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Cancer is a disease caused by changes to the genome and dysregulation of gene expression. 

Among many types of mutations, including point mutations, small insertions and deletions, large 

scale structural variants, and copy number changes, gene fusions are another category of 

genomic and transcriptomic alteration that can lead to cancer and which can serve as therapeutic 

targets. We studied gene fusion events using data from The Cancer Genome Atlas, including 

over 9,000 patients from 33 cancer types, finding patterns of gene fusion events and 

dysregulation of gene expression within and across cancer types. With data from the CoMMpass 

study (Multiple Myeloma Research Foundation), we generated the largest gene fusion study in 

multiple myeloma (742 patients), which is the second most common type of blood cancer, and 

which is driven by recurrent translocations. We then developed a novel tool for analyzing the 

haplotype context of somatic mutations. Linked-read whole genome sequencing enables 

haplotype resolution for analyzing somatic mutation patterns, which is lost during typical short-

read sequencing and alignment. We analyzed a cohort of 14 multiple myeloma patients across 
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disease stages, phasing three-quarters of high confidence somatic mutations and enabling us to 

interpret clonal evolution models at higher resolution. Finally, we also studied the co-evolution 

of the multiple myeloma tumor and microenvironment using single-cell RNA-sequencing, 

finding distinct patterns of tumor subclone evolution between disease stages in 14 patients. Our 

methods and results demonstrate the power of integrating data types to study complex and 

dynamic evolutionary pressures in cancer and point to future directions of research that aim to 

bridge gaps in research and clinical applications.
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Chapter 1: Cancer is a genetic disease subject 
to evolutionary dynamics 

 
Cancer is a disease caused by mutations to the genome. When a mutation changes the 

genome, the highly evolved system of checks and balances in each cell is disrupted, allowing for 

aberrant and uncontrolled growth. Somatic mutations accumulate randomly over time through 

mutagenesis, while germline variants are inherited and may confer a predisposition to cancer. An 

example of an inherited genetic condition is Lynch Syndrome, which is characterized by 

dysregulation of the mismatch repair (MMR) pathway that normally functions by correcting or 

eliminating errors in DNA transcription each time the cell divides 1. Deficiency in this repair 

mechanism allows somatic mutations to accumulate at an accelerated rate and leads to an 

increased risk of developing cancer at an early age. Tumors that result from MMR pathway 

deficiency are frequently characterized by high levels of microsatellite-instability (MSI), most 

often observed in colorectal, stomach, and uterine cancers 2. Identifying tumors with high levels 

of MSI sheds light on how they have evolved and may be treated. In Foltz, et al. 3, we 

approached MSI status prediction by analyzing mutations and methylation levels affecting 

mismatch repair genes. We built MIRMMR, a user-friendly, computational framework for 

penalized logistic regression modeling to predict MSI status using alterations in MMR pathway 

genes and compared its effectiveness to sequence-based methods like MSI-sensor 4. By 

integrating multiple data types, leveraging the power of large study cohorts, and developing user-

friendly analysis tools, MIRMMR illustrates a common approach to computational cancer 

genomics research. 
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Positive selection on mutations leads to cancer 
 

Cancer represents the power of positive selection; it is microevolution at an accelerated 

rate. Tumors are the result of inherited germline variants and acquired somatic mutations that 

confer competitive advantage over the surrounding cells. In cancer sequencing studies, mutations 

may be observed recurrently at the same genomic site across many individuals, may be seen in 

many patients but dispersed across an entire gene body, or may not occur in genes at all, but in 

the regulatory regions influencing gene expression. Mutations are not limited to single nucleotide 

variants (SNV), but may take the form of copy number variation (CNV), or other structural 

variations (SV). Gene fusions are the result of some previous event of genomic instability, such 

as a deletion, insertion, inversion, or translocation, that brings two distant parts of the genome 

into closer proximity. For example, a deletion may eliminate the DNA sequence between the 

exons of two genes. Transcription of that altered DNA sequence results in a new hybrid mRNA, 

leading to hybrid fusion protein with an altered function or level of expression. Other 

mechanisms of fusions relevant to cancer include repositioning the powerful regulatory regions 

of one gene to be in the neighborhood of a gene whose increased activity may be oncogenic. 

Gene fusions have oncogenic potential 
 

Fusions have played an important role in the history of cancer, and present-day studies 

continue to reveal their functional and clinical relevance 5. Pioneering discoveries from the 

1950s-1970s identified a translocation between chromosomes 9 and 22 associated with chronic 

myeloid leukemia (CML) 6. This Philadelphia chromosome encodes a gene fusion of BCR and 

ABL1, a tyrosine kinase. Normally, ABL1 activity is auto-regulated, but the BCR--ABL1 fusion 

causes ABL1 to adopt an “always on” state, leading to increased cell proliferation and genome 
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instability. However, this increased activity can be targeted by tyrosine kinase inhibitors, leading 

to more effective treatments for patients with CML and other tumors with oncogenic kinase 

mutations. 

Distinguishing important, cancer-causing mutations (driver mutations) from those that 

have happened but did not confer selective advantage (passengers) has been a major effort in the 

cancer genomics field 7-9. Driver mutations can happen in oncogenes (genes that take on a more 

active or altered role in cancer) or tumor suppressor genes (genes whose lack of functionality 

releases the brakes that inhibit cancer). Large-scale, multi-platform sequencing studies such as 

those organized by The Cancer Genome Atlas 10 and The Multiple Myeloma Research 

Foundation have enabled researchers to paint landscapes of the genetic determinants of cancer in 

dozens of cancer types. A major motivation for cancer studies is to identify effective therapies 

for patients with particular mutations and to provide treatment options targeted to an individual 

patient. With comprehensive overviews of many cancer types already published, doctors and 

drug developers have a solid baseline when considering effective therapies for individual 

patients. 

Tumors are heterogenous and require multi-omic approaches 
 

Each patient’s cancer is a unique and heterogenous entity that can be studied from a 

variety of angles. Various approaches to data analysis with many data types are carried out, 

including detection of SNVs, CNVs, and SVs from DNA, and gene expression and fusion 

detection from RNA. Assessing tumor heterogeneity is an important aspect of cancer genomics 

since understanding the subclonal structure can reveal important clues for how a tumor has 

evolved and what targeted therapies may be most effective 11-14. Further, mutations found in 
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DNA can be mapped onto protein structures, demonstrating how mutations far apart on the linear 

DNA sequence can affect the same functional units in three-dimensional protein space 15.  

Genomic data from a single individual may occupy dozens of gigabytes of computer 

storage. With this wealth of data from thousands of samples, multiplied by numerous data types, 

efficient computational approaches are key to discerning what is important information. 

Computational tools and databases enable discovery of new trends and allow researchers to 

generate testable hypotheses that can be rigorously examined under laboratory conditions. 

Viewing genetic events from different angles with multiple data types colors in the details of 

each cancer’s molecular portrait 16,17. Further, utilizing new technologies brings more breadth 

and depth to cancer analysis. One example is single-cell RNA-sequencing, which has allowed 

unprecedented resolution of gene expression and tumor heterogeneity. Another example is 

linked-read whole genome sequencing (WGS), which combines the accuracy of Illumina 

sequencing with the long-range connectivity and improved mapping of haplotypes 18,19. 

Case Study 1: Data integration models microsatellite 
instability 
 

The story each of each individual tumor may not be told by a single data type. We may 

need to combine information from multiple platforms to gain a more complete picture of what is 

going on inside a tumor. With that in mind, we approached the problem of predicting 

microsatellite instability (MSI) by building a logistic regression model based upon two data 

types: mutations and methylation. Our work, MIRMMR: binary classification of microsatellite 

instability using methylation and mutations, was published in Bioinformatics (2017).3 Please 
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refer to the publication for any supplementary information. Contributions: As sole first author, 

SMF developed the modeling concept, wrote the software package, and wrote the manuscript. 

Introduction 
 

Microsatellites consist of short DNA sequence repeats and may change in size due to 

errors in DNA replication, in particular because of strand slippage 20. Normally, such errors are 

caught and repaired through mechanisms of the mismatch repair (MMR) pathway. However, 

changes in the methylation level of gene promoters and deleterious mutations in MMR pathway 

genes such as MLH1 may be responsible for dysregulation of the MMR pathway and increases 

in microsatellite instability (MSI) 21. MSI is strongly associated with inherited cancer syndromes 

such as Lynch syndrome and is an important diagnostic indicator that may influence treatment 

options. 

Experimental and computational methods exist to detect MSI in patient samples. 

Experimentally, the length of known microsatellites is measured using gel electrophoresis and 

compared between normal and tumor samples. Computational methods such as MSIsensor 4 and 

mSINGS 22 measure the prevalence of unstable microsatellites by examining sequence data from 

normal and tumor samples. MSIseq 23 and MOSAIC 23 use machine learning classifiers based on 

microsatellite variants and other microsatellite features. 

The experimental measurement process is time consuming and only assays a limited 

number of markers. Measuring microsatellite length in DNA-seq data requires computational 

resources to store and process sequencing data. MOSAIC and MSIseq mitigate these issues by 

working on smaller files but still focus on microsatellite features such as the number of 

microindels observed in simple repeat regions per mega-base. 
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Instead of observing microsatellites directly to evaluate MSI status, we created an 

orthogonal prediction method using methylation levels and mutations in MMR pathway genes. 

Here we present MIRMMR (pronounced ‘murmur’): Microsatellite Instability Regression using 

Methylation and Mutations in R. MIRMMR trains logistic regression models using DNA 

methylation and mutation information from MMR pathway genes to classify MSI status. Once a 

prediction model has been trained, MIRMMR quickly reports the likely MSI status of new 

samples. 

Methods 
 

MIRMMR consists of several independent modules to build logistic regression models, 

compare method outcomes, and classify MSI status in new samples. Users may select penalized, 

stepwise, or univariate modules to perform logistic regression modeling. Given a binary measure 

of MSI status, MIRMMR trains logistic regression models based on predictors such as MMR 

pathway gene methylation levels or mutation severity indicators, like Combined Annotation 

Dependent Depletion (CADD) scores 24. 

Penalized regression can perform variable selection by setting the coefficients of 

unimportant predictors to zero, which is vital to finding an informative and relevant model. 

MIRMMR’s penalized module performs elastic net regression based on R’s glmnet package 25, 

which lets users balance the penalty term’s L1 and L2 norms. 

A vital task in penalized regression is selecting an appropriate weight (lambda) to give 

the entire penalty term. Minimizing cross validation (CV) error is one way to find the optimal 

lambda value. However, due to the randomness of fold selection, the best lambda value may not 

be consistent between successive CV runs. After many independent CV runs, MIRMMR selects 
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the lambda value with minimal average CV error. It fits a penalized logistic regression model 

using that lambda value and reports a logistic model based on the automatically selected 

variables. 

See Supplementary Information for a description of all MIRMMR parameters, including 

options to train and test models on subsets of data. 

Results 
 

We used MIRMMR’s penalized module to train a model on colorectal (COADREAD), 

stomach (STAD), and uterine (UCEC) tumor samples from The Cancer Genome Atlas (TCGA) 

10. Of 676 total samples, 123 (123/676, 18.2%) were called MSI-High by TCGA. We trained the 

model using 10-fold CV with no samples withheld for testing. Model predictors included point 

mutation rate, methylation beta levels at MMR genes, and CADD scores for mutations found in 

MMR genes. See Supplementary Information for a full list of MMR pathway genes included and 

a summary of the final model produced, which highlights predictors important for MSI status 

prediction. Figure 1 illustrates the distribution of MIRMMR scores and shows a clear separation 

between TCGA MSI-High and Not-MSI-High groups. 
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Figure 1. MIRMMR scores. MIRMMR scores (y-axis) indicate a sample’s predicted 
probability of having MSI-High status. Higher scores indicate higher probability of being MSI-
High. The x-axis indicates MSI-High status reported by TCGA. The prediction model was built 
using 676 COADREAD, STAD, and UCEC samples from TCGA. 
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MIRMMR reports a score between zero and one, so a suitable cutoff to separate MSI-

High samples from Not-MSI-High samples is necessary. Individual users may decide on a cutoff 

to balance their own needs for sensitivity and specificity. We selected a cutoff score of 0.1922 to 

maximize the sum of sensitivity (0.9187) and specificity (0.9421). With this cutoff, we found 

634 samples (634/676, 93.8%) for which the original TCGA experimental MSI status call 

matched the MIRMMR call. Missed calls could be due to incomplete or inaccurate mutation and 

methylation reporting. We found similar areas under the curve when comparing the ROC curves 

of MIRMMR (0.9727), mSINGS (0.9799), and MSIsensor (0.9977), indicating that MIRMMR 

offers a promising new option for integrated MSI diagnosis that does not rely on measuring 

microsatellites. Given the high accuracy of existing, sequence-based methods, MIRMMR also 

offers an orthogonal measurement to reinforce concordant calls and flag potentially misclassified 

samples for further review. 

Conclusion 
 

MIRMMR provides a new dimension in MSI diagnosis and modeling. Although previous 

studies 23 have used regression to infer relationships between certain gene mutations and MSI, 

only MIRMMR performs full logistic regression model building for the purpose of MSI status 

prediction via binary classification. Building a pre-diction model highlights genes contributing to 

the MSI phenotype, and users can set intuitive classification thresholds based on probabilities.  

We trained a logistic regression model to predict MSI status based only on mutation and 

methylation data using samples from COADREAD, STAD, and UCEC cancer types. 

MIRMMR’s classification performance was on par with methods that rely on measuring 

microsatellites in BAM files, providing an additional, accurate tool for MSI diagnosis. 
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Case Study 2: Identifying sample swaps in a large, multi-
omics cohort 
 

Beyond data integration for gaining deeper insights into cancer biology, various cancer 

data types can be compared to ensure data quality and consistency. For example, by matching 

germline mutations from WGS, WXS, and RNA-seq data samples to ensure they all originated 

from the same individual. This need for quality control exists for all scales of data analysis, but it 

is especially visible and necessary to be done robustly in large scale, public consortium data that 

is shared by multiple institutions and will be the foundation for multiple publications and 

advancing science for the years following. One such consortium is the Clinical Proteomic Tumor 

Analysis Consortium (CPTAC), a program of the National Cancer Institute. Throughout various 

phases of the CPTAC project, genomics, transcriptomics, and proteomic data has been collected 

and analyzed, leading to several high profile publications.26-31 Mishaps in sample handling at the 

data generation stage could have profound downstream effects, potentially causing confusion, 

inconsistency, mistrust, and misleading results. 

Copy number variation can be detected from a group of WXS cancer samples by 

comparing each cancer sample against a background panel of normals. The assumption is that 

every sample has been sequenced under the same protocol, so that differences in read depth are 

directly related to changes in the copy number profile. In theory, normal samples have two 

copies of each chromosome without any local variation. Cancer samples, however, may have 

wild fluctuations that result in dysregulation and selective advantage. We developed a somatic 

copy number profiling pipeline based on the Genome Analysis Toolkit 32 workflow, and we 

deployed it to analyze over 300 samples from breast, ovarian, and colorectal cancer types. We 

also intentionally utilized this pipeline to examine germline CNVs. 
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Our initial visual examination of germline copy number profiles revealed an immediate 

problem -- one batch of data, nearly 20 patients -- had germline CNV profiles that were not flat 

and even like we expected (see Figure 2). At the same time, their tumor CNV profiles resembled 

germline CNV profiles. Therefore, we suspected a sample swap occurred that only affected this 

batch of data. A simultaneous discovery was that the samples in this batch did not have any TP53 

somatic mutations, which we expected to be above 90% in ovarian cancer. Here we integrated 

findings from past studies to double check our results against the expectation, and we used two 

data types to corroborate an error that showed up downstream in both. To fix the error, the 

simple bioinformatic solution was to swap the files back to match the samples they originated 

from. In practice, distributing such a fix to widespread collaborators required repeated 

explanations and careful documentation. 

The checking and corroborating process should be built-in to any bioinformatics pipeline, 

and no results should be taken at face value. They must fit into the context of a dynamically 

integrated biological system and also fit the paradigm of cancer as an entity responding to 

evolutionary pressure. The work leading to this thesis has been a struggle against complacent 

pipelines. Our responsibility in cancer research is to contextualize findings so they are 

meaningful and useful to others -- first as a resource, then as inspiration for future research, and 

eventually as a springboard for innovative translation to the clinic. 
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Figure 2. Copy number profiles of swapped samples. Top: a “normal” sample before 
correcting the swap. Bottom: a swapped “tumor” sample from the same patient. 
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Chapter 2: Driver Fusions and Their 
Implications in the Development and 

Treatment of Human Cancers 
 

Background 
 

Gene fusions are a common cause of cancer that account for 20% of human cancer 

morbidity 6. Fusion detection from RNA-sequencing data remains an important challenge in cancer 

sequencing studies 33. There are inherent computational difficulties, such as mapping hybrid reads 

efficiently, which are compounded by biological complexities like tumor heterogeneity. These 

difficulties are reflected in the poor concordance between fusion detection tools run on the same 

input data and the large number of false positives events often reported 34. To overcome these 

challenges and provide insights into cancer fusions, we developed fusion detection strategies that 

integrate the results of multiple fusion tools (for higher sensitivity and specificity) and apply 

multiple layers of filtering (to reduce false positives). 

We applied our fusion detection framework to The Cancer Genome Atlas dataset, including 

9,624 tumor samples from 33 cancer types 35. Our comprehensive approach broadened the existing 

landscape of pan-cancer fusion studies, and we incorporated fusion events with gene expression 

and mutation data. We found patterns of upregulated gene expression when an oncogene was a 

fusion partner, and tumor suppressor fusions were often downregulated. We found 6.0% of 

samples with a fusion that could be a potential drug target. However, a major problem remains: 
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from the long lists of fusions detected, what fusions are most important and likely to be drivers of 

disease? 

Prior efforts to conduct pan-cancer fusion detection have utilized only a single fusion 

calling algorithm 36-38. Since disagreements among different callers are common, a comprehensive 

approach that combines the strengths of various callers could achieve higher fusion calling 

accuracy. Further, large-scale analyses are likely to expand the landscape of druggable fusions in 

cancer, revealing potential treatment options for patients. 

We leveraged multiple newly-developed bioinformatics tools to methodically identify 

fusion transcripts from TCGA using the ISB Cancer Genomics Cloud. These tools included STAR-

Fusion 39, Breakfast, and EricScript 40. Fusion calling across 9,624 TCGA tumor samples from 33 

cancer types identified a total of 25,664 fusion transcripts, with a 63.3% validation rate for the 

samples having available whole genome sequencing data. We investigated the relationship 

between fusion status and gene expression and analyzed fusions as potential drug targets. 

We explored the gene expression of fusions involving oncogenes, protein kinases, and 

tumor suppressor genes. For example, Figure 1C illustrates the higher expression level of oncogene 

RET in thyroid carcinoma (THCA) samples with a RET fusion. Figure 1A shows that samples with 

fusions in oncogenes are more likely to overexpress that oncogene, while samples with tumor 

suppressor fusions are more likely to underexpress tumor suppressor genes. Figure 1B shows that 

the median expression level of oncogenes is higher in samples with fusions than those without 

fusions, and the median expression of fused tumor suppressors tends to be lower, though the 

pattern is less consistent. 
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Overexpressed fusions, especially in-frame kinase fusions, are commonly targeted for 

therapy due to their susceptibility to kinase inhibitors. We found that 6.0% of samples had a 

druggable fusion event based on the Database of Evidence for Precision Oncology (DEPO) 

(http://dinglab.wustl.edu/depo). 

Our work, Driver Fusions and Their Implications in the Development and Treatment of 

Human Cancers, was published in Cell Reports (2018) as part of the TCGA Pan-Cancer Atlas.35 

Please refer to the publication for any supplementary information. Contributions: As co-first 

author with Qingsong Gao and Wen-Wei Liang, SMF developed the fusion calling and filtering 

pipeline, analyzed gene expression and druggability, produced and edited figures, and wrote and 

edited the manuscript. 

Summary 
 

Gene fusions represent an important class of somatic alterations in cancer. We 

systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion 

calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of 

gene expression, copy number, and fusion annotation data revealed that fusions involving 

oncogenes tend to exhibit increased expression, while fusions involving tumor suppressors have 

the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, 

the proportion of which varied significantly across cancer types. Our study suggests that fusions 

drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% 

of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, 

FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting 

that fusions may provide leads for targeted drug and immune therapy.  
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Significance 
 

The Cancer Genome Atlas project is concluding with a broad finale of analyses on the 

final data corpus of approximately 11,000 samples across 33 cancer types. Here, we focus on 

gene fusions, which can arise through various mechanisms, such as translocation and interstitial 

deletion, and which play crucial roles in cancer diagnosis and prognosis. We conducted a 

systematic, multi-tool analysis to discover 25,664 fusion events across cancer types. Our 

integrated analyses, involving gene expression, copy number, and other results shed light on the 

effects of fusions in oncogenes and tumor suppressors. We also highlighted the cancer types in 

which fusions play important and even primary driver roles. 

Introduction 
 

The ability to determine the full genomic portrait of a patient is a vital prerequisite for 

making personalized medicine a reality. To date, many studies have focused on determining the 

landscape of single nucleotide polymorphisms, insertions, deletions, and copy number alterations 

in cancer genomes 9,41-45. While such genomic alterations make up a large fraction of the typical 

tumor mutation burden, gene fusions also play a critical role in oncogenesis. Gene fusions or 

translocations have the potential to create chimeric proteins with altered function. These events 

may also rearrange gene promoters to amplify oncogenic function through protein 

overexpression or to decrease the expression of tumor suppressor genes. 

Gene fusions function as diagnostic markers for specific cancer types. For example, a 

frequent translocation between chromosomes 11 and 22 creates a fusion between EWSR1 and 

FLI1 in Ewing’s sarcoma. Also, the Philadelphia chromosome 9-22 translocation is characteristic 

of chronic myeloid leukemia, resulting in the fusion protein BCR--ABL1. This fusion leads to 
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constitutive protein tyrosine kinase activity and downstream signaling of the PI3K and MAPK 

pathways, which enables cells to evade apoptosis and achieve increased cell proliferation 46-49. 

Fibrolamellar carcinoma (FLC) in the liver is characterized by a DNAJB1--PRKACA fusion. A 

recent study of TCGA tumors revealed this fusion transcript is specific to FLC, differentiating it 

from other liver cancer samples 50. In contrast, FGFR3--TACC3 is an inframe activating kinase 

fusion found in multiple cancer types, including glioblastoma multiforme (GBM) 51,52 and 

urothelial bladder carcinomas (BLCA) 53. Other recurrent fusions have also been reported in 

multiple cancer types 54-56, and functional characterization of a few selected fusion genes in 

cellular model systems has confirmed their oncogenic nature 57. 

Recently, large-scale genomic studies have utilized the TCGA RNA-Seq data corpus to 

systematically identify and compile fusion candidates across many cancer types. For example, as 

part of its goal to develop a comprehensive, genome-wide database of fusion genes, ChimerDB 

58 has analyzed RNA-Seq data of several thousand TCGA cases. Giacomini et al. performed 

breakpoint analysis on exon microarrays across 974 cancer samples and identified 198 candidate 

fusions in annotated cancer genes 59. A searchable portal of TCGA data includes 20,731 fusions 

called from 9,966 cancer and 648 normal samples 60. Some studies focus on important classes of 

genes, such as kinase fusions 37, which may have particular structural properties that are selected 

for during oncogenesis and cancer progression. However, most efforts have utilized only a single 

fusion calling algorithm. Since disagreements among different callers are common, there is a 

need to develop a comprehensive approach that combines the strengths of various callers to 

achieve higher fusion calling accuracy. Further, large-scale analyses are likely to expand the 

targetable landscape of fusions in cancer, revealing potential treatment options for patients. 
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Here, we leverage multiple newly-developed bioinformatic tools to methodically identify 

fusion transcripts across the TCGA RNA-Seq data corpus using the ISB Cancer Genomics 

Cloud. These tools include STAR-Fusion, Breakfast, and EricScript (STAR Methods). Fusion 

calling across 9,624 TCGA tumor samples from 33 cancer types identified a total of 25,664 

fusion transcripts, with 63.3% validation rate for the samples having available whole genome 

sequencing data. Further, we investigated the relationship between fusion status and gene 

expression, the spectrum of kinase fusions, mutations and fusions found in driver genes, and 

fusions as potential drug and immunotherapy targets. 

Results 

Fusion detection pipeline and WGS-based validation of a subset of fusion 
predictions 
 

We analyzed RNA-Seq data from 9,624 tumor samples and 713 normal samples from 

The Cancer Genome Atlas (TCGA) using STAR-Fusion (STAR Methods), EricScript 40, and 

Breakfast (STAR Methods, Table S1). A total of 25,664 fusions were identified after extensive 

filtering using several panel-of-normals databases, including fusions reported in TCGA normal 

samples, GTEx tissues 61 and non-cancer cells 62  (STAR Methods, Fig. 1A, and Table S1). Our 

pipeline detected 405 out of 424 events curated from individual TCGA marker papers (Table S1) 

(95.5% sensitivity). 

We further cross-confirmed our transcriptome sequencing-based fusion detection pipeline 

by incorporating whole genome sequencing (WGS) data, where available. WGS paired-end reads 

aligned to the partner genes of each fusion were used to validate fusions detected using RNA-

Seq. Using all available whole-genome sequencing, including both low-pass and high-pass data, 



19 
 

from 1,725 of the 9,624 cancer samples across 25 cancer types, we were able to evaluate 18.2% 

(4,675 fusions) of our entire fusion call set. Of that subset, WGS validated 63.3% of RNA-Seq 

based fusions by requiring at least three supporting discordant read pairs from the WGS data 

(Figure S1). 
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Figure 1 Fusion detection and landscape in cancer. (A) Fusion calling and filtering pipeline. (B) 
Cartoon overview of fusion gene partner breakpoints. Purple indicates the 5’ gene partner and green 
indicates the 3’ gene partner. For both the 5’ and 3’ gene partner, fusion gene breakpoints can occur in the 
following genomic regions: 5’ untranslated region (5’UTR, triangle), coding sequence (CDS, rectangle), 
3’UTR (circle), and noncoding region (rounded rectangle). For each fusion event, a dotted line connects 
the breakpoints in the 5’ and 3’ gene partners to create the predicted fusion and the circle size, while 
number represents the total fusion events classified into the associated fusion category. (C) The dot plot 
shows the frequency of recurrent fusions found in each cancer type. The most recurrent fusion in each 
cancer type is labeled. Cancer types without recurrent fusions are not shown. 
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Fusion landscape across 33 cancer types 
 

Categorizing the 25,664 fusions based on their breakpoints, we found that the majority of 

breakpoints are in coding regions (CDS) of both partner genes (Fig. 1B). Surprisingly, there are 

many more fusions in 5’ UTRs compared to 3’ UTRs for both partner genes, given that 3’ UTRs 

are generally longer (Mann-Whitney U Test, p<2.2e-16). This could be explained by having 

more open chromatin in the 5’ UTR region 63, the larger number of exons in 5’ UTRs than 

3’UTRs (Mann-Whitney U Test, p<2.2e-16) 64, but could also indicate some regulatory 

mechanisms, e.g. alternative usage of the promoter region of a partner gene. 

