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Chapter 1

Quantum Circuits, Quantum

Information, and the Environment

1.1 A prehistory of circuit quantum electrodynamics

Quantum circuits were created for the observation of macroscopic quantum phenom-

ena. In 1978, Anthony Leggett suggested a superconducting loop with a weak link could

demonstrate quantum tunneling of a macroscopic degree of freedom [1], and he stated

that the quantum coherence between the macroscopically distinct circuit states “would

probably be as near as we are likely to get to a laboratory version of Schrödinger’s Cat” [2].

The “ridiculous” [3, 4] scenario of quantum interference with arbitrarily complex macro-

scopic systems has been contemplated epistemologically and confronted through theoret-

ical explanations since the inception of quantummechanics. Physical models of quantum

measurement [5–9], system-environment decoherence [10–17], and wavefuction collapse

to a “preferred basis” [18–21] were proposed on a justifying premise that quantum in-
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1.1 A prehistory of circuit quantum electrodynamics

terference is absent on a macroscopic scale. However, these theoretical programs lacked

rigorous discussion of macroscopic features aimed at experimental verification [22].

Once low temperature circuits were discovered to be feasible for the observation of

quantummechanics on a macroscopic scale, Leggett and others developed a path integral

formalism for open quantum systems based on a Wentzel-Kramers-Brillouin approxima-

tion. Quantitative predictions were produced [23–27] for the tunneling of a Josephson

tunnel junction circuit phase degree of freedom [28, 29]. Experimental tests to measure

the tunnel junction “switching rate” [30–38] showed agreement with theory: macroscopic

tunneling out of ametastable energy state is activated by thermal fluctuations at high tem-

perature and, remarkably, quantum mechanical fluctuations at low temperatures. Tun-

neling rate models produced by in situ characterization of circuit parameters, showed

strong quantitative agreement with parameter-free calculations [39–41]. From the onset of

these experimental developments, an account of the strong interactions with environment

degrees of freedom was considered essential for a quantum treatment of microwave cir-

cuitry. The tunneling rate experiments highlighted how quantum tunneling is suppressed

by strong interactions with a dissipative electromagnetic environment [42–44].

The tunneling of singe electric charges was demonstrated by circuits in the

“Couloumb blockade” regime, containing a capacitively decoupled metallic grain [45, 46]

and these devices later showed evidence of electron superpositions [47–50]. Coherent

charge-type superconducting circuits [51, 52] produced the first temporal demonstration

of quantum coherence of a circuit plasmon mode resonance with non-adiabatic driving

[53, 54]. This became known the Cooper-pair Box, and further experimentation [54–56]
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1.1 A prehistory of circuit quantum electrodynamics

included improvements to mitigate the deleterious effects of uncontrolled charge fluctu-

ations on qubit coherence times [57–59]. Quantum state readout with a single-electron

transistor [60] facilitated a mechanism for single shot readout of the qubit state [61, 62].

In 2004, the paradigm of circuit quantum electrodynamics (cQED)was initiatedwhenAn-

dreas Wallraff and others working in the group of Robert Schoelkopf adopted principles

of cavity quantum electrodynamics [63] to demonstrate strong coupling of a charge qubit

with a microwave resonator [64]. The experiment showcased quantum coherent control

of the light-matter interaction with single photons with a solid state device. However, low

frequency fluctuations of charge across the circuit Josephson junction continued to up-

set quantum coherence of the circuit. Schoelkopf proposed to electrically short the junc-

tion with a transmission line section, making a low impedance shunt for low frequencies

while remaining a high impedance to the circuit plasmon mode [65]. The “transmission

line shunted plasmon oscillation circuit” inherited the moniker transmon, although the de-

vice debuted with a capacitive shunt instead [66, 67]. The dissipation of charge through

the large capacitance essentially flattens the transmon circuit charge dispersion, making

the circuit impervious to charge noise and directly resulted in an order of magnitude im-

provement of qubit coherence times [68]. The transmon circuit has since enabled exquisite

control of quantum degrees of freedom in the microwave domain, and by becoming the

workhorse of cQED, it is the foremost solid-state device architecture of scalable quantum

information processing [69].

3



1.2 Quantum information processing

1.2 Quantum information processing

In the past four decades, superconducting circuit technology has convergedwith quantum

information theory to implement quantum algorithms and perform quantum simulation.

The motivation to encode and process quantum information is rooted in the inherent in-

efficiency of classical computers to model physical systems [70]. Quantum systems were

proposed as ameans to simulate, or calculate, complex physical phenomena thatwould be

impossible tomodel on a classical computer [71, 72]. Quantumcoherence between fewdis-

crete systems is modeled by linear superposition in an exponentially large Hilbert space,

thereby presenting a resource for quantum computation [73]. In 1985, David Deutsch

distilled these aspirations into a proposed universal quantum computer, which can be

programmed to simulate any physical process [74–76].

The cultivation of quantum information theory has been accompanied by technological

development of quantum coherent devices. The progress toward a programmable quan-

tum computer has been marked by advancements in the creation, storage, control, and

measurement of quantum states of light and matter [77]. This necessitates a bridge across

the ostensible quantum-classical boundary, with a capability to dictate quantum coher-

ent operations with macroscopic degrees of freedom. All realistic quantum computation

devices are inherently open quantum systems and the preparation and measurement of

quantum states requires interaction at the quantum-classical boundary. In this, there ap-

pears to be a trade-off between quantum coherence and quantum control; the environment

which mediates the control and measurement of a quantum system can also compromise

coherent superpositions of computational states. Thus, well controlled environment de-

4



1.3 The environment as a resource

grees of freedom are necessary for quantum device technology.

1.3 The environment as a resource

In circuit quantum electrodynamics, quantum degrees of freedom naturally interact

strongly in comparison to the energy scale of microwave frequencies electromagnetic ex-

citations. This places superconducting qubit in contrast to other platforms for quantum

computation, since interactions between quantum circuits, resonators, and their environ-

ment can be uniquely tailored for quantum processor “programmability” with classical

controls. However, the time scale for quantum coherence of superconducting circuits is

limited by interactions with an environment that seemingly evades equilibrium. Coher-

ence time scales are characteristic of the quantum circuit fabrication quality and can be

improved by microwave engineering “hygiene” aimed at isolating fragile quantum de-

grees of freedom from an uncontrolled fluctuating environment.

While it is advantageous to decouple a quantum system from an uncontrolled envi-

ronment, interactionswith a controlled environment present a resource for quantum com-

putation. Environment degrees of freedom form the basis of quantum state preparation

of measurement: the process of encoding classical information on quantum degrees of

freedom (and vice versa) is mediated by environment degrees of freedom. As witnessed

in the earliest quantum circuit experiments, dissipation can localize quantum degrees of

freedom. This principle led to the burgeoning of cQED through the development of the

transmon circuit, as dissipation of uncontrolled charge fluctuations, in a dual sense, local-

izes the circuit phase degree of freedom.

5



1.3 The environment as a resource

Quantum bath engineering1 is a modality of quantum control using many degrees of

freedom of an environment [78]. The system-environment interactions of quantum bath

engineering methods are tailored for selective dissipation involving quantum degrees of

freedom of the system. A quantum bath engineering protocol reliably involves classical

control, such as coherent driving. A central concept of quantum bath engineering is that

effective, and usually nonunitary, system dynamics result from ignoring distinct instances

of the environment state at a given time.

An early example of dissipation engineering is laser cooling of atoms, where drive

in combination with atomic decay is used to initialize atomic states [79]. Such techniques

have been extended to cool mechanical objects through cavity dissipation [80] and for con-

trol of quantum circuits [81]. The dynamics open quantum systems enabled by quantum

bath engineering has applications for quantum state reset [82, 83], stabilization of quan-

tum states [82, 84–92], creation of subspaces that are decoherence free [93] or conserve

excitation number [94–96], and the implementation of quantum error correction [97–99].

These quantum bath engineering methods in cQED involve both spectral and temporal

control of environment degrees of freedom. In practice, the spectral composition of the

electromagnetic environment is designed from its microwave impedance and temporally

controlled driving allows the energy selective coupling to environment degrees of free-

dom.

Quantumbath engineeringprinciples aremarkedly pronounced in the process of quan-

tum measurement: there are undetected, and ignored, environment degrees of freedom
1Quantumbath engineering is also called quantum reservoir engineering, engineered dissipation, autonomous

feedback, and coherent feedback.
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1.3 The environment as a resource

which, for all practical purposes, erase quantum coherence during wavefunction collapse.

Quantum measurement dynamics, accompanied by each measurement result, provides

additional selectivity for quantum control. Since measurement results are correlated to

macroscopic states of the environment, quantum dynamics conditioned on these mea-

surement results simulates a feedforward control process on the quantum state. Mea-

surement post-selection techniques have application for quantum error correction, how-

ever the statistics of conditional dynamics does not scale favorably with quantum system

size.

Nevertheless, the statistics of quantum measurement outcomes are intertwined with

the dynamics of wavefunction collapse. And, in terms of quantum bath engineering, the

dynamics of wavefunction collapse can be dictated by quantum measurement outcomes.

In this dissertation, I present an experiment to characterize a statistical arrow of time in

continuous quantum measurement trajectories of a superconducting qubit [100]. The ex-

perimental results show qubit measurement dynamics and statistics are correlated for a

single measurement trajectory evolving forward-in-time. Moreover, an emergent statisti-

cal arrow of time is revealed by ensembles of measurement trajectories. A statistical arrow

of time attributes a “second law”-like description to wavefunction collapse, and further-

more, measurement ensembles adhere to an entropy-like fluctuation theorem.

Following this discussion, I present an experiment which demonstrates qubit state sta-

bilization bydissipative interactionswith amicrowavephotonic crystal environment [101].

The photonic crystal is created as a step-impedance transmission line which structures the

electromagnetic spectral density of states. Near the photonic crystal band edge, a coher-
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1.3 The environment as a resource

ent drive near the qubit transition imparts selective dissipation of the qubit state. On a

short time scale, the qubit then stabilizes to a desired effective ground state. Through

this bath engineering protocol, these results demonstrate how the many electromagnetic

modes that form bands and gaps of a photonic crystal present a resource for quantum

state preparation.

In Chapter 2, I present a theoretical background of circuit quantum electrodynamics

by discussing lumped element nonlinear circuits, the Jaynes-Cummings interaction, and

dispersivemeasurement. In Chapter 3, I present a technical description of quantum circuit

experiments by giving an overview of fabrication, experiment setup, and signal amplifica-

tion. Next, in Chapter 4, I develop a model of open quantum system dynamics applicable

to dissipation and measurement of superconducting qubit states. Then, in Chapter 5, I

discuss the characterization of a statistical arrow of time in continuous quantummeasure-

ment. Then, in Chapter 6, I discuss a bath engineering experiment which demonstrates

quantum state stabilization using a photonic crystal environment.

8



Chapter 2

Circuit Quantum Electrodynamics

2.1 Quantum circuits

2.1.1 Quantization of a linear circuit

The interaction of light and matter is central to quantum electrodynamics. As photons

mediate the interaction of charged particles, a description of the electromagnetic field is

inseparable from the physics of current and voltage. Electrons and electrical circuits alike

are accompanied by the quantization of electromagnetic energy. For this reason, electro-

magnetic energy localized by a microwave resonator occupies discrete energy levels. The

electromagnetic energy of an electrical circuit is shared between the quantum degrees of

freedom of matter and light in terms of charge and flux.

In the case of a lumped element LC circuit, the quantum degrees of freedom are the

displacement charge q̂, contributing capacitive energy q̂2/2C, and the generalized flux φ̂,

9



2.1 Quantum circuits

contributing inductive energy φ̂2/2L [102]. The circuit Hamiltonian is

Ĥ =
q̂2

2C
+

φ̂2

2L
, (2.1.1)

where the operators q̂ and φ̂ are canonically conjugate operators: [φ̂, q̂] = ih̄. We recognize

the Hamiltonian (Eq. 2.1.1) as a quantum harmonic oscillator and rewrite the charge and

flux operators in terms of creation and annihilation operators

φ̂ = φZPF(a + a†), q̂ = −iqZPF(a− a†). (2.1.2)

where φZPF =
√

h̄Z/2 and qZPF =
√

h̄/2Z are the zero point fluctuation amplitudes of the

harmonic oscillator ground state and Z =
√

L/C is the characteristic impedance of the

resonator. The Hamiltonian of the resonator is

Ĥ = h̄ω0

(
a†a +

1
2

)
, (2.1.3)

where ω0 = 1/
√

LC is the resonant frequency of the circuit.

At a given moment, and while in equilibrium with an environment, thermal fluctua-

tions and quantum fluctuations of charge and flux account for the electromagnetic energy

stored in the microwave circuit. For reasonable circuit parameters (L ∼ nH, C ∼ pF),

the quantized energy levels are spaced by h̄ω0 ∼ h̄(2π · 5 GHz). A resonator of this fre-

quency occupies its ground state at sub-Kelvin temperatures, such that kBT � h̄ω for

kB/h = 20.8 GHz/K. At these low temperatures, the suppression of thermal excitations

10



2.1 Quantum circuits

from electromagnetic blackbody radiation can make apparent the quantum fluctuations

of the microwave circuit ground state.

We make measurements of a quantum circuit by scattering microwave pulses which

are both time and frequency dependent. An interaction between a circuit and its electro-

magnetic environment is necessary to perform measurement. The measurement pulses

originate from, and scatter into, a transmission line containing a continuumof electromag-

netic modes [103]. Each independent electromagnetic mode contains conjugate charge

and flux degrees of freedom. The effect of an electromagnetic environment on the LC

circuit is modeled as a lumped element frequency dependent shunting admittance.

An excitation of the original circuit mode (Eq. 2.1.3) is shared with the many modes

of electromagnetic continuum [42], such that the shunting admittance effectively damps

and shifts the original LC circuit resonance as [104],

ω0 → ω0 +

(
∆ +

jω0

2Q

)
' ω0

(
1 +

j
2

Z0Y(ω0)

)
, (2.1.4)

where ∆ is the frequency shift of the resonance and Q is the resonance coupled quality

factor. The resonance of the shunted circuit is approximated by the original LC circuit

mode, given sufficiently weak damping. Weak damping is required for observation of

individual quantum energy levels of this mode, since the spacing of energy levels must be

larger than energy level broadening due to hybridization with many environment modes.

Since dissipation can “wash out” the quantum character of a circuit, quantum circuits

are made of materials that contribute minimal electrical loss. A low temperature environ-

11



2.1 Quantum circuits

ment suppresses the thermal occupation of not only electromagnetic modes, but also the

phononic modes of the circuit’s material environment. As such, the low temperature be-

havior of materials such as silicon and sapphire have desirable insulating properties, since

the “wires” of a circuit must rest on a substrate of low conductance. On the other hand, the

circuit wires must have exceptionally low resistance. Crucially, low temperatures enable

the electronic state of some materials, such as aluminum and niobium, to condense into

a superconducting phase. The nearly negligible current loss of the superconducting state

significantly eliminates dissipation into the continuum of phononic modes.

2.1.2 Tunneling of Cooper pairs

A classically driven linear circuit responds identically in the quantum regime as it does in

the classical limit. In contrast, a nonlinear circuit in the quantum regime responds with

distinctly quantummechanical behavior in comparison to its response in the classical limit

[2, 105]. An anharmonic oscillator has a classical fundamental frequency, and infinite har-

monics, which do not match the transition frequencies between low-lying energy levels

[106]. In the quantum limit, energy eigenstates of an anharmonic oscillator can be ad-

dressed individually with classical driving, due to the unequal spacing of energy levels.

In turn, an anharmonic oscillator exhibits observable quantum interference between in-

dividual energy eigenstates which cannot be described in terms of a classical oscillator

response. To modify a linear LC circuit (Eq. 2.1.3) into an anharmonic oscillator, we intro-

duce a dissipationless nonlinear circuit element known as a Josephson tunnel junction.

A Josephson junction consists of a two superconductors separated by an insulating
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2.1 Quantum circuits

barrier. In the absence of a bias potential, current can flow between the superconduc-

tors by quantum tunneling through the insulating barrier. Although a junction geometry

and its specific material properties introduce a linear electrical impedance, the quantum

coherent tunneling of Cooper pairs through the insulating barrier creates an additional

nonlinear electromagnetic response. In contrast to electron tunneling in normal metals,

the tunneling of Cooper pairs is a coherent process between discrete states of the coherent

superconducting ground state [107].

We develop a phenomenological description of Josephson tunneling by considering

two superconductors separated by a tunneling barrier, with a total number of Cooper pairs

N = NL + NR, where NL and NR are the number of Cooper pairs in superconductor L

and R respectively. If the system is initially in the state |ΨL, ΨR〉 = |NL, NR〉, then the

tunneling of n Cooper pairs from L to R results in a new superconducting state

|n〉 = |NL − n, NR + n〉 . (2.1.5)

We define the number operator n̂ which counts the number of Cooper pairs which have

tunneled through the junction,

n̂ |n〉 =
(

∑
m

m|m〉〈m|
)
|n〉 = n |n〉 . (2.1.6)

The states |m〉 are degenerate in energy, since there is an insignificant energetic cost to add

a Cooper pair to the superconducting ground state. However, there is an energetic cost

for the tunneling process; the coherent tunneling between the superconducting states is
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2.1 Quantum circuits

described by the hopping interaction

Ĥ = −1
2

EJ ∑
n
|n〉〈n + 1|+ |n + 1〉〈n|, (2.1.7)

where EJ is the Josephson coupling energy. We recognize that Eq. 2.1.7 describes one-

dimensional nearest neighbor hopping. The hopping of a Cooper pair from the left to

right superconductor is described by the unitary operator

eiθ̂ |n〉 = |n + 1〉 , (2.1.8)

where the phase operator θ̂ is the generator of discrete translations of Cooper pairs. The

phase operator θ̂ is canonically conjugate to the number operator, together sharing the

commutation relation [n̂, θ̂] = i. We apply the operation of Equation 2.1.8 to the Hamilto-

nian (Eq. 2.1.7) to find

Ĥ = −EJ cos θ̂. (2.1.9)

The eigenstates of the hopping Hamiltonian (Eq. 2.1.7) are simultaneous eigenstates of the

phase operator. The energy eigenstates are the superpositions

|θ〉 = ∑
n

ein̂θ |n〉 , (2.1.10)

which describe a constant current of tunneling Cooper pairs.

As each tunneled Cooper pair displaces 2e of charge across the junction we define the

operator q̂ = (2e)n̂ as the charge operator. For an energy eigenstate |θ〉, we solve for the ex-
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2.1 Quantum circuits

pectation value of persistent current by employing the Ehrenfest theorem: I = d〈q̂〉/dt =

(i/h̄)〈[Ĥ, q̂]〉. From this, we recover the first Josephson relation:

I(θ) =
2e
h̄

EJ sin θ = Ic sin θ. (2.1.11)

where Ic = EJ/ϕ0 is the junction critical current and ϕ0 is the reduced flux quantum

ϕ0 = h̄/2e.

