice and Actual Accuracy 

on Standalone N-Back for GP and Linear Models. 

Memory Load (N) 1 2 3 4 5 6 7 

All Participants (40) 

 N-back – AMLPACT GP 0.011  

± 0.09 

0.039 

± 0.14 

−0.038 

± 0.11 

−0.021 

± 0.11 

0.006 

± 0.12 

−0.016 

± 0.16 

−0.019 

± 0.12 

 N-back – AMLPACT Linear 0.011 

± 0.08 

0.035 

± 0.09 

−0.057 

± 0.11 

−0.050 

± 0.12 

−0.021 

± 0.11 

−0.026 

± 0.15 

−0.002 

± 0.12 

Young Participants (16) 

  N-back – AMLPACT GP −0.004 

± 0.10 

0.042 

± 0.09 

−0.051 

± 0.11 

−0.004 

± 0.13 

0.025 

± 0.13 

−0.027 

± 0.16 

0.0008 

± 0.12 

 N-back – AMLPACT Linear 0.0009 

± 0.10 

0.050 

± 0.09 

−0.053 

± 0.11 

−0.016 

± 0.14 

0.013 

± 0.13 

−0.035 

± 0.16 

0.025 

± 0.11 

Older Participants (24) 

 N-back – AMLPACT GP 0.021 

± 0.05 

0.038 

± 0.09 

−0.029 

± 0.11 

−0.032 

± 0.09 

−0.007 

± 0.08 

−0.003 

± 0.15 

−0.032 

± 0.12 

 N-back – AMLPACT Linear 0.018 

± 0.06 

0.026 

± 0.09 

−0.059 

± 0.10 

−0.073 

± 0.07 

−0.043 

± 0.07 

−0.020 

± 0.15 

−0.21 

± 0.13 

https://osf.io/64qd7/
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5.3.7  AMLPACT Does Not Predict Independent Speech-in-Noise 

Performance 

The discrete levels auditory naming task evaluates participant accuracy in correctly repeating 

back words at three set SNRs, –5, 0, and +5 dB. While AMLPACT performance appears to be 

dictated by memory load (see section 5.3.3), word intelligibility seems to have some contribution 

as well (section 5.3.3 and 5.34). To determine if AMLPACT can predict the discrete speech-in-

noise test, AMLPACT predicted accuracy was extracted at points in the N/SNR domain that most 

match the discrete levels speech-in-noise test. The standalone test does not have any explicit 

memory component, so only AMLPACT points at N=1 were assessed to most reduce the 

cognitive load due to working memory. Therefore, predicted accuracy at [N, SNR] combinations 

of [1, –5], [1, 0], and [1, +5] were compared to accuracy on the speech-in-noise test (Figure 

5.14). Neither the GP model nor the linear model were able to accurately predict word-repetition 

accuracy and predicted accuracy was significantly different than the standalone test accuracy at 

each SNR except for the GP prediction at [1, +5] (see Table 5.2 for details). Error increased with 

decreasing SNR for both models. Given the limited effect of SNR on AMLPACT accuracy, this 

result is not surprising. 

Table 5. 2: Mean absolute difference and Mann-Whitney U-test for significant differences between 

standalone speech-in-noise accuracy and predicted accuracy at AMLPACT points matched for SNR with 

memory load set at N=1. Significant differences indicate lack of agreement between joint and standalone. 

SNR  −5 0 5 

All Participants = 40 

Standalone Accuracy v. 

GP Predicted Accuracy 

0.41 

p = 0.33 × 10–9 

0.14 

p = 1.3 × 10–4 

0.11 

p = 0.33 

Standalone Accuracy v. 

Linear Predicted Accuracy 

0.53 

2.8 × 10–10 

0.42 

p = 1.6 × 10–9 

0.13 

p = 3.0 × 10–4 
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Figure 5. 14: AMLPACT error in predicting standalone speech-in-noise, auditory naming task accuracy at 

[N, SNR] combinations for GP and linear models. Error decreases as SNR increases. GP model has 

consistently less error compared to the linear model, but both models do not accurately predict the 

standalone assessment. 

 

5.3.8  Test-Retest Reliability of AMLPACT  

Test-retest of AMLPACT was examined to begin assessing the reliability of this novel test. Ten 

participants (9 young, 1 older) completed a second AMLPACT on a different day than the first 

assessment. Bland-Altman plots are used to show the lack of bias and the overall similarity 

between the summary measures of tests taken in two separate sessions (Figure 5.15) (Bland & 

Altman, 1999). Mean signed differences are near zero indicating good agreement between the 

two test sessions. 
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Figure 5. 15: Bland Altman plots depicting the differences between two test sessions of AMLPACT in 10 

participants. The mean signed difference near zero for both models indicates good agreement between 

tests. Limits of agreement for the 90% CI are denoted with dotted lines. Blue arrows indicate the one 

young participant who had some AMLPACT training prior to recruitment. 

 

5.3.9  Analysis of AMLPACT Performance  

Older adults have been shown to have increased reaction times and produce more errors in 

challenging N-back and speech-in-noise tests compared to young adults (Gajewski et al., 2018; 

Moore et al., 2014; Wingfield et al., 2005). This shift in performance is reflected in AMLPACT 

false positive percentages. Controlling for the number of responses, older adults were 1.2 times 

as likely to incorrectly responded to non-target N-backs compared to young adults when matched 

for memory load and SNR. Most studies deliver N-backs at memory loads ranging between 1–3. 

AMLPACT was designed to tax working memory resources and delivers blocks with memory 

load up to 7. Therefore, it is expected that there would be very little age-related differences in 

AMLPACT blocks with high memory load. By analyzing the number of errors made during low 

(N = 1–3) memory load separate from high (N = 4–7) memory load blocks, this was apparent. 

During low load blocks, older participants were 1.6 times as likely to exhibit a false positive 

compared to young participants. However, participants were equally likely to incorrectly respond 

during high load blocks, and both young and older adults had false positive rates of 50%.  
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There were four positive N-back targets in each of the 20 blocks of AMLPACT (80 total, per 

test). Examining the average number of missed targets, young and older adults were matched 

with young adults missing 29 targets and older adults missing 33, on average. Young and older 

adults did not have significant differences in reaction times when matched for SNR and memory 

load (Mann-Whitney U-test, p = 0.72), and mean reaction time across young participants was 

only 0.05 seconds faster than older participants. 