For different cancer types, the total number of fusions per sample varies from 0 to 60, 

with a median value of one (Figure S1). Cancer types having the fewest number of fusions per 

sample are kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal 

papillary cell carcinoma (KIRP), low grade glioma (LGG), pheochromocytoma and 

paraganglioma (PCPG), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), 

thymoma (THYM), and uveal melanoma (UVM), each with a median of zero. Other cancer types 

show a range of medians between 0.5 and 5 fusions per sample, although most samples 

demonstrate zero or only one inframe, disruptive fusion relevant to oncogenesis. 

Frequencies of recurrent fusions found in each cancer are illustrated in Figure 1C (Table 

S1). The most recurrent example within any cancer type was TMPRSS2--ERG in prostate 

adenocarcinoma (PRAD, 38.2%). We found FGFR3--TACC3 to be the most recurrent fusion in 

BLCA (2.0%), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC, 

1.7%), and lung squamous cell carcinoma (LUSC, 1.2%). Other top recurrent fusions include 
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EML4--ALK in lung adenocarcinoma (LUAD, 1.0%), CCDC6--RET in THCA (4.2%), and 

FGFR2--BICC1 in cholangiocarcinoma (CHOL, 5.6%). 

Fusion gene expression in oncogenes and tumor suppressors 
 

Fusion events may be associated with altered expression of one or both of the fusion gene 

partners, a well-known example being multiple myeloma tumors in which translocation t(4;14) 

fuses the highly-expressed IGH locus with the tyrosine protein kinase FGFR3 65. We integrated 

gene expression, copy number, and fusion annotations to systematically test for associations 

between gene expression and fusion status. 

For each fusion having an oncogene, kinase, or tumor suppressor (Table S2), we 

determined whether that sample was an expression outlier for that gene and subsequently 

examined resulting percentages of both under- and overexpressed genes in each cancer type 

(Table S3). Figure 2A shows that between 6% (mesothelioma, MESO) and 28% (KIRP) of 

kinase fusions displayed outlier overexpression of the kinase partner. Oncogenes tended to show 

higher likelihoods of overexpression, while tumor suppressors displayed lower likelihoods. 

Between 3% (breast invasive carcinoma, BRCA) and 38% (PCPG) of tumor suppressor gene 

fusions showed outlier under expression, generally higher than both oncogenes and kinases. 

Figure 2B illustrates the median percentile expression level of the most highly recurrent 

oncogenes and tumor suppressors involved in fusions (Table S3). Samples with fusions 

involving oncogenes, such as EGFR, ERBB2, and RET, showed increased expression of those 

genes relative to samples without fusions across cancer types. Most tumor suppressor genes 

(TSGs) showed inconsistent patterns of expression across cancer types. However, the global 

trend for TSGs is decreased expression compared to non-fusion samples. 
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Figure 2 Fusion expression outliers. (A) The dot plot indicates the percentage of fusions called in which one of the partner 
genes is an expression outlier (overexpression or underexpression). The size of the dot corresponds to the number of fusions 
called in each cancer type. Color corresponds to genes of interest coming from lists of oncogenes, protein kinases, and tumor 
suppressor genes. (B) The dot plot shows the relative expression level of samples with fusions compared to those without 
fusions. Each sample has a particular expression percentile at a given gene, and color indicates the median percentile of samples 
with a fusion in that gene. Genes are the fifteen most recurrent oncogenes and tumor suppressor genes. Size corresponds to the 
number of samples in each cancer type with a fusion at that gene. (C)-(D) Expression of samples at RET and CBFB in thyroid 
carcinoma (THCA) and acute myeloid leukemia (LAML), respectively. Color indicates a categorical copy number ranging from 
deep deletion to high amplification. 
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We also examined the relationship between TSG mutations and fusions to determine 

whether frequently-fused TSGs were also disrupted by other mutation types. A variety of 

patterns were noted. For example, TP53 is affected by mutations rather than fusions in most 

cancer types. However, in sarcoma (SARC), both fusions and mutations affecting TP53 were 

detected. In acute myeloid leukemia (LAML), several CBFB fusions but no mutations were 

observed, yet other cancer types also exhibited CBFB mutations (Table S3, Figure S2). Our 

results suggest that alternative mechanisms are utilized by tumor cells in a cancer type-specific 

manner. 

We also observed associations between fusion status and expression level in well-known 

fusions (Table S3), such as RET--NTRK1 in thyroid cancer, EML4--ALK in lung cancer 37, and 

DNAJB1--PRKACA in the fibrolamellar carcinoma subtype of liver cancer 50. RET fusions in 

thyroid carcinoma (THCA) and lung adenocarcinoma (LUAD) are inframe protein kinase 

fusions with overexpression of the 3’ RET oncogene (Fig. 2C). Recurrent CBFB--MYH11 fusions 

in LAML are significantly associated with decreased expression of the tumor suppressor CBFB, 

which functions as a transcriptional regulator 66 (Fig. 2D). 

In breast cancer, copy number amplification is a well-known mechanism of ERBB2 over-

expression and treatment of these HER2+ patients with trastuzumab is an established and 

effective targeted therapy 67. Interestingly, three out of four samples with ERBB2 fusions and two 

samples without a called fusion showed HPV integration within 1Mb of ERBB2 68. ERBB2 

fusion gene partners PPP1R1B and IKZF3 are genomic neighbors of ERBB2, suggesting that 

these fusions could be a by-product of local instability, potentially induced by the viral 

integration and subsequent breakage fusion events. By careful analysis of the association 
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between fusions and expression, we have identified strategies for improving both sensitivity and 

specificity of fusion calls. 

Structure and spectrum of kinase fusions 
 

Some oncogenic kinase fusions are susceptible to kinase inhibitors 37, suggesting that 

additional therapeutic candidates might be discovered by examining fusion transcripts involving 

protein kinase genes. In total, we detected 2,892 such events, comprising 1,172 with kinase at the 

3’ end (3’-kinase), 1,603 with kinase at the 5’ end (5’-kinase), and 117 with both partners being 

kinases (both-kinase) (Fig. 3A and Table S4). Analysis of the catalytic kinase domains using the 

UniProt/PFAM domain database (STAR Methods) showed that 1,275 (44.1%) kinase fusions 

retained an intact kinase domain (Fig. 3A). We further predicted open reading frames for these 

fusions and separated them into three categories with respect to the frame of the 3’ gene: 

inframe, frameshift, and no frame information (e.g. breakpoint at UTR, intron, or non-coding 

RNA). In general, there were more inframe fusions than frameshift fusions, especially for 3’-

kinase fusions, because preserving the reading frame is required to keep the kinase domain 

intact. For subsequent kinase analyses, we focused only on those 1,275 fusions having intact 

domains, further classifying the both-kinase group into 3’-kinase or 5’-kinase based on the 

position of the intact domain. 
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Figure 3 Protein kinase fusions. (A) The bar chart indicates the number of protein kinase fusions with the kinase at the 5’ or 3’ 
end, inframe or frameshift, and kinase domain intact or disrupted. (B) The left bar plot shows the percentage of samples with 
kinase fusions across different cancer types. The number of samples with a kinase fusion is also indicated at the end of each bar. 
5’ kinase and 3’ kinase fusions are marked in light green and blue, respectively. The right bar plot shows the normalized 
percentage of kinase fusions broken down by kinase groups. (C) The dot plot shows the numbers of samples for recurrent fusions 
across different cancer types. 5’ kinase and 3’ kinase fusions are marked in light green and blue, respectively. 
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Comparison of kinase fusions across different cancer types indicated that kinase fusions 

are significantly enriched in thyroid carcinoma (THCA, 35.6%, Fisher’s Exact Test, p < 

2.2e−16) (Fig. 3B). Moreover, the majority were 3’-kinase fusions (94.0%), a significantly 

higher percentage than what we observed in other cancer types (Fisher’s Exact Test, p < 

2.2e−16). We further divided these fusions into eight categories based on different kinase groups, 

including AGC, CAMK, CK1, CMGC, STE, TK, TKL. In general, we found that the percentages 

of different categories vary across cancer types (Fig. 3B). For example, there are more TK 

fusions in THCA and GBM, more CK1 fusions in uterine corpus endometrial carcinoma 

(UCEC), colon adenocarcinoma (COAD), and esophageal carcinoma (ESCA), and more AGC 

fusions in liver hepatocellular carcinoma (LIHC). Across different cancer types, we found an 

enrichment of TK and TKL kinase fusions for 3’-kinases, but no strong preference for 5’-kinases 

(Figure S3). 

Recurrent kinase fusions are of great interest as potential drug targets. Overall, we 

detected 744 5’-kinase and 531 3’-kinase fusions. Of these, 147 and 99 were recurrent, 

respectively, mostly across cancer types rather than within cancer types (Figure S3). As 

expected, fusions in the FGFR kinase family (FGFR2 and FGFR3) are the most frequent 5’-

kinase fusions, given their high recurrence in individual cancer types (Fig. 3C). WNK kinase 

family fusions (WNK1 and WNK2) were also detected in multiple cancer types. The WNK family 

is phylogenetically distinct from the major kinase families, and there is emerging evidence of its 

role in cancer development 69. Here, we found a total of 23 WNK family fusions, most of which 

resulted in higher expression of WNK mRNA (Figure S4). The increased expression was not 

generally accompanied by copy number amplification; for example, neither WNK1 nor WNK2 

were amplified in ESCA or LIHC. Incidentally, ERC1--WNK1 was also detected recently in an 
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independent Chinese esophageal cancer cohort 70. For 3’-kinase fusions, all the top 10 kinase 

genes are tyrosine kinases, most of which are enriched in THCA, including RET, BRAF, NTRK1, 

NTRK3, ALK, and REF1 (Fig 3C). FGR fusions were found in 7 samples the same partner gene 

WASF2, 5 of which showed higher expression of FGR gene. In these five samples, the 

breakpoints for the two genes are the same (5’UTR of both genes) resulting in usage of the 

stronger WASF2 promoter for the FGR gene. Interestingly, recurrent MERTK fusions are 

singletons in each individual cancer type with TMEM87B and PRKACA fusions are only 

observed in liver cancer with DNAJB1 (Figure S3). 

To further understand the regulation of kinase fusions, we compared the gene expression 

patterns between the kinase gene and partner gene. There are in total 1,035 kinase fusions with 

both gene expression and copy number data available. To control for the effect of copy number 

amplification on gene expression, we focused on the fusions with copy numbers between 1 and 

3, including 439 5’-kinase and 339 3’-kinase fusions (Fig. 4A-B). For 5’-kinase fusions, the 

kinase gene expression quantiles are uniformly distributed, indicating that the kinase gene 

expressions in the samples with fusion are not significantly different from the samples without 

fusion (Fig. 4A). However, 3’-kinase genes tend to show higher expression in samples with a 

fusion compared to the ones without. To explain this, we classified the fusion events into three 

categories based on the relative expression pattern between the kinase gene and its partner in 

samples from the same cancer type. Most (66.7%, 293/439) 5’-kinase fusions showed lower 

expression in the partner gene compared to the kinase. In contrast, 70.5% (239/339) of 3’-kinase 

fusions showed higher partner expression (Fig. 4A-B). Moreover, those 3’-kinase fusions 

involving a more highly expressed 5’ partner also show higher kinase expression (Fig. 4C). For 

example, we found a TRABD--DDR2 fusion in one head and neck squamous cell carcinoma 
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(HNSC) sample, which fused the stronger TRABD promoter with DDR2, resulting in its 

overexpression (Fig. 4D). This patient could potentially be treated using dasatinib, which targets 

overexpressed DDR2 in HNSC 71. DDR2 fusions were also detected in another 9 samples from 5 

different cancer types, which could be treated similarly given sufficient DDR2 overexpression 

(Table S1). 
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Figure 4 Kinase gene expression regulated by fusion. (A) The scatterplot shows the gene expression quantile (y-axis) for the 
5’-kinase without copy number variation (between 1 and 3 copies, x-axis). All genes are classified among three categories: kinase 
expression higher, equal, and lower, as compared to partner expression, marked in blue, grey, and red, respectively. The density 
plot for expression quantile is also shown on the right panel. (B) The scatterplot shows the gene expression quantile (y-axis) for 
the 3’-kinase without copy number variation (between 1 and 3 copies, x-axis). The colors represent the same three categories as 
(A). The density plot for expression quantile is also shown. (C) Boxplot comparing the distribution of kinase gene expression 
quantile between the three groups defined in (A) for 5’-kinase and 3’-kinase, respectively. (D) Schematic of TBABD--DDR2 
fusion gene structure in a HNSC sample, and scatter plot of DDR2 copy number versus mRNA expression in HNSC. The 
samples with and without this fusion are marked in red and blue, respectively. 
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Mutual exclusivity between fusions and mutations 
 

While mutations in oncogenes or tumor suppressors may lead to tumorigenesis, fusions 

involving those genes are also an important class of cancer driver events. We systematically 

profiled mutations and fusions in 299 cancer driver genes 7 (Table S2) to assess the contributions 

of fusion genes in carcinogenesis in the 8,963 TCGA patients that overlap between the mutation 

call set (Public MC3 MAF 72, Key Resources Table) and our fusion call set. We characterized 

patients as having a driver mutation, a mutation in a driver gene, and/or a driver fusion (fusion 

involving a driver gene). 

Although the majority of cancer cases have a known driver mutation (48.6%, mean 6.8 

mutations) or mutations in a driver gene (28.1%, mean 4.2 mutations), we found 8.3% have both 

a driver mutation and driver fusion event (mean 5.5 mutations and 1.2 fusions), 6.4% have both a 

mutation and fusion in a driver gene (mean 4.2 mutations and 1.3 fusions), and 1.8% have a 

driver fusion only (mean 1.1 fusions) (Fig. 5A). This distribution is consistent with the notion 

that only a few driver events are required for tumor development 9. 
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Figure 5 Mutual exclusivity between driver mutations and driver fusions. (A) The bar plot 
shows the percentages of samples with driver mutations only (green), mutations only (orange), 
driver mutation and fusion (blue), mutation and fusion (pink), or fusion only (light green) events 
in 299 cancer driver genes. (B) Distribution of mutation burden across each alteration group 
designated in all figures. (C) All samples with fusions or mutations in any of the genes indicated 
on the left are displayed on the x-axis. For each gene, samples are clustered by the alteration 
group. Bottom bar indicates cancer type. 
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We further examined the total number of mutations for samples and observed a low 

mutational burden in the group with driver fusion only, which is comparable with the group with 

no driver alterations (Fig. 5B). The significant decrease in the numbers of mutations (Mann-

Whitney U Test, p<2.2e-16) reflects the functionality of fusions across multiple cancer types. 

Moreover, within cancer types, we observed a range of 0.2% (HNSC) to 14.0% (LAML) of 

tumors with fusions but no driver gene mutations. Among those LAML tumors that have fusions 

and no driver gene mutations, we identified several well-recognized fusions relevant to leukemia, 

such as CBFB--MYH11 (number of samples=3), BCR--ABL1 (n=2), and PML--RAR (n=2). We 

also identified the leukemia-initiating fusion NUP98--NSD1 in two LAML tumors 73. 

We then examined the relationship of fusions and mutations in the same driver gene (Fig. 

5C). The result shows that when fusion events are present in a gene, mutations in the same gene 

are rarely found, supporting a pattern of mutual exclusivity of the two types of genomic 

alteration. This trend was observed across many patients and many cancer types. Our results 

suggest that a considerable number of tumors are driven primarily or solely by fusion events. 

Contributions of fusions to cancer treatment 
 

We investigated potentially druggable fusion events in our call set using our curated 

Database of Evidence for Precision Oncology (DEPO; Sun, et al. submitted) (Table S5). We 

defined a fusion as druggable if there is literature supporting the use of a drug against that fusion, 

regardless of cancer type (allowing for “off-label” drug treatment). We found potentially 

druggable fusions across 29 cancer types, with major recurrent druggable targets in PRAD 

(TMPRSS2, 205 samples), THCA (RET, 33 samples), and LAML (PML--RARA, 16 samples) 

(Fig. 6A). FGFR3 was a potential target (both on-label and off-label) in 15 cancer types. Overall, 
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we found 6.0% of samples (574/9,624 samples) to be potentially druggable by one or more 

fusion targeted treatments. Further study of fusions in human cancer will facilitate the 

development of precision cancer treatments. 
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Figure 6 Druggable fusion targets. (A) The bar chart indicates the number of samples potentially 
treatable based on their fusion status. (B) Percentages of LUAD samples with known smoking 
status. (C) ESR1 domains kept in ESR1 fusions across cancer types. (D) ALK expression across 
cancer types indicating ALK fusion status. 
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We analyzed patterns of fusion druggability in LUAD, stratifying by smoking status. In 

this data set, 15% of LUAD samples (75 out of 500 samples with known smoking status) were 

never smokers, while a significantly higher percentage of never smokers (15 out of 75 samples) 

vs. smokers (9 out of 425 samples) were found to have a druggable fusion (Chi-square test, 

p<1e-6) (Fig. 6B). Several FDA approved drugs exist to target ALK fusions in lung and other 

cancer types. We observed ALK fusions in 20 samples from 8 cancer types (5 samples in 

LUAD). In most cases, fusion status corresponded to copy number neutral overexpression of 

ALK (Fig. 6D). In 17 out of 20 cases, ALK was the 3’ partner of the fusion pair, with EML4 being 

the most frequent 5’ partner (7 out of 17). 

ESR1 encodes an estrogen receptor with important and druggable relevance to breast 

cancer 74. We detected ESR1 fusions in 16 samples from 5 different cancer types (9 samples from 

BRCA). Of the 9 BRCA samples, 8 are known be from the Luminal A or B subtypes. We 

observed strict mutual exclusivity between ESR1 mutations and fusions (Fig. 5C). Of the 16 

fusions, 11 have ESR1 at the 5’ end, and 5 at the 3’ end. When ESR1 is the 5’ gene in the fusion, 

the transactivation (AF1) domain is always included (Fig. 6D). When ESR1 is the 3’ gene, the 

transactivation (AF2) domain is always included. Those samples with ESR1 fusion tend of have 

higher ESR1 expression, especially in the 9 BRCA samples (Figure S5). Similarly, ESR1 

expression is higher when ESR1 is mutated in BRCA, CESC, and UCEC, which are all hormone 

receptor related cancer types 75-77. Further functional study to determine the mechanism of ESR1 

fusions could suggest drug development directions. 

Immunotherapy based on tumor-specific neoantigens shows promise in treating cancer 

patients 78. Gene fusions found in tumor cells can generate peptides, which may serve as 

neoantigen candidates. However, patients with known driver fusions may be poor candidates for 
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immunotherapy due to their reduced mutational burden, especially without clear evidence of 

immune cell infiltration and overall immunogenicity. As an exploratory and speculative analysis, 

we investigated neoantigens produced by gene fusions 79. On average, there were 1.5 predicted 

neoantigens per fusion across different cancer types (Figure S6 and Table S5). The mean number 

of predicted neoantigens per fusion ranged from 0.33 in KICH to 2.88 in THYM. We also 

compared the number of neoantigens for inframe and frameshift fusions (Figure S6). Results 

show that frameshift fusions can generate more immunogenic epitopes than inframe fusions 

(mean value: 2.2 vs 1.0), though nonsense mediated decay might reduce some of this potential 

difference. 

We further investigated seven fusions for which there were at least four samples having 

one or more neoantigen candidates (Figure S6). In particular, TMPRSS2--ERG, CCDC6--RET, 

and FGFR3--TACC3 have the highest number of samples with predicted neoantigen candidates. 

Our results show that the fusion product is only immunogenic in a small subset of patients, 

especially for TMPRSS2--ERG fusions. Again, without clear evidence of immune cell infiltration 

and overall immunogenicity, any fusion neoantigen analysis remains exploratory and 

speculative. 

Discussion 
 
In this study, we applied multiple RNA-Seq fusion callers, namely STAR-Fusion, EricScript, and 

Breakfast, followed by a stringent filtering strategy, to identify potential driver fusion events 

across 33 cancer types. We were able to successfully identify 95.5% of fusions reported in 

TCGA marker papers. While existing studies have published fusion calls across the TCGA 

cancer cohort 37,60, we have improved on prior analyses by integrating results across multiple 
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fusion callers and by applying stringent filtering to derive a confident dataset of fusion events 

from 9,624 tumor samples. Importantly, we investigated the biology and evaluated the 

significance of fusions in the cancer context. Of the 25,664 fusions we detected, 18.2% could be 

tested for validation using available whole-genome sequencing data, leading to a 63.3% 

validation rate. 

By integrating gene expression, copy number, and fusion annotation data, we evaluated 

the biological and therapeutic implications of fusion events. Kinase and oncogene related fusions 

tended to be overexpression outliers, while fusions involving tumor suppressor genes showed the 

opposite effect overall. When comparing fusion events to the remainder of the cancer cohort, 

fusions involving oncogenes such as EGFR, ERBB2, and RET had increased expression. 

Overexpressed fusions, especially inframe kinase fusions, are commonly targeted for therapy due 

to their susceptibility to kinase inhibitors. 

For all 2,892 kinase fusions, we translated the resulting peptide sequence, finding that 

1,275 had functional catalytic kinase domains. Comparison of kinase fusions across different 

cancer types showed that THCA has significantly more kinase fusions, most of which were 3’ 

kinase fusions. In addition to well-known recurrent fusions like FGFR3--TACC3, we also 

detected 245 kinases with recurrent fusions to different partner genes, which may ultimately 

prove to be successful drug targets. 

We showed that a meaningful percentage of patients (16.8%) harbor fusions involving 

cancer driver genes but have no driver gene mutations. Notably, 6.0% of cancer patients could 

potentially benefit from existing drugs targeting fusion products. Moreover, our analysis also 

highlights an important consideration for immunotherapy treatment in patients with fusions. The 
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significant decrease in mutational burden observed in patients with fusions in driver genes points 

toward a reduced efficacy of immunotherapy in these patients, despite fusion peptides 

themselves potentially being good immunogenic targets. Many fusions are already known to be 

drug targets. 

Our study demonstrates the necessity of performing fusion analysis across multiple 

cancer types. Our approach integrated the results of multiple fusion calling algorithms, lending 

confidence to fusions with lower levels of RNA-seq read support that might otherwise have been 

discarded. We sought to prioritize fusions relevant to cancer by highlighting their association 

with gene expression, potential for targeted therapy, and role in cancer hallmark pathways. 

Fusion allele frequency is an elusive measure from RNA-Seq data and tracking the clonal 

evolution of fusions within a tumor remains an exciting opportunity for study. Fusions play an 

increasingly appreciated role in tumorigenesis and progression and represent an important source 

of improved treatment options. Ultimately, our multi-tool, integrative bioinformatic detection 

approach helps to define the universe of fusions in cancer. Further, it reminds us that developing 

robust and widely applicable clinical diagnostic approaches that can document fusions across 

cancer types is vital. Such approaches are critical to identifying those patients who can benefit 

from both established treatments and clinical trials. 

Methods 

Dataset description 
 

Aligned RNA-Seq bam files were analyzed using the ISB Cancer Genomics Cloud 

(https://isb-cgc.appspot.com/). These 33 cancer types included in this study are adrenocortical 

carcinoma [ACC], bladder urothelial carcinoma [BLCA], brain lower grade glioma [LGG], 
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breast invasive carcinoma [BRCA], cervical squamous cell carcinoma and endocervical 

adenocarcinoma [CESC], cholangiocarcinoma [CHOL], colon adenocarcinoma [COAD], 

esophageal carcinoma [ESCA], glioblastoma multiforme [GBM], head and neck squamous cell 

carcinoma [HNSC], kidney chromophobe [KICH], kidney renal clear cell carcinoma [KIRC], 

kidney renal papillary cell carcinoma [KIRP], acute myeloid leukemia [LAML], liver 

hepatocellular carcinoma [LIHC], lung adenocarcinoma [LUAD], lung squamous cell carcinoma 

[LUSC], lymphoid neoplasm diffuse large B-cell lymphoma [DLBC], mesothelioma [MESO], 

ovarian serous cystadenocarcinoma [OV], pancreatic adenocarcinoma [PAAD], 

pheochromocytoma and paraganglioma [PCPG], prostate adenocarcinoma [PRAD], rectum 

adenocarcinoma [READ], sarcoma [SARC], skin cutaneous melanoma [SKCM], stomach 

adenocarcinoma [STAD], testicular germ cell tumors [TGCT], thymoma [THYM], thyroid 

carcinoma [THCA], uterine carcinosarcoma [UCS], uterine corpus endometrial carcinoma 

[UCEC], and uveal melanoma [UVM]. The sample set consists of 10,331 total TCGA samples, 

9,624 tumor samples, and 713 normal samples. 

Level-3 gene expression (RSEM) and segment-based copy number data were 

downloaded from Broad GDAC firehose (https://gdac.broadinstitute.org) (version: 2016_01_28). 

Gene-based copy number data were obtained by intersecting with RefSeq gene annotation bed 

file (version: 2013-07-27). Mutation calls were provided by the Multi-Center Mutation Calling in 

Multiple Cancers (MC3) working group within TCGA 72 (Key Resources Table). 

Fusion detection and filtering 
 

TCGA RNA-Seq data were downloaded from Cancer Genomics Hub (CGHub, 

https://cghub.ucsc.edu) and analyzed using the ISB Cancer Genomics Cloud (https://isb-
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cgc.appspot.com/). For each sample, the fastq file was mapped to the human genome (build 38) 

followed by fusion calling using STAR-Fusion (parameters: --annotation --coding-effect), 

EricScript (default parameters) ( https://sites.google.com/site/bioericscript/) and BREAKFAST 

(two different minimum distance cut-offs were used: 5 kb and 100 kb) 

(https://github.com/annalam/breakfast). STAR-Fusion showed higher sensitivity in detecting the 

fusions reported in previous TCGA studies. Therefore, we focused on the STAR-Fusion output 

and integrated EricScript and BREAKFAST output in one of the following filtering steps: 1) an 

exclusion list of genes was curated, including uncharacterized genes, immunoglobulin genes, 

mitochondrial genes, etc. Fusions involving these genes were filtered; 2) Fusions from the same 

gene or paralogue genes (downloaded from https://github.com/STAR-Fusion/STAR-

Fusion_benchmarking_data/tree/master/resources) were filtered; 3) Fusions reported in normal 

samples were filtered, including the ones from TCGA normal samples, GTEx tissues, and non-

cancer cell study 62; 4) For the fusions reported by only STAR-Fusion, a minimum value of 

FFPM > 0.1 (fusion fragments per million total reads) was required, as suggested by the authors; 

for the fusions reported by two or more callers, no minimum FFPM was required. 5) Finally, 

fusions with the same breakpoints in ³10 samples across different cancer types were removed 

unless they were reported in previous TCGA studies. 