If we apply a constant bias potential of voltage V across the junction, the interaction

Hamiltonian becomes

Ĥ = −2eVn̂− EJ cos θ̂. (2.1.12)

From Equation 2.1.12, we find the second Josephson relation by solving for the equation

of motion for the phase. The phase evolves as

d〈θ̂〉
dt

=
i
h̄
〈
[Ĥ, θ̂]〉 = 2e

h̄
V, (2.1.13)

which gives the equation

V = ϕ0
d〈θ̂〉
dt

. (2.1.14)

2.1.3 Quantization of a nonlinear circuit

Weexamine a nonlinear quantumcircuit by revisiting the linear LC circuitmodel (Eq. 2.1.1)

and replacing the inductor with a lumped element Josephson junction. The nonlinear cir-

cuit then consists of a capacitively shunted Josephson junction. The circuit nodes on either
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2.1 Quantum circuits

side of the capacitor are the two superconductors tunnel coupled by the junction. This cir-

cuit has the Hamiltonian,

Ĥ =
q̂2

2C
− EJ cos θ̂. (2.1.15)

The phase operator θ̂ does not correspond directly to the flux operator φ̂ for the original

linear LC circuit linear inductance (Eq. 2.1.1), although these operators are both genera-

tors of charge translations, being conjugate to the charge operator. The phase operator is

defined as a compact variable, being the generator for discrete changes of charge (Eq. 2.1.8)

across the junction, it is 2π-periodic. In contrast, the flux operator is defined on the real

line, since it is the generator for continuous charge translations [107]. These operators are

reconciled by considering the energetics of the circuit when shunted by an inductance L

that is arbitrarily large [108].

The added linear inductance contributes a term φ̂2/2L to the circuit Hamiltonian. By

Faraday’s law, a change in the flux induces a voltage across the circuit nodes; the junction

phase follows the flux proportionally, according to the second Josephson relation. Since

the phase couples directly to the flux degree of freedom, the additional parabolic flux term

in the Hamiltonian breaks the degeneracy of Hamiltonian eigenstates that are 2π-periodic

in phase. Since this phase symmetry is tacitly broken by an arbitrary large parasitic induc-

tance, we replace the phase operator θ̂ with the normalized flux operator ϕ̂ = φ̂/ϕ0 which

is defined on the continuous real line. We take the circuit Hamiltonian to be

Ĥ = 4ECn̂2 − EJ cos ϕ̂, (2.1.16)
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where EC = e2/2C is the capacitive energy per electron charge and we have expressed the

capacitive charging energy in terms of number of Cooper pairs.

According to the virial theorem, the charge andphase degrees of freedomequally share

the zero point energy fluctuations of the circuit wavefunction. In the limit EJ � EC, we

self-consistently approximate the circuit as a harmonic oscillator [109] and find the am-

plitude of phase excursions is relatively small. Since the phase is well localized, we refer

to it as a position coordinate. The phase-dependent cosine term has the role of an ener-

getic potential. We similarly associate the capacitive energy to kinetic energy, since charge

contributions do not affect the energy eigenstates.

Since the phase coordinate is well localized, we series expand the cosine potential of

Equation 2.1.16 to perturbatively investigate the energetics of the circuit,

Ĥ = 4ECn̂2 +
EJ

2
ϕ̂2 −

EJ

24
ϕ̂4. (2.1.17)

The first and second terms of the Hamiltonian together are a linear LC circuit resonance.

We identify the Josephson junction contributes an effective linear inductance defined from

the relation EJ = ϕ0
2/LJ , and the harmonic oscillator resonance is

√
8EJEC, upon neglect-

ing the quartic term of the Hamiltonian.

Since the circuit is a harmonic oscillator in the perturbative limit (EJ � EC), we employ

harmonic oscillator ladder operators in terms of the normalized charge and flux operators,

ϕ̂ = ϕZPF(a + a†), n̂ = −inZPF(a− a†), (2.1.18)
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2.2 Interactions of light and matter

where the amplitudes of zero point fluctuations are,

ϕZPF =

(
2EC

EJ

)1/4

, nZPF =

(
EJ

32EC

)1/4

. (2.1.19)

After applying normal ordering the Hamiltonian ladder operators and removing constant

terms, we make a rotating wave approximation. Here, the rotating wave approximation

is applicable since excitation non-conversing operators oscillate rapidly in the Heisenberg

picture, relative to the interaction timescale of interactions between eigenstates of the lad-

der operators. Low energy excitations of the circuit are described by the Hamiltonian

Ĥ '
(√

8EJEC − EC

)
a†a− EC

2
a†a†aa. (2.1.20)

We find the negative quartic term of Equation 2.1.17 renormalizes the harmonic oscillator

resonance by −EC and introduces a relative anharmonicity −EC between the first and

second energy level transitions. The Hamiltonian (Eq. 2.1.20) describes the lowest three

energy levels of a quantum circuit known as a transmon [66].

2.2 Interactions of light and matter

2.2.1 A qubit from a circuit

When the anharmonicity −EC of Equation 2.1.20 is large compared to the timescale of

driven circuit dynamics, we can treat the anharmonicity as infinite to describe the dy-

namics of the two lowest circuit energy levels. With this approximation, we truncate the
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2.2 Interactions of light and matter

circuit Hilbert space to two dimensions, realizing a qubit system. A qubit is analogous to

the spin degree of freedom of a non-relativistic spin-1/2 particle, which is represented by

a two-component spinor defined in an operator space by Pauli matrices.

We choose the Pauli σz operator to commute with the qubit energy eigenstates. The

Hamiltonian for the qubit system is

Ĥ = ωqσ†σ, (2.2.1)

where ωq is the bare qubit frequency and σ = (σx + iσy)/2 is the lowering operator. For a

transmon circuit, the bare qubit frequency is (setting h̄ = 1),

ωq =
√

8EJEC − EC. (2.2.2)

2.2.2 The Jaynes-Cummings system

The Jaynes-Cummings Hamiltonian describes the interaction of an electromagnetic mode

and a qubit provided they share aweak dipole-dipole interaction, relative to the character-

istic energy of each system [110]. The qubit is defined in a two-dimensional Hilbert space

Hq, while the resonator state space is defined in the countably infinite Hilbert spaceHr of

a harmonic oscillator. The composite state space of the qubit and oscillator is defined in a

tensor product space,Hq ⊗Hr. By expressing operators of the qubit and oscillator in this
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2.2 Interactions of light and matter

space, we write the Jaynes-Cummings Hamiltonian as

Ĥ = ωr
(
a†a⊗ 12

)
+ ωq

(
1⊗ σ†σ

)
+ g
(
a⊗ σ† + a† ⊗ σ

)
, (2.2.3)

where ωr is the resonator frequency and 2g is the rate of vacuum Rabi oscillations.

Diagonalization of the Jaynes-Cummings Hamiltonian

Wedirectly solve for the systemeigenstates and energy spectrumbyfirst expressing ladder

operators as matrices in the operator product space,

Ĥ =



ωqσ†σ
√

1gσ† 0

√
1gσ ωr12 + ωqσ†σ

√
2gσ† · · ·

0
√

2gσ 2ωr12 + ωqσ†σ

... . . .


, (2.2.4)

We then express the Pauli operators in matrix form to reveal the block diagonal structure

of the Hamiltonian,

Ĥ =



0 0 0

0 M1 0 · · ·

0 0 M2

... . . .


. (2.2.5)
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The block diagonal submatrices are

Mn =

(n− 1)ωr + ωq
√

ng

√
ng nωr,

 (2.2.6)

=

(
nωr +

∆
2

)
12 +

∆
2

σz +

√
ng
2

σx, (2.2.7)

where ∆ = ωq−ωr is the qubit-resonator detuning. Each submatrix represents a subspace

of n total excitations between the qubit and resonator. We diagonalize each submatrix

independently in an orderly fashion by defining the trigonometric relations

cos 2θn =
∆
gn

, sin 2θn =
2
√

ng
gn

, (2.2.8)

where

gn =

√(
2
√

ng
)2

+ ∆2 (2.2.9)

is the excitation number dependent rate of Rabi oscillations between the qubit and res-

onator. The Jaynes-CummingsHamiltonian has a unique zero energy ground state ε0 = 0,

corresponding to zero excitations in the system, while the energy eigenvalues for each ex-

citation subspace are

εn,± =

(
nωr +

∆
2

)
± gn

2
. (2.2.10)
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2.3 The dispersive Jaynes-Cummings interaction

The eigenstates of each excitation subspace are

|n−〉 = cos θn |m, g〉 − sin θn |m− 1, e〉 (2.2.11)

|n+〉 = sin θn |m, g〉+ cos θn |m− 1, e〉 , (2.2.12)

where we express the eigenstates in a basis of the bare qubit and resonator, such that m

denotes the number of photons in the resonator and the labels {g, e} denote the ground

and excited state of the qubit. The mixing angle θn = arctan
(
2
√

ng/∆
)
/2 prescribes the

relative mixing of the bare qubit and resonator for a given excitation number.

The eigenstates |n±〉 are degenerate eigenstates of the excitation number operator N̂ =

a†a + σ†σ for the qubit and resonator together. Since the full Jaynes-Cummings Hamilto-

nian is composed of the excitation subspaces independently, the eigenstates are simultane-

ous eigenstates of the total excitation number operator, [Ĥ, N̂] = 0, which is aHamiltonian

symmetry endowed from the rotating wave approximation.

2.3 The dispersive Jaynes-Cummings interaction

2.3.1 The dispersive approximation

We now investigate the Jaynes-Cummings system in the dispersive regime. Dispersively

interacting degrees of freedom influence each other’s energetic dispersion without nec-

essarily exchanging energy. In the present context, we make a dispersive approximation

in the large detuning limit g � ∆, such that the exchange interaction of Equation 2.2.3
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2.3 The dispersive Jaynes-Cummings interaction

can be treated as a density-density interaction for the low energy excitations of the Jaynes-

Cummings interaction.

This effective interaction results from a Schrieffer-Wolff transformation of the Jaynes-

Cummings Hamiltonian (Eq. 2.2.3) [111]. The Hamiltonian is diagonalized to first-order

in the exchange interaction by the transformation Ĥ → UĤU†, with unitary operator

U = exp
[

g
∆
(a⊗ σ† − a† ⊗ σ)

]
. (2.3.1)

We make the dispersive approximation by applying the unitary transformation (Eq. 2.3.1)

and retaining terms up to second order in g/∆. The Jaynes-Cummings Hamiltonian in

the linear dispersive regime is [112]

Ĥ = ωr
(
a†a⊗ 12

)
+ ωr

(
1⊗ σ†σ

)
+ χ

(
a†a⊗ σ†σ

)
, (2.3.2)

where χ = g2

∆ is the dispersive shift. As the dispersive Hamiltonian (Eq. 2.3.2) is appli-

cable for low energy excitation of the Jaynes-Cummings Hamiltonian, this approximation

breaks down for large excitation numbers, scaling with the resonator photon occupation

nc = ∆2/4g2, called the critical photon number. The dispersive interaction describes an

excitation number dependent shift of the qubit resonance. Likewise, the resonator fre-

quency effectively shifts by 2χ whether the qubit is in the ground or excited state.
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2.3 The dispersive Jaynes-Cummings interaction

2.3.2 Dispersive measurement

Adding a drive

In experiment, coherent microwave drives are used to measure and control quantum cir-

cuits and resonators. For example, a weakly coupled microwave drive can be a absorptive

probe to indicate energetic transitions or a method to pump excitations into the system.

Alternatively, an intense microwave tone can strongly perturb a quantum system, induce

otherwise forbidden transitions, and pump the system into the classical regime.

The effect of driving a resonator is characterized by dipole coupling to an electromag-

netic mode of the environment. Here we apply a semiclassical steady state treatment by

considering strong coherent drivingwith a sufficiently dissipative environmentmode. An

electromagneticmode of the environment, with an annihilation operator b and at the drive

frequency ωd, interacts with a resonator mode through a dipole coupling within the ro-

tating wave approximation,

Ĥ = ωra†a + ωdb†b +
(

gab† + g∗a†b
)
. (2.3.3)

Given the environmentmode is sufficiently dissipative, themode is occupied by a coherent

state described by a classical steady state solution of driven mode. If the coherent state

has a large amplitude, and the environment state is not affected by state of the resonator

mode, we make the stiff pump approximation and ignore effects of quantum fluctuations.

The stiff pump approximation allows the replacement of the environment mode ladder

operators with the steady state amplitude of the environment field. The Hamiltonian for
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2.3 The dispersive Jaynes-Cummings interaction

the driven resonator mode is

Ĥ(t) = ωra†a +
(
εe−iωdta + ε∗e+iωdta†), (2.3.4)

where the Hamiltonian has explicit time dependence in the Heisenberg picture and the ε

is the effective coupling rate of the resonator and environment. In this semiclassical de-

scription, the effective coupling rate to the environment is enhanced by the high excitation

number of the coupled resonator-mode interaction. Note this is similar to the excitation

number dependent Rabi oscillation rate in the resonant Jaynes-Cummings model.

To eliminate the time dependence of the Hamiltonian (Eq. 2.3.4), we move to the rotat-

ing frame of the drive by applying the unitary transformation U = eiωda†at,

Ĥ = ∆da†a +
(
εa + ε∗a†), (2.3.5)

where ∆d = ωr −ωd is the resonator-drive frequency detuning.

The displaced frame of the resonator field

The state of a qubit that is dispersively coupled to a resonator can be determined from

a measurement of the resonator response. Here we consider a measurement probe near

the resonance frequency of a dissipative resonator. A detailed description of a dissipative

quantum system is explained in Chapter 4. We consider a coherent drive of amplitude

ε is applied to the bare resonator frequency such that the qubit-resonator density matrix
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2.3 The dispersive Jaynes-Cummings interaction

evolves as

ρ̇ = −i[Ĥ, ρ] + κD[a]ρ, (2.3.6)

where D[a]ρ = (2aρa† − a†aρ− ρa†a)/2 is the Lindblad dissipator and the Hamiltonian

of the qubit and resonator is,

Ĥ = −χa†aσz + ε∗a + εa†. (2.3.7)

We move into the displaced frame of the resonator by defining a displaced operator of the

resonator field d = a− ā. The resonator dissipation superoperator is then,

κD[a]ρ = κD[ā + d]ρ

= −i[∆Ĥ, ρ] + κD[a]ρ,

(2.3.8)

where ∆Ĥ becomes an additional term to the Hamiltonian,

∆Ĥ =
iκ
2
(ā∗d− ād†). (2.3.9)

The resonator field is displaced according to the classical steady-state of the resonator

field, which in the limit where χ� κ, the classical steady state amplitude is

ā =
ε

iκ/2
, (2.3.10)
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and the intra-resonator photon number is n̄ = |ā|2. The additional Hamiltonian term is

then

∆Ĥ = εd† + ε∗d†, (2.3.11)

We absorb the term ∆Ĥ into the Hamiltonian and rewrite the Hamiltonian in terms of the

displaced field,

Ĥ = −χ(ā + d)†(ā + d)σz

+ ε∗(ā + d) + ε(ā + d)† + ∆Ĥ

= −χ(n̄ + d†d)− χ(ā∗d + ād†)σz

+ ā∗ε + āε∗︸ ︷︷ ︸
→0

+ εd† + ε∗d︸ ︷︷ ︸
−∆Ĥ

+∆Ĥ

Ĥ = −χ(n̄ + d†d)− χ(ā∗d + ād†)σz.

(2.3.12)

We choose the phase of the resonator drive, without loss of generality, such that the field

displacement is real valued. We also remove the constant term in the effectiveHamiltonian

to find

Ĥ = −χd†d− 2χ
√

n̄(d + d†)σz. (2.3.13)

The qubit-resonator interaction term of Equation 2.3.13 indicates that, in steady state, ex-

pectation values of the qubit are correlated to a single quadrature of the resonator field.

A homodyne measurement of the cavity field, in the basis of this quadrature, is then an

indirect measurement of the bare qubit populations.
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Chapter 3

Experiment Methods & Techniques

3.1 Device preparation

3.1.1 Microfabrication

In the previous chapters, I have discussed the quantum mechanics of electromagnetic

modes and circuits with a theoretic framework applicable to the physics of a single atom.

However, electromagnetic modes at microwave frequencies have a length scale of mil-

limeters, and quantum circuits are fabricated by materials with macroscopic properties.

Microwave devices are made of distributed circuit elements; the near-field electromag-

netic response of the circuit is determined by the geometry of its materials. Electron beam

and optical lithography define the sub-microwave wavelength features of superconduct-

ing quantum circuits, and importantly, these techniques are integral to the fabrication of

Josephson tunnel junctions.
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Lift-off process

A transmon circuit device is fabricated on a silicon substrate as two aluminum super-

conductors that are coupled both capacitively and by a Josephson tunnel junction. The

geometry of the circuit is defined by thin film deposition through a lithographic mask in

a lift-off process. The workflow of fabrication by a lift-off process is described through the

following steps:

The mask is created by first spin-coating electron sensitive polymer resist on an intrin-

sic silicon wafer. The resist coated wafer is then exposed to an electron beam that patterns

the planar geometry of the circuit. After exposure, the sample is developed in a solvent

solution which selectively removes the exposed resist while leaving the unexposed resist

intact. The developing is stopped after a prescribed development time by plunging the

sample in solution. The sample is subsequently rinsed and dried. Since residual resist

adheres to the substrate surface after development, samples are further cleaned by a de-

scuming process in which the sample is momentarily placed in a low pressure oxygen

plasma.

With the substrate wafer partially unmasked by development, the mask and substrate

is coated with an aluminum thin film. Samples achieve the lowest microwave losses by

stripping the silicon of its native oxide surface by submerging the sample in hydrofluoric

acid immediately prior to the deposition step. Samples are held in ultra-high vacuum

for an overnight duration prior to aluminum deposition. Josephson junctions are created

in two aluminum deposition steps; after an initial deposition, we perform a controlled

oxidation, in situ, before a final oxidation.
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After deposition, a lift-off is performed by submerging the sample in a heated solvent

solution. This removes the aluminum coated lithography mask while leaving behind the

aluminumdeposited directly on the silicon substrate. The solvent polymer swells, causing

the resist to lose adhesion to the silicon substrate while it dissolves into the solvent. The

mask lifts off the substrate, along with its unwanted aluminum coating. After the resist

removal, the sample is rinsed and dried.

Josephson tunnel junctions

While the transmon shunting capacitance is defined froma lithographypattern, the Joseph-

son junction element of the circuit is created by a well-defined insulating barrier separat-

ing the two aluminum films at a point of contact. Fabrication of a tunnel junction requires

directionally selective aluminum deposition, which is made possible by particular litho-

graphic mask features, such as the Niemeyer-Dolan bridge [113, 114]. Thin film deposi-

tion on a narrow bridge feature suspended above the substrate creates an area without

metallic film, where the bridge “casts a shadow” on the substrate below (Fig. 3.1a). This

shadowing technique is used to create galvanically separate thin films by performing two

depositions, each with the substrate surfaces oriented at different angles relative to the

evaporator source. Between the angled depositions, an insulating tunnel barrier is created

by oxidation of the initial aluminum layer, with a controlled time and pressure (Fig. 3.1b).