Additionally, there were significant differences between the overall performance on the 

AMLPACT as estimated by the chosen summary measure (Figure 5.16). Young adults 

performed at a higher accuracy (mean  = 0.87 ± 0.02, GP and linear) compared to the older adults 

(GP mean = 0.85 ± 0.03 and linear mean = 0.85 ± 0.02). Differences were significant with p = 

0.004 and p = 1.4 × 10–4 (2-sample t-test) for the GP and linear model measures, respectively. 

Despite statistically different means, the heterogeneity of each age cohort can be seen in Figure 

5.17. 

 
Figure 5. 16: AMLPACT summary measure of participant performance for GP and linear models. Cohort 

means are indicated by long dashes on the y-axis. Age-related differences are evident in the mean 

summary measure across cohorts. GP and linear models yield similar results. Blue arrows indicate the one 

young participant who had some AMLPACT training prior to recruitment. 
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Figure 5. 17: Box plot of summary measures for young and older participants for GP and linear 

AMLPACT models. The long whiskers indicate high variability within age groups. Young adults are 

positively skewed towards higher accuracy and older adults are negatively skewed towards lower 

accuracy. Blue arrows indicate the one young participant who had some AMLPACT training prior to 

recruitment. 

5.4 Discussion 

One goal of this study was to demonstrate that the Bayesian inference GP framework could 

estimate cognitive and perceptual tasks in a single, multidimensional assessment. AMLPACT 

was able to sufficiently model older and younger participant’s working memory ability. While it 

was correlated to the speech-in-noise assessments, it did not accurately predict the standalone 

comparison test. This is likely due to AMLPACT test design and not a flaw of the framework 

itself. AMLPACT did provide an estimate of performance accuracy that varied with SNR and 

memory load; and, similar to other working memory assessments, between-group differences and 

within group variances in performance were detected.  

By design, AMLPACT is a continuous estimate of a subject’s response accuracy over the entire 

SNR and memory load domain. It offers a direct measure of the interactions of memory load and 

SNR with relatively few observations. By incorporating nonlinear covariance functions, 

AMLPACT is able to model interactions that a strictly linear regression model could not. In this 
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study, the GP model proved to be as predictive as the linear model in estimating unobserved data. 

Many of the analyses showed almost no differences between the GP and linear model results.  

And yet, the GP model did slightly outperform the linear model in accurately predicting the 

standalone speech-in-noise and working memory assessments (sections 5.3.6 and 5.3.7). While 

the linear model appeared to be unaffected by the SNR regression coefficient, GP model 

performance exhibited significant load effects as a result of changing SNR (section 5.3.3). 

Varying SNR seemed to contribute less to AMLPACT performance when compared to memory 

load, but its impact might be reflected in the slight improvement the GP shows in predicting low-

dimensional test performance. Nevertheless, there is little evidence that the GP is capturing 

interactions unaccounted for by the linear model. This result demonstrates that when interactions 

do not appear to be present, the GP model exhibits similar accuracy to standard linear regression. 

A persistent advantage of the GP is that no accuracy is sacrificed by enabling a more complex 

model, even when a simpler model might suffice. More basic models, such as standard or 

generalized linear models, must wait until most data are collected before constructing an 

informative model, and each additional predictive variable must be evaluated and added to model 

design systematically. The GP, on the other hand, can flexibly estimate an infinite number of 

predictive functions if the appropriate covariance and mean functions are incorporated into its 

definition. 

AMLPACT is highly correlated with the independent tests of noisy speech perception and verbal 

working memory used in this study. However, analyzing the regression coefficients of the linear 

model (section 5.3.3) suggests that there is only a small direct linear relationship between 

memory load and background noise. Similarly, the effect size of varying SNR on the GP estimate 
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is considerably smaller than that of varying memory load. This suggests that fully 

comprehending the word being presented is not critical to task performance, but doing so might 

lessen the cognitive load and improve accuracy slightly.  

In inspecting Figure 5.11, the possibility remains that SNR has a small nonlinear effect on 

performance during joint speech and memory behaviors. If true, it could explain the inconsistent 

fit of the linear model to the observed data across participants, as indicated by the large spread of 

R2 values. Both the GP and linear predictions would benefit from better model fits. The GP 

model might only require additional observations to be collected during test sessions. In the 55-

point set of AMLPACT data, model error continued to diminish substantially as addition data 

were added into the model. Nearing 50 observations, the negative log likelihood began to 

become asymptotic, indicating that additional data would not improve the model fit much 

further. If there is a nonlinear effect of SNR on performance during the joint task, it is anticipated 

that additional observations would not improve the fit of the linear model for many participants. 

Fitting two linear models, one to the first 20 observations and another to the entire set of 

observations in the 55-point dataset, the R2 value did not change as a result of additional 

observations (20 observation model, R2 = 0.67 and 55 observation model, R2 = 0.66). While GP 

and linear models appear to find similar results in the analyses presented here, the possibility that 

both models are performing at equally suboptimal levels should be considered. For the GP 

model, this is might be easily rectified by additional data whereas the linear model might be 

more limited in its potential for improvement.  

It appears that this specific combination of an auditory N-back with variable speech-shaped 

background noise may not interact in the ways anticipated at the onset of this study. It would be 
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too hasty to conclude that verbal working memory and challenging speech comprehension utilize 

wholly independent cognitive resources, generally. More likely, AMLPACT test design is not a 

balanced representation of joint speech-in-noise and memory ability and adaptations are needed 

to better measure speech comprehension.  

The previous studies that have asserted correlations between speech-in-noise and working 

memory are employing assessments that require a confirmation of the word or sentence 

intelligibility. Reading span tasks, for example, are often cited as having high correlations with 

speech-in-noise tasks (Akeroyd, 2008; Foo, Rudner, Rönnberg, & Lunner, 2007; Lunner, 2003; 

Rudner, Rönnberg, & Lunner, 2011). Reading span tasks are a working memory test in which the 

participant repeats back the final words from a series of previously presented sentences and are 

scored according to the number of words correctly repeated. N-backs differ from reading spans 

in that participants could perform with high accuracy on a N-back while not comprehending any 

of the target words. Instead, participants could be matching non-word or partial word targets and 

still maintain high performance. In AMLPACT, where stimuli are intentionally distorted by 

competing background noise, it is possible that participants were doing just that. This would 

have reduced the perceptual demand of AMLPACT and may have subsequently reduced any 

interactive effect between memory load and noisy speech comprehension. If AMLPACT does not 

require comprehension to accurately perform, the lower effect of SNR on the GP and linear 

model is also not surprising. This would also explain the inability of either model to predict 

accuracy on the standalone comprehension test (c. f., Figure 5.14). 