Validation of fusion transcripts 
 

For fusion events where low-pass whole genome sequencing data or whole genome 

sequencing (WGS) data were available from the ISB Cancer Genomics Cloud (https://isb-

cgc.appspot.com/), we obtained high quality (-q 20) reads mapping to each partner gene and the 

100kb region up and downstream using SAMtools. At least 3 discordant reads from WGS were 

required to determine if the fusion prediction was validated.   
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Gene expression analysis 
 

We collected gene expression, copy number, and fusion annotations to test for 

associations between gene expression and fusion status. We used Tukey’s definition of outliers 

to determine if the expression level at a given gene was an outlier or not. An overexpression 

outlier means the sample’s expression level at a given gene was greater than (75th percentile) + 

1.5*IQR, where IQR is the interquartile range. An underexpression outlier means the sample’s 

expression level at that gene was less than (25th percentile) - 1.5*IQR. To test for a significant 

association between expression and fusion status, we calculated p-values using both a t-test and 

Fisher’s Exact Test. If either of those results passed stringent FDR multiple test correction, three 

or more fusions were reported, and if the median expression of the fusions was in the top or 

bottom decile of the data, we reported those genes for manual review.  

Protein kinase fusion analysis 
 

We curated a list of kinase genes from previous publications and public databases (Table 

S5). Then we compared this list with UniProt/PFAM domain database 

(http://www.uniprot.org/database/DB-0073) to retain the ones with an annotated kinase domain. 

For the fusions involving kinase genes, we used AGFusion 

(https://github.com/murphycj/AGFusion) to check whether the annotated kinase domain was still 

present in the fusion transcript to separate them into fusions with an intact kinase domain versus 

those with a disrupted kinase domain. We compared the breakpoint positions in each fusion with 

the annotation file to check whether the breakpoint was in the 5’UTR, CDS, or 3’UTR region. 

Kinase genes are classified into eight groups: AGC, CAMK, CK1, CMGC, STE, TK, TKL, and 

others based on the PhosphoSite Database 80. The percentage of kinase genes in each group 
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across different cancer types was defined as the number of kinase genes with fusions in each 

group divided by their sum, denoted as 𝑝". For each cancer type, the number of kinase genes in 

each group was first normalized by 𝑝", denoted as 𝑛". Then each number was divided by their 

sum 𝑛"/∑𝑛" to calculate a normalized percentage of kinase genes in each group. 

Neoantigen prediction 
 

For each predicted fusion, we obtained translated protein sequences for novel transcripts 

from STAR-Fusion. The wild-type protein sequences are obtained from Ensembl Database. We 

constructed different epitope lengths (8-11mer) from the translated protein sequence. Each 

sample’s HLA type comes from the TCGA Pan-Cancer Immune Group (Synapse ID: 

syn5974636). We predicted the binding affinity between epitopes and the major 

histocompatability complex (MHC) using NetMHC4 79. Epitopes with binding affinity £ 500nM 

which are also not present in the wild-type transcript are reported as neoantigens. We required at 

least 5 splitting reads for supporting junctions to filter fusions with low expression. 

Mutual exclusivity analysis 
 

For TCGA tumor samples where both MC3 72 (Key Resources Table) mutation calls and 

gene fusion calls were available, we obtained the genetic alteration events, including fusion, 

inframe deletion, inframe insertion, missense mutation, nonsense mutation, nonstop mutation, 

splice site mutation, and translation start site mutation in 299 driver genes. We separated all the 

genomic alterations and events into “driver mutation”, “mutation”, and “fusion” categories, and 

compiled a genomic alteration profile for each sample. To test if the total number of mutations 

are significantly different among groups, we took samples without mutations in the following 

genes: POLE, MLH1, MLH3, MGMT, MSH6, MSH3, MSH2, PMS1, and PMS2, to exclude the 
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confounding factor stemming from microsatellite instability. We then calculated p-values by 

using Mann-Whitney U Test. 

DEPO 
 

DEPO is a curated list of druggable variants filtered such that each variant corresponds to 

one of several categories: single nucleotide polymorphisms or SNPs (missense, frameshift, and 

nonsense mutations), inframe insertions and deletions (indels), copy number variations (CNVs) 

or expression changes. Each variant/drug entry in DEPO was paired with several annotations of 

potential interest to oncologists. DEPO is available as a web portal 

(http://dinglab.wustl.edu/depo).  
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Chapter 3: Evolution and structure of 
clinically relevant gene fusions in multiple 

myeloma 
 

Our work, Evolution and structure of clinically relevant gene fusions in multiple 

myeloma, has been accepted for publication in Nature Communications (2020). Please refer to 

the publication for supplementary table information. Contributions: As first author, SMF 

developed the fusion calling and filtering pipeline, analyzed all data, made all figures, wrote the 

manuscript, and was responsible for all revisions. 

Abstract 
 

Multiple myeloma is a plasma cell blood cancer with frequent chromosomal 

translocations leading to gene fusions. To determine the clinical relevance of fusion events, we 

detect gene fusions from a cohort of 742 patients from the Multiple Myeloma Research 

Foundation CoMMpass Study. Patients with multiple clinic visits enable us to track tumor and 

fusion evolution, and cases with matching peripheral blood and bone marrow samples allow us 

to evaluate the concordance of fusion calls in patients with high tumor burden. We examine the 

joint upregulation of WHSC1 and FGFR3 in samples with t(4;14)-related fusions, and we 

illustrate a method for detecting fusions from single cell RNA-seq. We report fusions at MYC 

and a neighboring gene, PVT1, which are related to MYC translocations and associated with 

divergent progression-free survival patterns. Finally, we find that 4% of patients may be eligible 

for targeted fusion therapies, including three with an NTRK1 fusion. 
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Introduction 
 

Fusions are a type of somatic alteration leading to cancer associated with up to 20% of 

cancer morbidity.5,6 Translocations, copy number changes, and inversions can lead to fusions, 

dysregulated gene expression, and novel molecular functions. Fusions occur and have oncogenic 

roles in hematological, soft tissue, and solid tumors. Fusion rates differ across cancer types, and 

fusions may define some cancer types, such as BCR--ABL1 in chronic myeloid leukemia (CML). 

A balanced translocation t(9;22) leads to BCR--ABL1, producing a hybrid protein with 

constitutive ABL1 kinase domain activation, signaling cell division and avoiding apoptosis. 

Imatinib inhibits the BCR--ABL1 protein hybrid and in 2001 became the first FDA-approved 

drug to specifically target a fusion protein.5 

Multiple myeloma (MM) is the second most common blood cancer (10% of blood 

cancers, 1-2% of all cancers) and involves the clonal proliferation of bone marrow plasma cells, 

which are fully differentiated B cells. B cells produce a diverse repertoire of antibodies through 

genomic alterations at immunoglobulin (Ig) loci, including VDJ recombination, somatic 

hypermutation, and class switch recombination. Aberrant class switch recombination may result 

in translocations upregulating oncogenes. Ig enhancers get repurposed to drive oncogene 

expression, myeloma tumorigenesis, and clonal expansion.81 

Tumor initiating genomic changes may already be present at the pre-malignant stages of 

MM include monoclonal gammopathy of undetermined significance (MGUS) and smouldering 

MM (SMM). Primary genomic events in MM distinguish patient groups having hyperdiploidy 

(HRD, approximately 50%) and non-hyperdiploidy (non-HRD). Non-HRD patients typically 

have a different primary event, like an Ig translocation. CCND1 (chr11) and WHSC1 (chr4) are 
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the two most common translocation partners of IGH (chr14). Patients may have both HRD and 

translocation events, and secondary events like t(8;14) dysregulating MYC are associated with 

progression.65,82 

Previous studies used RNA-seq to catalogue fusion events from over 9,000 patients and 

33 cancer types from The Cancer Genome Atlas (TCGA).35,37,38 False positives due to library 

preparation or bioinformatic errors must be filtered. Overlapping fusion calls from multiple tools 

can establish concordance. Low expression or low quality RNA may cause false negatives, and 

translocations may affect expression but not produce detectable fusion transcripts. In myeloma, 

plasma cell Ig gene expression dominates the transcriptome and masks lower expression fusions. 

Multi-omic approaches with DNA and RNA resolves some limitations.5 

Large-scale sequencing efforts to understand multiple myeloma have demonstrated 

genomic heterogeneity beyond primary copy number and translocation events.83-86 Several fusion 

detection studies show complementary results. Cleynen, et al. detected gene fusions from 255 

newly diagnosed MM patients, finding significant relationships between fusions and gene 

expression, hyperdiploidy, and survival, and identifying recurrent fusion gene partners.87 Nasser, 

et al. analyzed MMRF CoMMpass RNA-seq data, reconstructed Tophat-Fusion transcripts, and 

validated fusions with WGS. 88 Lin, et al. used targeted RNA-seq in 21 MM patients, finding 

several novel fusions with disease relevance.89 Morgan, et al. used targeted sequencing of 

kinases to understand how translocations dysregulate kinase activity in MM.90 

Here, we extend previous efforts by focusing on the clinical implications and evolution of 

fusions across multiple time points. We leverage RNA and DNA sequencing as well as clinical 

data types to analyzed fusion genes we detected from the Multiple Myeloma Research 
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Foundation (MMRF) CoMMpass Study. We analyze fusion genes and gene expression patterns 

from 742 multiple myeloma patients (806 samples). Patient samples from serial clinic visits 

enable tumor evolution profiles using fusions and mutations. Further, from patients with both 

bone marrow and peripheral blood samples collected at the same time, we quantify the 

concordance of their fusion profiles. We demonstrate fusion event detection at single cell 

resolution using barcoded scRNA-seq data, pointing to future development of fusion methods. 

We explore the prognostic relevance of fusions by analyzing progression-free survival and find 

that those with IGH--WHSC1 or PVT1--IGL fusions have significantly worse outcomes. 4% of 

patients have a fusion annotated as a drug target in a public database. 

 

Results 
 

Fusion calling pipeline and clinical characteristics 
 

We detected gene fusions from 742 patients from the Multiple Myeloma Research 

Foundation (MMRF) CoMMpass Study (see Data availability), combining RNA and DNA 

sequencing data with clinical information to form a landscape of fusion events (Fig. 1, 

Supplementary Figure 1, Supplementary Tables 1-3). We ran five fusion detection tools, 

implemented strict filtering criteria, and quantified gene expression to correlate with gene 

fusions (see Methods). We used WGS to detect structural variants and copy number changes 

potentially related to fusions. Sequencing-based FISH (seq-FISH) results showed major 

translocations and copy number changes such as hyperdiploidy.91 We defined a primary sample 

for each patient as the earliest available sample and favored bone marrow (BM) over peripheral 

blood (PB) (740 BM, 2 PB). For 97.2% of patients (721/742 patients), the primary sample 
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corresponded with the pre-treatment clinic visit. 53 patients had RNA-seq from multiple samples 

(BM and PB from the same visit or data from serial visits), for a total of 806 RNA-seq samples. 

Results come from primary samples only, unless otherwise stated. 
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Figure 1. Overview of pipeline and fusions reported. a. Project pipeline. b. Recurrent fusions 
with at least one sample’s fusion supported by WGS. The asterisk (*) annotation refers to 
reciprocal fusions with the opposite orientation of the canonical fusion led by an Ig partner gene. 
c. Number of fusions detected per sample, stratified by hyperdiploid status. Source data are 
provided as a Source Data file. 
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Supplementary Figure 1. Related to Figure 1. a. Number of fusions detected per sample, 
stratified by hyperdiploid status. b. Fusion caller overlap after filtering. Source data are provided 
as a Source Data file. 



52 
 

The cohort ranged from 27 to 93 years old (median 63) (Supplementary Table 1). Patients 

were spread evenly across ISS Stage, with 34.7% of patients from Stage I (247/711 patients with 

annotated stage), 35.7% Stage II (254/711), and 29.5% Stage III (210/711). Follow-up for 

progression-free survival ranged from 8 days to 5.7 years (median 2.23 years) with 60.3% of 

patients progressing (402/667 patients with PFS). Follow-up for overall survival ranged from 8 

days to 6.43 years (median 3.19 years) with 27.4% of patients dying (182/665 patients with OS). 

ISS Stages I, II, and III patients had median PFS of 3.85 years, 2.47 years, and 1.76 years, 

respectively. 58.1% of patients showed a hyperdiploidy (373/642 patients with annotated HRD 

status). 77.1% of patients had ancestry reported as White (512/664 patients with annotated 

ancestry), 15.8% Black (105/664), and 7.1% Other (47/664). Most patients were treated initially 

with a proteasome inhibitor (bortezomib or carfilzomib) and an immunomodulatory drug (IMID) 

(68.4%). Others received a proteasome inhibitor-based regimen (25.9%) or an IMID (5.7%). 

41.4% of patients received a bone marrow transplant (305/737 with transplant annotated) during 

first-line therapy. Supplementary Table 1 summarizes clinical information. 

Immunoglobulin gene fusions are most frequent 
 

IGH--WHSC1 was the most common fusion reported; it results from t(4;14) typically 

observed in 15% of patients.65 IGH--WHSC1 or WHSC1--IGH were found in 12.4% of samples 

(92/742 samples). 79.7% of IGH--WHSC1 fusions showed WGS support (47/59 patients with 

WGS data) (see Methods). Figure 1b shows the top recurrent fusions with at least one fusion 

supported by WGS. Ig fusions (IGH, IGK, or IGL) were reported frequently (35.6%, 1102/3094 

fusions) with upregulated partner genes. 
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Our pipeline reported fusions between Ig loci and MYC or its downstream neighbor 

PVT1. MYC or PVT1 was usually the 5’ gene and paired with IGH, IGK, or IGL, including 18 

samples with MYC--IGL, 11 with PVT1--IGL, 6 with PVT1--IGH, and 3 with PVT1--IGK (Fig. 

1b). One sample had IGH--MYC and one had IGL--PVT1. Past reports show MYC translocations 

with all three Ig loci.92 However, previous multiple myeloma fusion studies hypothesized that 

MYC fusions with Ig would not be detected from RNA-seq if there were no hybrid transcript 

generated after the translocation.87 Further study is necessary to determine whether these 

reported fusions are true events, biological by-products, or bioinformatic artifacts, and whether 

they confer functional or clinical significance. This will complement recent work showing the 

dysregulation of both MYC and PVT1 in the presence of super-enhancer translocations.93,94 

The number of fusions reported per sample ranged from 0 to 62 (median 3) (Fig. 1c, 

Supplementary Figure 1a), similar to breast, glioblastoma, ovarian, and prostate cancers from 

TCGA.35 Hyperdiploid samples had significantly fewer fusions reported than non-HRD samples 

(HRD mean 3.4, non-HRD 4.7, Mann-Whitney U test two-sided p-value 6.71x10-3). There were 

also significantly fewer Ig fusions between those groups (HRD mean 0.9, non-HRD 1.9, Mann-

Whitney U test two-sided p-value 7.88x10-8). We required two or more tools to agree upon a 

particular fusion call. We removed 18 highly recurrent IGL fusions with low WGS support (see 

Methods). After filtering, the overall WGS support rate was 22.3% (comparable to a previously 

reported pan-cancer support rate of 32.5% from samples with similar WGS coverage).35 Most 

fusions were called by two tools (73.3%, 2269/3094), while 17.9% (555/3094) were called by 

three or four tools, and 8.7% were called by all five tools (270/3094) (Supplementary Figure 1b). 
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Fusion gene expression highlights multiple myeloma biology 
 

Fusions may be associated with expression changes of the partner genes. We defined a 

sample’s expression percentile for each gene as their expression level relative to primary samples 

at that gene (see Methods). The median fusion expression percentile of a gene is the median 

expression percentile of samples with a fusion involving that gene. We identified 51 genes 

significantly overexpressed in fusion samples (FDR < 0.05 or median fusion expression 

percentile > 0.9) (Supplementary Table 4). Of those, 9 are cancer-related genes from any cancer 

type annotated as a driver, drug target, kinase, oncogene, or tumor suppressor (Fig. 2a), including 

FGFR3 (12 samples), MAPKAPK2 (5), MYC (19), NTRK1 (3), PAX5 (3), PIM3 (3), RARA (3), 

TXNIP (7), and WHSC1 (97).7 Expression levels may also identify samples with a false negative 

fusion call. 12 samples have outlier WHSC1 overexpression but no WHSC1 fusion reported, 

representing false negative IGH--WHSC1 fusions or indicating samples with t(4;14) but no 

fusion product formed. Of those 12 samples, 50% (5/10 with seq-FISH) have a WHSC1 

translocation with expression percentile over 0.87. The tumor etiology of samples with high gene 

expression but no fusion calls may still involve upregulated gene activity. Since gene expression 

is itself relevant to cancer biology and drug targeting, fusion analysis should always be paired 

with gene expression. 
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Figure 2. Expression of cancer-related genes. a. Significantly overexpressed fusion genes. b. 
Expression percentile distribution for different gene classes. c. 5’ and 3’ gene expression of 
fusions with intact 3’ kinase genes. The two empty circles have no expression value for the 5’ 
gene (IGH, IGL). Labels refer to genes appearing more than once. Source data are provided as a 
Source Data file. 
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Samples with fusions involving kinases, oncogenes, and tumor suppressors show 

different trends in expression levels of those genes (Fig. 2b). Gene expression of fusion 

oncogenes tended to be higher relative to other samples, fitting the biological context of 

oncogenes being deleterious when upregulated. Tumor suppressors, which may be disrupted in 

cancer in many different ways, displayed no trend of up- or downregulation. Kinases showed a 

skewed preference toward upregulation and are an important type of gene with implications for 

cancer development and drug targeting. We investigated the correlation between 5’ and 3’ 

partner gene expression when the 3’ partner gene is a kinase and contains an intact kinase 

domain (see Methods) (Fig. 2c, Supplementary Table 5). In this subset of fusion partners, the 

positive correlation between 5’ and 3’ gene expression is somewhat higher than that of the 

overall background (0.454 vs. 0.352), indicating a pattern of selection for overexpressed kinase 

fusion partners. Recurrent 3’ kinases with intact domains included: MAP3K14 (13 patients), 

CSNK1E (7), NTRK1 (3), ADK (2), BRAF (2), DGK1 (2), and NEK7 (2). 

We tested for associations between clinical data (including age, sex, ancestry, ECOG 

performance, ISS stage, bone lesions, plasmacytoma, bone marrow plasma cell percentage, and 

LDH) and fusion genes observed in 3 or more samples (see Methods). After FDR correction and 

assessment of model fit, no clinical measures were significantly associated with fusion events. 

To understand the relationship between fusion events and prognosis in this cohort, we analyzed 

survival in patients with and without particular fusions or fusion genes. We created baseline PFS 

multivariate Cox proportional hazards models, including disease stage and patient age as 

covariates. For each fusion or fusion gene observed in 10 or more samples, we added the event 

as a covariate and tested for significant improvement in model fit using a chi-squared test. 

WHSC1 and PVT1 fusions were significantly associated with worse prognosis (Supplementary 
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Figure 2a-c). The estimated hazard ratio (HR) for a WHSC1 fusion was 1.43 (95% CI 1.07-1.90; 

two-sided z-score p-value 0.0157). For PVT1 fusions, the estimated HR was 2.01 (95% CI 1.17-

3.46; two-sided z-score p-value 0.0114). For PVT1--IGL specifically, the HR estimate was 3.42 

(95% CI 1.75-6.69; two-sided z-score p-value 0.000324). After including R-ISS and common 

translocations as covariates in the model, no fusion events or fusion genes were significantly 

associated with PFS, likely due to confounding introduced by translocation events directly 

associated with fusions. Total fusion burden was associated with worse prognosis; each 

additional fusion was associated with a slight decrease in PFS (HR estimate 1.02; 95% CI 1.00-

1.04; two-sided z-score p-value 0.0178), after controlling for disease stage and patient age 

(Supplementary Figure 2d). 
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Supplementary Figure 2. Related to Figures 1, 5, 6. a-f. Progression-free survival (PFS) 
models using multivariate Cox proportional hazards. Error bars indicate a 95% confidence 
interval on each hazard ratio estimate. Covariate p-values derived from z-scores are two-sided. 
Source data are provided as a Source Data file. 
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 Patients are stratified into risk groups by genomic events like amp(1q), del(17p), t(4;14), 

t(14;16), and t(14;20) using mSMART criteria.95 Patients with multiple high risk events have 

worse prognosis.96 Walker et al. identified a subgroup of patients with especially poor outcomes 

having biallelic TP53 inactivation (for example, del(17p) and inactivating mutation) or Stage III 

disease and high copy number of CKS1B (1q21).97 In our data, we defined a double hit group of 

patients with both amp(1q) and del(17p). The median PFS time for this group was 581 days (19 

patients, 14 progressed). 5 patients with an additional t(4;14) event and IGH--WHSC1 fusion had 

median PFS of 142 days (5 patients, 4 progressed). Ongoing research with larger sample sizes 

and longer follow-up will enable more robust survival modeling utilizing genomic events to 

define progression and overall survival risk.98 

Fusions from multiple time points highlight tumor evolution 
 

53 patients had additional samples allowing for within-patient comparisons across time 

(serial visits) or from different tissue sources (bone marrow, BM; peripheral blood, PB). 45 

patients had BM samples from serial visits, and we compared fusions from the first two visits 

(Fig. 3a, Supplementary Figure 3). When initiating clonal fusion IGH--WHSC1 was detected at 

the earlier visit, it was always detected at the later visit (6/6 patients). In one patient (1/39 

patients), IGH--WHSC1 was observed only at the later visit, but WHSC1 expression at the earlier 

visit was above the 98th percentile, indicating a likely t(4;14) and false negative fusion call. 
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Figure 3. Fusions detected from multiple clinical samples and fusion evolution. a. Number of fusions called at 
serial clinic visits. Shaded region indicates a 95% confidence interval on the regression line. b. Overlap of fusions 
called from bone marrow (BM) and peripheral blood (PB) from the same clinic visit with normalized Hamming 
distance (range 0-1, 0 = perfect overlap, 1 = completely discordant). c. Fusions from cancer-related genes detected at 
serial clinic visits. d. Somatic mutations from cancer-related genes detected at serial clinic visits. Genes frequently 
mutated in multiple myeloma are labeled. Source data are provided as a Source Data file. 
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Supplementary Figure 3. Related to Figure 3. Expression percentile of cancer-related genes 
(marked with *) in patients with samples from multiple clinic visits or tissue sites (bone marrow, 
BM, or peripheral blood, PB). Tumor purity of PB samples was not quantified. Source data are 
provided as a Source Data file. 
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For some samples with sufficient PB tumor burden, such as patients with plasma cell 

leukemia, both BM and PB samples had RNA-seq. In this subset, we compared fusions detected 

from both samples from the same visit (Fig. 3b) (10 patients, 11 visits). IGH--WHSC1 events 

were always detected in both or neither sample. Overall, more fusions were reported from BM 

samples than PB samples. We calculated the normalized Hamming distance between each pair of 

samples to quantify their overlap. Values ranged from 0.33 in pairs sharing 2 out of 3 fusions to 

1 in completely discordant pairs. Previous studies have shown that tumor cells derived from 

peripheral blood have highly similar somatic mutation and copy number profiles.99 Our 

comparison, limited to a subset of patients with high tumor burden, quantifies the fusion 

landscape consistency between BM and PB samples. 

Next, we considered the evolution of the fusion and mutation landscape between earlier 

and later clinic visits, especially in four patients illustrating different patterns of clonal changes 

(Fig. 3c-d). Analyzing the genetic changes and clonality structures that promote relapse remains 

important for understanding treatment response.100 MMRF 1433 had many more fusions reported 

at Visit 2 compared to Visit 1 (Fig. 3c), and the appearance of ATM and other mutations at Visit 

2 indicates a shift in clonal architecture (Fig. 3d). Low fusion expression at Visit 2 could indicate 

tumor heterogeneity or correspond to low tumor purity (66%). In MMRF 1496, the NRAS 

mutation at Visit 1 (VAF 0.673 with copy number loss) was not detected at Visit 3 (no mutation 

call or read-level evidence), meaning the NRAS mutant subclone was lost between visits. The 

CDC42BPB and MNAT1 fusions remained present, implying the hemizygous NRAS mutant 

subclone arose after or independently of those fusions. In MMRF 1656, there was one clonal 

missense mutation in kinase BCR and one important fusion event, TPM3--NTRK1. The absence 

of a known oncogenic driver mutation at Visit 1 may mean the NTRK1 fusion played a 
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tumorigenic role and could have been an ideal drug target high on the tumor evolutionary tree. 

By Visit 4, mutations in FAM46C, FGFR3, and KRAS were detected at or above 50% VAF, 

indicating a strong clonal expansion of the new mutations after diagnosis. In contrast, another 

patient with an NTRK1 fusion, MMRF 2490, had clonal mutations in well-known myeloma 

tumor suppressors EGR1 and DIS3, meaning that targeting the NTRK1 fusion alone may not 

have been sufficient. Those mutations as well as expression levels of the fusion gene indicate 

tumor stability. Measures of fusion allele frequency useful for tracking clonal dynamics remain 

complicated by lower detection power and consistency compared to mutations; confident 

assessment of fusion VAF from expression data is an area of ongoing research and may benefit 

from cross-platform data integration. Further, the clonal resolution possible from bulk RNA-seq 

can be improved by methods that detect fusion events from scRNA-seq data. 

Chimeric transcripts in scRNA-seq reveal single cell fusions 
 

Fusion detection from bulk RNA-seq returns a fusion list but little further resolution. To 

detect fusions in single cells or, more broadly, present in tumor subclones, we analyzed barcoded 

scRNA-seq data from in-house MM patients generated on the 10x Genomics Chromium platform 

3’ scRNA-seq protocol. Previous MM studies utilized scRNA-seq to investigate variation in 

heterogenous tumors, and AML mutations in single cells illustrated tumor specificity and 

subclonality.101,102 Our method detects chimeric transcripts associated with cell and molecule 

barcodes and map those to their cell of origin (see Methods). We analyzed scRNA-seq data from 

5 MM patients (8 samples). Patients had known translocations that guided our discovery, 

including one t(4;14), one t(8;14), and three t(11;14). The results reflect trends learned from bulk 

analysis but with additional, informative detail (Supplementary Figure 4). In samples with an 

initiating t(4;14), fusion events are readily detected and map to specific malignant plasma cell 
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subclones. In the patient with a secondary t(8;14) event, the t(8;14) subclone appears to be lost at 

relapse, emphasizing patterns of tumor heterogeneity and treatment response. Finally, although 

evidence of t(11;14) events is often observed in RNA and scRNA-seq due to upregulation of 

CCND1, actual IGH--CCND1 fusion transcripts may not be present or  reported at the RNA 

level, and we find a similar low detection rate of chimeric transcripts in scRNA. 
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Supplementary Figure 4. Related to Figure 4. a-b. Cell types and Fuscia scRNA-seq fusion 
discovery for Patient 27522 (primary, relapse) with t(4;14). Results from overlapping and non-
overlapping regions. c-d. Patient 56203 (primary, relapse) with t(8;14). e. Patient 47499 
(CD138+ sorted primary) with t(11;14). f. Patient 77570 (primary) with t(11;14). g-h. Patient 
81012 (primary, relapse) with t(11;14). Source data are provided as a Source Data file. 
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Quality control steps identified regions with high transcript overlap (see Methods). In 

these regions, true positive chimeric transcripts from real fusions may be detected in addition to 

chimeric transcripts attributed to high expression of certain genes. We confidently mapped one 

sample’s IGH--WHSC1 fusion events from non-overlapping genomic regions to single cells. This 

sample (Patient 27522, primary) comprised plasma cells (54.5%, 2477/4543 cells), monocytes 

(29.8%), B cells (6.6%), and CD4+ T cells, CD8+ T cells, and dendritic cells, each under 5% 

(Fig. 4a). We defined a high-confidence subpopulation of tumor cells harboring del(chr13) to 

evaluate the sensitivity of our approach. In that subpopulation, our non-overlap detection rate 

was 4.6% (54/1166 tumor cells) (Fig. 4b). Further, no fusions mapped to non-plasma cells. The 

expression pattern of WHSC1 and FGFR3 indicates upregulation across all plasma cells, 

although there is subregional variation (Supplementary Figure 5a-b). Since t(4;14) and IGH--

WHSC1 are often clonal, our method showed overall low detection power, possibly reflecting the 

sparsity and positional bias of 3’ scRNA-seq sequencing or the stringency of our quality control. 