The Josephson tunneling energy is determined by the thickness and area of the tunnel

junction oxide barrier. For aluminum superconductors, an aluminum oxide barrier thick-

ness of approximately 1 nm and a junction overlap area of 0.1 µm2 defines a Josephson
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(a) (b) (c)

Figure 3.1: The Niemeyer-Dolan bridge technique for junction fabrication begins with a
bridge of resist (yellow) suspended over the sample substrate (dark gray). (a) A thin film
of aluminum (light gray) is deposited on the samplewith a highly directional evaporation.
The presence of a resist bridge creates a “shadow”where the substrate is not metalized (b)
An oxide layer (teal) is formed by a controlled oxidation of the deposited aluminum. (c) A
second directional evaporation of aluminum, at a different angle than the first, results in a
small Al-AlOx-Al junction. The large continuous regions of aluminum on oxide form high
critical current Josephson junctions which contribute negligibly to the Josephson tunnel-
ing energy.

energy of EJ/h = 20 GHz. The junction geometry contributes an additional capacitance

of 45 fF/µm2 between the superconductors [109]. The Josephson tunneling energy can

be inferred from a measurement of the junction conductance at room temperature. The

Josephson energy is calculated from the Ambegaokar-Baratoff formula [115],

EJ =
∆gap

4
GN

G0
(3.1.1)

where ∆gap is the superconducting energy gap, G0 = 2e2/h is the conductance quantum,

and GN = 1/RN is the normal state junction conductance (inverse of the series resistance).
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3.1.2 Sample packaging

3D transmon

In the setup of the experiments discussed in later chapters, the transmon circuits were

placed into the experiment setup by placement in a three-dimensional waveguide cav-

ity [116]. The cavity primarily provides a method to measurement the quantum states

of the transmon circuit. Additionally, the cavity encloses the circuit, thereby shielding it

from surrounding electromagnetic blackbody radiation. While transmon circuits can be

integrated in a planar device with lithographically defined resonators, the largemode vol-

ume of a three-dimensional cavity is advantageous, since the mode has an overall weaker

electric field density and thereby has comparatively less microwave loss. The cavity is

machined from two blocks of high purity aluminum, or oxygen free high purity copper,

with dimensions chosen for a fundamental resonance frequency above the qubit transition

frequency.

Microwave launches

Microwave circuit devices, such as planar resonators and Josephson parameter amplifiers,

are “launched” by a connection to the rest of themeasurement setup. Amicrowave launch

secures and thermalizes a silicon substrate devicewhile providing a transmission line con-

nection to a 50-Ω coax geometry. The silicon substrate is fastened to the dielectric material

(Rogers TMM6) of the launch using a small amount of GE Varnish epoxy. The microwave

launch has a coaxial connector which transfers to a coplanar waveguide (CPW) transmis-

sion line geometry. The CPW connects to the silicon substrate circuit through multiple
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wirebonds which are connected to a bondpad on the circuit.

3.2 Cryostat setup

The observation of coherent quantum effects at microwave frequencies requires a thermal

background reduced to the scale milliKelvin temperatures. The experiments discussed

in the forthcoming chapters were performed in a cryogen-free dilution refrigerator. The

dilution cryostat has a pulse tube cryocooler which cools the apparatus to about 3.5 K.

A mixture of helium isotopes, 3He and 4He, are then precooled and condensed in the

mixing chamber of the dilution refrigerator. The phase separation and mixing of 3He

into 4He provides a cooling effect on the surrounding cryostat. Importantly, the dilution

refrigerator maintains cooling power at temperatures approaching absolute zero due to

the persistent and appreciable solubility of 3He in 4He [117].

Sample holder

Superconducting microwave devices at milliKelvin temperatures must be shielded from

thermal radiation and shielded from stray magnetic fields. The transmon circuit cavity,

contains a transmon circuit, is placed in an oxygen free high purity (OFHC) sample holder,

attached to an enclosure cap mounted on the dilution refrigerator mixing chamber. The

copper sample holder has feedthrough ports for microwave signal line and connections

for a DC flux bias solenoid. The sample holder enclosure is made light-tight by placing

an indium gasket in the seam between the sample holder shell and its cap. The indium

is squished by tightening the machine screws that hold the sample holder shell and cap
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together.

Samples are further shielded from stray magnetic field from two additional metal cans

enclosed around the sample holder. First, an aluminum can is placed over the sample

holder, which traps a static magnetic field by the Meissner effect, upon transitioning to

superconducting at ∼ 1.2 K. A second can, formed of Cryoperm alloy, is placed around

the aluminum can. The alloy is highly diamagnetic at low temperatures, thereby canceling

static magnetic fields, i.e. earth’s field, within its enclosed volume. Since the Cryoperm

is diamagnetic above the superconducting transition temperature of aluminum, this can

cancel magnetic fields which are then “locked into place” by the aluminum superconduc-

tor.

Thermalization and filtering

All experiment components at milliKelvin temperatures are thermalized to the cryostat

mixing chamber plate. These components include sample enclosures, circulators, atten-

uators, and filters. Components are thermally linked to the gold plated mixing chamber

plate of the cryostat with oxygen free high purity copper (OFHC) mounting fixtures and

wires, which has appreciable thermal conductivity at cryogenic temperatures [118]. Ex-

periment sample enclosures are attached to the cryostat with oxygen free high purity cop-

per (OFHC) mounting fixtures, which provide thermal continuity with the gold plated

mixing chamber plate cooled by the dilution refrigerator.

Coaxial cable transmission lines are thermalized at each temperature stage as they lead

room temperature microwave signals to the milliKelvin stage of the cryostat. Input sig-
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nal coaxial cables are attenuated by approximately 60 dB before milliKelvin microwave

components in order to mitigate thermal noise. Microwave thermal noise originates effec-

tively as blackbody radiation from finite temperature materials with nonzero emissivity.

A blackbody radiator that is an electrical component of admittance Y(ω) and at an equi-

librium temperature T, has the power spectral density of current fluctuations [119]

SI I(ω) = 4kBT
h̄ω/kBT

eh̄ω/kBT − 1
Re{Y(ω)}. (3.2.1)

For thermal noise originating at room temperature, we consider Equation 3.2.1 in the high

temperature or low frequency limit, recovering the Johnson-Nyquist noise formula [120],

SI I(ω) ' 4kBT Re{Y(ω)}. (3.2.2)

From Equation 3.2.2, infer the power spectral density of room temperature thermal fluc-

tuations are 104 times larger than the power spectral density of quantum fluctuations

∼ h̄ω/2 at 5 GHz microwave frequencies. As the thermal noise is linear in temperature,

this implies at least 40 dB of the room temperature thermal noise should be dissipated

into a zero temperature bath. Cryostat attenuators, however, are not zero temperature

thermal baths. Consequently, attenuators of each temperature stage also emit thermal

noise. Accounting for this in the cryostat attenuator, along with the cooling power at each

temperature stage, we use an attenuator stack listed in Table 3.1.

Microwave signals for device measurements propagate in the TEM mode of coaxial

transmission lines. While a signal of any wavelength can propagate in the TEM mode,
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3.2 Cryostat setup

Cooling
Stage Temperature (K) power (mW) Attenuation
— 300 K — 0 dB
— 50 K 1000 0 dB
— 4 K 100–300 20 dB
Still 1 K 25 10 dB

Cold plate 0.25 K — 0 dB
Mixing chamber 0.01 K 0.25 30 dB

Table 3.1: Cryostat temperature stages are outfitted with inline coaxial attenuators to re-
duce thermal noise leading tomixing chamber microwave components. A 0 dB attenuator
is a 50-Ω componentwhich serves to thermalize the coaxial center pinwithout attenuating
the signal.

signals of a wavelength comparable or smaller than the total coaxial diameter can also

propagate in other mode geometries (e.g., the TE11 mode) [121]. The coaxial cable dielec-

tric and conductive losses are not sufficient to filter high frequency (THz) thermal noise.

For this reason, each RFmeasurement line connected to themixing chamber is interrupted

with a high frequency absorptive filter.

An absorptive filter is constructed as a short 50-Ω transmission line section which has

significantly large dielectric loss at high frequencies (> 25 GHz). The filter is made of

OFHCpackagewith stripline geometry (Fig. 3.2a), which is then pottedwith Eccosorb CR-

110 epoxy (Fig. 3.2b). In Figure 3.2c, the reflection scattering parameter (S11) indicates only

a small fraction of is reflected from the filter, since the filter impedance is well-matched

to the 50-Ω characteristic impedance of the vector network analyzer (VNA). The scatter-

ing parameter for transmission (S21), indicates that the filter attenuation scales with fre-

quency. For output measurement lines, an absorptive filter is located between milliKelvin

microwave components and higher temperature microwave devices, such as amplifiers.

Since signals are attenuated before significant amplification, it is desirable to have a neg-
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Figure 3.2: (a) A design model of a high frequency absorptive filter with stripline geom-
etry. (b) The dielectric material of the stripline geometry is an absorptive epoxy. (c) A
transmission measurement shows the filter attenuates high frequency signals. At lower
frequencies for experiment signal detection, the filter transmission (S21) shows modestly
little attenuation (-2 dB at 5 GHz).

ligible amount of attenuation at lower frequencies, since filter loss is indiscriminate to the

signals we would like to detect.

3.3 Amplification

The microwave circuits and resonators at milliKelvin temperatures have a thermal excita-

tion background equivalent to less than a singlemicrowave photon per 1 MHz bandwidth.

These devices are also driven andmeasuredwithmicrowave drives with similarly lowmi-

crowave powers. Signal detection of thesemicrowave signals requires amplification above

the thermal noise background at room temperature. However, the process of signal am-

plification invariably contributes noise to the microwave signal. The power of this added

noise is characterized by a thermal noise temperature at the input of an amplifier. The Friis
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formula describes the scaling of the system noise temperature for a cascade of amplifiers,

each with a specified gain factor and noise temperature [122],

Tsys = T0 +
T1

G0
+

T2

G0G1
+ . . . +

Tk
G1G2 · · ·Gk−1

, (3.3.1)

where Gk and Tk are the linear gain factor and noise temperature for the kth amplifier.

Note that the gain factor can also describe signal attenuation when G < 1 which causes a

signal to noise decrease since the attenuated signal is “replaced” by Johnson noise at the

physical temperature of the attenuating element. The Friis formula shows us that a given

amount of signal gain can improve the signal to noise ratio more significantly at low noise

temperature stages. In the absence of gain, noise power contributed from a small amount

of attenuation at a high temperatures is equivalent to a large amount of attenuation at

low temperatures. This proportional trade-off can be offset by including gain in the am-

plification chain before any attenuation at higher temperatures. Since the effective noise

temperature of an amplifier is typically consistentwith the amplifier physical temperature,

it is always advantageous to include amplification at lower temperature stages.

In the experiment setup, amplification is performed with a low noise commercial the

high electron mobility transistor (HEMT) amplifier. The amplifier is attached and ther-

malized to the cryostat 4 K stage, which is itself thermalized to the pulse tube cryocooler.

A superconducting niobium coaxial cable connects milliKelvin experiment devices to the

input port of the HEMT amplifier. The superconducting cable contributes little signal

loss while also thermally isolating milliKelvin microwave components from the relatively
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warmer stages HEMT amplifier and 4 K cryostat stage. In addition, the HEMT electri-

cal noise is isolated from circuits and resonators at milliKelvin temperature by placing

two ferrite-core isolators between the last milliKelvin microwave component and the su-

perconducting cable leading to the HEMT. The isolators are thermalized to the mixing

chamber stage of the cryostat.

3.3.1 The Josephson parametric amplifier

The noise contribution of a HEMT amplifier limits our ability to make microwave mea-

surements at the single photon limit. While, in principle, enough signal averaging can

overcome a noise background, this method is insufficient for single-shot readout of quan-

tum states on a microsecond time scale. We address this issue by implementing a pre-

amplification stage at milliKelvin temperatures. A Josephson parametric amplifier (JPA)

performs near-quantum-limited signal amplification as a nonlinear single mode circuit

operated as a semiclassical quantum device. A JPA reliably produces signal gain of about

20 dB with 50 MHz instantaneous bandwidth, sufficient for single shot quantum state

readout. Importantly, a JPA amplifier can achieve a noise temperature of about 300 mK,

which can decrease the overall measurement noise temperature by an order of magnitude.

Amplification from a nonlinear circuit

We approach the operation of a JPA from a lumped element model. The nonlinear cir-

cuit model contains a Josephson junction of critical current Ic, and effective inductance

L = ϕ0/Ic, along with a shunting capacitor C, which are connected to a current source
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I(t) of characteristic impedance Z0. By applying Kirchhoff’s law to currents in the circuit

branches and expressing the current degree of freedom in terms of magnetic flux Φ(t), we

find the equation of motion

CΦ̈(t) + Y0Φ̇(t) +
ϕ0

L
sin δ(t) = I(t) (3.3.2)

where δ(t) is the gauge-invariant superconducting phase difference across the Josephson

junction. We express the magnetic flux in terms of the superconducting phase by the

relation Φ = ϕ0δ, divide by the reduced magnetic flux quantum, and multiply by the

inductance

1
ω2

p
δ̈(t) +

γ

ω2
p

δ̇(t) + sin δ(t) =
1
Ic

I(t). (3.3.3)

where ωp = 1/
√

LC is the oscillator plasma frequency and γ = 1/Z0C is the oscilla-

tor damping rate. Equation 3.3.3 is known as the Resistively and Capacitively Shunted

Junction (RCSJ) equation and is analogous to a driven damped pendulum in a constant

gravitation field [123, 124]. The oscillator is damped as a result of the current source finite

admittance, together with the circuit capacitance, which limits the flux amplitude to small

values for relatively weak driving.

Figure 3.3: The JPA is modeled as a lumped element circuit connected to a current source.
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We consider a single-frequency sinusoidal current source (up to a phase) and expand

the sinusoidal term of Equation 3.3.2 up to third order

1
ω2

p
δ̈(t) +

γ

ω2
p

δ̇(t) + δ(t)− 1
6

δ(t)3 =
Id
Ic

cos ωdt (3.3.4)

which is a non-linear second-order differential equation describing a Duffing oscillator.

Apart from the nonlinear cubic term, the equation of motion (Eq. 3.3.4) has a harmonic

oscillator-like resonance at the plasma frequency in the weak driving limit. Finite ampli-

tude perturbations effectively increase the circuit inductance byway of the nonlinear cubic

term, thereby depressing the oscillator resonance. The steady state response, in terms of

amplitude and phase, can be found using the method of harmonic balance, by which the

oscillator response takes the form

δ(t) = δ0eiφ = δ|| cos ωdt + δ⊥ sin ωdt. (3.3.5)

We insert this ansatz into Equation 3.3.4 and arrive at the following coupled equations by

removing fast oscillating terms,

δ|| − 2δ⊥Q
(

ωd
ωp

+
δ2

0
16
− 1
)
= 0

δ⊥ − 2δ||Q
(

ωd
ωp

+
δ2

0
16
− 1
)
= Q

Id
Ic

.

(3.3.6)

where Q = ωp/γ is the coupled quality factor of the oscillator. For certain parameter

regimes, the phase response of the oscillator has a sharp dependence on the drive fre-
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quency (Figure 3.4). This is an underlying mechanism for amplification with a nonlinear

oscillator; a strong drive biases the oscillator to a regimewhere a small signal perturbation

can dramatically shift the oscillator phase, and the phase shift of the strong drive itself.
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Figure 3.4: The steady state amplitude and phase response of the JPA is solved by the
method of harmonic balance with Q = 20 for the coupled quality factor. For strong drives
the oscillator is driven in a bifurcation regime, where the steady state response has mul-
tiple solutions. (a) The peak of the amplitude response shifts to lower frequencies for in-
creasing drive strengths. (b) The phase response of the JPA “stiffens” as the drive current
increases, before having multiple solutions in the bifurcation regime.

A Josephson parametric amplifier device

Here, we consider an amplifier device fabricated from a single step lift-off process (Sec-

tion 3.1), as aluminum on silicon circuits. The JPA is designed as a lumped element res-

onator illustrated in the schematic of Figure 3.5. The Josephson junction element, of effec-

tive inductance LJ , is a singleDCSuperconductingQUantum InterferenceDevice (SQUID)

for circuit tunability. The device is designed with two interdigitated capacitors create the

resonator capacitance CR to ground. Another interdigitated structure is used for a cou-

pling capacitance CC to the amplifier port of characteristic impedance Z0. The coupling
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3.3 Amplification

capacitance determines the coupled quality factor of the resonator by determining the

overall conductance to ground. Each lumped component was modeled in Ansys AWR

Microwave Office as a planar geometry (Fig. 3.6a). Once simulating and optimizing the

electromagnetic response for each component separately, the resonator was modeled as

a whole assembled structure. The resonator parameters were determined while treating

the Josephson junction element as a linear inductor.

Figure 3.5: A schematic model of the Josephson parametric amplifier capacitively coupled
to a Z0 characteristic impedance. The coupled quality factor of the nonlinear oscillator
mode depends on the shunting admittance YS.

We now consider certain requirements for JPA operation and fabrication design con-

straints. The JPA resonance must be in the frequency range 4–8 GHz, at readout resonator

frequencies, and have an instantaneous bandwidth of about 50 MHz, for amplification of

signal transients on a reasonably short time scale (Fig. 3.6b).

Additionally, the circuit nonlinearity must be sufficiently strong to cause signal ampli-

fication while the strength of the drive current is well below the Josephson junction crit-

ical current. We address this requirement in terms of the participation ratio p = LJ/LΣ,

where LΣ is the total shunting inductance embedded in the circuit. The participation ratio
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measures the relative strength of the nonlinear inductance. To meet the operating regime

convenient for amplification, we desire the relation pQ� 1, that is, the product of the cou-

pled quality factor and participation ratio is much greater than unity [125]. Given these

considerations, the JPA was design to have a quality factor of approximately Q ' 20.

The schematic model (Fig. 3.5) was used to calculate an expected oscillator resonance

and quality factor. These circuit parameters were then adjusted given circuit parameters

and physical constraints given by the dielectric constant of the silicon substrate, the reso-

lution of optical lithography, and the attainable values of Josephson junction critical cur-

rent density. The circuit frequency of resonance and quality factor were calculated from

the total circuit admittance. We define the shunting impedance as ZS(ω) = 1/YS(ω) =

Z0 + 1/jωCC and the total admittance is

Y(ω) = jωCR +
1

jωLJ
+ YS(ω)

= jωCR +
1

jωLJ
+

jωCC

1 + jωZ0CC
.