Further, many of the widely cited studies that purport working memory and speech-in-noise 

correlations are primarily conducted in populations with hearing loss (Füllgrabe & Rosen, 2016), 
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whereas the participants in this study have exclusively near-normal hearing. It is suspected that 

older adults with hearing loss more quickly exhaust purely perceptual resources (possibly due to 

age-related changes in brain structure combined with declining perceptual ability (Grady, 2013) 

and rely more on compensatory support from cognitive or domain general functions compared to 

older adults with normal hearing or young adults. Recruitment of non-auditory resources to 

support perception leaves fewer resources to be allocated to any competing demands of 

concurrent working memory functions. Adults with normal hearing are more able to solely 

dedicate specialized resources to perform perceptual behaviors, leaving working memory 

resources available for simultaneous cognitive functions. Thus, older adults with hearing loss 

may experience more interaction between cognitive and perceptual functions during complex 

tasks than adults with normal hearing. Restricting this study to self-reported normal hearing 

listeners may have inadvertently limited the interactive effects of noisy speech comprehension 

and verbal working memory that could be measured. 

Future studies could directly address these concerns by recruiting participants with more diverse 

hearing abilities and by adjusting the AMLPACT assessment to better balance speech-in-noise 

and memory load contributions. One of the main advantages originally envisioned of the current 

AMLPACT was being able to offer a measure of speech-in-noise and working memory without 

needing to be scored by an observer. Adjusting AMLPACT to include an intelligibility 

component might require observer scoring, but it could also be possible to develop a more 

complex version that can check for intelligibility without needing to be scored. For example, 

AMLPACT could have the participant select the target word from a set of multiple choice 

options carefully designed to included words from the same phonological neighborhood as well 
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as a ‘no match’ option. AMLPACT could also be modified to model a difference working 

memory assessment all together. Further, words consist of multiple phonemes that, when 

combined, might influence the ease with which they are understood in the presence of speech-

shaped background noise (Billings, Grush, & Maamor, 2017; Meyer, Dentel, & Meunier, 2013). 

This would be compounded by age-related shifts in hearing loss which affect high-frequency 

sounds first. As a result, some words, regardless of phonological neighborhood, may be easier to 

pick out throughout speech-in-noise assessments. AMLPACT could be extended to incorporate 

word structure and learn which stimulus words should be delivered to each participant to better 

assess noisy speech comprehension. This might result in a more stable assessment of speech-in-

noise ability and could provide additional information about individual hearing ability. An appeal 

of the GP framework is its readiness to extend to different input domains with minimal 

adjustments to the defining parameters. 

Differences in reaction time between young and older participants were expected, but not found 

in either the standalone N-back or AMLPACT results. Both assessments were auditory verbal 

working memory tasks that require input from the participant in the form of a button press. It is 

possible that the processing time on these specific tasks differ too significantly from other studies 

where age-related reaction time differences have been found. Comparing reaction times across 

varying test modalities is cautioned against (Hancock et al., 2007), and the lack of findings 

should not be considered a flaw in either test. 

Decline in hearing ability has been identified as a predictor of future cognitive function and 

Alzheimer’s Disease progression (Gates, Anderson, McCurry, Feeney, & Larson, 2011; Gates et 

al., 2008; Liu & Lee, 2019). Given that deficits in memory are a clear harbinger of cognitive 
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decline, AMLPACT could be useful in assessing performance in early disease. One participant in 

the current study was recently diagnosed with early stage cognitive decline that was likely to 

progress to Alzheimer’s Disease as identified through a structural MRI. This participant, klh306, 

had a higher speech-in-noise threshold and was on the low end of N-back performance. Both 

results are within the inner fences of the data (1.5 x interquartile range) and neither result would 

be considered an outlier compared to the healthy older adults (Figure 5.18). In fact, klh306 does 

not have the highest speech-in-noise threshold or the lowest N-back performance in the older 

adult cohort. Similarly, AMLPACT performance as estimated by the linear model summary 

measure of participant klh306, is equal to the lowest healthy adult’s summary measure (Figure 

5.19a). The AMLPACT linear model of klh306 is, therefore, essentially indistinguishable from 

the healthy older adult data. However, their AMLPACT performance, as modeled by the GP, was 

noticeably worse than all healthy participants (Figure 5.19b). While not quite outside the inner 

fence of the older adult data, the distance between the GP summary measure of participant 

klh306 and the nearest healthy adult is one order of magnitude greater than the distance between 

all other healthy adults. It is possible that, in states of cognitive decline, there are nonlinear 

interactions between memory load and SNR that the flexible AMLPACT framework can 

uniquely model. Only one participant recruited for this study was confirmed to have any 

cognitive decline, so future research would be needed to make any substantial claim.  
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Figure 5. 18: Box plots of mean N-back accuracy and speech-in-noise 50% threshold for all healthy older 

adults plus cognitive decline participant klh306. Klh306 is denoted by green arrows. Note that klh306 is 

not an outlier in the distribution nor is he or she the worst scoring participant. 

 

 

Individual variations in the noisy speech comprehension of young and older adults, despite 

having near-normal pure-tone hearing thresholds, is reflected in the variable speech-in-noise 

50% thresholds (see Figure 5.5). It has been suspected that such variations might be explained by 

individual differences in verbal working memory (Akeroyd, 2008). AMLPACT, being dominated 

by a participant’s working memory ability while still offering a measure of speech-in-noise 

assessment, offers a multidimensional evaluation that might better explain the variability of low 

dimensional assessments. However, the lack of interactions between the two AMLPACT 

domains limits the extra information that can be gleaned from this novel test. AMLPACT 

performance correlates significantly with speech-in-noise and working memory tests, which is 

consistent with the literature on individual differences in speech-in-noise assessments. At the 

very least, AMLPACT has replicated the previous research in a more direct manner by testing 

speech-in-noise and working memory concurrently.  
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Figure 5. 19: Box plots of linear and GP AMLPACT summary measure for all healthy older adults and 

cognitive decline participant, klh306. Klh306 is denoted by green arrows. While klh306 has the lowest 

summary measure in both models, there is a much bigger gap between healthy older adults and klh306 in 

the GP model compared to the linear model. 

 

 

Several participants in this study had the same speech-in-noise 50% threshold and mean N-back 

accuracy (Figure 5.20). Despite performing similarly on the standalone tests, their AMLPACT 

summary measures differed. Perhaps the concurrent demands of the joint speech and memory 

test affect individuals differently. Because of the possible shortcomings of the implemented 

AMLPACT test design and the small sample of participants with similar scores on both 

standalone assessments, future research is needed to investigate the implications of this finding. 