67 
 

  

 

 
Figure 4. Single cell chimeric transcript detection. a. Cell types present from one patient’s 
scRNA-seq sample (27522 primary disease stage, with t(4;14)). b. Cells with chimeric 
transcripts detected from non-overlap regions. c. Mapping location of paired-end (bulk) or same 
barcode (scRNA-seq) reads. d. IGH--WHSC1 fusion transcription model. Source data are 
provided as a Source Data file. 
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Supplementary Figure 5. Related to Figure 4. a. Single cell expression of WHSC1. b. Single 
cell expression of FGFR3. c. Mapping location and number of ‘Chimeric Transcripts’ linking 
IGH with various ‘Partner’ genes which do not form real fusions with IGH except for WHSC1. 
Source data are provided as a Source Data file. 
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Fusion-support reads from bulk and scRNA-seq reads mapped to similar exonic locations 

along the IGH region and WHSC1 gene body (Fig. 4c) and illustrate some transcript 

heterogeneity. After t(4;14), transcription proceeds from chr14 (negative strand) (IGH region) to 

chr4 (positive strand) (WHSC1) (Fig. 4d). Reads mapping to the right of the t(4;14) breakpoint 

(vertical dotted black line) on both chromosomes support IGH--WHSC1. Reads mapping to the 

left are transcribed in the opposite direction and support WHSC1--IGH. Reads from non-

overlapping regions mapped to the IGHM, IGHJ, and IGHD regions of the IGH superlocus, 

precisely where IGH--WHSC1 and t(4;14) were detected from bulk sequencing. (Supplementary 

Figure 5c). 

Despite the resolution gained from single end scRNA-seq, we lose the benefits of paired 

reads used for fusion detection from bulk data. Our method demonstrates the potential utility and 

feasibility of mapping fusions to individual cells. Long-term implications include better 

understanding of tumor heterogeneity, subclonality, and the relationship of fusion events with 

gene expression and somatic alterations. Continued methods development, both in sample 

sequencing and fusion detection, building upon this early work is necessary to improve single 

cell fusion mapping accuracy and sensitivity. Future methods and data, especially full-length 

transcript scRNA-seq data, will elucidate complex expression changes due to MM translocations 

and fusions, which have only been analyzed in bulk RNA-seq. 

IGH translocations lead to dysregulated WHSC1 and FGFR3 
 

MM translocations juxtapose highly expressed immunoglobulin loci (IGH, IGK, and 

IGL) with oncogenes such as WHSC1 and MYC, leading to upregulation and tumor selective 

advantage. Neighboring genes may also be dysregulated through this process, like when WHSC1 
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and FGFR3 are both dysregulated with t(4;14). Typically, the t(4;14) translocation breakpoint on 

chr4 occurs between WHSC1 and its upstream neighbor FGFR3. Previous studies showed that 

WHSC1 and FGFR3 are both upregulated in around 70% of patients while the remaining 30% 

only have high WHSC1 expression.103 In our data, 93 patients had a reported IGH--WHSC1, 

IGH--FGFR3, or reciprocal fusion; all had high WHSC1 expression and 72.0% (67/93 patients) 

had FGFR3 overexpression (Fig. 5a). No samples had FGFR3 overexpression without t(4;14). 

Of patients with high FGFR3 expression and mutation calls, 15.3% (9/59 patients) had somatic 

mutations in FGFR3 (see Methods), all of which were copy number neutral at FGFR3. 

Interestingly, when we compared the DNA and RNA VAF of each FGFR3 mutation, the RNA 

VAF was always 2-4 times higher than the DNA VAF, indicating a strong pattern of allele 

specific expression in all 9 cases. We hypothesize that the FGFR3 mutant allele expression is 

driven by the 3’ enhancer of IGH located on the same allele as the mutation. In this scenario, 

expression of the translocation allele dominates the expression landscape, and the RNA VAF 

reflects the proportion of translocation alleles with the FGFR3 mutation. 
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Figure 5. t(4;14) WHSC1 and FGFR3 expression and survival patterns. a. Co-expression of 
WHSC1 and FGFR3, annotated with fusion and translocation status. b. FGFR3 copy number 
(log2 of the tumor/normal ratio). c. Multivariate Cox proportional hazards progression-free 
survival model including disease stage, age, and fusion status. Error bars indicate a 95% 
confidence interval on each hazard ratio estimate. Covariate p-values derived from z-scores are 
two-sided. d. Kaplan-Meier curve stratified by FGFR3 expression among fusion patients. 
Shaded regions indicate a 95% confidence interval on each survival curve. Significance p-value 
was calculated by two-sided log-rank test and uncorrected for multiple comparisons. Source data 
are provided as a Source Data file. 
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We then used available WGS translocation breakpoint and CNV data available from 34 

samples with a reported IGH--WHSC1 fusion. We observed no relationship between FGFR3 

expression status and the location of genomic or fusion breakpoints (Supplementary Figure 6a). 

Fusion samples with low FGFR3 expression had distinctly lower FGFR3 copy number (Fig. 5b) 

while corresponding WHSC1 copy number tended to remain neutral (Supplementary Figure 6b), 

suggesting a loss of FGFR3 after t(4;14) translocation.104 Genomic breakpoints near IGH ranged 

over 0.27 Mb on chr14, while the chr4 genomic breakpoints ranged over 0.07 Mb, occurring 

both upstream of and within the gene body of WHSC1. As expected, IGH--WHSC1 fusion 

breakpoints always occurred downstream of the genomic breakpoints on chr4, with three fusion 

breakpoint groups coalescing in the documented MB4-1, MB4-2, and MB4-3 regions of WHSC1 

(Supplementary Figure 6c).105 
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Supplementary Figure 6. Related to Figure 5. a. Breakpoint mapping locations at IGH and 
WHSC1, split by FGFR3 expression. b. WHSC1 and FGFR3 copy number in samples with IGH 
fusion. c. Breakpoint mapping location at WHSC1. d. FGFR3 DNA and RNA variant allele 
frequency (VAF) comparison. Source data are provided as a Source Data file. 
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Patients with pre-treatment IGH--WHSC1 showed poorer PFS in a multivariate Cox 

proportional hazards model compared to patients with the same ISS stage and age (HR 1.42; HR 

95% CI 1.02-1.98; two-sided z-score p-value 0.035880) (Fig. 5c). Among patients with IGH--

WHSC1, there was no difference in PFS between those with high and low FGFR3 expression 

(Fig. 5d, Supplementary Figure 2e). For the few patients with pathogenic FGFR3 mutation and 

available survival data (7 patients, 4 events), mutation status was not a significant model 

predictor, although the small sample size after stratification precludes any robust conclusion. 

MYC translocations lead to MYC and PVT1 fusions 
 

Samples with MYC mutations or Ig fusions involving MYC or its downstream neighbor 

PVT1 showed elevated MYC expression (Fig. 6a). 10 samples had a MYC mutation. MYC fusion 

breakpoints occurred across the MYC gene body while PVT1 fusion breakpoints were located 

mostly at its 5’ end; Ig breakpoints ranged across each Ig region (Supplementary Figure 7). 
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Figure 6. MYC translocation fusion partners and survival differences. a. MYC expression by 
MYC mutation or fusion status. b. Kaplan-Meier curves stratified by MYC mutation or fusion 
status. Shaded regions indicate a 95% confidence interval on each survival curve. Significance p-
value was calculated by two-sided log-rank test and uncorrected for multiple comparisons. 
Source data are provided as a Source Data file. 
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Supplementary Figure 7. Related to Figure 6. Fusion breakpoint mapping locations at Ig loci, 
MYC, and PVT1. Source data are provided as a Source Data file. 
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IGL translocations predict decreased survival in MM.92 Kaplan-Meier curves for PVT1--

IGL and MYC--IGL show that patients with PVT1--IGL had worse survival than the background 

(median PFS 190 days), while patients with MYC--IGL showed better survival with more 

censoring (median PFS not reached) (Fig. 6b). Further, only 18.2% of PVT1--IGL patients were 

ISS Stage I, while 43.8% of MYC--IGL patients were ISS Stage I. In a Cox model including ISS 

Stage and patient age, PVT1--IGL status had an estimated HR of 3.90 (95% CI 1.91-7.95; two-

sided z-score p-value 0.000181), while the MYC--IGL HR estimate was 0.26, (95% CI 0.06-1.05; 

two-sided z-score p-value = 0.059018) (Supplementary Figure 2f). Of the 15 patients with 

complete seq-FISH data and MYC--IGL or PVT1--IGL, 8 had MYC--IGL and 7 had PVT1--IGL. 

One of 8 with MYC--IGL had t(8;22). Six of 7 with PVT1--IGL had t(8;22). Thus, fusions 

annotated as PVT1--IGL may be more closely associated with t(8;22) than fusions annotated as 

MYC--IGL. PVT1--IGL has prognostic value to the extent that it is a proxy for t(8;22). Follow-up 

is needed to evaluate the source and relevance of these reported events. The MYC/PVT1 

relationship and its role in tumorigenesis remains an area of ongoing research. 

MYC and MYC paralogs can be dysregulated through copy number amplification, viral 

integration, and translocation.106 MM Ig translocations dysregulating MYC predict poor survival, 

and MYC can be downregulated by BET domain inhibitors.92,107 One oncogenic role of lncRNA 

PVT1 is to stabilize and upregulate MYC protein, promoting tumorigenesis.108 In contrast, the 

PVT1 promoter may compete with the MYC promoter, acting as a tumor suppressor.109 PVT1 

promoter mutations may disrupt that MYC downregulation. Future studies will determine how 

genomic variation affects MYC/PVT1 interactions. The MYC region is a hotbed of genomic 

rearrangement and instability. The underlying mechanisms contributing to the tumor 
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evolutionary advantage of this complex pattern could be elucidated by ongoing and future 

studies, especially with haplotype-resolved copy number and translocation calls.110 

Fusions are potential drug targets with prognostic relevance 
 
MM treatment often involves combination therapies, including alkylating agents, histone 

deacetylase inhibitors, immunomodulatory agents, monoclonal antibodies, proteasome inhibitors, 

and steroids.82 Patients with actionable mutations in BRAF, KRAS, NRAS, FGFR3, or 

upregulation of CCND1, CCND3, and MYC may be eligible for targeted therapies.82 

We discovered 11 fusion genes reported in the Database of Evidence for Precision 

Oncology as potentially sensitive to drug treatment in other cancer types (Supplementary Figure 

8a).111 4.0% of patients had a fusion annotated as druggable. We observed 2 patients with BRAF 

fusions, and BRAF fusions have shown some evidence of sensitivity to MEK pathway inhibitors 

in the absence of other drivers.112 We found direct overlap of potentially druggable fusions in six 

cancer types (Supplementary Figure 8b), pointing toward opportunities for tissue-agnostic 

clinical trials. 
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Supplementary Figure 8. a. Overlap of fusion calls with DEPO drug target database. b. Cancer 
types with exact fusion overlaps. c. Protein structures of NTRK1 gene fusions. Source data are 
provided as a Source Data file. 
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Kinase fusions are important across cancer types, especially since they may be sensitive 

to kinase inhibition. In our cohort, common kinase pathways with fusion genes included the 

NIK, MAPK, and RAS pathways. We compared intact 3’ kinase fusions from our cohort to those 

reported from a TCGA pan-cancer analysis (Supplementary Figure 9) and found the same 3’ 

kinase fusions reported across 22 cancer types.35 Fusions with ADK, BRAF, and NTRK1 were 

reported repeatedly both in our cohort and in multiple cancer types. 
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Supplementary Figure 9. a. MMRF 3’ intact kinase fusion partner genes overlapping with 
TCGA cancer types (number of samples). b. MMRF NTRK1 partner genes overlapping with 
TCGA cancer types. Source data are provided as a Source Data file. 
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NTRK genes, including NTRK1, encode cell surface neurotrophin receptor tyrosine 

kinases. TRK fusions are a drug target in solid cancers, although TRK inhibition may lead to 

resistance mechanisms.113 TRK fusions from hematological cancers were responsive to 

inhibition in cell culture and mouse modeling.114 We found three patients with 3’ NTRK1 

fusions, each with an intact kinase domain (Supplementary Figure 8c), and two had the same 

fusion detected at a later clinic visit (Supplementary Figure 3). All three primary samples had 

strong WGS support for their fusion event. NTRK1 fusion 5’ partners all came from the opposite 

strand of the same chromosome (chr1), indicating that an inversion event may have brought the 

two genes together. There is also evidence of chromosome 1q copy number amplification in 

these samples, highlighting overall genomic instability in the region. Each partner gene had 

expression in the 90th percentile or above, potentially driving NTRK1 activity higher (Fig. 2c), 

and NTRK1 was overexpressed in each case (Fig. 2a), leading to upregulation of downstream 

pathways. 

APOBEC signature is associated with MAF and MAFB translocations in multiple myeloma, and 

such translocations are markers of poor prognosis.115,116 Of three samples with MAF--IGL, each 

had outlier APOBEC signature scores and high MAF expression, lending further evidence to the 

relationship between APOBEC and dysregulated MAF (see Methods). 

Discussion 
 

Our study forms an MM gene fusion landscape and explores clinical relevance. We 

analyzed the gene expression patterns of fusions, fusions involving kinase genes, druggable 

targets, evolution of tumor fusion profiles, and translocation and fusion breakpoints of events. 

We also compared fusions from serial clinic visits and from different tissue sources. We 
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developed methods to map scRNA-seq fusion events to single cells. Our results represent a 

resource for future studies involving gene fusions in multiple myeloma and other cancer types 

and highlights several fusion analysis methods. We have built upon prior studies and hope our 

resource and strategies can be useful for future research and clinical translation. 

Targeted sequencing can generate cost-effective reports with clinical utility, including 

somatic mutations, indels, translocations, and gene expression profiles.117 Including fusions will 

require tool development to meet clinical standards, although methodological and study design 

improvements are being made in this direction.118 scRNA-seq and long read sequencing will 

further delineate genomic changes during tumor progression, elucidating subclonal heterogeneity 

and contextualizing common patterns observed from bulk sequencing. 

MM immunotherapies , including checkpoint inhibition, monoclonal antibodies, and 

chimeric antigen receptor T (CAR-T) cells, represent the forefront of targeted therapy. Pan-

cancer studies showed reduced mutational load in patients with driver fusions, meaning they 

would not be ideal candidates for neoantigen-based immunotherapy.35,119 However, dramatic 

responses to immunotherapy have sometimes been observed using gene fusions as 

neoantigens.120 

In multiple myeloma, fusions represent an area for continued study, especially as they 

relate to gene expression, disease progression, tumor evolution, and targeted therapy. Ongoing 

research to improve fusion detection tools and pipelines that leverage information from multiple 

data types will enable more complete pictures of patient tumors as bioinformatics analyses 

become more deeply integrated into clinical decision making.  
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Methods 
 

Alignment 
 

Paired RNA-seq fastq files were aligned to GRCh37 using STAR version 

2.5.3a_modified.121 

BAM files were sorted and analyzed with flagstat using Samtools version 1.5.122 Quality 

control was conducted using FastQC version 0.11.5. (See 

bioinformatics.babraham.ac.uk/projects/fastqc/.) 

Association testing and correlation 
 

Association testing was done using Student’s t-test (two-sided) (continuous expression) 

and Fisher’s Exact Test (two-sided) (categorical expression). Clinical associations with fusions 

and fusion genes were calculated using Fisher’s Exact Test (two-sided) for categorical variables 

and Mann-Whitney U Test for continuous variables. Expression and clinical testing p-values 

were corrected using the Benjamini and Hochberg false discovery rate (FDR) method.123 All 

correlations are calculated as Pearson correlations unless otherwise stated. 

Copy number variation detection 
 

We detected copy number variation from WGS data using BIC-seq2124 (BICseq2-norm 

version 0.2.4; BICseq2-seg version 0.7.2). In scRNA-seq, we used inferCNV (version 0.8.2) to 

calculate single cell copy number profiles.125 
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Fusion analysis scripts 
 

Fusion results were analyzed by scripts written in Python (version 3.7.2) and R (version 

3.5.3). Python packages included numpy, os, and pysam. R packages included ggrepel, 

gridExtra, readxl, RColorBrewer, Seurat (version 3.0.0), survival, survminer, tidyverse, and 

UpSetR. (Please see github.com/ding-lab/griffin-fusion/tree/master/mmrf_fusion for fusion 

analysis scripts.) 

Fusion detection 
 

We used five fusion detection tools including EricScript40 (version 0.5.5), 

FusionCatcher126 (version 1.00), INTEGRATE127 (version 0.2.6, using RNA-seq samples only, 

not paired RNA and WGS), PRADA128 (version 1.2), and STAR-Fusion39 (version 1.1.0). Gene 

names from immunoglobulin super-loci were condensed to IGH, IGK, and IGL (including 

IGLL5). 

Fusion filtering 
 

Fusions were required to be called by at least two tools. Fusions called by any 

combination of EricScript, FusionCatcher, or INTEGRATE must also have been called by 

STAR-Fusion or PRADA in another sample (soft filter tag EFI). Fusions were removed if: 

partners are the same gene; genes appear on blacklist or are paralogs; fusion comes from list of 

normal panel fusions (non-cancer cell lines, GTEx, TCGA normal samples)35,62; one partner is 

promiscuous with 25 or more partners (soft filter tag Many Partners); or partner genes are within 

300 Kb (soft filter tag Within 300Kb). Additionally, across all samples for a particular fusion 

pair, we required at least one sample to have 2 or more junction reads or one sample to have 1 or 

more spanning reads, or that fusion pair was removed from all samples (soft filter tag Low 
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Count). Finally, fusions with a low WGS support rate compared to the background rate were 

removed if the binomial test two-sided p-value was less than 0.15 (soft filter tag Undervalidated). 

See Supplementary Table 6 for a list of all soft filtered fusions and why they were filtered. 

Gene expression 
 

Transcripts per million (TPM) was calculated using kallisto129 (version 0.43.1). 

Gene level TPM was calculated as the sum of TPM values from each of that gene’s 

transcripts. 

Log transformation of TPM values was calculated as log10(TPM + 1). 

Kinase domain analysis 
 

Kinase domain status was determined based on reported gene fusion breakpoints using 

AGFusion130 (version 1.231). (See github.com/murphycj/AGFusion.) Following manual review, 

15 out of 19 MAP3K14 fusions were found to possess an intact kinase domain after initially 

being reported as having disrupted kinase domains due to a lack of annotation. 

Mutation signature profiling 
 

We used SignatureAnalyzer131 to quantify mutation signatures. 

Outlier detection 
 

Gene expression outliers were defined as having values greater than 75th + 1.5*IQR or 

less than 25th - 1.5*IQR, where 75th and 25th represent the 75th and 25th percentile, 

respectively, and IQR is the interquartile range, defined as the 75th percentile minus the 25th 

percentile. 
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Single cell fusion detection -- Fuscia 
 

Given an aligned BAM file, barcode information for each read mapping to fusion gene 

regions was extracted using the Python module pysam (version 0.15.2), which wraps Samtools122 

(version 1.7). When two reads map to different genes or regions and share the same cell and 

molecular barcode, we labeled that transcript as a “chimeric transcript”. Multiple reads could 

originate from the same chimeric transcript. We eliminated reads with length > 128 and then 

selected one representative read from each side of the chimeric transcript by picking the reads 

mapping closest to the known WGS breakpoint. Transcript overexpression makes false positive 

detection of chimeric transcripts more likely. We reduced this risk by purposefully looking for 

chimeric transcripts that may be detected due to overexpression. In plasma cells with IGH 

translocations, we specifically looked for chimeric transcripts linking IGH and plasma cell 

markers SDC1, SLAMF7, and TNFRSF17. We called those regions ‘overlap’ regions because 

chimeric transcripts from genes not associated with fusions overlap with those from legitimate 

fusions. (Please see github.com/ding-lab/fuscia.) 

We used R (version 3.5.3) and the Seurat132 package (version 3.0.0) to analyze cell type and gene 

expression from individual data. Dimensional reduction was performed using UMAP.133 

Somatic mutation calling 
 

MMRF exome bams were aligned to hg19, and somatic variants were called by our in-

house pipeline SomaticWrapper, which includes four established bioinformatic tools (Mutect134 

(version 1.1.7), Pindel135 (version 0.2.54), Strelka2136 (version 2.9.2), and VarScan2137 (version 

2.3.83)). (See github.com/ding-lab/somaticwrapper.) We kept SNVs called by at least two out of 

three tools (Mutect, Strelka, VarScan2). Likewise, we kept INDELs called by at least two out of 
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three tools (Pindel, Strelka, VarScan2). We required 14X coverage for somatic mutation calls 

and only kept mutations with tumor variant allele frequency (VAF) >= 0.05 and normal VAF <= 

0.02. 

Structural variant detection 
 

Structural variants were detected from paired normal and tumor WGS samples using 

Delly138 (version 0.7.6) and Manta139 (version 1.1.0). To be analyzed, tumor and normal WGS 

samples must have had matching sequencing assays and a corresponding RNA-seq sample. 

Survival analysis 
 

We performed survival analysis using progression-free survival as the outcome using the 

survival (version 2.44-1.1) and survminer (version 0.4.6) packages in R. To test for significant 

improvements in model fit with additional covariates, we implemented a chi-squared test using 

the anova() function and compared the new model to the baseline model. Only patients whose 

primary sample corresponded to the pre-treatment clinic visit were included for survival 

modeling. 

Tumor purity 
 

We used the R package estimate140 (version 2.0) to quantify tumor purity from RNA-seq 

data. Tumor purity of peripheral blood (PB) samples was not quantified. 

WGS support of fusion events 
 

We used WGS data to determine if reported fusions also had genomic support. We 

defined a breakpoint window centered at each fusion breakpoint. If there were 3 or more 
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discordant read pairs mapping to within 100 Kb of each breakpoint, we determined the fusion to 

be supported by WGS. Reads were filtered by Samtools122 (version 1.5) with flags -F 1920 -f 1 -

q 20. We removed fusions from all samples if the fusion-specific support rate differed 

significantly from the background support rate of all fusions. 

Data availability 
 

Data was provided by The Multiple Myeloma Research Foundation (MMRF) CoMMpass 

(Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile) Study 

(NCT01454297). dbGaP Study Accession: phs000748. 

For single cell RNA sequencing of additional patient samples, the Washington University 

Institutional Review Board approved the study protocol, and we have complied with all relevant 

ethical regulations, including obtaining informed consent from all participants. 

The source data underlying all figures are provided as Source Data files accessible with 

DOIs 10.6084/m9.figshare.11941494 (for everything except scRNA data) and 

10.6084/m9.figshare.11941506 (for scRNA data). 

Code availability 
 

Data analysis scripts and single cell fusion detection methods are available under the MIT 

license at github.com/ding-lab/griffin-fusion/tree/master/mmrf_fusion and github.com/ding-

lab/fuscia.  



90 
 

Chapter 4: Somatic mutation phasing and 
haplotype extension using linked-reads in 

multiple myeloma 
 

Summary 
 

Somatic mutation phasing informs the relationship of cancer-related events, like copy 

number loss and inactivating mutations. We analyzed linked-read whole genome sequencing data 

from 14 multiple myeloma patients across several disease stages (23 total samples). We 

developed SomaticHaplotype, an open-source tool for analyzing linked-reads and systematically 

assigning somatic mutations to haplotypes. We report the landscape of phase sets across our 

samples and show how phase set length can be extended 4.6 fold when pairing samples from the 

same patient. We also uncover disease-relevant phasing information in cancer genes, phasing 

79.4% of high confidence somatic mutations and enabling us to interpret clonal evolution models 

at higher resolution. For example, our analysis suggested that two NRAS hotspot mutations 

occurred on the same haplotype but were independent events in different subclones. Our 

framework for haplotype analysis enables phase-aware analysis of somatic events in any cancer 

type and can be integrated with established methods for structural variation phasing. 

Introduction 
 

Humans genomes are diploid, meaning they have two copies of each autosomal 

chromosome in their normal state. When a zygote forms, the haploid maternal and paternal 

gametes each contribute one copy of the genome to the diploid zygote. Each copy of each 
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chromosome contains a pattern of inherited germline variation that distinguishes it from the other 

copy. Genetic relationships between individuals may be established by comparing patterns of 

germline variation within an individual with parental samples or other ancestral samples from 

world populations. Whereas a genotype defines a set of alleles at a specific locus and does not 

include alleles from other sites, a haplotype consists of information across loci and distinguishes 

between different copies of the chromosome. A variant is phased when it has been assigned to a 

particular haplotype. Phasing may be achieved through various techniques, including both 

technological and computational methods.141 Sequencing of trios (two parents, one child) allows 

phasing because the child shares stretches of DNA identical-by-descent from each parent. Large-

scale SNP databases of world populations are useful resources that enable genotype imputation 

and computational phasing approaches.142 1000 Genomes is one example of a publicly-available, 

population-scale resource of phased haplotypes.143,144 

Mutations and structural variation that leads to cancer occur on specific haplotypes, 

though haplotype information is often lost with next-generation bulk sequencing.145 Mutations 

may have cis effects, affecting nearby gene activity, or trans effects, having an impact beyond 

the immediate neighborhood. For example, a cis-acting mutation at an expression quantitative 

trait loci (eQTL) may impact expression on the same haplotype (allele specific expression). 

Knowing that the mutation and the expression change both came from the same haplotype can 

help determine the impact of the mutation. Knudson’s two-hit hypothesis states that some 

cancers are driven by two events affecting the same gene or process. For example, biallelic 

inactivation of TP53 is a marker of poor prognosis in multiple myeloma.97 Determining the 

haplotype on which each event occurred informs the oncogenic process. Mutations may also 



92 
 

affect the same haplotype, such as double PIK3CA mutations, which have been found to be more 

oncogenic but also more susceptible to PI3Ka inhibitors.146 

Technologies that enable determination of the long range information between variants 

are collectively referred to as Third Generation.147 The two major categories of Third Generation 

technologies generate long reads (e.g. PacBio and Oxford Nanopore) or synthetic long reads (e.g. 

10X Genomics). PacBio and Oxford Nanopore both offer long, continuous reads and direct 

observation of epigenetic modifications, with the trade-offs of cost for PacBio, accuracy for 

Napopore, and large amount of input DNA for both. A benefit of long reads is being able to span 

repeat regions that may confound short read alignment. With 10X Genomics, short fragments 

originating from the same haplotype are linked together (linked-reads) with the same barcode. 