(3.3.7)

We solve for the oscillator resonance by calculating the zeros of the total admittance. The

oscillator quality factor is then evaluated as

Q =
ω0C

Re{Y(ω0)}
(3.3.8)

where ω0 is the oscillator resonance frequency and C = 1
2 Im{Y′(ω)}|ω=ω0 is the effective

capacitance C at the resonance frequency, evaluated from the slope of the admittance.
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Figure 3.6: (a) The JPA design layout has electromagnetic structures for the wirebond pad
and coupling capacitor (blue), the resonator shunting capacitor (green), a SQUID Joseph-
son junction (red), and a perforated ground plane (brown). (b) When the JPA is driven
by a pump tone, its response to a weak signal displays approximately 17 dB of gain with
40 MHz instantaneous bandwidth. The gain is normalized by the device weak signal re-
sponse when it is not driving by pump tone.
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Chapter 4

Open Quantum Systems

4.1 A quantum system with its environment

All quantum systems interact with an environment. When a quantum system interacts

with many environment degrees of freedom that often cannot be measured or controlled,

system dynamics display dissipation and dephasing. Unitary dynamics of the system

alone cannot describe decoherence, instead, this dynamics emerges from the joint unitary

dynamics of the system and environment. We typically develop an effective description of

the quantum system in terms of a master equation by averaging over all possible, yet un-

known, states of the environment. In all circumstances, the dynamics of an open quantum

system are conditioned on the properties of its environment. Notably, measurements on

the environment provide information of the system state. When we are informed by the

outcomes of environment measurements, a conditional evolution of the quantum system

describes the dynamics of quantummeasurement, known asmeasurement backaction [126].
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4.1 A quantum system with its environment

4.1.1 The reduced dynamics of the system

Any complete description of a quantum system provides the expectation value of an ob-

servable, which is the average over a distribution of all possible system states. Since we

wish to evaluate expectation values for a quantum system conditioned on unknown states

of its environment, we use a density operator formalismwhich can account for both quan-

tum and classical uncertainty. The density operator is self-adjoint, positive semidefinite,

and of unit trace [127].

We use a quantum mechanical description for the degrees of freedom of both the sys-

tem and its environment. Without providing microscopic details of the environment, we

will assume it has many degrees of freedom, for which we call it a reservoir. States of the

system are defined in theHilbert spaceHS which are distinct from reservoir states, defined

in another Hilbert spaceHR. A composite state of the system and reservoir together is de-

fined in a tensor product space: HS ⊗HR [128]. Given a density operator of the system

and reservoir χ, we calculate the reduced density operator of the system as,

ρ = trR
(
χ
)
, (4.1.1)

where trR
(
·
)
is the partial trace over the reservoir state space. The partial trace is defined

operationally from the trace procedure

〈A〉ρ ≡ tr
(
(A⊗ 1R)χ

)
, (4.1.2)

where A is an operator acting in HS, the Hilbert space of the system. The dynamics of
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4.1 A quantum system with its environment

the system and reservoir together is given by a time reversible, unitary transformation. In

contrast, the reduced dynamics of the system is

ρ(t) = trR
(
χ(t)

)
= trR

(
U(t)χ(0)U(t)†) (4.1.3)

which is an irreversible dynamics in general.

4.1.2 Interaction dynamics of a system and reservoir

The interacting system and reservoir together have the Hamiltonian,

H = HS ⊗ 1R + 1S ⊗ HR︸ ︷︷ ︸
H0

+V, (4.1.4)

where HS and HR are each theHamiltonian for the system and reservoir alone, andV is the

system-reservoir interaction Hamiltonian. We move from the laboratory frame of Equa-

tion 4.1.4 to the interaction frame of the system and reservoir by defining

χ(t) = e−iH0tχe+iH0t as the interaction frame density operator and V(t) = e−iH0tVe+iH0t

as the time-dependent interaction frame Hamiltonian. In the Schrödinger picture, time

evolution of the system and reservoir is

χ̇(t) = −i[V(t), χ(t)]. (4.1.5)
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We substitute the integral of Equation 4.1.5 back into itself and find

χ̇(t) = −i[V(t), χ(0)]−
ˆ t

0
ds [V(t), [V(s), χ(s)]], (4.1.6)

where χ(0) is the initial state of the density operator. We can solve for an effective time

evolution of the system by tracing over the reservoir state space,

ρ̇(t) = −
ˆ t

0
ds trR

(
[V(t), [V(s), χ(s)]]

)
, (4.1.7)

and we have chosen trR
(
[V(t), χ(0)]

)
= 0 by a convenient choice of the interaction Hamil-

tonian. While Equation 4.1.7 is an exact equation for the reduced dynamics of the system,

a solution is generally intractable. However, we can solve for the system dynamics under

certain conditions and assumptions which approximate the integrand of Equation 4.1.7.

Separable initial state First, we assume the initial density operator state is a separable

state. This is a reasonable assumption given the system and reservoir are weakly interact-

ing [129]. The density operator initial state is then

χ(0) = ρ(0)⊗ $(0), (4.1.8)

where $(0) is the initial reduced density operator of the reservoir.

• Condition: no initial correlations between system and reservoir, weak coupling

• Assumption: χ(0) ≈ ρ(0)⊗ $(0)
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Born approximation (1) The density operator dynamics can be expressed as a perturba-

tive expansion in time,

χ(t) = ρ(0)⊗ $(0) +O(V). (4.1.9)

Given the modulus of V is small, the state χ(t) will only deviate negligibly from a cor-

related state during the evolution [130]. We can approximate the density operator in the

integrand of Equation 4.1.7 by neglecting terms higher than second order in V to solve for

the reduced dynamics of the system.

• Condition: weak coupling

• Assumption: χ(t) = ρ(t)⊗ $(t) in the integrand of Equation 4.1.7.

Born approximation (2) We assume a weak interaction between the system and reser-

voir, such that the reservoir state is negligibly affected by the system, which in turn, al-

lows the system dynamics to be well approximated by an interaction with an unperturbed

reservoir state.

• Condition: weak coupling, large reservoir

• Assumption: $(t) = $ in the integrand of Equation 4.1.7, where $ is the reduced

density operator of the reservoir at all times.

Markov approximation (1) We assume the system is “small” compared to the “large”

environment reservoir. Furthermore, the system weakly interacts with many eigenstates

of the reservoir, all which form a continuous energy spectrum. The reservoir spectrum
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must be continuous relative to the sharpness of all the system eigenstates. Consequently,

the system dynamics cannot be significantly affected by its own effect on the reservoir, i.e.

there is no “flow of information” from the reservoir back to the system [128]. We make

the approximation that contributions to the integral in Equation 4.1.7 are significant only

when ρ(s) = ρ(t).

• Condition: weak coupling tomany reservoir eigenstates that forma continuous spec-

trum

• Assumption: replace ρ(s) by ρ(t) in the integrand

Markov approximation (2) If the system state does not change appreciably on the time

scale of decay for reservoir correlations, then contributions to the integrand of

Equation 4.1.7 are negligible for times in the long past. Here the time scale for system

dynamics is coarse-grained relative to the fast dynamics of the reservoir. We approximate

the integral of Equation 4.1.7 by extending the lower limit to negative infinity. From this

approximation, the effect of the reservoir on the system dynamics is independent of time.

• Condition: weak coupling, large environment, a continuum of reservoir eigenstates,

coarse-grained time evolution

• Assumption: we extend the lower limit of integration in Equation 4.1.7 to an infinite

time in the past.

The approximations above are all together called the Born-Markov approximation, which
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leads to the Markovian quantum master equation [128],

ρ̇(t) = −
ˆ ∞

0
ds trR

(
[V(t), [V(t− s), ρ(t)⊗ $]]

)
, (4.1.10)

where we have substituted s with t− s for the integration variable.

We continue to solve for the time evolution of the system by considering an interaction

Hamiltonian V = ∑α Aα ⊗ Bα in the laboratory frame. Since we are interested in the

time evolution of transitions between system states, we decompose the system interaction

operators Aα in terms of transitions between the system energy eigenstates,

Aα = ∑
ω

Aα,ω = ∑
ω

∑
ε′−ε=ω

|ε〉〈ε|Aα|ε′〉〈ε′|, (4.1.11)

where the second sum is over all transitions for the constant eigenvalue difference ε′ −

ε = ω for each ω of the first sum [131]. From Equation 4.1.11 we can find the relation

A†
α,ω = Aα,−ω. It follows that the interaction Hamiltonian in the interaction frame is

V(t) = ∑
α,ω

e−iωt Aα,ω ⊗ Bα(t) (4.1.12)

and

V(t) = ∑
α,ω

e+iωt Aα,−ω ⊗ Bα(t)

= ∑
α,ω

e+iωt A†
α,ω ⊗ B†

α(t),

(4.1.13)

where Bα(t) are the interaction Hamiltonian operators of the reservoir in the interaction
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frame.

Inserting the interaction Hamiltonian (Eq. 4.1.12) into the master equation (Eq. 4.1.10)

yields

ρ̇(t) = −
ˆ ∞

0
ds ∑

α,β
∑

ω,ω′
ei(ω′−ω)te−iωs trR

(
A†

α,ω Aβ,ω′ρ(t)⊗ Bα(t)†Bβ(t− s)$

− Aβ,ω′ρ(t)A†
α,ω ⊗ Bβ(t− s)$B†

α(t) + h.c.
)

(4.1.14)

Rotating wave approximation If the system eigenstates are close in energy relative to

the interaction strength with the reservoir, then oscillating terms of Equation 4.1.14 do

not contribute to the system dynamics during the time scale of system relaxation.

• Condition: weak coupling relative to system dynamics

• Assumption: Neglect the rapidly oscillating non-secular terms in Equation 4.1.14

We apply the rotating wave approximation to Equation 4.1.14 and integrate the partial

trace over the reservoir state space to find

ρ̇(t) = ∑
α,β

∑
ω

Γα,β(ω)
(

Aβ,ωρ(t)A†
α,ω − A†

α,ω Aβ,ωρ(t)
)
+ h.c., (4.1.15)

where we define one-sided Fourier integrals of the reservoir correlation functions as

Γα,β(ω) =

ˆ ∞

0
ds eiωs〈B†

α(t)Bβ(t− s)〉. (4.1.16)

By collecting real and imaginary terms of Equation 4.1.16 and rearranging indices, we

53



4.2 Quantum measurement theory

rewrite the master equation in the form

ρ̇(t) = −i[HLS, ρ(t)]

+ ∑
α,β

∑
ω

γα,β(ω)
(

Aβ,ωρ(t)A†
α,ω −

1
2
{A†

α,ω Aβ,ω, ρ(t)}
)
,

(4.1.17)

where we define γα,β(ω) = Γα,β + Γ∗β,α and Sα,β(ω) = (Γα,β − Γ∗β,α)/2i, and HLS is the

Lamb-shift Hamiltonian

HLS = ∑
α,β

∑
ω

Sα,β(ω)A†
α,ω Aβ,ω. (4.1.18)

We arrive at the master equation in Lindblad form by diagonalizing the matrix of co-

efficients ∑ω γα,β(ω) and transforming the interaction operators accordingly,

ρ̇(t) = −i[HLS, ρ(t)] + ∑
k

γkD[Lk], (4.1.19)

where Lk are Lindblad jump operators and D[A]ρ = (2AρA† − {A† A, ρ})/2 is the dissi-

pation superoperator.

4.2 Quantum measurement theory

4.2.1 Measurement update

In the previous section, we solved for the dynamics of the system interacting with an envi-

ronment. To explore the dynamics of quantum measurement, we consider the reversible
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dynamics of the system and reservoir

χ(t) = Uχ(0)U†, (4.2.1)

where χ(0) is the initial system-environment state and Ut is the unitary time evolution

operator for the system and environment together. After unitary time evolution, a partial

trace over the environment state space gives the time evolved state of the system, which is

a map for the system state:

ρ(0)→ ρ(t). (4.2.2)

For a given duration of time evolution, we can calculate the reduced density operator of

the system as

ρ(t) = trR
(
χ(t)

)
= ∑

m
〈φm|Uχ(0)U† |φm〉 , (4.2.3)

where χ(0) is the initial state and we have chosen orthonormal bases |ψi〉 and |φk〉 for the

system and environment respectively. Sincewe sumprojections over an orthonormal basis

of the environment (Eq. 4.2.3), the reduced density operator of the system is, in general,

not a pure state [132].
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4.2 Quantum measurement theory

The time evolution operator acts in tensor product space as [133],

U = ∑
ijk`

uijk`|ψi〉〈ψj| ⊗ |φk〉〈φ`|

= ∑
k`

(
∑
ij

uijk`|ψi〉〈ψj|
)

︸ ︷︷ ︸
Ak`

⊗|φk〉〈φ`|

= ∑
k`

Ak` ⊗ |φk〉〈φ`|.

(4.2.4)

We choose an initial state χ(0) = ρ(0)⊗ |φ0〉〈φ0| and use Equation 4.2.4 to express each

summation term contributing to the time evolveddensity operator of the system (Eq. 4.2.3),

〈φm|Uχ(0)U† |φm〉 = 〈φm|U
(
ρ(0)⊗ |φ0〉〈φ0|

)
U† |φm〉

= Am0ρ(0)A†
0m ⊗ 1.

(4.2.5)

Therefore the reduced density operator for the system, Equation 4.2.3, can be evaluated

as

ρ(t) = ∑
m

Amρ(0)A†
m (4.2.6)

where we assume the initial environment state use the notation Am for Am0. In Equa-

tion 4.2.6, the sum represents an average of the system state over all the possibilities of

projective measurement on the environment state. Note that the reduced dynamics of the

system is invariant to the basis environment measurements, since the trace operation is

basis independent.

Quantum measurement dynamics results from conditional evolution of the system. If

we measure the environment state after a duration of time evolution, the measurement

56



4.3 Dispersive measurement of quantum bit

projects the system-environment state into a known basis state of the environment. After

a measurement of the environment state, we infer the environment is projected accord-

ing to the operator |φc〉〈φc| which corresponds to a specific measurement outcome. The

unnormalized system state conditioned on this environment measurement result is pro-

portional to

ρ(t) ∝ trR
(
|φc〉〈φc|χ(t)|φc〉〈φc|

)
= 〈φc|Uχ(0)U† |φc〉

= Acρ(0)A†
c ,

(4.2.7)

wherewe now refer to the operator Ac as ameasurement operator. The conditional density

operator is normalized as,

ρ(t) =
Acρ(0)A†

c

tr
(

A†
c Acρ(0)

) . (4.2.8)

4.3 Dispersive measurement of quantum bit

The dispersive interaction of a qubit and resonator (Section 2.3) correlates qubit popula-

tions with a single quadrature of the resonator field. A Josephson parametric amplifier

(Section 3.3) can perform a projective measurement on this field quadrature, in a pro-

cess of homodyne measurement. As such, homodyne measurement of the resonator field

corresponds to indirect measurement of the qubit. The measurement result, or measure-

ment record, provides information of the qubit populations, while the measurement pro-

cess itself induces measurement backaction dynamics on the qubit state. For dispersive
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4.3 Dispersive measurement of quantum bit

measurement, the dynamics imparted on the state, and the statistics of the measurement

record, are described by the positive operator-valued measure (POVM) [133]

Mr =

(
δt

2πτ

)1/4

exp
[
− δt

4τ
(r11− σz)

2
]

(4.3.1)

where the r is measurement strength is the product of the signal integration duration δt

and the measurement rate 1/2τ = 8χ2n̄/κ. Referring to Equation 2.3.13, the measure-

ment strength is proportional to the magnitude of correlation between the resonator field

quadrature amplitude and the expectation value of qubit populations.

Here, we first consider the statistics of dispersive measurement. The Gaussian form

of the dispersive measurement POVM (Eq. 4.3.1) corresponds to the distribution of ho-

modyne measurement results given a coherent state which probes the resonator. For a

qubit state with an expectation value z = 〈σz〉, the probability density distribution of the

measurement records is

P(r) dr = tr
(

M†
r Mrρ

)
=

√
δt

2πτ

(
1 + z

2
e−

δt
2τ (r−1)2

+
1− z

2
e−

δt
2τ (r+1)2

)
.

(4.3.2)

On short timescale δt� τ, the measurement record mean is equivalent to the expectation

value of the qubit populations. We consider the POVM in the continuous limit and solve

for the probability density

P(r) dr =

√
δt

2πτ
e−

δt
2τ (r−z)2

. (4.3.3)

From Equation 4.3.3 we find measurement results from the homodyne signal at short-
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4.3 Dispersive measurement of quantum bit

times are a Gaussian stochastic variable which has a mean that is the expectation value of

the qubit populations.

We investigate measurement backaction from dispersive measurement in the continu-

ous limit by considering the first-order measurement dynamics in δt [134]. The numerator

of the measurement update (Eq. 4.2.8) is

MrρM†
r =

(
1 + δt log Mr + . . .

)
ρ
(
1 + δt log M†

r + . . .
)

' ρ + ζ,

(4.3.4)

where ζ =
(

log Mr
)
ρ− ρ

(
log Mr

)
. The denominator of the measurement update nor-

malizes the density operator by rescaling all terms. Since normalization does not affect

measurement dynamics at any order in δt, we treat this approximation separately. Up to

first-order in δt, the normalization factor is

(
tr
(

M†
r Mrρ

))−1 ' 1− tr
(
ζ
)
. (4.3.5)

Combining the numerator and denominator, the measurement update on the density op-

erator

dρ = ζ − ρtr
(
ζ
)
. (4.3.6)
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4.3 Dispersive measurement of quantum bit

We rewrite this in terms of coupled first-order nonlinear ordinary differential equations,

ẋ = −yz
r
τ

ẏ = −xz
r
τ

ż = (1− z2)
r
τ

.

(4.3.7)

We recognize thatmeasurement backaction on the qubit populations is independent of the

qubit coherences. This is an artifact of the quantumnon-demolition property of dispersive

measurement; the qubit eigenstates are simultaneous eigenstatewith the eigenstates of the

measurement operator. Furthermore, the relative strength of themeasurement backaction

is reduced as the qubit state migrates towards the eigenstates of the measurement opera-

tor. A central aspect of dispersivemeasurement backaction is that themeasurement record

reinforces the qubit state and vice versa. Since the measurement record is as a Gaussian

stochastic variable with a mean 〈r〉 ∝ z, changes of the qubit state are correlated to the

qubit state itself. Consequently, the long-time dynamics of dispersive measurement be-

have as projective measurement toward the qubit population eigenstates, in a manner of

wavefunction collapse.
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Chapter 5

The Statistical Arrow of Time in

QuantumMeasurement

The problem of time in physics and chemistry is closely related to the
formulation of the second law of thermodynamics. Therefore another possible title of
this lecture could have been: “the macroscopic and microscopic aspects of the second
law of thermodynamics.”