For example, collecting fMRI data while these participants perform the standalone and 

AMLPACT assessments might discover individual differences in neural strategy relevant to 

performance. 
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Figure 5. 20: A) Participant accuracy on standalone N-back and 50% speech-in-noise threshold. Larger 

circles indicate more participants with the same mean N-back accuracy and SNR threshold. Individuals 

with the same N-back accuracy and SNR threshold might have individual differences in the interactions 

between working memory and speech comprehension that AMLPACT can detect. One participant is 

excluded from this figure due to their substantially lower N-back accuracy (0.41) and no other participant 

had similar results. B) AMLPACT summary measure (modeled by the GP) for participants with the same 

scores on the standalone tests (the larger circles in A). Similar N-back and SNR thresholds do not 

necessarily lead to similar AMLPACT results. 

 

 

AMLPACT has good test-retest reliability in healthy adults. Therefore, changes in individual 

performance from one test session to another might give significant insight into a patient’s 

changing health. Using an initial test result or an average healthy result as a prior could allow 

AMLPACT to quickly assess if a patient has deviated from past behavior or from a ‘normal’ 

result.  

5.5 Concluding Remarks 

AMLPACT demonstrates that a joint perceptual and cognitive task is feasible with the new active 

machine learning framework. While substantial interactions were not found, the GP model was 

as accurate as the linear model in estimating participant performance in relatively few 

observations. The initial implementation of AMLPACT might not reflect noisy speech 



113 

 

comprehension to the extent necessary to fully model standard speech-in-noise assessments. 

Amending AMLPACT to better model the domains of interest would be a straightforward 

adaptation to the GP definition. The advantages of a flexible joint assessment is demonstrated in 

AMLPACT’s ability to vary each test delivery according to a participant’s previous performance 

and its real time evaluation of the domains being modeled. The framework underpinning 

AMLPACT is not specific to speech-in-noise or working memory. Adapting this framework to 

other cognitive test paradigms could advance the understanding of individual differences and 

interactions in a variety of domains. 
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Chapter 6: Estimating Neural Activity From 

Individual Differences in a Joint Speech and 

Memory Test 

6.1 Introduction 

Successful speech comprehension requires the collaboration of multiple sensory, perceptual, and 

cognitive processes. In noisy environments, listeners must focus attention on the speaker, 

disregard competing cues, correctly process incoming audio stimuli, and attach meaning and 

context to what is heard. It stands to reason that speech comprehension in noisy environments 

engages more than simple auditory processing.  

Domain-general networks associated with attention, task-switching, and verbal and visual 

representation have been implicated in supporting complex auditory demands (S. Anderson, 

White-Schwoch, Parbery-Clark, & Kraus, 2013; Cacace & McFarland, 2013; Davis & 

Johnsrude, 2003; Peelle, 2018; Pichora-Fuller et al., 1995; Rönnberg et al., 2013). These same 

domain-general networks are also engaged during verbal working memory tasks (Braver et al., 

1997; McCoy et al., 2005). In fact, verbal working memory may be directly recruited during 

speech comprehension (Lunner, 2003; Rudner et al., 2011; Ward, Rogers, Engen, & Peelle, 2016) 

and working memory training can improve speech comprehension ability (Wayne, Hamilton, 

Huyck, & Johnsrude, 2016). Additionally, age-related hearing loss and cognitive decline (which 

can be measured by working memory ability, among other cognitive measures) appear to be 

interdependent (for review, Wayne & Johnsrude, 2015). However, current methods have limited 
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power to investigate the interactions between these two systems (McFarland, 2017; Wayne & 

Johnsrude, 2015). 

In-scanner tasks often deliver the same test items to all subject for ease of comparison. For 

example, recording the successful repetition of words in levels of background noise that are 

constant between cohort participants. Individual performance is then correlated to neural activity 

at group and individual levels to identify which brain regions contribute to task performance. 

Because tasks completed inside an MRI scanner must be optimized to reduce head movements, 

make efficient use of costly scan time, and contend with demanding acoustic noise conditions, 

they are often low-dimensional tests incapable of delivering complex stimuli that place multiple 

demands on limited neural resources at once. As a result, non-task specific neural resources are 

readily available to support performance.  

A multidimensional behavioral test that can optimize data collection for participants within one 

test session and is capable of identifying individual neural strategies for successful noisy speech 

comprehension would begin to unravel how non-auditory brain networks contribute to individual 

behavior during real-world tasks. The machine learning framework that models verbal working 

memory and a measure of speech-in-noise ability may provide this utility. As an initial 

experiment to extend this framework to estimate neural activity, the joint speech and memory 

test (AMLPACT) piloted in Chapter 5 was evaluated as an out-of-scanner behavioral test to 

predict individual neural activity during an in-scanner speech-in-noise test.  

AMLPACT is a multidimensional assessment that was designed to jointly require speech 

comprehension and verbal working memory resources; therefore, the increased cognitive 
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demand (compared to a low-dimensional test) might more effectually elucidate how speech, 

domain-general, and verbal working memory networks interact. Additionally, AMLPACT might 

more directly assess the individual neural strategies employed to maintain performance. Within 

age group cohorts, AMLPACT performance had high variance, particularly in older adults. 

Previous research suggests that older adults employ cognitive strategies to maintain performance 

at low levels of task challenge, even before comprehension accuracy declines (Pichora-Fuller et 

al., 1995; Tun et al., 2009; Wild et al., 2012; Wingfield & Grossman, 2006). Individual 

differences in AMLPACT performance might be indicative of individual cognitive strategies and 

differences in neural recruitment in older adults. 

The frontoparietal network is one domain-general network active during many cognitive tasks, 

including challenging speech-in-noise tests (Peelle, 2018). It is noted to contribute to a variety of 

executive functions and is generally thought to coordinate and modulate cognitive control (Cole, 

Yarkoni, Repovš, Anticevic, & Braver, 2012; Marek & Dosenbach, 2018). The in-scanner 

assessment used in this study is designed to be challenging, especially for older adults, without 

sacrificing accuracy, with the aim of recruiting non-auditory resources that would be otherwise 

unnecessary for simpler auditory tasks. Within the frontoparietal network, the dorsolateral 

prefrontal cortex has been identified as a core contributing region to working memory ability 

(Cole et al., 2012; D’Esposito et al., 1998; Duncan & Owen, 2000; Fedorenko, Duncan, & 

Kanwisher, 2012; Rottschy et al., 2012; Wallis, Baker, Meese, & Georgeson, 2013), making it a 

good candidate for non-auditory activation. Additionally, the dorsolateral prefrontal cortex 

robustly exhibits load-dependent changes in activation during N-back assessments (Braver et al., 

1997; Mencarelli et al., 2019), which are predominantly featured in AMLPACT design. For this 
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reason, a region of interest in the dorsolateral prefrontal cortex has been extracted for 

comparison to AMLPACT performance.  