Although this approach has higher sequencing accuracy, requires less input material, and costs 

less, accurate phasing in regions of low complexity is still a challenge. Zheng et al. established 

this linked-read approach and describe how this technology enables exon modeling for 

accurately determining fusion breakpoints and how phasing an inactivating TP53 mutation to one 

haplotype and a hemizygous deletion to the other proved a two-hit process.19 Later, Marks et al. 

established the accuracy and reliability of linked-read whole genome sequencing (lrWGS) and 

discussed factors that impact phasing performance, such as variant density and heterozygosity.148 

Linked-reads have impacted cancer study design and enabled novel insights to tumor 

biology. Greer, et al. compared gastric cancer metastases and delineated a complex structural 

variant leading to FGFR2 amplification.18 Viswanathan, et al. utilized linked-reads to determine 

the order of events in a cohort of prostate cancer patients, showing the ordering of androgen 

receptor (AR) gene duplications, CDK12 inactivation, phasing somatic variants if the reads 

supporting it were assigned to a haplotype and phase set, and developing allele-specific copy 
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number detection methods.149,150 Sereewattanawoot, et al. explore the cis-acting effects of 

regulatory mutations by using linked reads in lung cancer cell lines to match regulatory variants 

with allele-specific expression.151 

In this study, we analyzed a cohort of multiple myeloma patients using linked-read whole 

genome sequencing (lrWGS) generated by the 10X Genomics Chromium system (see 

Methods).19 Fig. 1a describes the process of generating lrWGS data. From a bulk sample of 

cells, long fragments of DNA, also called high-molecular weight (HMW) DNA, is isolated into 

an individual gel bead in emulsion (GEM). Each GEM contains a gel bead with primers 

including a 16-bp DNA barcode unique to that GEM. The gel bead dissolves and releases the 

barcoded primers, which attach to the DNA and undergo isothermal amplification. Now each 

short fragment of amplified DNA contains a barcode identifying which GEM it originated from. 

The GEMs break and the barcoded fragments are pooled together and sequenced. 

We aligned reads using Long Ranger (v2.2.2, reference GRCh38, see Methods). The 

advantage of lrWGS over traditional WGS is that reads with the same barcode that map to the 

same region are overwhelmingly likely to have originated from the same haplotype. This gives 

additional leverage to studies examining the long range information missed by short-read 

sequencing. Long Ranger aligns reads, calls and phases variants, reports SVs, and produces 

phasing quality metrics. With enough information (depth and allelic heterogeneity), Long Ranger 

is able to assign variants and reads to haplotypes. Variants and reads are grouped into phase sets, 

also called phase blocks, which are genomic ranges in which the haplotype assignments of 

variants are consistent. Within a particular phase set, all variants assigned to a certain haplotype 

are thought to have originated from the same biological haplotype. In another phase set, the 

haplotype order may switch, so haplotype assignments cannot be compared between phase sets. 
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Long Ranger phasing is designed to work with germline single nucleotide variants. Phasing 

performance may be suboptimal in regions of copy number variation, for somatic mutations with 

low variant allele frequency, or in tumor samples with low purity. 

Multiple myeloma is the second most common form of blood cancer and, in the United 

States, has higher incidence among African-Americans.65 Myeloma is a disease caused by clonal 

proliferation of plasma cells and is typified by large structural variation or hyperdiploidy. 

Common primary event translocations join the highly expressed IGH locus (chr14) with cancer 

genes, including t(11;14) (CCND1), t(4;14) (WHSC1), t(6;14) (CCND3), and t(14;20) (MAFB), 

and secondary events include MYC translocations. MAPK is the most commonly mutated 

pathway in MM including somatic mutations in KRAS, NRAS, and BRAF. Better appreciation 

of the haplotype context of these events, both driver mutations and structural variation, is 

necessary to improve targeted therapies and understanding of myelomagenesis. 

To our knowledge, our cohort is the largest published multiple myeloma linked-reads 

WGS data set to date and improves our understanding of human haplotype and cancer haplotype 

analysis. We created novel methods for systematically phasing somatic mutations to haplotypes 

and inferred haplotype relationships between somatic mutations as well as translocations. We 

also present methods for extending phase sets using overlapping information from the same 

individual and ancestral population samples. 
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Figure 1. Linked-read data generation and analysis pipeline. a. The 10X Genomics 
Chromium platform tags large DNA molecules with barcodes such that reads originating from 
the same molecule have the same barcode. The Long Ranger pipeline aligns reads and phases 
variants. b. The SomaticHaplotype tool builds upon Long Ranger output with several modules. 
c. Our cohort comprises 14 multiple myeloma patients across several disease stages for a total of 
23 tumor samples. d. Quality control measures for tumor and normal samples. 
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Results 
 

SomaticHaplotype tool builds on phasing information to analyze somatic 
mutations 
 

To enable further downstream processing of lrWGS data, we developed an open-source 

software tool called SomaticHaplotype (SH) (Fig. 1b), see Methods and Code Availability). 

Given the phased variant call format (VCF) file and a phased bam alignment file produced by 

Long Ranger, SH pre-processes relevant information with the phaseset module by constructing 

Variant and PhaseSet objects which are used in later modules. The summarize module generates 

a table with information about each phase set, including its genomic range and the number of 

variants it contains, as well as statistics like phase set length N50. In the somatic module, we 

consider the haplotype origin of high-confidence somatic mutations, especially those which may 

not have been called or phased by Long Ranger due to low variant allele frequency or tumor 

purity. We then assess the haplotype relationship between pairs of proximal somatic mutations. 

With the extend module, we utilized phase information from overlapping variants detected in 

multiple samples from the same individual to bridge the gap between phase sets and recommend 

how to flip haplotype assignments to make neighboring phase sets have consistent haplotype 

assignments. Finally, in the ancestry module, we developed methods for augmenting phased 

lrWGS data with large-scale phased resources, like 1000 Genomes. 

Our data set comprises lrWGS data from 14 individual patients diagnosed with multiple 

myeloma (Fig. 1c). Longitudinal samples were taken across disease stages, from the 

premalignant stage (smoldering multiple myeloma, SMM), to primary diagnosis, pre- and post-

transplant, remission, and relapse. In total, 23 tumor samples were collected for lrWGS. In 
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addition, 10 patients had a skin normal sample processed with lrWGS. Four tumor samples were 

CD138+ sorted to enrich for plasma cells, increasing tumor purity. Other samples were not 

CD138+ sorted and contain varying compositions of microenvironment cells in addition to tumor 

plasma cells. Regular paired-end next-generation was also performed on sorted samples, 

including 13 whole exome (WES) and 6 whole genome (WGS) (see Supplementary Data 1). 

To assess sample quality, we considered the summary statistics produced by Long 

Ranger (as reported in output file summary.csv) (Fig. 1d). We also included publicly available 

summary information from two 1000 Genomes samples, NA12878 and NA19240 (Long Ranger 

version 2.2.1, reference hg19) (see Data Availability). Those two normal control samples are 

represented by red symbols (+ for NA12878; x for NA19240). Overall, quality control measures 

of our tumor samples compared well with data from gold-standard publically available lrWGS. 

Molecule length refers to the size of the long, HMW DNA fragments isolated into gel beads. In 

our tumor samples, the mean molecule length per sample ranged from 44.3 Kb to 85.8 Kb with a 

median of 62.8 Kb, while in our normal skin samples, the median value was 15.3 Kb. Linked-

reads per molecule is the number of read pairs originated from each molecule, and the N50 value 

indicates that half of the molecules have that many reads pairs or more. In our tumor samples, 

the N50 linked-reads per molecule ranged from 40 to 97 with a median of 62, compared to a 

median of 10 in our skin samples. Finally, the N50 phase set length in tumor samples ranged 

from 1.3 Mb to 11.8 Mb with a median of 5.7 Mb, while the median was 0.4 Mb in skin samples. 

Given the consistent lack of informative linked-read information in our skin samples, we 

excluded them from downstream analysis. The skin samples were only used as a control for 

variant calling. 
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For tumor samples, the median corrected mass of input DNA loaded into the Chromium 

chip was 1.3 ng, and the median mean sequencing depth was 71.6 reads. The median percentage 

of SNPs phased by Long Ranger was 99.2%. Please see Supplementary Figure 1 and  

Supplementary Data 2 for additional summary quality control measures. 



99 
 

  

 

Supplementary Figure 1. Phasing performance quality control summary measures for all 
samples. 
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Phase set lengths reveal biologically-relevant genomic changes 
 

We examined the distribution of phase set lengths to ascertain and explore patterns in our 

data. Overall, N50 phase set lengths from each samples were consistent across chromosomes, 

with the median N50 ranging from 4.42 Mb on chromosome 15 to 7.74 Mb on chromosome 18 

(Fig. 2a). Chromosome 1 showed the least variation in N50 phase set length  (median 4.52 Mb, 

standard deviation 1.37 Mb), while chromosome 21 showed the greatest variation (median 5.78 

Mb, standard deviation 9.33 Mb) and also had the highest overall values, with 6 samples having 

N50 phase set lengths above 20 Mb, 4 of which came from Patient 59114. Some samples, such 

as 25183 (P), had consistently higher N50 values across many chromosomes (Fig. 2b). This may 

be due to this sample having the highest mean molecule length (85.8 Kb) and percentage of 

mapped reads (97.7%) of all tumor samples. Another sample, 58408 (P), had consistently shorter 

phase sets, but quality control measures did not clearly point to a reason for this pattern. 
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Figure 2. Phase set length distribution. a. Phase set length by chromosome across all samples. 
b. Phase set length per sample across all chromosomes. c. Phase set lengths of chr13, chr22, and 
others from 27522 (P). d. Phase set length and locations of chr13 and chr22 from 27522 (P) and 
27522 (Rem). e. Total phase set genome coverage from all samples combined, grouped by phase 
set length. 
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Interestingly, chromosomes 13 and 22 from 27522 (P) showed low N50 phase set 

lengths, and the distribution of phase set lengths from those two chromosomes is strikingly 

different than the overall distribution from other chromosomes (Fig. 2c) (phase sets less than 1 

kb filtered out for plotting). The N50 phase set lengths for chromosomes 13 and 22 were 0.42 

Mb and 0.38 Mb, respectively, compared to that sample’s median N50 of 5.9 Mb. Based on copy 

number variation results from lrWGS and WES data, both chromosomes 13 and 22 had a one 

copy deletion across the entire chromosome. The homozygosity across these chromosomes due 

to the deletions explains why the associated phase sets are so short, since the Long Ranger 

pipeline depends on having heterozygous SNPs to grow phase sets beyond linked-reads from the 

same barcode. One benefit of this lack of heterozygosity across entire chromosomes is that we 

can potentially phase the entire length of these chromosomes. In comparison to chromosome 13 

and 22 phase sets from the 27522 (Rem) sample, those from 27522 (P) are much shorter, and the 

short phase sets are distributed across the entire chromosome (Fig. 2d). The power of short phase 

sets to predict deletion status in this sample may be a reflection of tumor cell content and the 

proportion of tumor cells affected by copy number loss. 

Overall, phase sets cover 60.6 Gb of genome across our 23 tumor samples (Fig. 2e), for 

an average of 2.6 Gb per sample. 72.2% (32,426/44,918 phase sets) of phase sets are between 0 

and 1 Mb, but collectively those short segments account for only 8.4% (5.1/60.6 Gb) of the total 

amount of genome covered by phase sets in these samples. In comparison, 3,776 phase sets are 

between 1-2 Mb, but those cover 5.5 Gb (9.0%) collectively. The distribution of genomic 

coverage by phase sets of increasing length has a right-skewed long tail distribution. There are 

19 phase sets longer than 30 Mb, and the longest phase set is 59.2 Mb. As expected, there was a 

strong linear relationship between phase set length and the number of phased heterozygous 
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variants (r2 = 0.96) and also strong homoscedasticity (Supplementary Figure 2). This linear 

relationship was not observed for the copy number deleted chromosomes (chr13 and chr22) from 

27522 (P) (Supplementary Figure 3). 
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Supplementary Figure 2. Phase set length correlation with the number of phased heterozygotes 
across all samples. 
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Supplementary Figure 3. Phase set length correlation with the number of phased heterozygotes 
across all chromosomes from 27522 (P). 
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Somatic mutations can be phased to specific haplotypes using linked alleles 
 

The haplotype context in which somatic mutations occur may be biologically relevant. 

For example, knowing the phase of two mutations affecting the same gene would indicate 

whether they occur on opposite haplotypes, possibly leading to biallelic inactivation, or if they 

are on the same haplotype with only one copy disrupted. However, tumor purity and variant 

allele frequency make somatic mutations harder to identify and phase using standard approaches. 

To phase somatic mutations, we built upon the strengths of Long Ranger by examining germline 

variants that occur on each barcode with reads covering the somatic mutation site (Fig. 3a). We 

defined linked alleles as alleles co-occurring with either the reference or alternate allele at the 

somatic mutation site. We know the haplotype assignment of most (~99%) linked alleles, and we 

know that alleles co-occurring in the same phase set with the same barcode most likely 

originated from the same molecule of DNA. Thus, if the linked alleles co-occurring with the 

alternate allele at the somatic mutation site are phased to the same haplotype above a certain 

threshold, then we can infer the haplotype of the somatic mutation even if it was not initially 

phased. An alternative method to phasing somatic mutations is to rely on the haplotype assigned 

to reads supporting the somatic mutation site.151 This haplotype annotation is reported as a tag in 

the phased bam output from Long Ranger, but it is not given for all reads. In our tumor sample 

data, 71.6% of reads overlapping a mutation site were assigned a haplotype. Using this phased 

barcode approach, we determined that a somatic mutation was phased if at least one barcode 

supported the mutant allele and that barcodes supporting the mutant allele all agreed on the 

haplotype assignment. Combining these approaches increases our phasing power when one 

approach does not have adequate coverage. 
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Figure 3. Phasing somatic mutations to haplotypes. a. Overview of methods used to phase 
somatic mutations. b. Number of somatic mutations phased using two phasing methods (H1 = 
phased to haplotype 1, H2 = phased to haplotype 2, NC = not enough coverage for phasing, NP = 
not phased). c. Distribution of somatic mutations per phase set and the proportion of mutations 
phased. d. Phasing somatic mutations commonly observed in multiple myeloma. 
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For six lrWGS samples which also had matched, sorted WGS, we identified high 

confidence somatic mutations using the sorted WGS sample and normal lrWGS as control (see 

Methods). In total, we detected 33,503 somatic SNVs and small indels from our six sorted WGS 

sample, or 5,584 somatic mutations per sample. Using those high confidence somatic mutations, 

we then identified barcodes and linked alleles supporting the somatic site from the lrWGS 

samples. Of those, 29,896 (4,983 per sample) were SNV positions with coverage in the matched 

lrWGS samples, and 20,705 (69.2%) of those met our minimum coverage requirement with at 

least 10 linked alleles on barcodes supporting the somatic allele or at least one phased barcode 

supporting the alternate allele. We overlapped high confidence somatic mutations with phased 

Long Ranger calls to create a comparison set. At a linked allele threshold of 0.91, the phasing 

precision was 0.997 and the recall was 0.936 (Supplementary Figure 4a) (see Methods). Overall, 

79.4% (16,440/20,705 mutations) of somatic mutations with enough coverage were phased using 

the established cutoff. Of 3,380 somatic mutations with enough coverage that were called by 

Long Ranger but not phased, 82.7% were phased by our method. Overall, the linked alleles and 

barcodes phasing methods were concordant on 99.95% of phasing decisions where both methods 

made a phasing decision (H1 or H2) (9,546/9,551 calls) (Fig. 3b). The barcodes approach added 

5,760 calls where linked alleles did not have enough coverage or did not meet the phasing 

threshold. The linked alleles approach added 1,139 calls. See Supplementary Figure 4b for an 

overview of all results by phasing method. 



109 
 

  

 

Supplementary Figure 4. Additional information related to somatic mutation phasing. a. 
Precision/recall rates at various cutoffs for the proportion of linked-alleles assigned to one 
haplotype. b. Comparison of phasing results with Long Ranger genotypes. c. Correlation of 
variant allele frequency derived from reads and barcodes. 
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Globally, we grouped high confidence somatic mutations from these six samples 

according to the phase set they map to and found the proportion of somatic mutations phased in 

our approach (Fig. 3c). Close to half of phase sets longer than 1 kb had zero pairs of somatic 

mutations (44.8%, 2,212/4,941 phase sets), with 11.1% having zero somatic mutations and 

33.6% having only one somatic mutation. But among those 2,729 phase sets longer than 1 kb 

with at least one pair of somatic mutations, 37.0% had exactly one pair, 20.7% 3 or fewer, 18.6% 

10 or fewer, 19.7% 100 or fewer, and the remaining 4.0% had more than 100 pairs. 64.6% had 

every mutation phased, and 77.5% had at least three-quarters of mutations phased. The number 

of phased somatic mutations per megabase within each phase set showed a log2-normal 

distribution ranging from 0.10 to 241.3, with a median of 2.25. 

Several samples had somatic mutations commonly associated with multiple myeloma65, 

including mutations in CYLD, DIS3, HIST1H1E, KRAS, NRAS, and TP53 (Fig. 3d). In several 

cases, we were able to confidently phase somatic mutations that were either not called or were 

not phased by Long Ranger. When Long Ranger did phase the mutation, our results were always 

consistent. One mutation in ATR was not called by Long Ranger and was not phased by our 

approach since the linked alleles did not clearly favor one haplotype over the other (60.2% of 

phased linked alleles supporting the somatic mutation were phased to Haplotype 1, and 39.8% 

were phased to Haplotype 2). We noted that in 27522 (P), the NRAS G13R mutation was phased 

by our method to Haplotype 2, but was phased to Haplotype 1 in 27522 (Rel). However, since 

haplotype numbering is arbitrary, such differences are trivial. Further, we noticed that in 27522 

(P), the NRAS G13R and Q61K mutations, two well known hotspot drivers, were both phased to 

the same haplotype. Later analysis suggested that they arose independently in separate tumor 

subclones. Comparing the variant allele frequency of non-synonymous mutations in driver genes 
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using two methods, we found a high correlation (r = 0.96) between VAFs calculated using all 

reads and VAFs calculated using only unique barcodes (Supplementary Figure 4c). 

Pairs of somatic mutations illustrate patterns of clonal evolution 
 

In traditional next-generation sequencing, if two mutations are spaced close enough 

together and occurred together on the same short read pair, then we may directly observe that 

they originated from the same haplotype and were present in the same cell. With lrWGS, we now 

have more reads to consider when we look for such co-occurring mutations. Analysis must 

account for copy number variation, which could present multiple copies of the same haplotype 

on which somatic mutations could arise. From our samples with both lrWGS and sorted WGS, 

we focused on mutation sites in copy number neutral regions with between 10 and 100 phased 

barcodes with linked-reads covering that position and at least one barcode supporting the 

alternate allele (Supplementary Figure 5a). We defined copy number neutral regions as having a 

log2 copy number ratio between -0.25 and 0.2 in the sorted WGS. To assess how likely two 

mutation sites are to have linked-reads associated with the same barcode covering both sites, we 

examined 59,063 pairs of mutations from the same phase set, within copy number neutral ranges, 

and with both mutation sites having adequate coverage. As expected, the probability of one 

barcode covering both sites decreases at the distance between sites increases, with 98.4% 

(54,643/55,559 pairs) of mutation pairs greater than 62 kb apart sharing no overlap. (62 kb is the 

median of the mean molecule lengths described in Fig. 1d).  We focused on the 3,504 mutation 

pairs within relatively close proximity (i.e. less than 62 Mb apart) (Fig. 4a, Supplementary 

Figure 5b). For the 2,648 mutation pairs within this genomic distance but greater than 100 bp 

apart, the 13.0% were covered simultaneously by zero barcodes, 77.3% were covered by 

between 1 and 10 barcodes, 8.3% between 11 and 20 barcodes, and 1.4% greater than 20 



112 
 

barcodes (Fig. 4a). For the 856 mutation pairs less than 100 bp apart, each pair had at least one 

shared barcode (Supplementary Figure 5b). Overall, 5.9% (3,504/59,063 pairs) of somatic 

mutation pairs were within 62 Kb (Fig. 4b). Of those, 90.2% (3,159/3,504 pairs) share at least 

one barcode in common. From that reduced group, 64.6% (2,042/3,159 pairs) have a barcode on 

which one or both somatic mutations is represented, potentially allowing for direct observations 

or inference related to mutation patterns in the same cell. 
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Supplementary Figure 5. Additional information related to the relationship of pairs of 
somatic mutation. a.  Number of barcodes covering each mutation site and those supporting the 
mutant allele. b. Number of overlapping barcodes by distance between somatic mutations less 
than 100 bp apart. 
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Figure 4. Tumor evolution models derived from observed mutation pairs. a. Number of 
overlapping barcodes by distance between somatic mutations. b. Proportion of somatic mutation 
pairs in close proximity sharing barcodes. c. Patterns of mutation pairs observed on barcodes. d. 
NRAS mutation pair observed in 27522 (P) and evolution model. e. Interpretation of evolution 
model observed from NRAS mutation pair in 27522 (P). f. ACTG1 mutation pair observed in 
27522 (Rel) and evolution model. g. Interpretation of evolution model observed from ACTG1 
mutation pair in 27522 (Rel). 
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Next we considered the pairwise relationship of the reference and alternate alleles 

observed on the same barcodes (Fig. 4c). Of the 2,042 remaining mutation pairs, most (53.3%) 

only share barcodes that cover both reference alleles (REF/REF) and both alternate alleles 

(ALT/ALT). This means they have at least one barcode where both alleles are reference and at 

least one barcode where both alleles are alternate. Other observed patterns of partnership are less 

common, but include REF/REF in addition to REF/ALT or ALT/REF, in which there is at least 

one barcode supporting one of the alternate alleles but not both, despite both sites having some 

alternate allele present. 6.7% of pairs show reads supporting REF/ALT and ALT/REF, and if the 

two alternate alleles are phased to the same haplotype, this could indicate that the two mutations 

do not co-occur on the same molecule. Finally, 7.1% of pairs have a pattern of REF/ALT or 

ALT/REF along with ALT/ALT. Since the same mutation is not likely to recur independently 

within the same tumor, it is more parsimonious to conclude that one mutation preceded the other 

in the clonal evolution tree. 

Such patterns of somatic mutations may be informative for refining tumor phylogenies 

and may have clinical implications. For example, in 27522 (P) we observed two hotspot 

mutations in NRAS (G13R and Q61K) (Fig. 4d). NRAS is a known cancer driver oncogene and 

mutations may lead to dysregulation of the Ras pathway. Our phasing analysis placed both 

mutations on the same haplotype (H2) (Supplementary Figure 6). We observed 2 barcodes 

supporting REF/REF, 1 barcode supporting REF/ALT, and 1 barcode supporting ALT/REF. 

Based on sorted lrWGS data, at the primary timepoint, the G13R VAF was 35.7% and the Q61K 

VAF was 22.2%, while at relapse, the G13R VAF was 20.5% and the Q61K mutation was not 

detected (VAF 0.0%). Without the benefit of phasing, one possible interpretation could have 

been that Q61K occurred in the same clone as G13R and then the double mutant subclone was 
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eliminated after therapy. However, with linked reads, we directly observed both mutations 

occurring without the other, and we do not observe them together, guiding the interpretation that 

these mutations occurred independently in separate subclones, and then the Q61K subclone was 

later lost (Fig. 4e). 
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Supplementary Figure 6. Barcodes supporting 27522 (P) NRAS hotspot mutation pair. 
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In another instance, we detected a pair of mutations that may have occurred in sequential 

order on the same haplotype. Two synonymous mutations in ACTG1 showed a pattern of first 

affecting G156 site and then later L104 in a co-occurring way. Six barcodes demonstrate the 

ALT/REF pattern, and 24 barcodes had ALT/ALT (Fig. 4f). Under a parsimonious model in 

which the same mutation occurs only once, the mutation at  the first position preceded the 

mutation at the second position. Since there are barcodes supporting both mutant alleles 

simultaneously, the mutations must occur within the same cells and we interpret this to mean the 

cells with both mutations form a later subclone within the subclone of cells with only one 

ACTG1 mutation (Fig. 4g). We also noted that there is an elevated copy number in this region 

(estimated to be 2.65). This would often preclude clonality analysis due its effect on the VAF.152 

However, the combination of alleles present on the same barcodes enables us to interpret a 

sequential order of events. 

Common myeloma translocations map to specific haplotypes 
 

Multiple myeloma is characterized by recurrent clonal translocations that take advantage 

of overexpressed IGH locus by dysregulating oncogene expression. Barwick, et al. 92 analyzed 

795 newly-diagnosed multiple myeloma patients from the Multiple Myeloma Research 

Foundation CoMMpass study (NCT01454297), reporting clonal translocations in across the 

cohort, including 16% of patients having t(11;14) impacting CCND1, 11% with t(4;14) 

(WHSC1), 3.3% with t(14;16) (MAF), 1.1% with t(6;14) (CCND3), and 1.0 % with t(14;20) 

(MAFB). Manier, et al. 65 reported similar translocation recurrence rates. In our cohort of 14 

patients, we detected common myeloma translocations from lrWGS using the Long Ranger 

pipeline as well as gemtools.153 We detected translocations affecting patients across multiple 



119 
 

disease stages, including t(11;14) in 2 patients and t(4;14) in 1 patient and  identified the 

haplotype affected by each translocation. 

We focused on events reported in Patients 27522 and 77570. In 27522, 6 out of 7 SVs 

detected from both Primary and Relapse samples were also detected by Manta from a later sorted 

WGS sample (Fig. 5a). In 27522 (P), the barcodes supporting t(4;14) originated from two phase 

sets in the IGH region on chr14, and in both phase sets the assigned Haplotype was H2. In 27522 

(Rel), the same t(4;14) event was detected but the two IGH phase sets were in opposite phase. 

Patient 27522 had a t(4;14) event detected at primary diagnosis and at relapse (Fig. 5b-c). The 

barcodes supporting the translocation are also associated with a deletion in the IGH region 

(Supplementary Figure 7a-b). The translocation juxtaposes IGH with WHSC1 and FGFR3, 

leading to overexpression of both oncogenes. WHSC1 overexpression increases methylation of 

H3K36 and further dysregulation across the genome. The coverage heat map showing where 

discordant barcodes map on chr4 and chr14 clearly identified the translocation breakpoint within 

the first intron of WHSC1 at chr4:1871962 and near IGHM on chr14. The barcodes supporting 

the translocation also showed a deletion in the IGH region. 



120 
 
  

 

Figure 5. Common myeloma translocations mapped to haplotypes. a. Overlap of 
translocations observed in 27522 (P) and (Rel). b. Model of t(4;14) translocation. c. Barcodes 
supporting translocation indicate a single haplotype origin. 
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Supplementary Figure 7. Barcode support for common myeloma translocations. a-b. 27522 
(P) t(4;14). c-f. 77570 (P) t(11;14). 