— Ilya Prigogine, Nobel Lecture, December 8th 1977

In the opening statement of his Nobel lecture Time, Structure and Fluctuations, Ilya Pri-

gogine alludes to a thermodynamic arrow of time that arises from reversible microscopic

dynamics [135]. The arrow of time is a macroscopic property characterized by the sta-

tistical likelihood of reversible physical processes. Continuous quantum measurement is

a time reversible physical process which is characteristically statistical in nature, due to

the random outcomes of quantum measurements. In this chapter, we quantify a statis-

tical arrow of time for individual measurement trajectories of a superconducting qubit
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by comparing the likelihood of forward and backward trajectory time evolution. While

measurement dynamics are reversible, trajectory statistics always favor a forward arrow

of time for an ensemble of measurement trajectories, a phenomenon analogous to the sec-

ond law of thermodynamics.

Section 5.1 of this chapter motivates a connection between continuous quantum mea-

surement and stochastic thermodynamics through their shared statistical description.

From the statistical description of the quantum measurement dynamics, we form state-

ments of the arrow of time in the quantum measurement. In Section 5.2, I describe quan-

tummeasurement trajectories in terms of a path integral formalism, supported by a prob-

ability distribution fromwhich experimentally observed trajectories are sampled. Follow-

ing this model, I consider time reversal of the measurement process in terms of trajec-

tory dynamics and statistics. Here, I introduce an arrow of time statistic for individual

quantum trajectories. In Section 5.3, I discuss the role of finite efficiency measurement for

characterizing the arrow of time for quantum measurement trajectories. Following this

discussion into Section 5.4, I explain a method to estimate time reversible trajectories from

an experiment measurement record, collected with finite efficiency. I relate the likelihood

of individual trajectory dynamics to the statistics of trajectory ensembles, showing that

the statistics of the measurement, together with the measurement dynamics, satisfy a de-

tailed fluctuation theorem. Lastly, I discuss the role of initial conditions for the arrow of

time statistic in terms of absolute irreversibility and an integral fluctuation theorem.
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5.1 A statistical arrow of time

5.1 A statistical arrow of time

The entanglement between a quantum system and its environment can be harnessed for

indirectmeasurements, sincemeasurements of the environment alone convey information

and inducemeasurement backaction dynamics on the system state [136]. Because the out-

comes ofmeasurements on quantum systems are inherently probabilistic, the outcomes of

measurements on the environment have a random character and are statistically described

by the quantum state as a model parameter. Since the quantum state informs a predictive

model of environment fluctuations, measurements on the environment can, in turn, serve

as a predictor for the quantum state. In the fashion of Bayesian inference, quantum state

tracking consists of estimating model parameters conditioned on experimentally detected

environment fluctuations. This results in a conditional stochastic evolution of the quan-

tum state, namely, a quantum trajectory [129, 133].

In circuit quantum electrodynamics, the high efficiency sampling of environment fluc-

tuations has enabled tracking of individual quantummeasurement trajectories [137–140].

The statistical properties of these trajectories [141–145], bear a conceptual similarity to

classical stochastic trajectories of particles interacting with a thermal reservoir. For such

classical trajectories, entropy production can be characterized by tracking the evolution of

single particles and comparing the probability density for forward versus time reversed

trajectories [146–150]. Experiments in classical systems [151–161] have verified that these

entropy measures satisfy fundamental fluctuation theorems that relate microscopic dy-

namics to ensemble behavior [162–168]. More broadly, these are related to fluctuation

theorems for distributions of thermodynamics quantities, which have been extended to
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5.2 Time reversal of quantum measurement trajectories

quantum systems [169–175]. There have been several proposals for experimental tests

[176–183], as well as recent experimental results in closed quantum systems [184, 185].

In contrast, open quantum systems present new phenomena associated with measure-

ment backaction [186–195]. We characterize the entropy production of an open quantum

system with individual quantum measurement trajectories [186, 189, 196–198], using in-

formation entropy measures to characterize a statistical arrow of time in quantum mea-

surement. We show how a statistical arrow of time is revealed by path probabilities of

forward versus time reversed quantum trajectories [199–202]. As in the case of classical

trajectories, these probability densities satisfy a fluctuation theorem that is consistent with

the correspondence between microscopic dynamics and ensemble behavior.

5.2 Time reversal of quantum measurement trajectories

5.2.1 Quantum measurement trajectories

Weconsider quantummeasurement trajectories from continuous dispersivemeasurement

of a qubit. From many consecutive measurements in real-time, we form a piecewise con-

tinuous trajectory of the qubit dynamics. An individual measurement trajectory is de-

scribed uniquely by a set of measurement records {rk}k=n−1
k=0 corresponding to a homo-

dyne signal (Section 2.3 and Section 4.3). From each set of measurement records, we re-

construct a trajectory as a time series of density operators {ρk}k=n
k=0 . We use an iterative up-

date scheme to infer the qubit state as informed by each consecutive measurement record.

The dynamics of the trajectory results from the impression each stochastic measurement
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5.2 Time reversal of quantum measurement trajectories

record rk has on our state-of-knowledge ρk. Each measurement step is characterized by a

positive operator-valued measure (POVM) [203, 204],

Mrk =

(
δt

2πτ

)1/4

exp
[
− δt

4τ
(rk1− σz)

2
]

(5.2.1)

where the measurement strength is the product of the signal integration duration δt and

the measurement rate 1/τ. The POVM provides a state update conditioned on the mea-

surement record from the relation,

ρk+1 =
Mrk ρk M†

rk

tr[Mrk ρk M†
rk
]
. (5.2.2)

When applying a resonant Rabi drive on the qubit during the measurement process,

the measurement POVM (Eq. 5.2.1) is modified as,

Mrk,Ω =

(
δt

2πτ

)1/4

exp
[
− i

Ω δt
2

σy −
δt
4τ

(rk1− σz)
2
]

, (5.2.3)

where Ω is the angular frequency of Rabi oscillations and we have chosen the phase of

the coherent drive without loss of generality. When measurement time steps are small

compared to the measurement strength and Rabi frequency (δt � Ω, 1/τ), the POVM of

Eq. 5.2.3 can be separated into two steps: a quantum non-demolition (QND)measurement

step (Eq. 5.2.2) and a qubit state rotation by the unitary operator U = e−iΩσy δt/2. In the
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5.2 Time reversal of quantum measurement trajectories

small time step limit, the state update for measurement with a Rabi drive is,

ρk+1 =
UMrk ρk M†

rk
U†

tr[UMrk ρk M†
rk

U†]
. (5.2.4)

5.2.2 Time reversal of a trajectory

The notion that the quantummeasurement process can be reversed stems from studies of

‘measurement undoing’ [205], where weak measurements can effectively erase informa-

tion from previous measurements. As such, time reversal of the measurement process is

established by reversing dynamics for a single measurement update step, where time re-

versed measurement ‘undoes’ the backaction from forward measurement in a physically

realizable way (Fig. 5.1). This measurement reversal has been observed in a variety of ex-

perimental platforms [137, 206–208] and analyzed in the context of the POVMswe employ

here [209]. For each measurement by POVM Mrk , there is a corresponding measurement

M̃rk = Mr̃k , where r̃k = −rk is the time reversed measurement record which restores the

initial state-of-knowledge, albeit with a statistical weight,

M̃rk Mrk ρk M†
rk

M̃†
rk
=

δt
2πτ

e−
δt
2τ (r

2
k+1)ρk. (5.2.5)

In addition, at each step the unitary evolution of the Rabi drive is reversed (Ω→ −Ω).

To explore the statistical cost of time-reversed dynamics along a quantum trajectory,

withmany time steps, we examine time reversal in themeasurement process by comparing

the likelihood of quantum trajectories that are ordered forward versus backward in time.
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backward:  

X

Z
forward:  

X

Z

Figure 5.1: In a single update step, a measurement record rk of duration δt from a contin-
uous cavity probe induces backaction on the quantum state. Upon time reversal of this
update step, the state responds to backaction of ameasurement result of opposite sign−rk
by returning to the initial state.

Figure 5.2: Schematic of the state andmeasurement labels for forward (Mrk) and backward
(M̃rk) state update procedures.

Given an initial state ρ, the probability density for a single measurement outcome r is,

tr[MrρM†
r ] dr =

√
δt

2πτ

(
1 + z

2
exp

[
− δt

2τ
(r− 1)2

]
+

1− z
2

exp
[
− δt

2τ
(r + 1)2

])
dr

(5.2.6)

where ρ = 1
2(1 + xσx + yσy + zσz) and we write the probability density in terms of the

Bloch sphere coordinates of the qubit density operator. Considering a short measurement

duration relative to the inverse measurement strength (δt� τ), we rewrite Eq. 5.2.6 in the
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continuous limit as

P(r|z) dr '
√

δt
2πτ

exp
[
− δt

2τ
(r2 − 2rz + 1)

]
dr. (5.2.7)

The path probability density for a measurement trajectory is the joint probability den-

sity for each measurement record along the trajectory [210]. We rewrite the measurement

record and the trajectory coordinate as continuous functions of time and express the tra-

jectory path probability density as,

P(r(t))Dr = exp
[
− 1

2τ

ˆ T

0
dt
(

r(t)2 − 2r(t)z(t) + 1
)]
Dr(t), (5.2.8)

and we have taken the product of probability densities for a continuous of set measure-

ment records along the trajectory of duration T. The exponential prefactors of Eq. 5.2.8

are absorbed by Dr, the functional measure.

5.2.3 The arrow of time statistic

We statistically examine time reversal in the measurement process from the probability

density of Eq. 5.2.8, and its associated information entropy. The relative likelihood of

quantum trajectories that are ordered forward versus backward in time provides a statisti-

calmeasure for the arrowof time. The relative likelihood between these physical processes

is given by the ratio of path probability densities for forward-in-time and backward-in-

time trajectories. We apply a time reversing transformation to the probability distribution

of Eq. 5.2.8, P → P̃ which is equivalent to the replacement t → T − t and flipping the
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sign of the measurement records, r(t) → r̃(t) = −r(T − t), such that the time reversed

trajectories adhere to the same equations of motion of their forward-in-time counterparts,

ensuring reversible dynamics [200]. The time reversed probability density is

P̃(r(t))Dr = P(r̃(t))Dr̃

= exp
[
− 1

2τ

ˆ T

0
dt
(

r̃(t)2 − 2r̃(t)z̃(t) + 1
)]
Dr̃

= exp
[
+

1
2τ

ˆ T

0
dt
(

r(t)2 + 2r(t)z(t) + 1
)]
Dr

= P(r(t)) exp
[
− 2

τ

ˆ T

0
dt r(t)z(t)

]
Dr

(5.2.9)

where we have expressed the time reversed probability density in terms of the forward-

in-time probability density, with the replacements

ˆ T

0
dt (r̃(t)2 + 1) =

ˆ T

0
dt (r(t)2 + 1) (5.2.10)

and ˆ T

0
dt r̃(t)z̃(t) = −

ˆ T

0
dt r(t)z(t). (5.2.11)

We calculate the arrow of time statistic Q as the logarithm ratio of the forward and

backward probability densities,

Q = ln
P(r(t)|z0)

P̃(r̃(t)|z̃(t))
=

2
τ

ˆ T

0
dt r(t)z(t). (5.2.12)
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0 0.5 1 1.5 2

(a)

(b)

Figure 5.3: (a) The time evolution of a trajectory coordinate z(t) (red) and its measure-
ment record r(t) (blue). (b) The backwards-in-time trajectory of (a) has a coordinate z̃(t)
that follows the same path as the forward-in-time trajectory coordinate z(t), but with re-
versed time evolution. The backward-in-time trajectory has a measurement record r̃(t)
with an opposite sign and is reversed ordered in comparison to the forward trajectory
measurement record.

This quantifies the arrow of time “length” in terms of the measurement record and tra-

jectory coordinate. To gain a physical intuition for the arrow of time statistic Q, we con-

sider the measurement record in the limit of continuous time as a stochastic process r(t) ∝

z(t)+
√

τdξ(t), where dξ is a zeromeanGaussian random variable. It is clear that positive

contributions to the forward arrow of time occur when the record and state are correlated,

since the integrand of Eq. 5.2.12 contains the product of the measurement record and co-

ordinate. The path probability density of Eq. 5.2.8 describes the statistics and dynamics of

QND measurement apart from Rabi driven qubit dynamics. In the case of measurement

along with Rabi drive, Eq. 5.2.12 describes the arrow of time statistic in the weak driving

limit Ωδt� 1.
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0 0.5 1 1.5 2

(a)

(b)

Figure 5.4: (a) The arrow of time statistic Q has a nonzero and positive value when the
measurement record is correlated to the trajectory dynamics. This correlation is most pro-
nounced by the dynamics of measurement projection. (b) A trajectory that does not dis-
play strong correlation between its coordinate and measurement record is similarly likely
to evolve forwards or backwards in time.

5.2.4 A detailed fluctuation theorem

The time reversed probability density (Eq. 5.2.9) in terms of the arrow of time statistic

(Eq. 5.2.12) defines the relation,

P(r(t)|z0)

P̃(r(t)|z0)
= eQ, (5.2.13)

which states the relative probability of a forward-in-time trajectory and its backward-in-

time counterpart is exponential in the arrow of time statistic. Since the arrow of time statis-

tic is determined by the measurement record and initial state of a trajectory (Eq. 5.2.12),

we express Eq. 5.2.13 in terms of a fluctuation theorem

P(+Q)
P(−Q) = eQ. (5.2.14)
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5.3 Reversibility with inefficient measurement

This quantifies the relative probability of obtaining a forward pointing arrow of time with

length Q to the probability of an arrow of the same length but backwards in time. The

trajectories which produce a value of Q near zero have dynamics that appear similarly

likely as either forward-in-time or backward-in-time trajectories. If a trajectory is char-

acterized with a large value of Q, the trajectory dynamics is exponentially more likely

to be forward-in-time than backward-in-time. The fluctuation theorem expresses a rela-

tionship between the trajectory dynamics and the likelihood of the trajectory itself, which

have interdependence that is ultimately captured by the arrow of time statistic definition

(Eq. 5.2.12). When an ensemble of trajectories adheres to the fluctuation theorem of Equa-

tion 5.2.14, we establish a consistency between the microscopic dynamics of individual

trajectories and the macroscopic statistics of trajectory ensembles.

5.3 Reversibility with inefficient measurement

5.3.1 Multiple measurement channels

In experiment, measurement occurs with finite quantum efficiency, which is evidenced

by a discrepancy between the observed ensemble dephasing rate and the qubit dephasing

rate due to the information acquired about qubit populations. Measurement with finite

efficiency can be modeled with multiple measurement channels, where our experimental

measurement record is but one of these channels [203]. When the qubit is measured by

multiple channels, the measurement dynamics is described by a POVM characterizing the

simultaneous measurement from every channel. An observer who has access to only one
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channel then describes the qubit dynamics by averaging over all unknown measurement

outcomes. Consequently, extra dephasing of the qubit state results from averaging over

the unknown measurement outcomes, which leads to measurement dynamics that is not

time reversible.

We construct a POVM for simultaneous measurement from multiple channels in

two separate cases. In both cases, there is a measurement channel that corresponds to

our experiment measurement record r, which is correlated to the qubit populations in the

σz basis, denoted as z-measurement. In each case, there is another measurement channel

for experimentally unmonitored measurements. In the first case, the experimentally un-

monitored channel is a z-measurementwith themeasurement record ϑz. This corresponds

to homodyne measurement of the cavity probe in the same quadrature as the experiment,

conveying further information about the qubit populations. In the second case, the exper-

imentally unmonitored measurement channel is a homodyne measurement of the cavity

probe in a quadrature orthogonal to the experimentally monitored measurement chan-

nel, which we refer to as φ-measurement. For φ-measurement, the measurement record

ϑφ contains information about phase shifts on the qubit imparted by an ac Stark shift due

to photon fluctuations of the cavity probe [126, 211]. The measurement dynamics from

z- and φ-measurement is depicted on the Bloch sphere in Figure 5.5. These two measure-

ment schemes result in different backaction dynamics on the qubit state, which in turn,

results in markedly different trajectory ensemble statistics.

Experimentally unmonitored z-measurement For the first case, bothmeasurement chan-

nels are z-measurements and the measurement channels are described independently by
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X

Z

Y

Figure 5.5: Homodynemeasurements of the field quadrature correlated to the qubit popu-
lations (z-measurement) results in measurement projection toward the poles of the Bloch
sphere. In contrast, homodyne measurements in the opposite field quadrature are cor-
related to the qubit phase and results in backaction dynamics without correlation to the
qubit populations.

the POVMs Mϑz and Mr which are of the same form as Eq. 5.2.1. The POVM for the simul-

taneous measurement of both of these channels is constructed from the product of their

commuting POVMmeasurements,

Mr,ϑz = Mϑz Mr

=

(
δt
2π

)1/4(2γz

τ

)1/4

×

exp
[
− δt

4τ
(r− σz)

2 − γzδt
2

(ϑz − σz)
2
]

,

(5.3.1)

where 1/τ and 2γz are the measurement rates for the experimentally monitored and un-

monitored z-measurements. When an observer is informed bymeasurement records from

both channels, the qubit state evolution follows the usual update equations for the density

operator,

ρk+1 =
Mr,ϑz ρk M†

r,ϑz

tr[Mr,ϑz ρk M†
r,ϑz

]
. (5.3.2)
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Upon averaging over allmeasurement records, the ensemble dephasing rate is Γ = 1/2τ +

γz, where 1/2τ and γz are the measurement dephasing rates for each channel indepen-

dently. Since the ensemble dephasing dynamics results from ignoring all measurement

records, all observers agree on the ensemble dephasing rate.

With a description of the measurement process frommultiple measurement channels,

we can examine how an observer for each measurement channel accounts for the missing

information of the othermeasurement channels. In the presence ofmultiplemeasurement

channels, the POVM for a single measurement channel alone does not correctly describe

the ensemble dynamics or statistics. Hence, any observer must update their qubit state

of knowledge using the POVM that contains all measurement channels, such as Eq. 5.3.1,

and then average over all possible measurement records from the other observers.

For example, for an observer who only knows the experimentally monitored measure-

ment record r, the updated state is

ρ′a ∝
ˆ

dϑzd Mr,ϑz ρaM†
r,ϑz

. (5.3.3)

In terms of state update equations, this expression is equivalent to performing an update

with the experiment z-measurement POVM (Eq. 5.2.1) and then dephasing the qubit state

by rescaling the magnitude of the qubit coherence by a factor e−(Γ−1/2τ)δt = e−γzδt.