In addition to the frontoparietal network, three regions within the cingulo-opercular network 

were used: regions in the left and right frontal operculum/anterior insula and a region in the 

dorsal anterior cingulate. Like the frontoparietal network, the cingulo-opercular network is 

thought to be a domain-general network active during many cognitive tasks. Primarily 

contributing to the executive functions of error monitoring and attentional salience, activity in 

this network, increases during missed targets and may precede an increase in accuracy on the 

next target during speech-in-noise tests (Harris et al., 2009; Kuchinsky et al., 2013; Vaden et al., 

2017). Besides contributing during challenging speech comprehension, the cingulo-opercular 

network is active during verbal working memory (Owen et al., 2005; Sadaghiani & D’Esposito, 

2015), prompting its inclusion in the following correlation analysis.  

Performance on AMLPACT was paired with neural activity collected during an in-scanner 

speech-in-noise test to analyze variance in individual performance and neural recruitment. 

Differences in brain function during the in-scanner test might be related to differences in 

working memory and the interaction between it and speech comprehension as modeled by 

AMLPACT. The correlation between AMLPACT performance and neural activity in areas 

associated with verbal working memory may quantify the variations in signal due to age, 

working memory ability, and individual neural recruitment strategy. 
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6.2 Methods 

6.2.1  Participants 

Of the forty participants who completed the joint noisy speech and working memory test, twenty 

participants (5 young and 15 older) also completed a speech-in-noise test paired with fMRI 

scanning as part of a different study. All participants who participated in the fMRI study were 

right-handed, matched for education level, used no hearing assist devices, and exhibited no 

evidence of neurological disease. To date, fMRI data from 11 of the older adults have been pre-

processed and are analyzed in this chapter. In addition to fMRI data, audiograms were collected 

in each of the 11 participants. All but two participants presented with better-ear pure-tone 

averages in the normal range (mean hearing threshold across 500, 1000, 2000, 4000 Hz is less 

than 20 dB). The mean pure-tone average of all 11 participants was 17 ± 6 dB HL. The two 

participants with better-ear pure-tone averages greater than 20 dB were classified as having mild 

hearing loss with pure-tone averages of 25 dB HL and 28 dB HL. 

6.2.2  Procedure 

The speech-in-noise test used in the scanner is similar to the discrete levels, auditory naming test 

delivered in Chapter 5. Auditory stimuli were monosyllabic words matched for word frequency, 

number of phonemes, familiarity (Balota et al., 2007) and correctness (Brysbaert et al., 2014). 

Words were grouped according to phonological neighborhood density. Words with many 

neighbors (greater than 20) that differed by only one phoneme were categorized into dense 

neighborhoods, while words with fewer than six single phoneme neighbors were considered to 

be in sparse neighborhoods. Participants completed an auditory naming test under two 

experimental conditions: words from sparse and dense neighborhoods presented at a set level of 

acoustic clarity. Young and older participants were presented words at an SNR of +3 dB.  Each 
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test consisted of 40 words. In addition to the two auditory naming tests, 40 trials of single 

channel noise-vocoded words were presented to each participant in +3 dB SNR speech-shaped 

background noise as a control condition.  

6.2.3  MRI Acquisition and Processing 

MRI data were acquired using a Siemens Prisma scanner (Siemens Medical Systems) at 3 T 

equipped with a 32-channel head coil. Scan sequences began with a T1-weighted structural 

volume using an MPRAGE sequence (repetition time (TR) = 2.4s, echo time (TE) = 2.2 ms, flip 

angle = 8°, 300 × 320 matrix, voxel size = 0.8 mm isotropic). Blood oxygenation level-

dependent (BOLD) functional MRI images were acquired using a multiband echo planar imaging 

sequence (Feinberg et al., 2010) [TR =3.07 s, TA = 0.770 s, TE = 37 ms, flip angle = 90°, voxel 

size = 2 mm isotropic, multiband factor = 8). To mediate the challenge of outstanding acoustic 

noise during standard MRI collection, a sparse imaging design in which there was a 2.3 second 

delay between scanning acquisitions and the TR was longer than the acquisition time to allow for 

minimal scanning noise during stimulus presentation and audio recording of participant 

responses (Edmister, Talavage, Ledden, & Weisskoff, 1999; Hall et al., 1999; Wong et al., 2009) 

was used. This method inserts a brief pause at every scan and allows short stimuli to be delivered 

in relative quiet. During the auditory-naming task, participants were asked to repeat back the 

words heard in the scanner during the pause in scanning to minimize head motion that would 

degrade the scan quality. Results were scored for accuracy at a later date. 

Analysis of the MRI data was performed using Automatic Analysis (Cusack et al., 2015) which 

scripted a combination of SPM12 (Wellcome Trust Centre for Neuroimaging) and FSL (FMRIB 

Analysis Group; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). Data were realigned 
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using rigid-body image registration, and functional data were co-registered with the bias-

corrected T1-weighted structural image. Spatial and functional images were normalized to MNI 

space using a unified segmentation approach (Ashburner & Friston, 2005), and resampled to 2 

mm. Finally, the functional data were smoothed using an 8 mm FWHM Gaussian kernel. 

For the listening-only condition, there were no measures of accuracy, so all trials were analyzed. 

For the auditory naming conditions, only trials associated with correct responses were analyzed. 

For both, the noise condition was modeled in addition to words.  

Motion effects were of particular importance given that participants were speaking during the 

auditory naming condition. To mitigate the effects of motion, a thresholding approach in which 

high motion frames were individually modeled for each subject using a delta function in the 

GLM was used (see e.g. Siegel et al., 2014). Motion was quantified using framewise 

displacement (FD), calculated from the 6 motion parameters estimated during realignment 

assuming the head is a sphere having a radius of 50 mm (Power, Barnes, Snyder, Schlaggar, & 

Petersen, 2012).  