122 
 

For 77570 (P), Long Ranger reported multiple distinct t(11;14) events with translocations 

affecting two different regions of IGH to the same breakpoint upstream of CCND1 

(Supplementary Figure 7c-f). One linked the IGH variable gene region (chr14:106269142) to the 

region upstream of CCND1 on chr11. The other at chr14:105741942 linked the coding region of 

IGHG1 to the same upstream CCND1 location. Barcode analysis suggests these are actually one 

reciprocal event. 

An application of translocation mapping would be to match allele specific expression to 

translocation events, for example if a germline heterozygous coding variant from the same 

haplotype of the dysregulating translocation were detected from RNA-seq, then the connection 

between translocation and expression could made more explicitly. 

Overlapping germline variants from paired samples enables phase set 
extension 
 

Phase set size may be limited by random chance due to the distribution of linked-reads 

mapping locations, and phase set boundaries differ between samples originating from the same 

patient, in general. However, samples from the same patient do share germline variants, and 

those should be phased together in the same groups in both samples. By comparing the pattern of 

germline variants assigned to each haplotype in each sample, we can determine if the two phase 

sets are oriented the same way, or if one needs to be flipped to be consistent. We built the extend 

module into SomaticHaplotype to compare germline variants overlapping phase sets found in 

two samples, the target sample and the reference sample (Fig. 6a). When there is significant 

evidence of exact matches or exact mismatches to know if two phase sets have the same or 

opposite haplotype orientation, the module may recommend switching the orientation of the 

target sample phase set. If two phase sets from the target sample both overlap the same phase set 
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from the reference sample, then we may be able to infer the haplotype orientation relationship of 

the target phase sets. If both target phase sets need to be switched to be consistent with the 

reference sample, then they already have the same orientation. If one target phase set needs to be 

switched and the other not switched, then we know they have opposite orientation. The extend 

module builds a bipartite graph in which nodes are phase sets and edges connect overlapping 

target and reference sample phase sets. Edge weight is defined as 1 if a switch is necessary 

between the target and reference phase set or 2 if a switch is not necessary. If two target phase 

sets overlap the same reference phase set, then there is a connected path between the target phase 

sets; we find the sum (mod 2) of weighted edges that connect pairs of target phase sets. If the 

sum is even, then the two target phase sets have the same orientation. If the sum is odd, then they 

have opposite orientation. 



124 
 

  

 

Figure 6. Extension of phase sets using additional sample information. a. Model for phase 
set extension. b. Data-driven example of phase set overlap between samples. c. Number of 
phased variants needed for switch/no switch recommendation. d. Length of phase set overlap 
needed for switch/no switch recommendation. e. Phase set groups extended by overlap with 
another sample. f. Distribution of phase set lengths before and after extension. g. Use of identity-
by-descent segments as overlap between phase sets. 
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We analyzed data from 6 patients with multiple samples, with a total of 68,374 

overlapping phase sets from 26 target and reference sample pairs. As a data-driven example, we 

examined phase set originating from chromosome 1 of 27522 (P) and 27522 (Rel), using 27522 

(P) as the reference sample (bottom) and 27522 (Rel) as the target sample (top) (Fig. 6b). 

Reference phase set 1 (R1) (colored blue) spans multiple target phase sets (T1-T7). For T1, T2, 

T3, and T5, there are not enough overlapping variants to draw conclusions about their orientation 

relative to R1. Phase sets T4 and T7 must be switched in order to be consistent with R1, and T6 

is already in the same orientation. Thus, since T4 and T7 have the same orientation relative to 

R1, T4 and T7 do not need to be switched to be consistent with each other. However, T6 must be 

switched to be consistent with T4 and T7. 

We analyzed how much overlap is required before our testing methods give a solid 

switch or no switch recommendation. In general, at least 10 overlapping phased variants are 

required before making a switch or no switch recommendation (Fig. 6c). Since the number of 

shared variants correlates with the length of the overlap, the length of overlap tends to be greater 

than 100 kb before a recommendation can be made (Fig. 6d). Since haplotype numbering is 

random, we were not surprised to find roughly equal proportions of recommendations to switch 

(28.3%) and not switch (27.6%). The algorithm made no recommendation for the remaining 

44.1%. For extendable phase sets from chromosome 1 in target sample 27522 (P) (extended by 

reference 27522 (Rem)), we found that, before extension, the median phase set length was 1.6 

Mb, and after extension, it was 5.7 Mb, a nearly 3.5-fold increase. Similarly, from all samples 

with extendable phase sets, we found that median phase set length increased from 1.2 Mb (6.1 on 

log10 bp scale) to 5.5 Mb (6.7 on log10 bp scale), an increase of 4.6 fold increase from before 

extension to after extension. 
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We also developed methods (ancestry module) to utilize publicly available phased 

resources to improve our lrWGS data. We used data from 1000 Genomes sample NA12878 to 

illustrate this. After reporting identical-by-descent segments shared between from 2,504 

individuals from 1000 Genomes data (see Methods), we identified IBD segments that overlap 

multiple lrWGS phase sets. Using overlapping, phased heterozygous variants shared between the 

1000 Genomes VCF and the VCF output by Long Ranger, we found the proportion of IBD 

alleles that matches each haplotype in each phase set. IBD alleles matched one haplotype or the 

other, with the occasional short switch error (calculate error rate). For example, NA12878 shares 

an IBD segment with NA10851 spanning from position 59,094,547 to 59,706,930 on 

chromosome 18 (LOD score 15.64, 1.576 cM). That IBD segment bridges multiple lrWGS phase 

sets. Since the IBD alleles match Haplotype 2 from phase set chr18:52160074 and match 

Haplotype 1 from chr18:595505042, those two phase sets may be in opposite orientation. The 

ancestry module also reports the population group and subgroup of the individual associated 

with each IBD segment, linking public database ancestry information to haplotypes from lrWGS 

data. 

Discussion 
 

As sequencing technologies evolve and analysis methods more regularly include 

haplotype phasing, somatic mutation phasing may become a more common practice. The current 

methodological approaches to phasing-aware somatic SNP mutation analysis will mature from 

ad-hoc investigations to standard pipelines. We have developed a systematic approach to somatic 

mutation analysis in a cohort of multiple myeloma patients over the course of their disease. Our 

methods build up the backbone of the Long Ranger variant calling and phasing pipeline for 
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linked-read sequencing data. We combine information from additional sequencing data to 

specifically target somatic mutations and infer their phase based on neighboring linked alleles. 

We also augment samples with shared data from other samples from the same individual to 

extend phase sets beyond their original limits. These tools are an open-source opportunity for 

future methods development in a climate of rapid technological shifts. 

In the course of our analysis of this data, we noted several limitations and guidelines for 

data quality. Our normal controls came from skin samples, and we observed severe limitations in 

phasing performance potentially due to the DNA molecule input size. We generally expect 

longer fragments from blood samples used as normal controls. For our somatic analysis, one 

limitation was the prevalence of copy number changes in our data. Once a copy number 

alteration occurs, a strict two haplotype paradigm of mutation phasing must adapt. This is 

especially true for determining the haplotype relationship of pairs of mutations, where we may 

be confident that that haplotype looks like one of the two inherited copies, but we need 

additional information to know if two mutations occurred on the same copy or not. Another 

caveat to our somatic analysis was the tumor purity available in our samples. Four of our 

samples were CD138+ sorted, and two samples in particular gave us the best results. Higher 

tumor purity and lower variability in cell type composition are likely important for robust 

somatic variant analysis. Further, calling somatic mutations with low variant allele frequency, 

compounded by lower tumor purity, is a challenge for any mutation caller, especially those like 

Long Ranger built for germline variant detection. In our case, pairing linked-read data with high-

confidence somatic mutation calls from a separate sample was necessary to gain sensitivity. 

Moving beyond next-generation sequencing to Third Generation and single-cell 

approaches has the distinct advantage of increasing the resolution of cancer genome analyses. 
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With long reads and linked-reads, we get haplotype resolution. With single cell RNA-seq, we 

observe cell-specific patterns of gene expression and can even map coding mutations to specific 

cells.102 Single cell DNA offers further resolution of haplotype structures and clonal structure, 

giving breath to dreams of reconstructing tumor phylogenies, understanding tumor evolution, 

and identifying optimal treatment targets.154-156 Methodological integration of single cell data 

with the resolution gained from haplotype analysis is a direction for continued research. Tools 

that incorporate single cell copy number may be more robust than single cell RNA-seq mutation 

mapping and enable phylogenetic inference, especially across longitudinal samples. 
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Methods 
 

Patient cohort 
 

Fourteen patients with multiple myeloma, 10 male and 4 female Caucasians, were 

included in the analysis. The median age at diagnosis was 63 (range 46-69). Eight patients had 

IgG isotype, 4 being kappa light, chain and 4 being lambda light chain, 2 had IgA kappa isotype, 

2 had light chain only disease (1 kappa and 1 lambda), and 2 were non-secretory. Five were 

International Staging System Stage 1, two were Stage 2, 3 were stage 3, and 4 were unreported. 

The median plasma cell burden by flow cytometry in bone marrow at diagnosis was 24% (range 

4-63). By standard fluorescence in situ hybridization (FISH), 1 patient had t(4;14), 3 had 

t(11;14), and 2 showed del(17p). 

The data comprises 14 patients having various combinations of sample types, time-

points, data types, and treatment modalities. Most patients have 10x whole genome sequencing 

(10xWGS) data for skin normal and pre-treatment state, with several having relapse data, as 

well. Treatment ranges from none for 7 patients (3 of which have an SMM sample) to multi-

cycle regimens of several 2-drug and 3-drug cocktails. All WES and WGS data are generated 

with CD138+ sorted population (tumor cells) within bone marrows. To ensure samples matched 

across time points, we compared germline variant allele fractions (VAF) at 24 loci (data not 

shown). 
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Sequencing data generation 
 

Research bone marrow aspirate samples were collected at the time of the diagnostic 

procedure. Bone marrow mononuclear cells (BMMCs) were isolated using Ficoll-Paque. 

BMMCs were cryopreserved in a 1:10 mixture of dimethyl sulfoxide and fetal bovine serum. 

Upon thawing, whole BMMCs were used for linked-read whole genome sequencing. Plasma 

cells were separated from a sub-aliquot by positive selection using CD138-coated magnetic 

beads in an autoMACs system (Miltenyi Biotec, CA) and used for whole genome and exome 

sequencing. Skin punch biopsies were performed at the time of the diagnostic bone marrow 

collection to serve as normal controls. Although many studies use peripheral blood mononuclear 

cells (PBMCs) as a control, abnormal B cells and circulating tumor cells frequently contaminate 

the peripheral blood of patients with multiple myeloma. Therefore, using PBMCs may lead to 

omission of genetic events potentially important in disease  pathogenesis. 

Linked-read whole genome sequencing (lrWGS) --  Normal skin samples were processed 

with a standard Qiagen DNA isolation kit resulting in 10-50Kb DNA fragments. 250K tumor 

cells were processed with the MagAttract HMW DNA extraction kit (Qiagen) resulting in 100-

150Kb DNA fragments. 600-800ng of normal DNA was size selected on the Blue Pippin 

utilizing the 0.75% Agarose Dye-Free Cassette to attempt to remove low molecular weight DNA 

fragments. The size selection parameters were set to capture 30-80 Kb DNA fragments (Sage 

Science). The resulting size selected DNA from the normal samples and the HMW DNA from 

the tumor cells were diluted to 1ng/µL prior to the v2 Chromium Genome Library prep (10x 

Genomics). Approximately 10-15 DNA molecules were encapsulated into nanoliter droplets. 

DNA molecules within each droplet were tagged with a 16 nucleotide barcode and 6 nucleotide 
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unique molecular identifier during isothermal incubation. The resulting barcoded fragments were 

converted into a sequence ready Illumina library with an average insert size of 500bp. The 

concentration of each library was accurately determined through qPCR (Kapa Biosystems) to 

produce cluster counts appropriate for sequencing on the HiSeqX/NovaSeq6000 platform 

(Illumina). 2x150 sequence data were generated targeting 30x (normal) and 60x (tumor) 

coverage providing linked reads across the length of individual DNA molecules. 

Standard whole genome sequencing (WGS) -- Manual libraries were constructed with 50-

2000ng of genomic DNA utilizing the Lotus Library Prep Kit (IDT Technologies) targeting 

350bp inserts. Strand specific molecular indexing is a feature associated with this library method. 

The molecular indexes are fixed sequences that make up the first 8 bases of read 1 and read 2 

insert reads. The concentration of each library was accurately determined through qPCR (Kapa 

Biosystems). 2x150 paired end sequence data generated ~200 Gb per tumor sample leading to 

60x (tumor) haploid coverage. 

Standard whole exome sequencing (WXS) -- A 700ng aliquot of the existing WGS 

library was used for the exome capture. Five libraries were pooled at an equimolar ratio yielding 

a ~3.5µg library pool prior to the hybrid capture. The library pools were hybridized with the 

xGen Exome Research Panel v1.0 reagent (IDT Technologies) that spans a 39 Mb target region 

(19,396 genes) of the human genome. The concentration of each captured library pool was 

accurately determined through qPCR (Kapa Biosystems) to produce cluster counts appropriate 

for sequencing on the  NovaSeq6000 platform (Illumina). 2x150bp sequence data was generated 

~50Gb per library targeting a mean depth of coverage of 500x. 
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Processing linked-read WGS with Long Ranger (alignment, variant calling, phasing) -- 

We used Long Ranger (v2.2.2) (10x Genomics) for preliminary analysis, including 

demultiplexing cDNA libraries into FASTQ files and aligning reads to the human genome 

reference GRCh38 (GRCh38-2.1.0). To call variants using Long Ranger, we used --vcmode with 

GATK (version 3.7.0-gcfedb67). Long Ranger phasing quality metrics were extracted from the 

summary output file associated with each sample. Show full code run and output files generated. 

Somatic mutation detection 
 

Somatic variants were called by our SomaticWrapper pipeline, which includes four 

established bioinformatic tools, namely Strelka136, Mutect134, VarScan2137 (2.3.83), and Pindel135 

(0.2.54). We retained SNVs and INDELs using the following strategy: keep SNVs called by any 

2 callers among Mutect, VarScan, and Strelka and INDELs called by any 2 callers among 

VarScan, Strelka, and Pindel. For these merged SNVs and INDELs, we applied coverage cut-

offs of 14X and 8X for tumor and normal, respectively. We also filtered SNVs and INDELs with 

a high-pass variant allele fraction (VAF) of 0.05 in tumor and a low-pass VAF of 0.02 in normal. 

The SomaticWrapper pipeline is freely available from https://github.com/ding-

lab/somaticwrapper. 

Copy number profiling 
 

We used BIC-seq2124, a read-depth-based CNV calling algorithm to detect somatic copy 

number variations (CNVs) using standard WGS tumor samples and paired skin linked-read WGS 

data (human genome GRCh38 reference). The procedure involves 1) retrieving all uniquely 

mapped reads from the tumor and paired skin BAM files, 2) removing biases by normalization 
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(NBICseq-norm_v0.2.4) 3) detecting CNV based on normalized data (NBICseq-seg_v0.7.2) with 

BIC-seq2 parameters set as --lambda=90 --detail --noscale --control. In WXS data, we used 

CNVkit157 (v0.9.4) to compare our tumor samples to a background panel of normals. 

Structural variant detection 
 

Somatic structural variants (SVs) were detected by Manta139 using tumor/normal sample 

pairs of standard WGS and paired skin linked-read WGS. To filter false positive SVs, we 

removed events with somatic score < 30 and junction somatic score < 30. 

Extracting lrWGS reads supporting somatic mutations 
 

We used a mapping tool (10Xmapping), to identify reads supporting the reference allele 

and variant allele covering the variant site for each somatic mutation and gathering molecular 

barcode and haplotype information from the bam file. The tool is freely available at 

https://github.com/ding-lab/10Xmapping which is then contained as a submodule in 

https://github.com/ding-lab/SomaticHaplotype. 

Subclonal analysis 

The R package SciClone152 was used to define clonal architecture, and tumor phylogeny 

was illustrated using the R package Fishplot158. 

Data availability 
 
1000 Genomes samples downloaded from https://support.10xgenomics.com/genome-

exome/datasets.  
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Chapter 5: Co-evolution of tumor and 
immune cells during progression of multiple 

myeloma 
 

Our work, Co-evolution of tumor and immune cells during progression of multiple 

myeloma, was submitted to Nature Cancer. Please refer to the eventual publication for any 

supplementary tables and extended data figures. Contributions: As co-first author with Ruiyang 

Liu and Qingsong Gao, SMF developed haplotype-based somatic mutation phasing, clonality 

analysis, plasma cell evolution analysis, single-cell visualization techniques, and helped lead the 

overall project organization, manuscript writing and revision, and figure design. 

Summary 
 

Multiple myeloma (MM) is characterized by the uncontrolled proliferation of plasma 

cells. To investigate MM and its immune environment, we applied single cell RNA and linked-

read whole genome sequencing to profile 29 longitudinal samples at different disease stages 

from 14 patients. We collected 17,267 plasma cells and 57,719 immune cells, discovering 

patient-specific plasma profiles and immune cell expression changes. Patients with the same 

genetic alterations tended to have both plasma cells and immune cells clustered together. We 

noted distinct T cell clusters in the tumor microenvironment, which may be associated with 

common translocation events present in the tumor. By integrating genomics and single cell 

mapping, we tracked plasma cell subpopulations across disease stages and found three patterns: 

stability (from precancer to diagnosis), and gain or loss (from diagnosis to relapse). In multiple 

patients, we detected “B cell-featured” plasma cell subpopulations that cluster closely with 
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primitive and mature B cells, implicating their cell of origin. We validated AP-1 complex 

differential expression (e.g. JUN and FOS) in plasma cell subpopulations using CyTOF-based 

protein assays, and integrated analysis of single cell RNA and CyTOF data revealed AP-1 

downstream targets (e.g. IL6 and IL1B) potentially leading to inflammation regulation. 

Introduction 
 

Multiple myeloma (MM) is a disease characterized by clonal proliferation of malignant 

plasma cells (PCs), sometimes manifesting clinically with anemia, renal impairment, and 

pathologic bone fractures 159,160. Over the past three decades, novel therapies, such as autologous 

hematopoietic cell transplantation, proteasome inhibitors (PIs), immunomodulatory drugs 

(IMiDs), and targeted monoclonal antibodies have led to dramatic improvements in quality and 

length of life in patients with multiple myeloma 161-165. Despite these advances, the disease 

remains incurable for most patients as it progresses and becomes resistant to these treatments. 

Several landmark genomic studies have led to a greater understanding of the molecular 

pathogenesis of myeloma. These studies have demonstrated recurrent mutations in KRAS, NRAS, 

and TP53, as well as a significant percentage of previously unrecognized mutations affecting 

RNA processing and protein homeostasis 83,166,167. Other investigations have used bulk 

sequencing technologies to broadly describe MM clonal heterogeneity and evolution in terms of 

shifting subclonal dominance and branching evolution, often in response to therapeutic selective 

pressure 165,168,169. There is an impetus to translate the growing understanding of the genomic 

landscape of MM into precision therapies. This is highlighted by the upcoming MyDRUG trial 

(NCT02884102) being initiated by the Multiple Myeloma Research Foundation (MMRF), which 

will use genomic and transcriptomic information obtained from the CoMMpass study (relating 
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clinical outcomes to assessment of individual genetic profiles) in order to identify targetable 

genetic alterations and to evaluate personalized therapies to enrollees. 

Single-cell sequencing methods combine novel sequencing technologies with cell-sorting 

techniques, allowing for a more granular understanding of inter- and intra-tumoral genomics 170. 

Early studies used low-throughput systems to analyze the tumor microenvironment in solid 

tumors, examining the genomes and transcriptomes of malignant cells, as well the immune 

compartment, confirming the importance of single-cell resolution 125,170,171. With the advent of 

high-throughput methods, these technologies are rapidly expanding toward dissecting all 

malignancies. Ledergor et al. (2018) recently used single cell RNA sequencing (scRNA-seq) to 

compare plasma cell transcriptomes from patients with newly diagnosed MM (NDMM), 

precursor states, and healthy controls; they highlighted significant inter-individual heterogeneity 

and demonstrated variable subclonal divergence leading to new thoughts about the role of 

intergenic mutations, epigenetics, and environmental transcriptional regulation 172. Jang et al. 

(2019) used scRNA-seq to examine 597 CD138+ plasma cells from 15 patients at different 

stages of MM, associating clusters of gene expression with risk of early disease progression and 

cytogenetic abnormalities 173. 

Multiple myeloma is a dynamic disease characterized by clonal evolution and immune 

modulation in response to therapeutic pressure. The aforementioned single cell studies did not 

examine MM patients at multiple points during their disease progressions, nor did they evaluate 

dynamic alterations in non-malignant components of the tumor microenvironment. Here, we 

report our analysis of single-cell patterns in 29 longitudinal samples procured at different disease 

stages from 14 MM patients. We collectively analyzed 74,386 single cells from these patients, 

including 17,267 plasma cells and 57,719 immune cells. Deeper dissection of plasma cells and B 



137 
 

cells identified subpopulations of plasma cells with various genetic changes and marker gene 

expressions, suggesting cells in transitional states. By single cell sequencing, we discerned co-

evolution maps of tumor and immune cells between smoldering multiple myeloma (SMM) and 

primary stages and between primary and relapse stages after remission. In summary, our study 

represents the first longitudinal investigation of tumor and immune microenvironment during 

MM disease development and paves the way for expanding treatment options for this disease. 

Results 
 

Patients, treatments, technologies, and landscape of genomic alterations in 
multiple myeloma 
 

The main data corpus of the study comprises 29 longitudinal samples from 14 individuals 

with different combinations of disease stages, sequencing data types, and treatments (Fig. 1a and 

Extended Data Fig. 1a, Supplementary Table 1). All patients have at least one sample with both 

single-cell RNA sequencing (scRNA-seq) and 10x Genomics linked-read whole genome 

sequencing (10xWGS), and 9 patients have data from two or more time points, including a mix 

of CD138+ sorted and unsorted bone marrow aspirate samples. Three patients have data from the 

SMM and primary stages, and six have both primary and relapse samples. To ensure samples 

matched across time points, we compared germline variant allele fractions (VAF) at 24 loci 

(Extended Data Fig. 1b, Supplementary Table 1). In addition, we performed CyTOF based 

profiling and validation using tumor samples from 4 additional patients. 
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Figure 1. Samples, next generation data set, and genomics landscape. a. Sample type, technology, and treatment timeline broken 
down by patient. Left portion shows sample technology (10xWGS, scRNA, Bulk RNA, WES, WGS) and sample type (CD138+ sorted 
vs. unsorted). Right portion shows each patient’s treatment timeline. Treatment length corresponds to number of cycles. b. Heatmap 
shows the landscape of Copy Number Variations (CNV), Structural Variants (SV) and driver mutations across 14 patients. Copy number 
amplification/gain, copy number deletion/loss, SV and driver mutations are shown in red, blue, purple and orange respectively, with 
colors indicating the number of techniques supporting the event. Techniques for copy number events are FISH, 10xWGS, regular WGS, 
WES, scRNA-seq. Techniques for SV are FISH, 10xWGS, Bulk RNA-seq, scRNA-seq. Techniques for driver mutations are 10xWGS, 
WES, WGS and Bulk RNA-seq. Number of techniques supporting an event is 0 if the only technique supporting the event is from 
scRNA-seq. Plasma cells percentage inferred from scRNA-seq is shown on the top of the heatmap. 
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Multiple myeloma exhibits a variety of primary and secondary genomic events (Fig.1b, 

Extended Data Fig. 1c and 2d). We analyzed potential driver events, focusing on known 

significantly mutated genes and structural and copy number variation (Fig. 1b, Supplementary 

Table 1). Three patients had hyperdiploid (HRD) copy number profiles with little evidence of 

translocation events, and in 12 patients, we observed loss of 13q supported by at least one level 

of evidence 174,175. Most translocations in MM involve the highly-expressed IGH locus on 

chromosome 14, with t(11;14) being the most frequent 176 and t(4;14) being associated with 

adverse prognosis 81,177-180. We have multiple evidence levels of t(11;14) in 3 patients and t(4;14) 

in 1 patient. 

We detected a median of 55 coding mutations from whole exome sequencing (WES) and 

6702 total mutations from whole genome sequencing (WGS) (Supplementary Table 1). The 

variant allele fraction distribution was consistent across sequencing platforms for key driver 

mutations, including TP53, NRAS, KRAS, and DIS3 7,65,181. We observed VAF changes during 

disease progression for several mutations in cancer genes, notably TP53 and NRAS in Patient 

27522 and APOB, CDKN2C, HIST1H1E, and IDH1 in Patient 59114. For example, TP53-

R248Q in 27522 expands from 0.4% to 33.1%, while NRAS-Q61K recedes from 17.1% to 0.6% 

during progression from Primary to Relapse-1 (Extended Data Fig. 1c, Supplementary Table 1). 

Tumor and immune populations influenced by genetic 
alterations and treatments during disease progression 
 

We integrated scRNA-seq data from all 14 patients; after quality control and cell type 

detection (Methods), we retained 74,986 cells from 11 patients, including 17,267 plasma cells 

and 57,719 non-plasma cells. The proportions of plasma and immune cell types vary across 
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patients and disease stages (Fig. 2a). Plasma cells in primary tumor samples ranged from 0.9% to 

84.1%. Other cell types detected include B cells (3,686), macrophages (16,183), monocytes 

(4,249), CD4+ T cells (18,250), CD8+ cells (8,334), natural killer (NK) cells (6,282), and 

dendritic (DC) cells (735) (Figure 2a, Extended Data Fig. 3B). Different patients show a range of 

cell type compositions, such as complete loss of NK cells in Patient 27522 at the primary stage, 

but presence of 22% NK cells in Patient 77570 at the primary stage. Different stages from the 

same patient can also have different compositions as well. For example, in Patient 59114, CD4+ 

T cells change from 36% at Primary to 9% at both Pre and Post-transplant, and increase back to 

35% at Relapse-1. 
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Figure 2. Integration analysis across 14 multiple myeloma patients revealing distinct cancer populations 
and immune microenvironments during disease progression. a. Bar plots showing cell type fractions for 
each sample. Colors indicate cell type. b. Single cell variant allele fractions (VAF) for driver mutations. Each 
bubble is colored by the cell type with the associated VAF, and total cells supporting the variant are labeled 
atop each bubble. c. Heatmap showing pairwise correlation of average expression for malignant cells in each 
sample. Genomic alterations with either FISH evidence or at least another two levels of evidence shown 
above. d. t-SNE plots showing the integration of samples from multiple patients for a given timepoint. 
Clustering of cells from different timepoints are colored by patient (top) or by cell type (bottom). The 
remission group includes one remission sample, one pre-transplant, and one post-transplant. e. t-SNE plot 
showing CD8+ T cells from all the patients where CD8+T cells are available. Cells from the primary sample 
of Patients 77570 and 83942 and Relapse-2 sample of Patient 27522 are colored specifically. f. Expression 
pattern of KMT2A and KMT2C in CD8+T cells for each sample. 
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Mapping somatic mutations to individual scRNA cells has the potential to identify tumor 

cells that cannot be discerned purely by expression data or subclonal populations with different 

mutational patterns 102. Overall, we mapped 48 mutations to 198 cells from 14 samples 

(Extended Data Fig. 2b-c, Supplementary Table 2, Methods). Variants in key driver genes, such 

as NRAS G13R mutation, were primarily detected in plasma cells (158 cells) relative to non-

malignant cell types (39 cells), which are much more numerous. The reference allele was 

detected more readily across cell types (1212 plasma cells and 5278 non-plasma cells) (Fig. 2b). 