Experimentally unmonitored φ-measurement In the second case, we consider an ex-

perimentally monitored z-measurement channel and an experimentally unmonitored φ-

measurement channel. The φ-measurements induce qubit state backaction described by
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the POVM,

Mϑφ
=

(
γφδt

π

)1/4

exp
[
−

γφδt
2

(ϑ2
φ + 2iϑφσz)

]
, (5.3.4)

which alters the qubit state by a unitary rotation of angle ϑφγφδt in the σz basis. The

φ-measurement record ϑφ has a zero-mean Gaussian distribution according to the dis-

tribution of cavity photon number fluctuations. Upon integrating over φ-measurement

outcomes, we find this POVM contributes an ensemble dephasing rate γφ due to photon

number fluctuations of the cavity probe. The POVM for the simultaneous measurement

of both of these channels is,

Mr,ϑφ
= Mr Mϑφ

=

(
δt
2π

)1/2(2γφ

τ

)1/4

×

exp
[
− δt

4τ
(r− σz)

2 −
γφδt

2
(ϑ2

φ + 2iϑφσz)

]
,

(5.3.5)

where 1/τ and 2γφ are the measurement rates for the experimentally monitored

z-measurement and the experimentally unmonitored φ-measurements respectively. When

an observer is informed by measurement records from both channels, state update occurs

in similar form to Equation 5.3.2. As stated previously, if an observer only knows the ex-

perimentally monitored measurement record, the observer must average over unknown

measurements. In this case, averaging at each time step is equivalent to rescaling off-

diagonal elements according to the ensemble dephasing rate Γ = 1/2τ + γφ.
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5.3.2 The path probability for multiple observers

Weexamine the arrowof time statistic for each case ofmultiplemeasurement channels and

show that the arrow of time depends only on z-measurement. First, we consider the path

probability density for the case of two z-measurement channels and calculate the arrow

of time statistic following the procedure in Section 5.2.2. Following this discussion, we

consider the case of z- and φ-measurement channels, to find that φ-measurement results

do not contribute to the arrow of time statistic directly.

Path probability with additional z-measurements Given the qubit state ρ, the proba-

bility density of the measurement records for two z-measurement channnels is,

tr[Mr,ϑz ρM†
r,ϑz

] drdϑz =
δt
π

√
γz

2τ

(
· · ·

1 + z
2

exp
[
− δt

2τ
(r− 1)2 − γzδt(ϑz − 1)2

]
+

1− z
2

exp
[
− δt

2τ
(r + 1)2 − γzδt(ϑz + 1)2

])
drdϑz,

(5.3.6)

where ρ = 1
2(1 + xσx + yσy + zσz). We rewrite Eq. 5.3.6 in the continuous limit (δt �

τ, 1/2γz) and only consider exponentiated terms since we are interested in path probabil-

ity ratios,

P(r, ϑz) drdϑz ∝ exp
[
− δt

2τ
(r2 − 2rz + 1)− γzδt (ϑ2

z − 2ϑzz + 1)
]

drdϑz. (5.3.7)
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We rewrite the measurement record and the trajectory coordinate as continuous functions

of time and express the trajectory path probability density such:

P(r(t), ϑz(t))DrDϑz =

exp
{ ˆ T

0
dt
[
− r(t)2 + 1

2τ
− γz(ϑz(t)2 + 1)

+

(
r(t)

τ
+ 2γzϑz(t)

)
z(t)

]}
DrDϑz,

(5.3.8)

where exponential prefactors are absorbed by the functional measures Dr and Dϑz. We

find the time reversed path probability density by the replacement t→ T− t and flipping

the sign of the measurement records,

r(t)→ −r(T − t), ϑz(t)→ −ϑz(T − t). (5.3.9)

The logarithm ratio of the forward and backward probability densities gives an arrow of

time statistic,

Q = ln
P(r(t), ϑz(t))
P̃(r(t), ϑz(t))

= 2
ˆ T

0
dt
(

r(t)
τ

z(t) + 2γzϑz(t)z(t)
)

.

(5.3.10)

The arrow of time statistic depends on both z-measurement channels additively; the first

term of Eq. 5.3.10 is the correlation between the experimentallymonitored z-measurement

record r(t) and the coordinate z(t) and the second term is the correlation between the

unmonitored z-measurement record ϑz(t) and the coordinate z(t).
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5.3 Reversibility with inefficient measurement

The arrow of time statistic is evaluated with the trajectory coordinate z(t) according

to an observer of allmeasurement channels. An observer with only partial information of

all measurement records cannot calculate the arrow of time statistic for a single trajectory.

Since this observer estimates a trajectory coordinate by averaging over unknownmeasure-

ment outcomes, this does not match z(t) in general and results in irreversible trajectory

dynamics.

Path probability with additional φ-measurements We now examine the arrow of time

statistic in the case of simultaneous z- and φ- measurement. Considering the POVM of

Equation 5.3.5, the probability density in the measurement records r and ϑφ is,

tr[Mr,ϑφ
ρM†

r,ϑφ
] drdϑφ =

δt
π

√
γφ

2τ
exp

(
− γφδt ϑ2

φ

)
×(

1 + z
2

exp
[
− δt

2τ
(r− 1)2

]
+

1− z
2

exp
[
− δt

2τ
(r + 1)2

])
drdϑφ.

(5.3.11)

The path probability density in themeasurement record ϑφ is independent of the trajectory

coordinate. The likelihood of a φ-measurement outcome manifestly does not depend on

the trajectory due to the time reversal invariance of the cavity probe vacuum fluctuations.

We again follow the procedure of Section 5.2.3 to determine the arrow of time statistic

which for simultaneous z- and φ- measurement is

Q = ln
P(r(t), ϑφ(t))
P̃(r(t), ϑφ(t))

=
2
τ

ˆ T

0
dt r(t)z(t).

(5.3.12)
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The arrow of time statistic does not depend on φ-measurement records since both the

statistics and the dynamics of φ-measurement are time reversal invariant. However, the ar-

row of time statistic can be influenced by φ-measurement indirectly, as the φ-measurement

backaction dynamics enter into Equation 5.3.12 through the trajectory coordinate z(t).

While Equation 5.3.12 is equivalent to the arrow of time statistic for a single

z-measurement channel (Eq. 5.2.12), the rate of change of the arrow of time statistic is

proportional to measurement rate for z-measurements and not the ensemble dephasing

rate.

5.4 Measurement trajectories of a transmon qubit

5.4.1 Experiment setup

To experimentally investigate quantum trajectories, we measure a transmon qubit disper-

sively coupled to a single electromagnetic mode of a three dimensional waveguide cavity.

The qubit and cavity mode resonator, of frequencies ωq and ωc respectively, have a disper-

sive Jaynes-Cummings interaction given by the interaction Hamiltonian Hint = −χa†aσz

where χ is the dispersive coupling rate, a†a is the number operator for the cavity mode,

and σz is the Pauli operator that commutes with the qubit Hamiltonian. This interaction

Hamiltonian describes a qubit-state-dependent cavity resonance, for which the cavity res-

onance shifts by 2|χ| whether the qubit occupies its ground or excited state. Thus, the

cavity mode provides pointer states for the qubit populations.

Qubit measurement occurs when a microwave tone probes the cavity resonance and

80



5.4 Measurement trajectories of a transmon qubit

acquires a qubit-state-dependent phase shift. Since the shift of the cavity resonance 2|χ|

is small compared to the cavity linewidth κ, the measurement tone has a relatively small

qubit-state-dependent phase shift. By virtue of this qubit–cavity interaction, the qubit

state is correlated to a single field quadrature of the microwave probe. The field quadra-

ture is subsequently amplified by a near-quantum-limited Josephson parametric amplifier

[212, 213] operating in phase sensitive mode.

Next, the amplified quadrature is downconverted to DC and digitized into time steps

to obtain a set of measurement records, each corresponding to a duration δt. From these

measurement records, we reconstruct trajectories iteratively by updating the qubit state

using the Equation 5.2.1. We apply a Rabi drive in addition to measurement; the qubit

evolution includes a dynamics due to the Hamiltonian H/h̄ = Ωσy/2, which is in a rotat-

ing frame of the qubit transition.

ωq/2π 4.01 GHz
ωc/2π 6.8316 GHz

χ/2π −0.6 MHz
κ/2π 9.0 MHz

δt 16 ns
T∗2 15 µs

1/τ 1.97 µs−1

Ω/2π 2.16 MHz
η 0.4

Table 5.1: The quantum trajectory experiment parameters for dispersive measurement of
a transmon qubit.
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5.4.2 Modeling finite efficiency measurements

The dispersive measurement process occurs with a quantum efficiency η from the com-

bined effects of collection efficiency, added noise from the amplification chain, and addi-

tional environmental dephasing characterized by T∗2 Ramsey measurements. The quan-

tum efficiency is defined by the ratio of the expected dephasing rate from measurement

to the total dephasing rate: η = (1/2τ)/Γ, where Γ is the ensemble dephasing during the

measurement.

As mentioned in Section 5.3.1, dephasing due to finite efficiency breaks the time re-

versibility of the measurement dynamics. To restore reversibility, we estimate the quan-

tum trajectories that could be obtained by an observer with access to both experimentally

monitored and unmonitoredmeasurement channels. These trajectories serve as themodel

that governs the probability density for forward and reversed measurement sequences.

The finite quantumefficiency in our experiment arises predominantly fromattenuation

of the cavity probe between the cavity and Josephson parametric amplifier. This attenua-

tion can be modeled as a beam splitter (Fig. 5.6a) where the cavity probe is split between

two observers whom denote “Alice,” who monitors the experiment z-measurement chan-

nel, and “Bob,” who monitors an experimentally unmonitored measurement channel. A

third observer, “Charlie” has access to both Alice and Bob’s measurement records and can

therefore track time reversible trajectories.

For every experimentally sampled quantum trajectory, we perform a statistical resam-

pling method to create multiple trajectories, each of which is an estimate for a single tra-

jectory observed by Charlie. This ensemble of possible trajectories for Charlie corresponds
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5.4 Measurement trajectories of a transmon qubit

to an unraveling of the Lindblad master equation that describes Alice’s quantum trajec-

tory. This unraveling, however, depends on which type of measurements Bob makes on

his experimentally unmonitored homodyne measurement channel. While Alice uses a

parametric amplifier to perform the z-measurement corresponding to our experimentally

monitored measurement record, Bob’s homodyne measurements are considered in both

extremal cases: Bob can perform either z-measurement or φ-measurement as discussed in

Section 5.3.1.

We model the beam splitter in a time segmented fashion. In this approach, a measure-

ment channel is probabilistically selected to perform ameasurement for a single time step.

The inefficient measurement of this experiment is equivalent to Alice doing in qubit mea-

surement for only a fraction of all time, but with perfectly efficient measurements and a

measurement strength 2Γ set by the ensemble dephasing rate Γ = 1/ητ, where 1/τ is the

strength of Alice’s measurement channel alone. Alice makes perfectly efficient measure-

ments for a fraction η of her measurement records, and records noise upon the remaining

1− η of measurement records. Likewise, Bob performs efficient measurements for a frac-

tion of time steps 1− η, at each time step when Alice records noise. A possible trajectory

for Charlie is constructed by updating the state with Alice and Bob’s efficient measure-

ments. This approach is operationally equivalent to the model of multiple measurement

channels presented Section 5.3 and this method is well suited to the discrete state update

steps of the experimental data that we study.

This method enables us to construct an ensemble of possible trajectories for Charlie.

For each of Alice’s records, a random fraction η of the records are sampled as actual mea-

83



5.4 Measurement trajectories of a transmon qubit

surements and contribute to an update of the qubit state with Equation 5.2.1 (using the

measurement strength 1/τ → 1/ητ = 2Γ). For Bob’s measurement steps, we create hypo-

thetical measurements in either situation of z-measurements (Eq. 5.2.1) or φ-measurement

(Eq. 5.3.4).

Since Bob’s z-measurements are characterized by the POVM of Equation 5.2.1 we sam-

ple Bob’s z-measurement records with the stochastic process ϑz(t) = z(t) +
√

ητ/δtξ(t),

where ϑz(t) is Bob’smeasurement record for z-measurements, z(t) is the trajectory coordi-

nate according toCharlie, and dξ is a zero-meanGaussian of unit variance. Likewise, Bob’s

φ-measurements are characterized by the POVM of Equation 5.3.4 and we sample the φ-

measurement records according to the stochastic process ϑφ(t) =
√

ητ/δtξ(t), where

ϑφ(t) is Bob’s measurement record for φ-measurements. From a single sequence of ex-

perimentally obtained measurement records we create an ensemble of unraveled trajecto-

ries which has an average evolution consistent with the single finite efficiency experiment

trajectory. In Figure 5.7, several unraveled quantum trajectories are shown for the two

limiting cases of Bob’s z- and φ- measurements.

5.4.3 The arrow of time of trajectory ensembles

We examine the arrow of time for an ensemble of experimentally sampled quantum tra-

jectories. Figure 5.8a displays distributions of the arrow of time statistic, with each distri-

bution evaluated from 2.8× 105 trajectories at different evolution times. Each trajectory

duration is associated with two different distributions, corresponding to the cases of z- or

φ- measurement for Bob’s measurement, the experimentally unmonitored measurement
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Figure 5.6: (a) Finite quantum efficiency can be modeled as a beam splitter, where the
cavity probe is split between two observers, Alice and Bob. (b) Wemodel the beamsplitter
as a time segmented splitter, which directs the signal to Alice or Bob at each time step
with probabilities η and 1− η respectively. The measurement record of a third observer,
Charlie, who has access to bothAlice and Bob’s records can be constructed by taking either
Alice’s record or Bob’s record at each time step. We construct an ensemble of possible pure
state trajectories for Charlie, by sampling many possible measurement records for Bob’s
measurement channel.
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Figure 5.7: (a) An ensemble of estimated trajectories for Charlie’s trajectory, when Bob
has performed z-measurements. An average of these trajectories over Bob’s measurement
(black solid line) matches the finite quantum efficiency trajectory based only on Alice’s
record (dashed line). (b) If Bob instead performs φ-measurements, the resulting backac-
tion on the qubit causes state evolution outside the X–Z plane.
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Figure 5.8: The distributions P(Q) for different propagation times. The solid curves rep-
resents Alice’s arrow of time when Bob performs z-measurements and the dashed curve
represents the case when Bob performs φ-measurements, constraining a range of possible
values for Alice’s arrow of time.

channel. In both cases, the distributions represent the contribution to the arrow of time

statistic due to Alice’s measurements. The arrow of time statistic is calculated from an

estimate of Charlie’s trajectory, according to either Equation 5.3.10 or Equation 5.3.12.

Here we see the role of measurement backaction in the choice of Bob’s measurement,

where Bob’s z-measurement leads to a greater occurrence of both forward-likely and

backward-likely trajectories as indicated by the broad Q distribution compared to the Q

distribution for φ-measurements. When Bob performs z-measurements, trajectories take

on extremal values of z at short times due to the backaction of Alice and Bob’s collective

z-measurements. In turn, the arrow of time statistic has a greater magnitude since there

is a relatively stronger correlation and anti-correlation of Alice’s measurement record.

5.4.4 A detailed fluctuation theorem

Notably, negative values of the arrow of time statisticQ occur for Alice’s arrow of time for

both Bob’s z- and φ-measurements, corresponding to trajectories where the time reverse
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Figure 5.9: The detailed fluctuation relation. The distributions of Q at time t = 0.32 µs in
Figure 5.8 are used to calculate the quantity ln(P(Q)/P(−Q)). The detailed fluctuation
relation calculation agrees well with the theory prediction (black line) for both cases of
Bob’s measurement. The shaded region indicates the statistical uncertainty in quantity
ln(P(Q)/P(−Q)).

process is more likely. This phenomenon of negative entropy production is well known

in microscopic stochastic systems and is typically characterized by a fluctuation theorem

[147–150, 163–167, 214]. In Figure 5.9 we show that the data are in agreement with a de-

tailed fluctuation theorem (Eq. 5.2.14). For small values of the arrow of time statisticQ, the

agreement with the detailed fluctuation theorem indicates that the experimentally sam-

pled relative occurrence ofQ, as given by the left hand side of Equation 5.2.14, is consistent

with the definition of Q on the right hand side. The occurrence of trajectories in an en-

semble is prescribed by the path probability density for each trajectory, which implies the

relative occurrence of forward-in-time and backward-in-time trajectories coincides with

arrow of time statistic as defined. However, for larger values of Q, the fluctuation theo-

rem is clearly nonlinear, a feature that is related to the presence of absolute irreversibility.
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5.4.5 An integral fluctuation theorem and absolute irreversibility

To investigate the role of absolute irreversibility, we focus on measurement without Rabi

drive (Ω = 0). In this case, the measurement operators commute with the qubit Hamilto-

nian resulting in a quantum non-demolition measurement. We consider the case where

the qubit is prepared such that 〈σx〉 . 1 and measurements project the system toward the

stationary points 〈σz〉 → ±1. Figure 5.10 displays the distributions for the arrow of time

statistic for several evolution times. Note that Bob’s measurement does not affect Alice’s

arrow of time in this case.

For the simple dynamics of this semi-classical measurement, the probability density

of Q is found analytically by solving the measurement update equation of motion and

performing a change of variables in the measurement record probability density [200],

P(Q) =

√
T

2πτ

eQ

eQ − 1
exp

{
− T

2τ
− τ

2T
[cosh−1(eQ/2)]2

}
. (5.4.1)

Histograms of Q from experiment are plotted for a selection of final times T with their

corresponding theoretical probability density in dashed lines.

Clearly, the relative probabilities for forward andbackwards arrows of time in thismea-

surement case do not satisfy the detailed fluctuation theorem (Eq. 5.2.14). This is because

the detailed fluctuation relation is only satisfied for the total statistical entropy change

during a process [148]. In the presented case, the arrow of time statistic does not capture

the contributing influence of the initial state of the trajectory, hence quantum measure-

ment is, in general, a nonequilibrium, irreversible process. Here, the initial state imposes a
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Figure 5.10: The distribution of the arrow of time statistic for several measurement du-
rations. At all times the distribution is biased to positive values of Q due the strong cor-
relation between the measurement record and the qubit state during the measurement
process.

lower bound on the possible values ofQ [200]. This sensitivity to initial conditions results

from the ‘un’-likelihood of a particular initial state, quantified by an absolute irreversibil-

ity [215–218]. As presented in Figure 5.10b, the absolute irreversibility is quantified by the

integral fluctuation theorem,

〈e−Q〉 = 1 (5.4.2)

which gives a deviation from unity resulting from the ensemble of trajectories containing

a surplus of state updates that have a positive statistical arrow of time. This is due to the

favoring of correlations between the qubit state and measure record from the measure-

ment projection process. This contribution to the entropy is physically analogous to the

entropy increase associated with irreversible expansion of gas. The semi-classical mea-

surement case discussed here clearly illustrates absolute irreversibility due to initial con-

ditions since the initial state is far from the fixed points of the measurement dynamics.
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0.80.0 0.4 1.2

Figure 5.11: Calculation of the integral fluctuation theorem reveals absolute irreversibil-
ity of the measurement process due to initial conditions. Measurement projection favors
dynamics with strong correlation between the measurement records and the qubit state,
thus producing trajectories with a greater forward-in-time likelihood.