A threshold that resulted in 10% data exclusion across all participants was selected with the 

rationale that some participants move more, and thus produce worse data; therefore, a single 

threshold for all participants was used, resulting in more data exclusion from high-motion 

participants. For each frame exceeding this threshold, a column was added to that participant’s 

design matrix consisting of a delta function at the time point in question, which effectively 

excludes the variance of that frame from the model. 
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Activity during all word presentations that were correctly repeated was collapsed down across 

brain densities for each experimental condition. Activity was then assessed with respect to the 

control noise condition. For each voxel, only intensities that were significantly greater (p < 0.05) 

than activity during the passive listening noise condition were included. Contrast images from 

single subject analyses were analyzed at the second level using permutation testing (FSL 

randomize; 5000 permutations) with a cluster-forming threshold of p < 0.001 (uncorrected) and 

results corrected for multiple comparisons based on cluster extent (p < 0.05) (Gorgolewski et al., 

2015). This resulted in whole brain maps of activity during correct trials that was greater than 

activity during the noise control for each participant. These maps could then be averaged across 

participants to get the average activity of the cohort (see Figure 6.1). 

 
Figure 6. 1: Whole brain thresholded t-map for older adults during dense phonological test. Activity is 

thresholded at p < 0.05 for dense activity greater than activity during the noise-only trials 

 

6.2.4  Regions of Interest 

MNI coordinates that were central in regions of interest for the frontoparietal attention network 

and the cingulo-opercular network were used to select distinct parcels from a 400 parcellation of 



122 

 

the human brain (Schaefer et al., 2018; Thomas Yeo et al., 2011). To assess frontoparietal 

attention network activity during the in-scanner test, a parcel in the left dorsolateral prefrontal 

cortex (MNI coordinates: [–44, 14, 29]) was selected. Regions that include these coordinates are 

specifically active during N-back assessments and have been repeatedly identified as 

characteristic of working memory activity (Cole et al., 2012; Lamichhane, Westbrook, Cole, & 

Braver, 2020; Rottschy et al., 2012). Three parcels in the cingulo-opercular network that have 

demonstrated activity during word recognition tests (Vaden et al., 2013) were chosen: one in the 

dorsal anterior cingulate (MNI coordinates [5, 35, 34]), one in the left anterior insula/frontal 

operculum (MNI coordinates [−45, 21, −8]), and one in the right anterior insula/frontal 

operculum (MNI coordinates [32, 27, −9]). For region of interest analysis of primary auditory 

cortex, probabilistic maps based on postmortem human histological staining were used (Morosan 

et al., 2001). These are available in the SPM Anatomy toolbox (Eickhoff et al., 2005). All chosen 

regions are depicted in Figure 6.2. 

 
Figure 6. 2: Regions of interest used for neural activity analysis in A) auditory speech network, B) left 

dorsolateral prefrontal cortex, and C) cingulo-opercular networks. 

 

A binary mask for each region extracted estimates for contrasts of interest from each participant’s 

first-level analyses by averaging over all voxels in each region. These network specific contrast 

B)A) C)
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estimates were used for the individual difference analysis. Given the left dorsal lateral prefrontal 

cortex region is wholly defined on the left hemisphere of the brain, left brain analysis is depicted 

in all figures. Additionally, the primary auditory regions were analyzed for whole-brain and left 

hemisphere activity since left-lateralized differences the inferior frontal gyrus have been 

identified during speech comprehension tasks (Humphries, Willard, Buchsbaum, & Hickok, 

2001; Obleser, Wise, Alex Dresner, & Scott, 2007; Peelle, Troiani, et al., 2010). Whole brain 

activity was analyzed for the cingulo-opercular. Because the joint speech and memory test only 

delivered stimuli from dense phonological neighborhoods, only brain activity during the dense 

neighborhood conditions was included in analysis. 

6.2.5  Data Analysis 

A Pearson’s correlation was calculated to determine if individual differences in the joint speech 

and memory test were correlated to individual differences in brain activity.  

6.3 Results 

The mean accuracy above the 0.75 threshold was chosen as a summary measure of the overall 

performance on AMLPACT due to its high correlation to a widely used speech-in-noise measure, 

QuickSIN (see Chapter 5). The relationship between the mean activity during the dense in-

scanner test and the AMLPACT summary measure, as modeled by the GP posterior distribution, 

was evaluated with a Pearson’s correlation for each region of interest (Figure 6.3). None of the 

correlation coefficients were statistically significant (p = 0.45, p = 0.76, p = 0.84, p = 0.58, left 

hemisphere primary auditory, whole brain primary auditory, left dorsal lateral prefrontal, and 

whole brain cingulo-opercular parcels respectively). With a small sample size (N = 11) 

insignificant p-values are expected. Disregarding the p-values, a Pearson’s correlation coefficient 
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between 0.3 and 0.6 for psychophysical assessments is often considered a correlation worth 

consideration. Even with this concession, none of the correlation coefficients would be 

considered compelling. 

Visual inspection of the Figure 6.3 identifies one potential outlier in the primary auditory region. 

Removing this participant from the analysis for these regions increased the Pearson’s correlation 

coefficient for the left hemisphere from r = 0.25 to r = 0.51 and for the whole brain from r = 0.10 

to r = 0.41. While still not statistically significant (p = 0.13 and p = 0.41 for left and whole brain 

analysis, respectively), with additional participants included in analysis, the relatively high r-

value might result in a significant trend.  

The two participants with higher pure-tone averages are indicated in Figure 6.3 (with arrows) to 

determine if worse hearing predicted neural activity. Because there were only two participants 

with mild hearing loss, a formal analysis was not conducted. However, a Pearson’s correlation 

was calculated across all 11 participants to establish the relationship between pure-tone average 

and brain activity. The correlation coefficients were r = 0.059 (p = 0.86) for left hemisphere 

auditory regions, r = 0.26 (p = 0.44) for whole brain auditory regions, r = −0.22 (p = 0.52 ) for 

the left dorsolateral prefrontal parcel, and r = 0.39 (p = 0.24 ) for whole brain cingulo-opercular 

parcels (Figure 6.4). 
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Figure 6. 3: Correlation analysis between individual brain activity and performance on the AMLPACT 

speech and memory test in regions shown in Figure 6.1. The Pearson’s correlation coefficient is recorded 

for each region of interest. Participants with mild hearing loss (according to their pure-tone averages) are 

identified with arrows. An outlier was identified in the auditory network and is circled in (A). 



126 

 

 
Figure 6. 4: Correlation analysis between individual brain activity and pure-tone averages in regions 

shown in Figure 6.1. The Pearson’s correlation coefficient is recorded for each region of interest. 
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6.4 Discussion 

Performance on AMLPACT did not predict neural activation in the non-auditory regions of the 

left dorsolateral prefrontal cortex nor the cingulo-opercular network, but it did correlate to 

activity in the primary auditory cortex when outliers were removed from the comparison. 