We also examined mutations co-residing in the same cells (Extended Data Fig. 2a), finding that 

mutations NRAS-G13R, YBX1-F74L, ACAT1-S14N, CLPTM1L-T33S, and DIS3-T773P serve as 

hubs for a mutational network in the 27522 Relapse-2 sample. 

Single cell expression profiles of plasma cells primarily clustered by each individual 

patient, with different disease stages of the same patient showing high similarity (Fig. 2c, 

Extended Data Fig. 4a-b), while expression of non-plasma cells largely cluster by cell types 

(Extended Data Fig. 3a). Notably, we observed the highest correlation between SMM and 

primary tumors (0.92 for Patient 47491 and 0.91 for Patient 58408), but lower and more variable 

correlation between primary and relapse samples in other patients. Expression profiles also 

partially clustered by genetic alterations; Patients 77570 and 83942 both harbor CCND1 

translocation, and their plasma cell expression profiles are more similar than others (Fig. 2c, 

Supplementary Table 3, Methods). 

We also integrated samples from multiple patients by disease stage (Fig. 2d, top row 

colored by patient, bottom row colored by cell type). We observed again that plasma cells tended 

to cluster by patient, and found that non-plasma cells clustered by cell type and included a 

broader mix of patients. We then identified genes with variable expression across disease stages 
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in multiple patients. For example, we found CD4+ T cells from primary tumors show a higher 

expression of NFKBIA when compared to SMM. In Patient 27522, NFKBIA expression was lost 

during remission, but regained in relapse. NFKBIA is a negative regulator of NFkB, meaning cell 

types with higher NFKBIA might implicate altered NFkB activity. In another example, we found 

higher expression of CD69 in CD4+ T cells of remission samples, which was subsequently lost 

during relapse. Higher expression of IL1R2 was observed in primary sample monocytes but was 

then lost in remission monocytes. In monocytes found in the Relapse-2 sample of Patient 59114, 

there was a slight increase in IL1R2 expression, and a similar trend was observed for IL1B 

expression in the monocytes of Patient 60359 (Extended Data Fig. 3d). Together these suggest a 

role of IL1 signaling during myeloma, which should be further explored. 

To evaluate differences of the tumor microenvironment across patients, we did another 

integration including an additional 4 samples from healthy donors. We then extracted cells from 

each non-tumor population for subclustering analysis. We found cells from different patients 

generally mixed well, but cells from some samples exhibited a consistent outlier pattern across 

cell types. This phenomenon is particularly seen for the Relapse-2 sample of Patient 27522 and 

for the Primary samples of Patients 77570 and 83942. Specifically, NK cells and especially 

CD4+ and CD8+ T cells from 77570 and 83942 overlapped showed similar overall expression 

profiles, further suggesting similar genetic alterations could shape similar tumor 

microenvironment (Fig. 2e, Extended Data Fig. 3b). Further investigation identified a set of 

genes exhibiting outlier expression pattern in these samples. For example, in CD8+T cells of 

these three samples, we found higher expression of KMT2A and KMT2C, two genes belonging to 

the lysine methyltransferase family, suggesting epigenetic changes in the T cell population (Fig. 

2e-f). There is strong evidence of t(11;14) (CCND1 translocation) in Patients 77570 and 83942, 
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and t(4;14) (WHSC1/MMSET translocation) in Patient 27522, suggesting further study into the 

role these events might play in modifying the tumor microenvironment. We found high 

expression of CTSS in the macrophages and monocytes of Patient 77570 (Extended Data Fig. 

3c). CTSS encodes Cathepsin S, a major endoprotease processing the MHCII complex prior to 

antigen presentation. It has been shown in mouse models that CTSS is necessary for the release 

of IL1B in macrophages182, and that macrophage-derived cathepsin S induces chemoresistance in 

breast cancer 183 and invasion in pancreatic cancer 184. Interestingly, for the general myeloid 

lineage cell types (macrophages, monocytes, DC), the Relapse-2 sample of Patient 27522 shows 

outlier expression of TNFSF13 (APRIL) (Extended Data Fig. 3c). TNFSF13 engages with the 

plasma cell-specific receptor TNFRSF13B (TACI) 185 and induces secretion of proinflammatory 

mediators such as IL-8 and MMP-9 186, which could implicate the complex interaction within the 

tumor microenvironment. 

Delineating B cell lineage by gene signature analysis and 
genetic alteration mapping 
 

To study B cell lineage and the transition between normal and malignant plasma cells, we 

integrated B cells and plasma cells from 21 tumor samples with both cell types along with 4 

healthy donors (Methods). After integration, we found that clusters separated by cell type (Fig. 

3a), with mature B cells from each patient mapping to the same cluster as B cells from normal 

samples. There are three small B cell clusters predominantly from healthy donors that exhibit 

high expression of SOX4, VPREB3, and MME, suggesting a primitive B cell state 187,188. 

Interestingly, we found plasma cells from healthy donors mixing with some MM plasma cells, 

meaning that these particular MM plasma cells exhibit an expression pattern similar to normal 
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plasma cells. The rest of the MM plasma cells largely clustered by patient, as shown previously 

(Extended Data Fig 4a). 
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Figure 3. Analysis of B cell lineage markers and landscape for copy number events. a. t-
SNE plot showing the distribution of B cells and plasma cells from all patients and four healthy 
“normal” donors. b. Heatmap showing genes specifically expressed at certain stages of B cell 
development. c. Landscape of chromosome 13 deletion status showing all samples (left), with 
sample-specific maps for samples with at least one cell with chromosome 13 copy number (CN) 
< 0.76 (right). 
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To investigate whether the malignancy of plasma cells is implicated from the early B cell 

stages, we also subset only the B cell populations for analysis. We found cells from some patient 

samples along with two normal samples (090617 and 170531) to be outliers. We found 

substantial B cell signatures in the plasma cells -- with high expression of typical plasma cell 

markers, such as SDC1 and TNFRSF17 -- for Patients 56203 and 83942, and to a lesser degree 

for 77570, as illustrated by expression of B cell marker MS4A1 (Extended Data Fig. 4c). It has 

been previously reported that a subset of patients with high CCND1 expression exhibits a B cell 

phenotype (CD2 group) 177, consistent with our observation for 77570 and 83942. For Patient 

56203, there is also an aberrant CCND1 regulation according to FISH report (data not shown), 

although CCND1 translocation/overexpression is not observed. This suggests that aberrant 

CCND1 regulation, not necessarily overexpression, may drive a switch back to B cell phenotype. 

Patient 81012, harboring a CCND1 translocation, had elevated expression of FYN and SETD7 

(Extended Data Fig. 4c), consistent with the previously reported CD1 group 177. 

We then identified genes differentially expressed across the B cell lineage, from primitive 

B cells to mature B cells and ultimately to normal and malignant plasma cells. We found four 

groups of overexpressed genes that defined each stage (Fig. 3b, Supplementary Table 4). The 

Primitive B group included SOX4 and DNTT, along with several less-investigated genes in terms 

of lineage, such as HMGB1 and HMGB2, both of which are involved in DNA double-strand 

breakage 189,190 and might be associated with VDJ recombination. The Mature B group was 

defined by CD20 (MS4A1) and MHC-associated genes. The third group showed increased 

expression along the B cell lineage, with high expression in both normal and malignant plasma 

cells. As expected, ER stress response gene XBP1 was overexpressed since plasma cells produce 

high levels of secreted proteins 191. The final group showed high gene expression for malignant 
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plasma cells only. Typical genes for this category include FRZB, CD40, BIRC3, and ZBTB38. 

Our discovery of B cell lineage genes is confirmed by the observation of increased expression of 

MHC II-related genes from primitive B cell to mature B cell stage prior to differentiation to 

plasma cells. Further, this observation is validated in our independent CyTOF experiment, where 

the CD38-low, CD45-high, mature population exhibits higher levels of HLA-DQA1 (Extended 

Data Fig. 5). 

We also analyzed single cell copy number in B and plasma cells and found that 17 out of 

21 samples showed chromosome 13 deletion (Fig. 3c, Extended Data Fig. 2d). Complete loss of 

chromosome 13 is associated with more aggressive malignancy than partial loss, in part because 

tumor suppressors such as RB1 reside there. We identified clusters with deeper chromosome 13 

deletion in 83942 Primary, 57075 Relapse-1, and 27522 Relapse-2, indicating possible 

homozygous deletion in their plasma cells. Clusters with deeper deletion tended to be patient and 

subpopulation-specific, while cells mapping to the same location as normal plasma cells tended 

to come from multiple patients and showed greater variability, including some with neutral 

CNV. 

Distinct plasma cell subpopulations remain stable during 
transition from SMM to primary 
 

We investigated how clonal structure evolves from SMM to primary diagnosis in three 

patients, 37692, 47491, and 58408 (Fig. 1a). Without exception, we found that plasma cells 

grouped into two geometrically distinct t-SNE subclusters (subpopulations) in both disease 

stages (Fig. 4a, Extended Data Fig. 6a-b). 
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Figure 4. Patterns of plasma cell subpopulation shift from SMM to Primary (58408) and from Primary to Relapse (81012). 
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To investigate whether primary plasma cell subpopulations descended from 

subpopulations present at SMM, we integrated data from the two disease stages and examined 

how the respective cells cluster. In Patient 58408, we found a good mixture for clusters 1 and 2 

from the two stages, which occurred 4.0 years apart (Fig. 4b). We then compared genetic 

alterations and the expression profiles of these clusters (Fig. 4c), finding clear chromosome 13 

loss in cluster 1 of both the SMM and primary stage, while cluster 2 of both stages exhibited 

normal copy number. Gains on chromosomes 5 and 15 show a similar concordance (Fig. 4c, 

Extended Data Fig. 6c). This evidence collectively suggests that Primary subpopulation 1 

probably descended from SMM subpopulation 1, and likewise for subpopulation 2 at the two 

time points. 

We repeated this analysis in the other two patients (47491 and 37692) (Extended Data 

Fig. 6d-h) and found the same pattern. In Patient 47491, cluster 2 from SMM matches cluster 1 

from primary, and the remaining two clusters are associated with each other. This is illustrated 

by the slight gain of chromosomes 5 and 15, as well as clusters overlapping in the integrated t-

SNE plot (Extended Data Fig. 6d-e). For Patient 37692, we also found cluster 1 from SMM and 

Figure 4. Patterns of plasma cell subpopulation shift from SMM to Primary (58408) and 
from Primary to Relapse (81012). 

a. Plasma cell t-SNE subclusters for Patient 58408 at SMM and Primary time points. b. Plasma 
cell subclusters identified in a mapped to the integrated t-SNE of all cells from Patient 58048 
SMM and Primary time points. Bottom left: possible explanation for plasma cell subpopulation 
shift from SMM to Primary. c. Copy number and expression patterns for plasma cells from 
different time point subclusters and plasma cells from healthy donors. The first row shows copy 
number changes and expression of genes associated with genetic alterations detected in Patient 
58408. The second and third rows show the expression of B cell markers and plasma cell 
markers. The last two rows show differentially expressed genes found between the clusters. d-f. 
Similar illustrations as a-c except for Patient 81012, who progressed from Primary to Relapse-1. 
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cluster 2 from primary overlapping, while the other two clusters overlapped (Extended Data Fig. 

6f). 

In Patient 37692, we did not find compelling evidence at the CNV level, possibly due to 

limited coverage resulting from a low number of plasma cells recovered at the SMM stage. A 

notable difference regarding Patients 37692 and 58408 is that the dominant subpopulation (the 

subcluster with more cells) for 58408 at SMM stage remains dominant at primary stage, while 

the minor subpopulation for 47491 and 37692 at SMM becomes dominant at the primary stage, 

suggesting differences in the survival/ proliferation of distinct plasma subpopulations. 

Nevertheless, plasma cell population structures are maintained from SMM to primary diagnosis, 

suggesting a stable population evolution pattern during this transition. 

To further understand subpopulation expression profiles, we investigated expression 

patterns for Patient 58408. We found slightly higher expression of canonical B cell markers 

CD79A and CD19 in cluster 1 for both time points (Fig. 4c), while expression of plasma cell 

markers is similar (Fig. 4c), suggesting plasma cell subpopulation 1 represents a more ancestral 

“B cell-like” phenotype. Given the presence of chromosome 13 deletion in this cluster, it is 

possible that malignant transformation of this clone occurs at the B cell rather than plasma cell 

stage though this could also arise through a reprogramming process. We also conducted an 

unbiased differential expression analysis and found high expression of JUN, FOS, FOSB, and 

JUND in cluster 1 (Fig. 4c). Notably, differential expression for FOS and JUN is also found 

within clusters for the other two patients (Extended Data Fig 6g-h). JUN and FOS encode 

proteins JUN and FOS which dimerize to assemble the AP-1 transcription factor. AP-1 has been 

implicated in a variety of biological processes, including cell proliferation, differentiation, and 

apoptosis 192. 
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We found chromosome 13 deletion in cluster 1 in Patient 58408, suggesting a more 

malignant phenotype. However, we also detected high levels of JUN and FOS in normal plasma 

cells, similar to what we found in this cluster. Based on these observations, it is difficult to 

determine whether high AP-1 activity could be an indicator of malignancy, especially given that 

the oncogenic role of the AP-1 pathway is very context-dependent 192. 

Dynamic gain and loss of plasma cell subpopulations observed from primary 
to relapse 
 

We followed plasma cell populations from the primary diagnosis to relapse and noticed 

the emergence of distinct plasma cell subpopulations. In each of six patients with primary and 

relapse time points (27522, 56203, 57075, 59114, 60359, and 81012), we observed two or more 

t-SNE subclusters of plasma cells, which arose in the context of treatment-related selective 

pressure (Fig. 1a). Plasma cell subclusters tended to be more similar to (i.e. clustered more 

closely to) each other than other cell types. The proportion of plasma cells present at the primary 

and relapse stages varied across patients, with some tumors exhibiting a higher proportion at the 

primary stage and vice-versa; this could reflect sampling variability, patient-to-patient 

differences in disease progression and treatment efficacies, and/or the snapshot nature of data 

collection (Fig. 1a, Fig. 2a). Next, using single cell gene expression and copy number changes, 

we determined the relationship between plasma cell subpopulations at primary and relapse 

stages. Within a particular patient, subclusters with similar expression and copy number patterns 

at different time points likely represent the same subpopulation of cells observed over the course 

of tumor progression. Three patients (81012, 56203, and 27522) illustrate this dynamic 

population shift in detail. 



153 
 

Patient 81012 displayed variable plasma cell subpopulation dynamics over the course of 

progressive disease (Fig. 4d-f). At the primary stage, we observed two plasma cell 

subpopulations (named P.1 and P.2). Later, at relapse, we observed four plasma cell 

subpopulations (R.1-R.4). In this case, two new plasma cell subpopulations emerged at relapse 

which had not been observed at the primary stage. Integrated t-SNE mapping showed that the 

overall expression profiles of P.1 and R.1 match, that P.2 and R.2 match, and that R.3 and R.4 

are distinct new clusters (Fig. 4e). Looking more closely at expression markers, P.1 and R.1 

showed elevated expression levels of B cell marker CD79A. P.1, R.1, and R.3 had similar levels 

of plasma cell markers (SDC1, TNFRSF17, and SLAMF7). For FOS, one component within the 

AP-1 complex, we found the lowest expression in P.2 and R.2; P.1, R.1 and R.2 exhibit higher 

expression, while R.4 shows highest expression. We then took a closer look at R.3 and R.4, since 

the two newly-derived populations have similar expression of FOS as R.1. We found R.3 

exhibits the highest CKS1B expression, overexpression of which promotes myeloma cell growth 

and survival 193 and is associated with a poorer prognosis 194. CKS1B overexpression could be 

caused by gain at chromosome 1q21 region, but this was not observed in our analysis, suggesting 

the change is independent of chromosome alteration. R.4 has the highest expression for MEF2C, 

a transcriptional factor typically regarded as playing a role in muscle cell differentiation.195 

Recently, ATAC-seq profiling suggested MEF2 family is preferentially enriched in the open 

chromatin regions in myeloma cells and MEF2C inhibition resulted in reduced myeloma cell 

growth and survival 196. At the copy number level, R.4 exhibits chromosome 19 loss, a feature 

absent in all the other subpopulations (Fig. 4f). Together, the evidence suggests that the newly 

arisen R.3 and R.4 both exhibit enhanced growth and survival, though through different 

mechanisms of regulation. 
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Patient 56203 progressed from the primary stage, with three plasma cell subpopulations 

(P.1, P.2, and P.3), to the relapse stage, with two plasma cell subpopulations (R.1 and R.2) 

(Extended Data Fig. 7a). P.1, R.1, and R.2 showed similar levels of chromosome 13 loss, while 

R.1 and R.2 demonstrated chromosome 17 loss, which distinguished the relapse clusters from the 

primary clusters. Following drug therapy and ASCT, primary cluster P.1 showed similarity to the 

two subpopulations present at relapse, while primary clusters P.2 and P.3 appear to have been 

lost (Extended Data Fig. 7a). 

However, tumor subpopulation relationships during disease progression can be more 

complex than Patients 81012 and 56203 illustrated, as seen in the four time points of Patient 

27522 (Fig. 5). The primary time point plasma cells comprise 4 distinct subpopulations (P.1-P.4) 

(Fig. 5a). Subpopulations P.1, P.2, and P.3 each show partial loss of chromosome 13, while P4 

does not (Fig. 5d). Projection of P.1-P.4 from Patient 27522 onto the integrated cross-sample B 

cell and plasma cell t-SNE map shows two groupings of P.4, both of which map distantly from 

P.1-P.3, largely confirming the original sample-level clustering as well as indicating a high level 

of population complexity (Fig. 3a, Fig 5b). 
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Figure 5. Detailed analysis of plasma cell subpopulation shift for Patient 27522. 
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We then looked at subpopulations from Remission (RM), Relapse-1 (RL1), and Relapse-

2 (RL2) separately from Primary. At Relapse-2, we observed three subpopulations of plasma 

cells (RL2.1, RL2.2, and RL2.3), with chromosome 13 and chromosome 16 loss in RL2.1, partial 

loss of chromosome 13 in RL2.3, and t(4;14) translocation in both RL2.1 and RL2.3. RL2.2 

remained copy number neutral at chromosome 13 and chromosome 16 (Fig. 5d). Further, we 

looked for somatic mutations detected from WES data in our scRNA-seq-seq data and noted the 

occurrence of reference (blue dots) and mutant (red dots) alleles in cells with read coverage. 

Mutant alleles were detected exclusively in RL2.1, but never in RL2.2 or RL2.3 (Figure 5E). 

Somatic events observed in these cells included NRAS G13R mutation and t(4;14) translocation 

(inferred from FGFR3 and WHSC1 upregulation) (Fig. 5d, Extended Data Fig. 7b). All three 

clusters expressed high levels of standard plasma cell markers, such as SDC1, SLAMF7 (CS1), 

and TNFRSF17 (BCMA), while FGFR3 and WHSC1 were primarily expressed in the malignant 

(RL2.1) and the “transitional” malignant (RL2.3) populations. CD27, a marker associated with 

normal plasma cells 197, CD79A, a member of the B cell antigen receptor complex, and CD19, a 

marker for B cell development, were exclusively detected in RL2.2, supporting the normal “B 

cell-like” classification (Fig. 5d, Extended Data Fig. 7c). RL2.2 is composed of cells with either 

Figure 5. Detailed analysis of plasma cell subpopulation shift for Patient 27522. 

a. t-SNE mapping of plasma cell subclusters for Patient 27522 at Primary, Remission, Relapse-1, 
and Relapse-2 disease stages. Colors indicate different subclusters within each time point. b. 
Plasma cell subclusters identified in a mapped to the integrated t-SNE of B and plasma cells 
from all samples plus healthy donors (as in Figure 3a). c. Plasma cell subclusters identified in a 
mapped to the integrated t-SNE of all cells from Patient 27522 Remission, Relapse-1, and 
Relapse-2 disease stages. d. Subcluster level copy number changes and expression of malignant 
cell markers, B cell markers, plasma cell markers, and differentially expressed genes. e. Somatic 
mutations mapped onto Relapse-2 t-SNE (blue, reference allele only; red, variant allele detected; 
grey, no coverage). f. Possible explanation for plasma cell subpopulation shift from Primary to 
Relapse-2. 
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high expression of IgA or IgG, while the patient exhibited IgA in isotype identification, which 

suggests some plasma cells from this subpopulation are normal. These data represent the first 

confirmed observation that combining mutation and CNV/SV mapping and single cell 

expression data enables precise identification of cell subpopulations in multiple myeloma that are 

either rare or undergoing transitional states, with important clinical implications. 

In summary, Relapse-2 comprises three distinct subpopulations, one malignant (RL2.1, 

with somatic mutations and deep chromosome 13 deletion), one “B cell-like” (RL2.2, with 

strong B cell marker expression), and one “transitional” (RL2.3, without somatic mutations 

detected but with shallow chromosome 13 deletion). We then traced the origin of these three 

subpopulations by integrating Relapse-2 with the Remission and Relapse-1 time points. 

Based on an integration of Remission (RM), Relapse-1 (RL1), and Relapse-2 (RL2), we 

found four groups of cells, which are colored by their time point-specific clusters (Group 1: 

mostly RL2.1; 2: mostly RL2.2; 3: mostly RL2.3; 4: exclusively RL1.1) (Fig. 5c). Some cells 

from both Remission and Relapse-1 mapped with RL2.2 (Group 2); it is likely that part of these 

cells are non-malignant plasma cells based on the expression of IgA and IgG. Likewise, other 

groups of cells from Remission and Relapse-1 mapped with RL2.3 (Group 3). There was one 

major subpopulation of cells from RL1 that mapped on its own without any clear connection to 

the previous or later time points (Group 4). Finally, cells present at Remission mapped with the 

malignant subpopulation RL2.1 (Group 1). This subpopulation was not seen at Relapse-1, 

potentially due to low cell count or sampling variability. According to B cell marker expression 

(CD79A, CD19, CD27), the cell population at Remission shows a “B cell-like” pattern, but the 

co-clustering of Remission cells to multiple relapse populations indicates there is still some 

malignancy lurking at Remission. Taken together, one interpretation is there were cells present at 
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remission that evaded treatment and survived to seed the relapse. Expression and copy number 

changes seen in Relapse-1 split according to their grouping with Relapse-2 and Remission on the 

integrated map, justifying the use of three clusters for downstream analysis although sample-

level clustering did not resolve such clusters (Fig. 5f). 

Haplotype-based mutation analysis increases resolution of clonal evolution 
subclustering 
 

We examined how cell type and tumor clonal composition change over time and focus 

here on Patients 58408 and 27522 to illustrate such evolution. In Patient 58408, the population 

share of CD4+ and CD8+ T cells dropped from being the two most observed cell types at SMM, 

with monocytes later emerging as the most prevalent cell type at the primary stage (Figure 2a). 

Within the plasma cells, we previously described a relatively stable transition of two 

subpopulations from SMM to Primary (Figures 4a-c), with both hyperdiploidy (HRD) and 

chromosome 13 deletion detected at the SMM and primary disease stages. Using a mutation 

VAF-based approach, we observed little genomic change over the 4.0 years separating SMM and 

Primary (Fig. 6a-b). We detected mutated driver genes (HIST1H1E-S172T and NOTCH1-

D2201V) in the main subclone at both time points. 
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Figure 6. Linked-read DNA sequencing maps somatic mutations to germline haplotypes 
and clonal evolution maps. 

a. Variant allele frequency clustering of subclonal populations from Patient 58408 SMM and 
Primary samples. b. Somatic mutation VAF-based clonality models for Patient 58408. c. Variant 
allele frequency clustering of subclonal populations from Patient 27522 Primary, Relapse-1, and 
Relapse-2 samples. d. Somatic mutation VAF and haplotype-based clonality model for Patient 
27522. e. Barcode analysis of two NRAS somatic mutations showing both mutations occurred on 
Haplotype 2 did not co-occur, suggesting an independent subclonal relationship. Each set of 
linked-reads represents a particular pattern of support for the two somatic NRAS mutations. The 
number of observed barcodes refers to total barcodes demonstrating the same pattern of NRAS 
somatic mutations. 
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In Patient 27522, we observed NK cells only at the relapse stages (Figure 2a), and the 

population share of CD4+ T cells expanded following remission. The overall proportion of 

plasma cells observed declined over time with treatment from being a prominent cell type at the 

Primary stage to later being only a minor cell type. Patient 27522 had one primary and two 

relapse samples with t(4;14) and del(13q). NRAS- G13, NRAS-Q61 and DIS3-T773 were 

secondary mutations in the primary sample and TP53-R248 was detected at relapse (Figures 6c-

d). The TP53 subclone showed higher VAF at relapse compared to other subclones, implying 

relevance to subclonal expansion. As previously shown with plasma cell subpopulation analysis, 

we detected somatic mutations only in Relapse-2 cluster 1 (RL2.1, green) (Fig. 5e). 

The primary sample of Patient 27522 displayed two NRAS hotspot mutations at G13 

(chr1:114716124, C>G) and Q61 (chr1:114713909, A>T). We noted that the Q61 mutation was 

nearly lost (VAF ) at relapse wanted to know if the Q61 mutation occurred in a secondary 

subclone of the G13 subclone or if G13 and Q61 occurred independently. We utilized 10x 

Genomics linked-read whole genome sequencing (10xWGS) 19 to address this question. 

Compared to previous tumor clonality methods which rely mainly on somatic variant allele 

fractions 152,198-201, linked-reads have the advantage of placing variants in their haplotype context 

and providing direct observations of the relationship between proximal somatic mutations at 

distances not captured by short reads alone. Surrounding germline variation showed that these 

two mutations occurred on the same haplotype, but they did not co-occur in linked-reads 

covering both positions (n=4), leading us to interpret that they arose independently in distinct 

subclones, not sequentially in the same subclone (Figure 6e). 
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Targeted protein assay confirms differential AP-1 expression populations in 
plasma cells 
 

To better understand how heterogeneity within a single tumor may be reflected in the 

functional roles of plasma cell subpopulations, we sought to identify common patterns of 

pathway enrichment across the subpopulations of multiple tumors (Methods). We first divided 

the plasma cell fractions into a total of 53 discrete subpopulations based on differential gene 

expression. We then performed pathway enrichment analysis on the differentially expressed 

genes of each sub-population. Correlation analysis of enrichment results resolved three groups 

with highly similar enrichment profiles (Extended Data Fig. 8). Group 1 subpopulations share 

enrichment for pathways related to translation regulation, including nonsense-mediated mRNA 

decay, as well as PD-1 signaling. These findings are consistent with previous work showing the 

relevance of active translation65 and T cell exhaustion202 to myeloma pathogenesis. Group 2 

shares enrichment of cell cycling and proliferation pathways, and may represent highly 

proliferative subgroups of their respective tumors. Group 3 is enriched in various metabolic 

pathways as well as in Toll-Like Receptor signaling cascades. These pathways may signify 

differential interaction with the immune microenvironment. 