In summary, the dynamics of continuous quantummeasurement exhibits a statistically

defined arrow of time. Since continuous quantum measurement leads to a probabilistic

dynamics of the quantum state and the measurement dynamics is time reversible, we can

consider probabilities associated with both forward and reversed dynamics. We infer a

statistical arrow of time from these probabilities, defined from the information entropy

associated to the measurement process. The irreversible dynamics of measurement de-

phasing, an unavoidable feature in experimental quantummeasurement, is addressed by

a statistical sampling method to reconstruct the most-likely time reversible measurement

dynamics. The experimental data show a statistical arrow of time emerges in quantum

measurement consequent of the correlation between a qubit state and measurement out-

comes. Ensembles of the trajectories are used to determined the likelihood for a certain

arrow of time “length.” The arrow of time likelihood follows a fluctuation relation, which

confirms we have accurately defined the arrow of time statistic for dispersive quantum
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measurement. Furthermore, we have identified an entropy contribution due to the dy-

namics of quantum measurement projection. This “absolute irreversibility” is associated

to the process of wavefunction collapse, which makes an indisputable contribution to a

forward arrow of time.
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Chapter 6

Quantum Bath Engineering with a

Photonic Crystal

This chapter summarizes a quantum bath engineering experiment for state preparation of

a superconducting qubit using a microwave photonic crystal environment. As discussed

in Chapter 1, quantum bath engineering is a method to leverage environment degrees of

freedom as a resource for quantum control. In Section 6.1 of this chapter, I motivate an

operational approach to quantum bath engineering by addressing how the environment

density of states influences qubit dissipation. I present amicrowave photonic crystal in the

context of an environment for a quantum circuit in Section 6.2. In Section 6.3, I describe an

experimental setup of a transmon circuit interacting with a photonic crystal environment.

The photonic crystal density of state is characterized from unitary and dissipative dynam-

ics of the transmon qubit. I then present a theoretical overview of Lindblad dynamics for a

driven and dissipative qubit in Section 6.4. In Section 6.4.2, I present experimental results
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of quantum state stabilization of qubit superposition states.

6.1 Bath engineering for quantum control

6.1.1 Engineering Lindblad dynamics

The Lindblad equation describes the dissipative dynamics of a quantum system (condi-

tions and assumptions are discussed in Chapter 4). In the interaction frame, the reduced

density matrix of the quantum system evolves accordingly to the master equation,

ρ̇ = Lρ = ∑
k

γk

(
L†

kρLk −
1
2
{L†

k Lk, ρ}
)

(6.1.1)

where the jump operators Lk account for dissipative transitions of the system state due

to interactions with the environment and γk are the rates of these jump transitions. The

Lindblad dynamics of Eq. 6.1.1 is an effective description of the quantum system which is

obtained by averaging over environment degrees of freedom.

The jump operators result from specific interactions between the system and the quan-

tumdegrees of freedom of the environment. The dissipation rate for each jump operator is

determined by correlations of environment degrees of freedom, given by the environment

spectral density of states, and calculated by expectation values of system-environment in-

teraction operators averaged over the environment evolution. The rate of dissipation γk

for a jump transition Lk is proportional to the environment spectral density of states at the

transition energy of the system.
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A typical decay process described by the Lindblad master equation is the energy re-

laxation of a qubit due to spontaneous emission. By considering the joint dynamics of the

system and its environment in the rotating frame of the qubit transition (see Section 4.1),

the qubit decays to its ground state according to the master equation,

ρ̇ = γD[σ]ρ, (6.1.2)

where γ is the rate of spontaneous emission, σ = |g〉〈e| is the lowering operator in the qubit

eigenbasis, and D[L]ρ = (2LρL† − {L†L, ρ})/2 is the dissipation operator. In Fig. 6.1a,

the time evolution of this decay process is depicted on the Bloch sphere as all qubit states

evolve toward the ground state.

While qubit decay is generally undesirable, the inevitable decay of a qubit to its ground

state is exceptionally useful for preparation of high fidelity qubit states. In principle, a

qubit can decay to an arbitrary state on the Bloch sphere (Fig. 6.1b) by adapting its inter-

action with its environment and the environment spectral density of states.

The process of spontaneous emission can be drastically altered by applying a strong

dipole-resonant coherent drive. A single electromagnetic mode supporting a coherent

drive enhances the effective coupling between qubit eigenstates, and we refer to the qubit

as dressed by the electromagnetic mode. The qubit dynamics are described by an effective

Hamiltonian with dressed qubit eigenstates, provided the qubit is driven strongly g
√

n̄ �

γ, where 2g is the angular frequency of vacuum Rabi oscillations between the qubit and

electromagnetic mode and n̄ is the average photon occupation of the coherent drive.
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(a) (b)

Figure 6.1: (a) The ubiquitous situation of a qubit decaying to its ground state via sponta-
neous emission. (b) In principle, the dissipation of a qubit can be engineered to decay to
a new effective ground state on the Bloch sphere.

Although the coherent drive has introduced a new energy scale g
√

n̄ to the system

dynamics, we will assume the environment density of states is independent to this en-

ergy scale. The time evolution of the dressed qubit, as derived from the joint system-

environment dynamics, is given by reduced density matrix master equation,

ρ̇ =
γ

4
D[σ̃z]ρ +

γ

4
D[σ̃]ρ +

γ

4
D[σ̃†]ρ, (6.1.3)

where the operator σ̃z commutes with the dressed qubit Hamiltonian. As illustrated in

Fig. 6.2a, the jump operator σ̃z dephases the dressed qubit, and the jump operators σ̃ =

|+x〉〈−x| and σ̃† = |−x〉〈+x| correspond to transitions between the dressed qubit eigen-

states. The latter two dissipation terms (σ̃ and σ̃†) describe equal and opposite incoherent

dynamics, which results in a maximally mixed qubit steady state.

Since we have assumed the environment correlations are frequency independent, all

the dissipation processes of Eq. 6.1.3 have matching dissipation rates, which is propor-

tional to γ, the spontaneous emission rate. The separate modification of each dissipation

rate in Eq. 6.1.3 can result in a qubit steady state with nonzero coherence. Similar to en-
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ergy relaxation of a bare qubit, the driven qubit can decay to a pure state by suppressing

one of the jump transitions between the dressed qubit eigenstates.

The essence of quantum bath engineering is to selectively control system dynamics

by the modification of the environment density of states. In terms of Fermi’s Golden Rule

[219], the dissipation rates are proportional to the spectral density of states at the frequency

of the jump operator transition,

γ ∝ ρDOS(ω)|〈 f | H |i〉|2, (6.1.4)

where ρDOS(ω) is the local density of states of the environment at the jump transition

frequency ω, |i〉 and | f 〉 are respectively the initial and final states of the system and en-

vironment, and H is the interaction Hamiltonian of the joint system and environment.

When the environment density of states is frequency dependent, the dissipation rate for

each jump transition can be treated independently. The independent modification of each

dissipation rate is a resource for quantum state preparation.
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(a) (b)

Figure 6.2: In the rotating frame of bare qubit, the long-time dynamics of the jump transi-
tions result in a steady state (yellow point). Qubit dynamics also include Rabi oscillations
and dephasing about the x-axis. (a) When the environment correlations are frequency in-
dependent, the steady state is maximally mixed qubit steady state. (b) When environment
correlations favor a jump transition disproportionately, the qubit steady state has nonzero
coherence.
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6.2 A photonic crystal to shape the density of states

The preparation of a pure qubit superposition state requires dissipation rates to be incom-

mensurate when there are competing dissipation processes. This implies that the envi-

ronment spectral density of states must strongly vary on an energy scale corresponding

to the driven qubit dynamics. The electromagnetic modes that form the bands and gaps

of a photonic crystal are a resource for energy selective dissipation, since the decay of an

emitter into a photonic crystal is strongly influenced by the presence of the photonic band

gap [220, 221].

In an optical context, a photonic crystal is a medium with a spatially modulated in-

dex of refraction. When the modulation length scale is comparable to the wavelength of

the light, the medium will act as a mirror for certain wavelengths of light, which corre-

sponds to the opening of a photonic band gap in the dispersion relation of the medium

[222]. Analogously, a spatially periodic impedance along a one-dimensional microwave

transmission line forms a photonic crystal (Fig. 6.3a).
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6.2 A photonic crystal to shape the density of states

(a)

(b)

Figure 6.3: (a) A spatially periodic impedance along a one-dimensional microwave trans-
mission line forms a photonic crystal. Here, each transmission line section has a physical
length ` and a characteristic impedance (ZHI or ZLO). (b) The photonic crystal filter was
hand fabricated by squashing sections of a coaxial transmission line to create a spatially
periodic capacitive loading of an otherwise standard 50-Ω coaxial cable.
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Figure 6.4: The scattering parameters of the photonic crystal filter were measured from
a two-port 50-Ω calibrated vector network analyzer. We compare the measured reflec-
tion magnitude |S11| and transmission magnitude |S21| to those calculated from cascaded
ABCD transfer matrices of the transmission line sections which consitute the photonic
crystal.
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6.2 A photonic crystal to shape the density of states

We fabricate a photonic crystal froma coaxial transmission line by 25discrete impedance

steps (ZLO = 30 Ω, ZHI = 50 Ω), resulting in the opening of a band gap (Fig. 6.3) [223].

The photonic crystal was hand fabricated (Fig. 6.3) from a 50-Ω semi-rigid transmission

line (Micro-CoaxUT-085C-TP-LL). Since the (quasi-)TEMpropagationmode geometry de-

termines the characteristic impedance of the transmission line, sections of the transmis-

sion line geometry were mechanically deformed by crushing the coax, creating lengths of

characteristic impedance Z0 ' 30 Ω, which were found to be consistent with Ansys High

Frequency Electromagnetic Field Simulation Software (HFSS) simulation.

The photonic crystal was modeled as a Chebyshev type-I bandstop filter in AWR Mi-

crowave Office. Given prior knowledge that squashed transmission line sections have '

30-Ω characteristic impedance and the dielectric constant of the transmission line (εr ' 2

for polytetrafluoroethylene), the lengths of the transmission line sections were modeled

in AWR Microwave Office and optimized for an experimentally convenient frequency of

the upper band edge.

We measured the photonic crystal scattering parameters at room temperature with a

vector network analyzer calibrated with Short-Open-Load-Thru standards. In Figure 6.4,

we show the magnitude of the scattering parameter measurements are well matched to

scattering parameters calculated, given the lengths in Table B.1 (Appendix B) and a mi-

nor adjustment to the transmission line dielectric constant (ε = 1.96). The calculation of

the photonic crystal scattering parameters were performed in MATLAB using cascaded

ABCD transfer matrices of transmission line sections.

The phase of the scattering parameter for transmission arg(S21) provides information
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6.3 A qubit coupled to a photonic crystal

of the photonic crystal density of states. In particular, the density of photonic states at a

given frequency is

ρDOS(ω) = −dk(ω)

dω
, (6.2.1)

where k(ω) is the wave vector of the photonic crystal. The photonic crystal itself is a

medium for the propagation of electromagnetic waves, such that it can be considered a fi-

nite length transmission line. The amplitude of fixed frequency signal transmitted through

the photonic crystal is

S21 = eik(ω)`, (6.2.2)

where ` is the length of the transmission line. Therefore, the phase of Eq. 6.2.2, encodes the

effective propagation constant of photonic crystal. Figure 6.5 shows the photonic crystal

band structure and density of states.

6.3 A qubit coupled to a photonic crystal

6.3.1 Experiment setup

This experiment comprises a transmon-type superconducting qubit [66, 116] coupled to a

one-dimensional photonic crystal. The transmon junction has a SQUID geometry which

allows for tuning of its resonant frequency. The transmon circuit is placed inside a waveg-

uide cavity with a ωr/2π = 7.801GHz resonance of its fundamental mode (Fig. 6.6). The

cavity has an antenna port for applying drive pulses to the qubit and a second antenna

port that is relatively strongly coupled to the coaxial transmission line photonic crystal.
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Figure 6.5: The photonic crystal band structure and density of states. The density of state
is greatest near the edge of the photonic crystal stop band, where a light of a given energy
can propagate in many photonic modes.
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Figure 6.6: (a) A transmon circuit is dispersively coupled to a copper waveguide cav-
ity. The dispersively coupled cavity resonator is effectively a capacitive filter between the
transmon and the photonic crystal enironment. (b) The 3D transmon cavity mounted to
the cryostat sample holder.

The finite length photonic crystal is connected to the 50-Ω electromagnetic environment

of the microwave readout chain.

The transmon, copper cavity, and photonic crystal were attached to an oxygen free

high purity copper (OFHC)mount, thermalized to themixing chamber plate of a BlueFors

LD250 dilution refrigerator. The cavity and photonic crystal were shielded from thermal

radiation and stray magnetic fields by an indium sealed OFHC box placed inside a Cry-

operm can. We illustrate the microwave components of the experimental setup in Fig. 6.7,

including transmission line attenuation and filtering. The microwave measurement setup

(Fig. 6.7) has a circulator placed between the photonic crystal and the microwave readout

amplifier, enabling measurement by microwave signal reflection. Additionally, the mi-

crowave cavity has a relatively weakly coupled antenna port, for applying drive pulses to

the qubit.
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Figure 6.7: The transmon, copper cavity, and photonic filter were placed inside a sealed
copper box thermalized to the 10 mK mixing chamber plate.
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6.3 A qubit coupled to a photonic crystal

6.3.2 Purcell decay

The decay of the transmon qubit strongly influenced by the presence of the photonic band

gap, since the rate of spontaneous emission is proportional to the local density of states

at the transition frequency of an emitter [219, 224]. In this experiment, the Purcell-limited

qubit decay rate ismoderated by its coupling to the cavity resonance. The schematic of Fig-

ure 6.8 displays the transmon, resonator, and environment as capacitively coupled lumped

element circuits. The decay of the qubit is determined by the net admittance shunting the

transmon at the qubit transition frequency [225]. For a qubit dispersively coupled to a res-

onator, we determine the qubit decay rate according to the density of states offered by the

admittance shunting the resonator and the strength of the qubit-resonator coupling. In

this way, the resonator is a Lorentzian filter between the transmon and the environment.

The decay rate of a qubit dispersively coupled to a single cavity mode is [226, 227],

γ1 = γd + ρ(ωq)(g/∆q)
2κ. (6.3.1)

where κ/2π = 18MHz is the cavity linewidth, g/2π = 200MHz is the qubit-cavity cou-

pling rate, ∆q = ωr − ωq is the qubit-cavity detuning, ρ(ωq) is the local density of states

at the qubit frequency, and γd is the qubit decay rate into other dissipation channels. We

attribute any variation of the qubit decay rate to changes in the environment density of

states of the photonic crystal.
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6.3 A qubit coupled to a photonic crystal

transmon resonator environment

Figure 6.8: The 3D transmon is capacitively coupled to the fundamental mode of the
waveguide cavity. The cavity resonator is then capacitivly coupled to the 50-Ω microwave
readout chain through the photonic crystal, which are depected as a frequency dependent
admittance.

6.3.3 Qubit state readout and tomography

The qubit-cavity dispersive coupling enables single shot readout using the

Jaynes-Cummings nonlinearity technique at the bare cavity resonance [228]. We use this

to conduct full quantum state tomography of the qubit and characterize the bath engi-

neering decay process. Readout is performed by driving the strongly coupled port of the

cavity through the photonic crystal. At a critical drive power the threshold behavior of

this readout technique is observed in the phase shift of the reflection tone, achieving a

readout fidelity of F = 0.8, amenable to qubit state tomography. To account for this non-

ideal readout fidelity, we calibrate tomography measurements by preparing eigenstates

of 〈σx〉, 〈σy〉, and 〈σz〉, measuring their expectation values, and rescaling experimental

expectation values accordingly.
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6.3 A qubit coupled to a photonic crystal

6.3.4 Characterizing the spectral density of states

We characterize the environment spectral density of states before implementing a bath

engineering protocol for energy selective decay. Since the interaction of the qubit and the

photonic crystal is determined by the spectral density of states at the qubit resonance, we

perform experiments across a frequency range by flux tuning the qubit resonance. The

photonic crystal density of states should determine the rate of qubit decay and the rate

of photon absorption through the photonic crystal. We use the qubit decay rate and the

coupling strength to a resonant coherent drive to verify the qubit decay rate is determined

by the photonic crystal density of states. The qubit decay rates and Rabi frequency mea-

surements are extracted from qubit state readout on time varied measurement sequences

illustrated in Figure 6.9.

We characterize the spectral density of states by first performing standard energy re-

laxation measurements (Fig. 6.9a). We determine the qubit energy relaxation rate γ1 for a

range of qubit transition frequencies by adjusting the flux bias on the transmon circuit be-

tween sets of measurement. To verify that the measured qubit decay is in fact influenced

by the local density of states of the photonic crystal, we additionally investigate variations

of the coupling rate between the qubit and its photonic crystal environment. At each flux

bias, we perform resonant Rabi frequency measurements from a drive of a fixed ampli-

tude applied through the photonic crystal (Fig. 6.9b). Similar to qubit decay, variation of

the Rabi oscillation frequency is attributed to the rates of qubit absorption and emission,

which are due to the spectral density of states of the photonic crystal.

We find agreement in the proportional changes of the qubit decay rate γ1 and the Rabi
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Figure 6.9: At a given transmon flux bias we perform a measurement of the qubit decay
rate and we measure the frequency of Rabi oscillations for a resonant drive of fixed am-
plitude for each flux bias.

frequency squared (ΩR/2π)2 (Fig. 6.10). This establishes that the photonic crystal forms

the spectral density of states for qubit emission and absorption, since both the qubit decay

rate γ1 and the squared Rabi frequency both depend proportionally on the local density

of states. From this, we attribute changes of the qubit decay rate to the large variation of

the local density of states between the stopband and passband of the photonic crystal.

6.4 Dressed state dissipation

6.4.1 The dynamics of dressed state dissipation

The dressed qubit basis

We apply a coherent drive on the qubit through the weakly coupled cavity port to imple-

ment the bath engineering protocol. The coherent drive, along with the photonic crystal

spectral density of states, determines the steady state of the bath engineering process by
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Figure 6.10: The qubit energy relaxation rate γ1 (cyan trace) and the qubit Rabi frequency
squared (ΩR/2π)2 (black trace) versus the qubit resonance frequency ωq/2π. The qubit
decay rate and Rabi frequency resulting from a resonant drive applied through the pho-
tonic crystal both indicate the frequency dependent coupling to the environment. The
width of the data traces represents the standard error based on nine separate measure-
ments. The outlined and shaded regions indicate the the local density of states for the
measurements of Section 6.4.2 (yellow) and Section 6.4.2 (red).

inducing specific decay transitions of the qubit [229]. We solve for this steady state by

considering the system dynamics under drive and decay.