 By presenting words at a large range of SNRs, AMLPACT fully captures the test parameters of 

the in-scanner task, and in previous analysis (Chapter 5) the summary measure of AMLPACT 

performance was found to negatively correlate to measures of speech-in-noise ability. Meaning 

participants with lower speech-in-noise thresholds have higher accuracy on AMLPACT. 

Participants with lower speech-in-noise thresholds would find the in-scanner assessment less 

challenging and may rely more fully on core speech networks as opposed to recruiting non-

auditory neural support. Successful speech perception results in activation in the primary 

auditory cortex (Davis & Johnsrude, 2003; Kuchinsky et al., 2016; Narain et al., 2003; Scott 

Blank, Catrin, Rosen, Stuart, and Wise, Richard J.S., 2000). In this study, only correct trials of 

the in-scanner test were included in analysis; therefore, it was AMLPACT performance was 

expected to show a positive correlation with the primary auditory cortex. Removing the outlier, 

this correlation is robust for whole brain and left hemisphere analysis. 

Activity in the left dorsolateral prefrontal cortex did not have high variance, and so it is not 

unexpected that a significant correlation between that region of interest and AMLPACT 

performance was not found. One reason for the lack of variability in this region during the in-

scanner test might be that most adults in this study had normal hearing or, at most, very slight 

hearing loss. Previous research has shown a correlation between the degree of hearing loss and 

increased activation in non-auditory regions that might compensate for decreased activity in 
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primary auditory regions (Peelle et al., 2011). For the population included in this study, 

recruitment of additional cognitive resources might not be able to improve their perceptual 

processing in this task. Another possibility could be that the specific parcel selected in left 

dorsolateral prefrontal cortex is not active during the in-scanner speech-in-noise assessment. This 

region was selected because of its robust activity in N-back assessments, but it is possible other 

regions in the frontoparietal network are active during the in-scanner test.  

The cingulo-opercular regions of interest showed individual variability in brain activity. This 

result could indicate a set of domain-general resources that are uniquely utilized to support 

performance. Individual differences in attention and error-monitoring, both necessary for verbal 

N-back tasks, could be reflected in variations of brain activity and motivated the use of 

AMLPACT as a behavioral measure linking neural activity to variations in the joint speech and 

memory test. However, there were no real correlations found. This result might be explained, at 

least in part, by the inclusion of only correct trials in the analysis presented here. The cingulo-

opercular network shows higher activity during incorrect trials compared to correct trials on 

speech perception tasks (Vaden et al., 2013). The insignificant correlation between AMLPACT 

performance and cingulo-opercular network activity during the in-scanner test was negative. This 

result is expected given the role of the cingulo-opercular network in error monitoring and 

salience. Better performance on the joint speech and memory test should negatively correlate to 

neural activity during correct trials of the speech-in-noise in-scanner test.  

The SNR for the in-scanner test was selected to be challenging to participants without sacrificing 

task performance. Subjects with reduced auditory perception were expected to rely more heavily 

on domain-general resources in order to maintain high task performance. Previous research has 
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shown older adults with hearing loss have reduced activation in auditory regions and increased 

activity in prefrontal regions (Davis & Johnsrude, 2003, 2007; Peelle et al., 2011). Most 

participants in this study had normal hearing. The two who did have some mild hearing loss did 

not show drastic differences in neural activation nor AMLPACT performance. This might be 

because the hearing loss is so mild that the +3 dB SNR did not present much additional challenge 

compared to normal hearing participants or because of the small number of participants included 

in this study. Increased activation in working memory regions and decreased activation in 

auditory regions in normal hearing older adults has only been shown in low accuracy trials 

(Wong et al., 2009). Despite insignificant correlations, the cingulo-opercular network did show a 

positive correlation with pure-tone averages. However, primary auditory cortex showed a 

positive correlation despite previous research consistently stating a negative correlation between 

hearing ability and neural activation in primary auditory cortex in older adults (Peelle et al., 

2011). If an ‘outlier’ is hand-picked to be removed from the analysis, the correlation does 

become negative (r = −0.256, p = 0.476, Pearson’s correlation), but there is little justification in 

selecting that specific data point to remove, other than pretest hypotheses of trends to be 

expected in the data. 

This study assessed only older adults. Including data from young adults might have revealed age-

related differences in neural activation patterns and its relationship to AMLPACT performance. It 

is anticipated that domain-general brain regions associated with verbal working memory tasks 

(including those assessed here) would contribute more to challenging speech-in-noise scenarios 

for older adults, even during highly accurate trials, compared to young adults. Activation in 

primary auditory cortex would be expected to be reduced in older adults compared to younger 
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adults (Rogers et al., 2020). However, it should be noted that AMLPACT revealed only small 

age-related differences in performance so the comparison between cohorts might yield similar 

results. 

Generally, the lack of significant findings might be a result of the limitations of the joint speech 

and memory test outlined in Chapter 5; namely, AMLPACT appears to reflect verbal working 

memory ability to a greater extent than speech-in-noise ability. Adaptations to AMLPACT that 

improve its estimation of speech-in-noise measures may better link performance to in-scanner 

speech-in-noise assessments. As it is currently defined, AMLPACT performance might be more 

correlated to neural activity during an in-scanner N-back assessment. Additionally, the small 

number of mostly normal hearing participants included in this study might contribute to the lack 

of significant findings. As more data are processed, AMLPACT performance-related differences 

could be evident. 

One merit of the joint speech and memory test, AMLPACT, is its ability to assess competing 

demands on shared neural resources. Future research should focus on validating an AMLPACT 

test design that equally measures a participant’s cognitive and perceptual ability in the domains 

of interest. Once validated, delivering AMLPACT to participants in the scanner would directly 

measure individual neural strategies during tasks that better reflect real-world demands. 

6.5 Concluding Remarks 

Individual differences in the allocation of neural resources during tasks with competing cognitive 

demands may help explain the interplay between age, cognitive function, and hearing ability. 