The bare qubit with an energy eigenbasis {|g〉 , |e〉} is described by the Hamiltonian

H = −ωqσz/2 in the laboratory frame. When the qubit is dipole coupled to a coherent

drive of frequency ωd, we transform the laboratory frame Hamiltonian of the driven qubit

H = −ωqσz/2 + Ωσx cos(ωdt) into the rotating frame of the drive with the unitary oper-

ator U = e−iωdtσz/2 as H → UHU† + iU̇U†. The rotating frame Hamiltonian is

Hq =
∆
2

σz +
Ω
2

σx (6.4.1)

upon neglecting rapidly oscillating terms and where ∆ = ωd − ωq is the qubit-drive de-

tuning and Ω is the frequency of Rabi oscillations in the case of a resonant drive. We
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6.4 Dressed state dissipation

Energy

Figure 6.11: The emitter, dressed by a coupling to the light field, has an emission spectrum
known as the Mollow triplet. The Mollow triplet takes on an asymmetric character in the
presence of an off-resonant drive or when the local density of states of the driven emitter
enhances one of the sideband transitions.

diagonalize Eq. 6.4.3 to find the dressed energy eigenstates,

|g̃〉 = cos(θ) |g〉 − sin(θ) |e〉

|ẽ〉 = sin(θ) |g〉+ cos(θ) |e〉 ,

(6.4.2)

where tan 2θ = −Ω/∆ and 0 ≤ θ < π/2. We define the energy eigenstates such that

|g̃〉 ' |g〉when the qubit is driven far-red detuned and |ẽ〉 ' |g〉when the qubit is driven

far-blue detuned. We rewrite the Hamiltonian in the dressed state basis as,

Hq =
ΩR

2
σ̃z (6.4.3)

where ΩR =
√

Ω2 + ∆2 and σ̃z = sin(2θ)σx − cos(2θ)σz.
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6.4 Dressed state dissipation

Dissipation of dressed states

Wenowconsider the interaction picture of the driven qubitweakly coupled to a dissipative

environment, such that we can treat the interaction as a perturbation. The driven qubit

interactingwith dissipativemodes of the electromagnetic environment is described by the

interaction Hamiltonian in the rotating frame of the drive,

Hint = ∑
k

gk(σbk
†ei∆kt + h.c.) (6.4.4)

where gk is the coupling strength to the electromagnetic mode of frequency ωk = ∆k−ωd

with creation operator bk
†. Each term of the interaction Hamiltonian can be expressed in

terms of dressed state operators as,

Hk
int = gk(cos2(θ)σ̃− sin2(θ)σ̃†

+ sin(θ) cos(θ)σ̃z)bk
†ei∆kt + h.c.

where we have simply made the substitution

σ = cos2(θ)σ̃− sin2(θ)σ̃† + sin(θ) cos(θ)σ̃z. (6.4.5)

We transform both the qubit and interaction Hamiltonian into the rotating frame of the

dressed qubit described by the transformation H → UHU† + iU̇U† where

U = exp
(

i
ΩR

2
σ̃z

)
(6.4.6)
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which gives the time-dependent Hamiltonian,

H(t) = ∑
k

gk(cos2(θ)σ̃ei(∆k+ΩR)t − sin2(θ)σ̃†ei(∆k−ΩR)t

+ sin(θ) cos(θ)σ̃zei∆kt)bk
† + h.c.

(6.4.7)

As we consider the time evolution of both the qubit and dissipative environment in the in-

teraction picture, we assume the environmentmodes are sufficiently dissipative, such that

we can make the Born approximation and trace out the environment degrees of freedom

[128]. We subsequently make the Markov approximation, and assume time evolution is

coarse grained enough for the environment local density of states to determine jump rates

of the open system dynamics [112, 230–233]. The time evolution for the reduced density

matrix of the qubit is described by the Lindblad master equation [234]. We include the

unitary dynamics of Eq. 6.4.3 in the following master equation to make reference to the

time evolution of tomography measurements in experiment:

ρ̇ = −i[ΩRσ̃z/2, ρ] + γ−D[sin2(θ)σ̃†]ρ

+ γ+D[cos2(θ)σ̃]ρ + γ0D[sin(θ) cos(θ)σ̃z]ρ,

(6.4.8)

where D[L]ρ = 2(LρL† − L†Lρ − ρL†L)/2, γ− = 2π ∑k g2
kδ(ωk − (∆k − ΩR)), γ+ =

2π ∑k g2
kδ(ωk − (∆k + ΩR)), and γ0 = 2π ∑k g2

kδ(ωk − ∆k).

Emission of the driven system creates field correlations that manifest as the Mollow

triplet emission spectrum (Fig. 6.11). The joint eigenbasis of the qubit and coherent drive

field is an infinite ladder of dressed states connected by single photon transitions. Inelastic
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(c) (d)(b)(a)

Figure 6.12: (a) The dressed qubit eigenstates evolve in a frame rotating at the drive fre-
quency relative to the laboratory frame. Superpositions of the dressed qubit eigenstates
states evolve at the generalizedRabi frequency along a tilted axis in the Bloch sphere repre-
senting the bare qubit eigenstates. The dissipation dynamics of the dressed qubit include
(b) jump transitions inwhich the qubit absorbs energy from the field |g̃〉 → |ẽ〉, (c) dephas-
ing in the dressed basis, and (d) jump transitions in which the qubit emits energy into the
field |ẽ〉 → |g̃〉.

transitions between dressed basis eigenstates of the qubit result in the two sidebands of

the Mollow triplet [235]. An asymmetry in jump transition decay rates γ− 6= γ+ results

in an asymmetry of the Mollow triplet emission power spectral density [236–238]. In an

ideal scenario for qubit state stabilization, the Mollow triplet spectrum would have only a

single sideband since a thoroughly dissimilar local density of states at frequenciesωd±ΩR

would cause deterministic decay to only one of the two dressed states.

The dynamics of Eq. 6.4.8 are depicted in Figure 6.12. After sufficiently long time evo-

lution of Eq. 6.4.8, the qubit relaxes to a nonequilibrium effective ground state: a steady

state of the driven-dissipative dynamics [239]. Importantly, a superposition state results

from an asymmetry in transition rates σ̃± between the dressed states, due to the frequency

dependence of the photonic density of states.
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Numerical calculation of Lindblad dynamics

Numerical calculationswere performed in the dressed state basis including unitary evolu-

tion from Rabi oscillations described by the master equation (Eq. 6.4.8) with an additional

pure dephasing term with decay rate γφ in the laboratory frame of the qubit. The density

matrix time evolution was numerically solved by recasting the Lindblad superoperator

into a 4× 4matrixwhichmaps a vector representation of the densitymatrix to another vec-

tor. The qubit density matrix is expressed as the column vector, ~ρ = (ρgg, ρge, ρeg, ρee)T.

We construct the Lindblad operator L as a matrix in operator space by expressing left-

operation (Aρ) and right-operation (ρA) on the density matrix with tensor products. Ma-

trices of left- and right- operation are

Aρ→ (I⊗ A)~ρ =



A11 A12 0 0

A21 A22 0 0

0 0 A11 A12

0 0 A21 A22


,

and,

ρA→ (A⊗ I)~ρ =



A11 0 A12 0

0 A11 0 A12

A21 0 A22 0

0 A21 0 A22


.

Time evolution from an initial qubit state is calculated from the equation, ~ρ(t) = eLt~ρ(0),

whereweperformmatrix exponentiation ofLt byfinding thematrixV which diagonalizes
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the Lindblad matrix. After converting the density matrix vector into a matrix operator

(~ρ(t)→ ρt), we then calculate expectation values in the laboratory frame rotating with the

drive,

〈σx〉t = tr(σxρ), 〈σy〉t = tr(σyρ), 〈σz〉t = tr(σzρ),

where the Pauli operators, in terms of the dressed state basis, are σx = cos(2θ)σ̃x −

sin(2θ)σ̃z, σy = σ̃y, and σz = sin(2θ)σ̃x + cos(2θ)σ̃z.

6.4.2 Tomography of dressed state dissipation

Time evolution of dressed state decay

We demonstrate the bath engineering protocol in the time domain driving the qubit tran-

sition with a nearly resonant Rabi drive for a long duration compared to the decay rates

of the dressed qubit state. The qubit transition is flux biased near 6.85GHz (Fig. 6.10,

yellow region) where there is a strong asymmetry in the spectral density of states. Be-

ginning with the qubit in the ground state for each experiment, the qubit was driven for

a variable amount of time before tomography pulses and state readout. Qubit state to-

mography (Fig. 6.13) shows the expectation values 〈σy〉 and 〈σz〉, which are coherences

in the dressed qubit eigenbasis, undergo dephasing. However, the expectation value of

〈σx〉 demonstrates relaxation to state of nonzero purity at long times. From the bath engi-

neering protocol, the qubit is effectively “cooled” to a superposition state in the bare qubit

eigenbasis.
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Figure 6.13: Time evolution of qubit expectation values in the bare qubit eigenbasis. The
qubit is initialized in the ground state before applying a near resonant drive dipole-
coupled to the qubit σx operator. At long times, the qubit is stabilized to a superposition
state in the bare qubit eigenbasis.

Steady state tomography

Since, at long times, the qubit stabilizes to a steady state of the driven conditions, the

now characterize dependence of the stabilized state for a range of Rabi frequencies and

qubit-drive detuning values. We demonstrate bath engineering decay to a dressed state

by flux tuning the qubit to ωq/2π = 6.4766GHz where the local density of states varies

dramatically, as shown in Fig. 6.10. In Fig. 6.14, we display themeasured steady state qubit

coherence 〈X〉ss ≡ Tr(ρssσx), where ρss is the tomographically reconstructed qubit state

after 15.95 µs� 1/γ± of driving and σx is the Pauli operator in the undressed basis.

Here, we observe two signatures of the photonic crystal density of states. First, we find

that the steady states mapped in Figure 6.14 contain a feature of zero coherence (black

dashed line) for certain coherent drive parameters of detuning and amplitude. This oc-

curs when the two terms γ± in Eq. 6.4.8 cancel due to the dependence of both θ and γ±

on ∆ and Ω. A maximally mixed steady state is a consequence of equal transition rates

between dressed states (Fig. 6.15). Physically, the overlap of the dressed states with the
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Figure 6.14: (a) The steady state coherence 〈X〉ss for a range of Rabi drive amplitudes and
detunings. The black dashed line indicates drive parameters that give a steady state of zero
coherence determined by the decay rates given by measurements in Fig. 6.10 Eq. 6.4.9. (b)
The calculated 〈X〉ss based on Eq. 6.4.8 and the experimental driving parameters. The
black dashed line indicates the same drive parameters as in panel (a). (c) The Bloch
sphere representation of the calculated and measured qubit steady state, ~r = Tr(ρss~σ),
for the drive detuning ∆/2π = −2.75MHz (yellow dashed line in panels (a) and (b)), and
∆/2π = 2.35MHz (orange dashed line in panels (a) and (b)).
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(a) (b)

Figure 6.15: For this illustration, we consider the σ̃ dissipation process at rate γ+ to be
favored over the σ̃† dissipation process due to an asymmetry of the environment density
of states. (a) When the drive is blue-detuned from the qubit transition, the dressed qubit
dissipates toward a ground-like state, assisted from the asymmetry of the environment
density of states. (b) For a red-detuned drive, the effective rates of the σ̃ and the σ̃† transi-
tion cancel, because the environment density of states inhibits ground-like state decay.

globally favored ground state competes with the dressed state favored by γ±. In a picture

of detailed balance for the rate of transitions between dressed states, this occurs for drive

parameters satisfying the relation

γ−(Ω, ∆) sin4(θ) = γ+(Ω, ∆) cos4(θ), (6.4.9)

which was used to calculate the dashed lines of Figure 6.14.

A second signature of the photonic crystal is observed by the increase of the steady

state coherence for a resonant drive. Although this coherence is limited in our experiment

by decay to other dissipation channels, we find an overall increase of steady state coher-

ence because the dressed state transition rates become more asymmetric as the Mollow

triplet spectrum widens in the presence of a colored local density of states. While small

coherences can be created from a weak drive in resonance fluorescence [240], the observa-
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Figure 6.16: Tomographic measurements of the qubit expectation value 〈σz〉 after 15.95 µs
of drive. The phase of tomography pulses were chosen to be in the rotating frame of the
drive, thus 〈σy〉ss = 0 and all states lie in the X-Z plane of the Bloch sphere.

tion of coherence from a strong drive is a clear indicator of an asymmetry in the rates γ±

due to the density of state of the photonic crystal. Furthermore, we note that the asym-

metric density of states of the readout cavity is negligible due to its large detuning from

the qubit resonance Ω, ∆� ∆q.

The quantum state tomography for the qubit populations 〈Z〉ss in Fig. 6.16. We find

the calculated 〈Z〉ss agrees well with the measurement quantum state tomography from

experiment.

Consequently, we find that the qubit is “cooled” to a chosen superposition state in the

eigenbasis of the undriven qubit from a proper selection of a drive phase, frequency, and

amplitude (Fig. 6.14), enabled by the asymmetric density of states of the photonic crys-

tal. The theory colormap of Figure 6.14b was produced by solving for the steady states

of Eq. 6.4.8 given the local density of states as inferred from measurements shown in

Fig. 6.10. This theory reproduces all qualitative features of the tomography results and

has quantitative agreement when including additional pure dephasing of the qubit tran-
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6.4 Dressed state dissipation

sition γφ = 0.029 µs−1, consistent with typical limits of coherence for transmon qubits.

In conclusion, we have shown that the driven and dissipative dynamics of a transmon

qubit weakly coupled to a photonic crystal can be used for quantum bath engineering,

as we have verified with full state tomography. Our protocol robustly prepares a desired

qubit superposition state, realized as an effective ground state of the driven-dissipative

system. The colored density of states introduced from the photonic crystal is crucial for

our method and highlights impedance engineering of the electromagnetic environment

as a key aspect of bath engineering for circuit quantum electrodynamics. In future bath

engineering implementations, the photonic density of states can be tailored by fabrication

techniques with lumped element metamaterials [223] and in situ tunability of coupling

rates between photonic modes [92, 241]. Additionally, quantummonitoring of dissipative

photonic modes of the environment can further the scope of bath engineering protocols

for nonunitary heralding of quantum states and quantum control by dynamical feedback

[87, 138–140, 242–245].
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Appendix A

Quantum Operator Methods

Moving to the rotating frame
In the Schrödinger picture, the Hamiltonian operating on a state ψ is

Hψ = i∂tψ = iψ̇. (A.0.1)

A unitary transformation of the states ψ defines eigenstates ψ′ = Uψ of a Hamiltonian H′.
We solve for the Hamiltonian H′ in terms of the original Hamilotnian H by the relation,

H′ψ′ = i∂tψ
′

= i∂t
(
Uψ
)

= iU(∂tψ) + i
(
∂tU

)
ψ

= UHU†ψ′ + iU̇U†ψ′

H′ψ′ =
(
UHU† + iU̇U†)ψ′.

(A.0.2)

While the states transform as ψ→ ψ′ = Uψ, we find the Hamiltonian transforms as

H → H′ = UHU† + iU̇U†. (A.0.3)

A transformation into a rotating frame is often used to eliminate terms from a Hamil-
tonian. If the time evolution is explicitly expressed by a unitary transformation, then the
Hamiltonian termswhichwould otherwise generate this time evolution can be eliminated.

The Rotating Wave Approximation
We examine the rotating wave approximation in the context of two coupled harmonic os-
cillators. The coupling of quantum harmonic oscillators can be solved readily in the clas-
sical limit and then performing quantization of the coupled modes. However, we develop
an intuition of the rotating wave approximation by considering the physics of coupled
modes at the quantum limit.

We approximate the interaction of two electromagnetic modes as a dipole coupling
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when excitations of bothmodes have a similar energy scale which is relatively strong com-
pared to the interaction strength. Two independent electromagnetic modes, defined by
commuting annihilation operators a and b have a dipole-dipole interaction described by
the Hamiltonian

Ĥ = ωaa†a︸ ︷︷ ︸
Ĥa

+ωbb†b︸ ︷︷ ︸
Ĥb

+ 4gxaxb︸ ︷︷ ︸
Ĥab

, (A.0.4)

where xa = (a + a†)/2 is the field amplitude of mode a which is coupled to the field
amplitude xb for mode b, chosen up to the phase of the field without loss of generality.

We investigate the time evolution of the coupled system by transforming the Hamil-
tonian (Eq. A.0.4) into the interaction picture defined from the uncoupled modes. In the
interaction picture, the operators evolve as A→ A(t) = UAU† with the unitary operator
U = ei(Ĥa+Ĥb)t. In the interaction picture, we define an interaction Hamiltonian by the
relation Ĥ(t) = Ĥa + Ĥb + V̂(t), which has the time evolution

V̂(t) = g(ae−iωat)(b†e+iωbt) + g(ae−iωat)(be−iωbt) + h.c. (A.0.5)
= ga

(
e+i∆tb† + e−iΣtb

)
+ h.c. (A.0.6)

where ∆ = ωb−ωa and Σ = ωb +ωa are the detuning and sum of uncoupled frequencies.
The interaction terms which time evolve at the sum of the uncoupled mode frequencies
are dubbed counter-rotating terms. Notably, the counter-rotating terms are considered off-
resonant processes which do not conserve excitation number.

The interaction Hamiltonian in the rotating wave approximations is

V̂(t) = ge+i∆tab† + h.c., (A.0.7)

where we have omitted counter-rotating terms from the interaction Hamiltonian. This
approximation is applicable based on our initial assumptions to justify a dipole interac-
tion: weak coupling (g � ωa, ωb) and the uncoupled mode excitation energies that are
of similar scale (∆ � Σ). The rotating wave approximation is physically motivated by
the rapid evolution time scale of the counter-rotating terms. The operators evolving at
rate Σ describe interaction processes, i.e. two photon transitions, which do not contribute
significantly to the interaction dynamics which evolve at much rates (g, ∆� Σ).
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Appendix B

Photonic Crystal Fabrication Parameters

Table B.1 displays lengths of the 25 impedance sections referenced for fabrication of the
photonic crystal filter discussed in Chapter 6.

Step # Z0 (Ω) ` (mm) Step # Z0 (Ω) ` (mm)
1 30 9.1 14 50 9.7
2 50 9.4 15 30 10.2
3 30 9.1 16 50 9.7
4 50 10.7 17 30 10.2
5 30 9.7 18 50 9.7
6 50 9.4 19 30 9.9
7 30 9.9 20 50 9.4
8 50 9.7 21 30 9.7
9 30 10.2 22 50 10.9
10 50 9.7 23 30 9.1
11 30 10.2 24 50 9.4
12 50 9.7 25 30 9.1
13 30 10.2 — — —

Table B.1: The photonic crystal filterwas fabricated by creating amodulation of the charac-
teristic impedance Z0 of a transmission line. The photonic crystal is modeled as a Cheby-
chev type-I bandstop filter. The lengths of the impedance sections were informed from
filter simulations in AWRMicrowave Office.
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