This study examined the connection between individual differences in AMLPACT performance 



131 

 

outside of an MRI scanner and neural activity during a speech-in-noise test in the scanner. The 

small sample size and possible limitations of the current AMLPACT test design contributed to 

insignificant correlations found. However, as AMLPACT is adjusted and further de-risked, it 

could eventually facilitate the building of individual models of complex human behavior to be 

used in the scanner.  
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Chapter 7: Summary and Future Directions 

7.1 Summary of Findings 

This thesis demonstrated the feasibility and utility of a flexible, multidimensional machine 

learning framework for individual assessments. Chapter 3 evaluated this framework in the four-

dimensional input domain of bilateral audiogram estimation (left and right ears, in intensity and 

frequency). The GP framework was able to estimate hearing ability in left and right ears with the 

same amount of tone deliveries as it takes to estimate hearing ability in one ear with traditional 

methods. The increase in efficiency is a result of the framework’s ability to exploit shared 

information across similar domain spaces and to implement active learning techniques to 

optimize data collection.  

Building towards more complex models capable of individual inference in one sitting, the 

framework was evaluated for dynamically masked audiogram acquisition. Masking represents a 

complex perceptual test and requires individual-specific customization of a time-consuming 

protocol in order to achieve accurate threshold estimates for every individual. The GP framework 

provides a solution to this dilemma for every individual, regardless of hearing ability, and 

accurately and efficiently models even the most complex hearing abilities with one test. In 

Chapter 4, the GP framework dynamically masked all audiograms to ascertain true threshold 

estimates as quickly as unmasked threshold estimation in symmetric hearing individuals, but 

with substantial efficiency gains in individuals for whom masking represents a significant 

increase in test time. 
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Having validated the GP framework for multidimensional, individualized assessment of complex 

perceptual tests, the framework was extended to assess cognitive and perceptual domains in 

Chapter 5. The first assessment implemented was a joint speech and memory test. The goal was 

to successfully model the two dimensional, cognitive and perceptual domain (defined by SNR 

and memory load). The joint estimator successfully predicted independent measures of speech-

in-noise and working memory ability for young and older adults. One advantage of the GP 

framework is its ability to capture non-linearities and variable interactions as the test is being 

administered. In the applications tested here for speech and memory, no substantial interactions 

were revealed. However, the GP framework successfully modeled all trends as data were 

collected, linear or otherwise. Traditional methods, on the other hand, are limited to constructing 

models after data are collected and must systematically add predictor variables to develop more 

complex models. In the behaviors estimated in this thesis the GP framework was able to provide 

as much inference as a traditional linear regression model given the amount of data collected, 

with the added advantage of leveraging an active learning technique to optimize queries. 

In Chapter 6, performance on the joint speech and memory test was compared to individual 

neural activity during an in-scanner speech-in-noise test. Activation of non-auditory regions 

during noisy speech comprehension is thought to support performance in older adults. No 

significant correlations were found. This might be due to small sample sizes, limitations or 

discrepancies in the joint test compared to the in-scanner test, or the homogeneous hearing 

ability of the individuals included in the study. Regardless, future research could mitigate some 

of these obstacles by administering the joint test in the scanner for a more direct measurement of 

competing cognitive demands. 
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The GP framework demonstrates that multidimensional models capable of individual inference 

does not have to equate with increased test times or a loss in accuracy. By integrating 

advancements in technology, machine learning, and neuroscience, it is possible to model 

individual behavior in one assessment. This degree of flexible, efficient, and detailed 

measurement is not practical with current methods. 

7.2 Future Directions 

This thesis provides a foundation for a variety of future research questions. In audiometry 

applications, further testing of bilateral, masked AMLAG in hearing loss populations is needed. 

AMLAG could also be extended to incorporate conjoint ipsilateral masking. Ipsilateral masking 

would allow hearing capability to potentially be assessed dynamically in suboptimal acoustic 

environments.  

As was discussed in Chapter 5, the test design of AMLPACT should be further explored. The 

current implementation provided a measure of speech comprehension ability but would benefit 

from a model that more fully estimates the speech-in-noise domain. Once confident test designs 

are configured, AMLPACT can be used to explore the effects of disease, hearing loss, or even 

speech structure. As previously noted, directly assessing hearing and working memory ability 

provides a unique opportunity to investigate two of the most predictive measures of cognitive 

decline. In the one participant tested in Chapter 5 with independently verified cognitive decline, 

AMLPACT shows promise in evaluating early signs of the disorder even before declines in 

individual performance on standalone assessments are evident. 



135 

 

AMLPACT is an intriguing option for in-scanner assessment. Since it does not require input or 

scoring from a test administrator, it presents a feasibility not found in current speech-in-noise 

tests. A complex test combining multiple cognitive and perceptual dimensions in one scan 

maximizes the limited and expensive resource of fMRI scanning. Imaging procedures actively 

joined with AMLPACT assessments will offer a more thorough understanding of how the brain 

handles challenging cognitive and perceptual tasks that contend for exhaustible resources. 

Determining how neural resources are allocated in healthy and diseased aging can help create a 

more accurate framework of lifespan adaptations and lead to earlier diagnosis or interventions.  

Individual differences from one test to another might have significant insight to a patient’s 

changing health. Using an original test result or an average healthy result as a prior could allow 

an active machine learning algorithm to quickly assess if a patient has deviated from past 

behavior or is outside of an acceptable healthy range. Preliminary research from the Barbour lab 

has shown that determining hearing categorization can be achieved in only a handful of 

informative probe tones. This has the potential to dramatically reduce routine screening time in 

most individuals. Similarly, a participant’s N-back performance could be incorporated into the 

AMLPACT model as a prior distribution. The current implementation of AMLPACT uses a 

linear regression approach. Because GP linear regression models the entire domain, observations 

were chosen by the framework to evenly sample the domain. An informative prior would allow 

greater optimization of test observations, likely improving the predictive power of the GP and 

better modeling true performance.  

All applications of the GP framework delivered a predetermined number of queries to each 

participant. Developing appropriate stopping criteria will further enable individualization of 
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assessments. The GP framework has built-in capabilities to offer measures of model variance. 

These could be exploited to halt assessments once sufficient data have been collected to enable 

individual inference. Effective stopping criteria must be concurrently developed with capabilities 

to reconcile participant lapses. To date, lapses have been overcome by additional data collection. 

As more data are observed, individual discrepancies carry less weight and the GP is able to 

determine the true estimate. When fewer data are observed, each observation can significantly 

alter the model, and overly confident estimates are common in early iterations of data collection.  

7.3 Concluding Remarks 

This thesis applied the GP framework to a broad set of applications in audiometry, speech 

comprehension, working memory, and neural activity. The generalized nature of the framework 

and its extensive use of kernel methods enables this large degree of flexibility. As demonstrated 

here, this framework can be extended to a variety of cognitive and perceptual domains by simply 

adjusting the GP definitions. In summary, not only are multidimensional, individual assessments 

practical, but they provide the more informative inference, often in less time than standard 

approaches.  
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