In addition to database-driven pathway enrichment, we identified pathways in which 

differentially expressed genes are known key players. Strikingly, out of 13 cases in which 

enough plasma cells were detected in each sample to perform subpopulation analysis, we 

observed 7 cases with tumor subpopulations showing differentially expressed members of the 

heterodimeric AP-1 transcription factor complex, which we call AP-1-high subpopulations. High 

expression of AP-1 was not solely associated with a specific chromosome alteration event, but 

the AP-1-high subpopulation was usually enriched for CNV events. There is also a positive 
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correlation between the expression of single cell and bulk RNA-seq expression for FOS (r=0.43) 

and JUN (r=0.56) across samples (Extended Data Fig. 9a). We then evaluated the expression of 

FOS and JUN across subclusters and across samples, finding at least one plasma cell 

subpopulation with high expression of FOS or JUN in all cases, regardless of AP-1 expression 

differences (Fig. 7a). Interestingly, plasma cells from the multiple sample collections of Patients 

58408 and 81012 showed subpopulations exhibiting differential expression of both FOS and 

JUN, and we manually defined plasma cell subclusters for each sample based on their t-SNE 

mapping location. The preservation of the AP-1-high population across samples suggests this 

population potentially plays a role in the pathogenesis of myeloma. 
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Figure 7. AP-1 expression population in plasma cells confirmed by independent cohort. 
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Given the frequently observed AP-1 differences within plasma cell populations, we 

further investigated whether and how differences in the AP-1 pathway could lead to biological 

differences in plasma cell subpopulations. We performed CyTOF experiments with four 

additional MM patient samples, three of which had good cell viability. We designed two target 

panels to separate relevant cell types, quantify signaling pathways (e.g. JAK-STAT, NK-kB), 

and investigate interleukin activity 203,204. As expected, we found distinct clusters with 

differential expression of JUN and FOS (Extended Data Fig. 9b). In fact, a closer look at sample 

81198 indicates the two populations with differential AP-1 expression are evident after t-SNE 

dimension reduction using only cell surface markers (Fig. 7b), consistent with the other two 

samples (data not shown). 

We then combined results from scRNA-seq and CyTOF experiments for a deeper 

analysis of AP-1 targets (Fig. 7c). We noticed the expression of H3F3B and ZBTB20, known 

Figure 7. AP-1 expression population in plasma cells confirmed by independent cohort. 

a. AP-1 components expression across plasma cell subpopulations across samples. Upper: 
average expression for FOS and JUN for each sub-population. Lower: violin plot showing the 
expression patterns of FOS and JUN for some cases of interest. S, SMM; P, Primary; RM, 
Remission; R1, Relapse-1; R2, Relapse-2. b. CyTOF experiment workflow and data analysis. 
Bone marrow samples from patient and healthy donors are preprocessed, stained for target 
antibodies of interest, and expression is profiled in parallel. Samples from patients and healthy 
donors are merged together and visualized with t-SNE. Regions where only patient samples 
occupy are further checked for CD138, CD38 and CD45 for verification of their plasma cell 
identity. Expression profile for FOS, JUN, IL-1B and IL-6 within plasma cells are shown. c. 
Proposed mechanism of how AP-1 complex influences the phenotype of myeloma cells. 
Heatmap beside each gene indicates normalized expression for different populations of plasma 
cells in Patients 58408 (SMM and Primary), 31570, 67609, 81198. scRNA-seq expression data, 
yellow scale; CyTOF expression data, purple scale. Solid arrows, presence of evidence from 
literature or database. Dashed arrows indicate indirect evidence. Color of solid arrows indicates 
the confidence level of the evidence of origin. 3, evidence from ChIP-seq database; 2, evidence 
from myeloma associated literature; 1, evidence from non-myeloma associated literature. 
Clusters 1 and 2 for each case are manually defined. 
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downstream targets of FOS, are concordant with AP-1 expression within plasma cell 

populations. H3F3B encodes H3.3, a variant of histone H3. Ectopic overexpression of H3.3 is 

sufficient to induce senescence-associated heterochromatin foci (SAHF), an important marker 

for cellular senescence 205. ZBTB20 reportedly plays a role in B cell terminal differentiation; its 

expression in plasma cell lines induces cell survival and blocks cell cycle progression 206. 

Consistent with this, we found slightly upregulated expression of MCL1, a survival marker, and 

CDKN1A, a cell cycle inhibitor, in the AP-1-high population. Enhanced survival, decreased cell 

proliferation, as well as the presence of SAHF, all suggests a senescent phenotype for the AP-1 

upregulated population. We also found higher expression of IL6ST in the AP-1-high population. 

IL6ST is a signal transducer shared by IL-6 family cytokine members and is implicated in the 

progression of a various cancer types 207,208. IL-6, one of the ligands for IL6ST, and IL1B were 

upregulated in Patients 81198 and 31570. Given that both samples have undergone prior 

treatment, it is possible that different populations of plasma cells respond to treatment differently 

by producing differential amounts of cytokines, especially those involved in senescent-

associated-secretory profile (SASP). 

It should be noted that, while FOS and JUN are co-dysregulated for a specific cluster in 

most cases, there are situations where only one of the molecules is dysregulated while the other 

one is much less obvious. For example, in sample 83942, where no AP-1 differences among 

clusters are observed, we found all the clusters exhibit low expression of FOS while JUN 

expression is high. A more interesting case is for sample 81198, where the AP-1-high population 

exhibits higher upregulation of JUN compared to FOS. In this sample, the AP-1-high population 

exhibits downregulated CD138 expression and upregulated IL32 expression compared to AP-1-

low population. Hypoxia could downregulate CD138 expression in myeloma cells209 and induce 
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IL-32 in myeloma cells210, suggesting AP-1 high population has a more obvious hypoxic 

signature. Meanwhile, JUN has been shown to stabilize HIF1A in a transcriptionally independent 

manner211. It is likely that JUN stabilizes HIF1A, promoting the expression of a series of 

downstream targets, including IL-32, a phenomenon not expected for a cluster where only FOS 

is high. In summary, different components within AP-1 complex could play different roles in 

shaping the downstream effector, contributing to diverse phenotypes of plasma cells. 

Discussion 
 

In this study, we applied a combination of conventional and single-cell technologies to 

systematically study multiple myeloma in 14 patients with different treatments at multiple stages 

of disease progression. We performed scRNA sequencing for ~75K single cells, including both 

malignant and non-malignant cells, to better understand the transcriptome profiles of these 

tumors and their interactions with the microenvironment. Varying compositions of cell types 

over the disease course (e.g. fluctuation of numbers of CD4+ T cell numbers in Patient 59114 

discussed above) support the view that the tumor microenvironment is fluid and plays an active 

role in inter-tumor heterogeneity, as well as disease progression. Patients with the same genetic 

alterations tended to have both plasma cells and immune cells clustered together. For example, in 

our two patients with t(11;14), we noted distinct T cell clusters in the tumor microenvironment as 

well as upregulation of lysine methyltransferase genes KMT2A and KMT2C in CD8+ T cells. 

After integrating the data from inferred plasma cells and B cells from healthy donors, we were 

able to catalog a lineage from primitive B cells to mature B cells and ultimately to normal or 

malignant plasma cells. Many genes related to this lineage were identified, including known 

genes like XBP1, as well as novel genes requiring further characterization. The overall result 



167 
 

indicates that single cell transcriptome profiling of B cells and plasma cells could be used to 

trace the origin of multiple myeloma, and we identified some patients with plasma cells that 

exhibit a B cell signature. 

We investigated how plasma cell population structure evolves from SMM to primary 

diagnosis to relapse by integrating somatic alterations mapping, cell lineage marker gene 

expression, and differential gene expression. Although previous studies have characterized the 

stability of the SMM to primary transition, we traced specific plasma cell subpopulations across 

disease stages to illustrate this process and extended the analysis to highlight dynamic changes 

from diagnosis to relapse. Our analysis is the first to delineate the plasma cell subpopulation 

structure during multiple myeloma disease progression. By integrating scRNA-seq and genomic 

alternations, we built plasma cell evolution models representing transitions between disease 

stages and highlighted co-evolution with the tumor microenvironment. In contrast to malignant 

cells, non-malignant cells clustered by cell type, independent of their tumor of origin and disease 

stage. However, detailed characterization of individual immune cell types showed some patients 

with distinct expression profiles, suggesting a potential interplay between the genomic landscape 

and an altered microenvironment. 

We identified distinct subpopulations of plasma cells in most samples and observed three 

major patterns of subpopulation shift during disease progression: stable, gain, and loss. Stable 

pattern is seen in all three patients from SMM to primary, while gain and loss of subpopulations 

are found from primary to relapse. We extend conventional mutation VAF-based tumor 

evolution inference models by directly observing subclonal relationships using single cell and 

single molecule mutation mapping. In the future, mutation mapping should provide more useful 

information as scRNA-seq technology keeps evolving. We believe mutation and CNV mapping 
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carried out in conjunction with gene expression clustering strategies may be generalizable to 

other cancer types to trace the origins of malignant cells. 

Plasma cells from different populations within the same sample usually exhibit 

differential expression for components within the AP-1 complex, e.g. JUN and FOS. Tracing the 

co-differentially expressed genes, together with ChIP-seq data analysis, revealed potential 

downstream targets which contribute to enhanced survival but decreased proliferation of the AP-

1-high population. CyTOF experimentation revealed a similar pattern in FOS and JUN 

expression. The presence of additional differentially expressed genes from the CyTOF panel, 

such as IL6 and IL1B, potentially suggests a greater inflammatory response happening in the 

AP-1 high population. 

Future study designs will enable us to compare greater numbers of patients within the 

same treatment regimen to better understand effects of treatments on tumor and immune cells. In 

addition to single cell transcriptomics, integrating single cell proteomics will bolster our ability 

to comprehensively investigate disease progression and treatment response in multiple myeloma. 

 

Methods 
 

Patient Cohort 
 

Fourteen patients with multiple myeloma, 10 male and 4 female Caucasians, were 

included in the analysis. The median age at diagnosis was 63 (range 46-69). Eight patients had 

IgG isotype, 4 being kappa light chain and 4 being lambda light chain, 2 had IgA kappa isotype, 

2 had light chain only disease (1 kappa and 1 lambda), and 2 were non-secretory. Five were 

International Staging System Stage 1, two were Stage 2, 3 were stage 3, and 4 were unreported. 
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The median plasma cell burden by flow cytometry in bone marrow at diagnosis was 24% (range 

4-63). By standard fluorescence in situ hybridization (FISH), 1 patient had t(4;14), 3 had 

t(11;14), and 2 showed del(17p). Four additional patients were included for validation. Two 

patients have IgG isotype, 1 being kappa light chain and 1 being lambda light chain. One has IgA 

lambda isotype. One patient has light chain disease (lambda). 

Processing 
 

Research bone marrow aspirate samples were collected at the time of the diagnostic 

procedure. Bone marrow mononuclear cells (BMMCs) were isolated using Ficoll-Paque. 

BMMCs were cryopreserved in a 1:10 mixture of dimethyl sulfoxide and fetal bovine serum. 

Upon thawing, whole BMMCs were used for scRNA-seq (unless otherwise specified), 10x 

WGS, and RNA-seq, as described below. Plasma cells were separated from a sub-aliquot by 

positive selection using CD138-coated magnetic beads in an autoMACs system (Miltenyi Biotec, 

CA) and used for WGS, IDT exome, and RNA-seq, as descried below. Skin punch biopsies were 

performed at the time of the diagnostic bone marrow collection to serve as normal controls for 

WGS. Although many studies use peripheral blood mononuclear cells (PBMCs) as a control, 

abnormal B cells and circulating tumor cells frequently contaminate the peripheral blood of 

patients with MM. Therefore, using PBMCs may lead to omission of genetic events potentially 

important in disease pathogenesis. 

Single cell library prep and sequencing 
 

Utilizing the 10x Genomics Chromium Single Cell 3’ v2 or 5' Library Kit and Chromium 

instrument, approximately 17,500 cells were partitioned into nanoliter droplets to achieve single 

cell resolution for a maximum of 10,000 individual cells per sample. The resulting cDNA was 
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tagged with a common 16nt cell barcode and 10nt Unique Molecular Identifier during the RT 

reaction. Full length cDNA from poly-A mRNA transcripts was enzymatically fragmented and 

size selected to optimize the cDNA amplicon size (approximately 400 bp) for library 

construction (10x Genomics). The concentration of the 10x single cell library was accurately 

determined through qPCR (Kapa Biosystems) to produce cluster counts appropriate for the 

HiSeq 4000 or NovaSeq 6000 platform (Illumina). 26x98bp (3' v2 libraries) or 2x150bp (5' 

libraries) sequence data were generated targeting between 25K-50K read pairs/cell, which 

provided digital gene expression profiles for each individual cell. For all the samples included in 

this study, only Patient 27522 Relapse-2 was processed with the 5’ Library Kit. 

10x WGS 
 

The normal skin samples were processed with a standard Qiagen DNA isolation kit 

resulting in 10-50Kb DNA fragments. 250K tumor cells were processed with the MagAttract 

HMW DNA extraction kit (Qiagen) resulting in 100-150Kb DNA fragments. 600-800ng of 

normal DNA was size selected on the Blue Pippin utilizing the 0.75% Agarose Dye-Free 

Cassette to attempt to remove low molecular weight DNA fragments. The size selection 

parameters were set to capture 30,000 - 80,000bps DNA fragments (Sage Science). The resulting 

size selected DNA from the normal samples and the HMW DNA from the tumor cells were 

diluted to 1ng/µL prior to the v2 Chromium Genome Library prep (10x Genomics). 

Approximately 10-15 DNA molecules were encapsulated into nanoliter droplets. DNA 

molecules within each droplet were tagged with a 16nt 10x barcode and 6nt unique molecular 

identifier during an isothermal incubation. The resulting barcoded fragments were converted into 

a sequence ready Illumina library with an average insert size of 500bp. The concentration of each 

10x WGS library was accurately determined through qPCR (Kapa Biosystems) to produce 
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cluster counts appropriate for the HiSeqX/NovaSeq6000 platform (Illumina). 2x150 sequence 

data were generated targeting 30x (normal) and 60x (tumor) coverage providing linked reads 

across the length of individual DNA molecules. 

Standard WGS 
 

Manual libraries were constructed with 50-2000ng of genomic DNA utilizing the Lotus 

Library Prep Kit (IDT Technologies) targeting 350bp inserts. Strand specific molecular indexing 

is a feature associated with this library method. The molecular indexes are fixed sequences that 

make up the first 8 bases of read 1 and read 2 insert reads. The concentration of each library was 

accurately determined through qPCR (Kapa Biosystems). 2x150 paired end sequence data 

generated ~100Gb per normal and ~200Gb per tumor sample which lead to ~30x (normal) and 

60x (tumor) haploid coverage. 

IDT Exome 
 

A 700ng aliquot of the existing WGS library was used for the exome capture. Five 

libraries were pooled at an equimolar ratio yielding a ~3.5µg library pool prior to the hybrid 

capture. The library pools were hybridized with the xGen Exome Research Panel v1.0 reagent 

(IDT Technologies) that spans a 39 Mb target region (19,396 genes) of the human genome. The 

concentration of each captured library pool was accurately determined through qPCR (Kapa 

Biosystems) to produce cluster counts appropriate for the NovaSeq6000 platform (Illumina). 

2x15bp sequence data was generated ~50Gb per library targeting a mean depth of coverage of 

500x. 
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RNA-seq 
 

Total RNA was isolated from ~700K cells utilizing the AllPrep DNA extraction kit 

(Qiagen). ERCC RNA Spike-In Mix 1 was added to 100-250ng of total RNA as outlined by the 

manufacturer (Ambion, Life Technologies). The ERCC control mix is a set of external RNA 

controls that enable performance assessment for gene expression experiments. The cDNA library 

was prepared with the TruSeq Stranded Total RNA Sample Prep with Ribo-Zero Gold kit 

(Illumina). The concentration of each cDNA library was determined through qPCR (Kapa 

Biosystems). 2x150 reads were generated on the HiSeq4000/NovaSeq6000 instrument (Illumina) 

generating ~83 million read pairs/sample. 

Dataset Description 
 

The data corpus is comprised of 14 patients having various combinations of sample types, 

time-points, data types, and treatment modalities (Figure 1A). Most patients have 10x whole 

genome sequencing (10xWGS) data for skin normal and pre-treatment state, with several having 

relapse data, as well. Patients 59114 and 81012 underwent relatively long treatment periods 

before relapse (Supplementary Table 1). Treatment ranges from none for 7 patients (3 of which 

have an SMM sample) to multi-cycle regimens of several 2-drug and 3-drug cocktails, for 

example in Patient 27522. There are 9 patients having at least one time point with both WES and 

WGS data. Some patients, such as 27522 also have regular whole exome and whole genome 

shotgun data at several time points. All WES and WGS data are generated with CD138+ sorted 

population (tumor cells) within bone marrows. Two patients have data from a first and a second 

relapse (Relapse-1 and Relapse-2), with Patient 59114 having an additional complement of pre-

/post-transplant samplings. To ensure samples matched across time points, we compared 
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germline variant allele fractions (VAF) at 24 loci (Extended Data Figure 1b, Supplementary 

Table 1). 

Somatic mutation detection 
 

Somatic variants were called by our SomaticWrapper pipeline, which includes four 

established bioinformatic tools, namely Strelka, Mutect, VarScan2 (2.3.83), and Pindel (0.2.54) 

134,137,212,213. We retained SNVs and INDELs using the following strategy: keep SNVs called by 

any 2 callers among Mutect, VarScan, and Strelka and INDELs called by any 2 callers among 

VarScan, Strelka, and Pindel. For these merged SNVs and INDELs, we applied coverage cut-

offs of 14X and 8X for tumor and normal, respectively. We also filtered SNVs and INDELs with 

a high-pass variant allele fraction (VAF) of 0.05 in tumor and a low-pass VAF of 0.02 in normal. 

The SomaticWrapper pipeline is freely available from GitHub at https://github.com/ding-

lab/somaticwrapper. 

Copy Number and Structural Variation Detection 
 

We used BIC-seq2 124, a read-depth-based CNV calling algorithm to detect somatic copy 

number variations (CNVs) using standard WGS tumor samples and paired skin 10xWGS data 

(human genome GRCh38 reference). The procedure involves 1) retrieving all uniquely mapped 

reads from the tumor and paired skin BAM files, 2) removing biases by normalization 

(NBICseq-norm_v0.2.4) 3) detecting CNV based on normalized data (NBICseq-seg_v0.7.2) with 

BIC-seq2 parameters set as --lambda=90 --detail --noscale --control. In WES data, we used 

CNVkit (v0.9.4) 157 to compare our tumor samples to a background panel of normals. For 

scRNA-seq data, we used inferCNV (v0.8.2) 125. 
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Since we analyzed copy number alteration data from multiple different platforms and 

varying tumor purity levels, we used five ordered categories to describe copy number changes: 

deletion < loss < neutral < gain < amplification. The CNV category cutoffs (log2 copy number 

ratio) were -1, -0.25, 0.2, and 0.7, based on BIC-seq2 and CNVkit documentation. For scRNA 

based copy number, we transformed the inferCNV results to the log2 scale and set cutoffs at -1, -

0.4, 0.3, and 0.7. 

Somatic structural variants (SVs) were detected by Manta 139 using tumor/normal sample 

pairs of standard WGS and paired skin 10xWGS. To filter false positive SVs, we removed events 

with somatic score < 30 and junction somatic score < 30. We used bulk RNA and single cell 

RNA data to confirm if translocation events showed overexpression compared with non-

translocation samples. We collected translocation and gene expression results relevant to MM 

based on literature (Supplementary Table 7). 

Analysis of 10x Genomics whole genome sequencing data 
 

The proprietary Long Ranger system (v2.2.2) from 10x Genomics was used for 

preliminary analysis, including demultiplexing cDNA libraries into FASTQ files and aligning 

reads to the human genome reference GRCh38 (GRCh38-2.1.0). To call variants using Long 

Ranger, we used --vcmode with GATK (version 3.7.0-gcfedb67) 32. Long Ranger phasing quality 

metrics were extracted from the summary output file associated with each sample. For haplotype 

analysis of somatic variants, we relied on phase information of germline variation from 

surrounding loci on the same set of linked-reads. 
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Ancestry analysis 
 

We used a reference panel of genotypes and clustering based on principal components to 

identify the likely ancestry of our 14 multiple myeloma individuals, with an additional 856 

Multiple Myeloma Research Foundation (MMRF) cases (including 31 multiple time point cases). 

We randomly selected 10,000 coding SNPs from minor allele frequency > 0.02 from the 1000 

Genomes Project 143. From that set of loci, we measured the depth and allele counts of each 

sample’s bam using the tool bam-readcount (version 0.8.0). Genotypes were called using these 

criteria: 0/0 if reference count ≥ 8 and alternate count < 4; 0/1 if reference count ≥ 4 and alternate 

count ≥ 4; 1/1 if reference count < 4 and alternate count ≥ 8; and ./. (missing) otherwise. After 

filtering markers with vacancies > 5% in our multiple myeloma samples, 6,349 markers were left 

for analysis. We performed principal component analysis (PCA) on the 1000 Genomes samples 

to identify the top 20 principal components. We then projected our multiple myeloma samples 

onto the 20-dimensional space representing the 1000 Genomes data. To predict the likely 

ancestry of our multiple myeloma samples, we built a random forest classifier using these 20 

principal components, which has known ancestry information for each sample. Using an 

80%/20% split between training and test data, our classifier had 99.6% test accuracy. We then 

predicted the likely ancestry of our multiple myeloma samples based on this classifier. 

Analysis of bulk RNA-seq data 
 

Gene expression was estimated using Kallisto (v0.43.1) 129 and gene fusions were 

detected using STAR-Fusion (v1.4.0) 39. We used GRCh38_v27_CTAT_lib_Feb092018 from 

the STAR-fusion website as the human reference and corresponding GENCODE annotation sets.  
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Analysis of scRNA-seq data 
 

For single cell RNA-seq analysis, the proprietary software tool Cell Ranger (v2.1.1) from 

10x Genomics was used for de-multiplexing sequence data into FASTQ files, aligning reads to 

the human genome (GRCh38), and generating gene-by-cell UMI count matrix. The R package 

Seurat (v2.0) was used for all subsequent analysis 214. First, a series of quality filters were 

applied to the data to remove those barcodes which fell into any one of these categories: too few 

genes expressed (possible debris), too many UMIs associated (possible more than one cell), and 

too high mitochondrial gene expression (possible dead cell). The cut-offs for these filters were as 

recommended by the Seurat package. Next, the data were normalized and scaled and 

dimensional reduction was performed using PCA. The cells were then clustered using graph-

based clustering (default of Seurat) approach. Cell types were assigned to each cluster by 

manually reviewing the expression of marker genes. The marker genes used were CD79A, 

CD79B, MS4A1 (B cells); CD8A, CD8B, CD7, CD3E (CD8+ T cells); CD4, IL7R, CD7, CD3E 

(CD4+ T cells); NKG7, GNLY (NK cells); MZB1, SDC1, IGHG1 (Plasma cells); FCGR3A 

(Macrophages); CD14, LYZ (Monocytes); FCER1A, CLEC10A (Dendritic cells); and AHSP1, 

HBA, HBB (Erythrocytes). All cells that were labeled as erythrocytes were removed from 

subsequent analysis. 

scRNA-seq data integration 
 

Different scRNA gene expression matrices were integrated using the Seurat R package. 

We controlled for batch effects using the CCA method and the data were integrated using the top 

1000 variable genes from each sample and the first 15 CCs. Cell types were assigned based on 

manual review of marker gene expression (as described above). Cells with inconsistent cell type 
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assignments between the integrated and individual analyses were filtered out. In some cases, the 

inconsistencies arose from evident clustering issues (for example, when reviewing marker gene 

expression, two sub-clusters were obvious within one cluster). Such instances were manually 

resolved and the cells were rescued. All differential gene expression analyses were carried out 

using the FindMarkers function of the Seurat package. The default Wilcox test was used and hits 

with adjusted p-value < 0.05 were deemed significant. 

scRNA-seq correlation analysis 
 

After integration, for each cell type, we compared the gene expression to other types to 

identify the significant highly expressed genes (adjusted p-value < 0.05 and log fold change > 0). 

Then their average expressions in each sample were calculated. Their pairwise correlations were 

then estimated. 

Clustering of sub-populations of plasma cells based on pathway enrichment 
 

We used differentially expressed genes (DEGs, fold change >1.5 and FDR < 0.1) to 

detect clusters in plasma cells for each sample. We then used the DEGs for each sub-cluster in 

samples to do pathway enrichment analysis. For the integration pathway analysis, we used the q-

value (FDR) associated with each pathway and only used pathways that had at least one 

significant (FDR < 0.05) association with a cluster in order to filter non-significant pathways. 

We then calculated the correlation between sub-clusters from different samples based on the 764 

pathway FDR values, to see which sub-clusters shared similar enrichment in pathways.  
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10Xmapping 
 

scRNA data provide an unprecedented resource for studying tumor heterogeneity and 

clonal evolution. Connecting somatic mutations to individual cells can help to better understand 

these aspects and have the potential to identify tumor cells which cannot be unveiled purely 

based on expression data or is difficult to be separated by expression alone. Here, we developed 

a mapping tool (10Xmapping), which can identify reads supporting the reference allele and 

variant allele covering the variant site in each individual cell by tracing cell and molecular 

barcode information in the bam file. The tool is freely available at https://github.com/ding-

lab/10Xmapping. For mapping, we used high-confidence somatic mutations from WES data; 

mutations were combined if data from multiple time points existed. 

Single cell RNA CNV Detection and Clustering 
 

To detect large-scale chromosomal copy number variations using single-cell RNA-seq 

data, inferCNV (version 0.8.2) 125 was used to obtain relative expression intensity of plasma cells 

in comparison to a set of reference “normal” cells, including B cells, T cells, Erythrocytes, NK 

cells, etc. Cutoff=0.1 was used for revealing CNV signals. inferCNV took the raw expression 

matrix generated from Seurat after several filtering steps, as described above. Subsequently, 

samples were clustered on inferCNV expression data for 30 genes implicated in MM. Cells for 

each sample underwent a dimensionality reduction using PCA and t-SNE before clustering. Cells 

were then clustered with the DBSCAN algorithm. Optimal values for epsilon and minimum 

points were selected via a grid search. Parameters resulting in the highest Silhouette coefficient 

were ultimately selected. 
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CyTOF 
 

Thawed bone marrow suspensions were stained with two panels of metal-conjugated 

antibodies as listed in (Supplementary Table 6). The concentration of the antibodies were either 

based on the suggestions from manufacturer (Fluidigm) or based on titration experiments. We 

used two distinct protocols for cell staining. For panel 1, we included a series of signaling 

molecules specifically, such as the ones from JAK-STAT pathway and NF-kB pathway 215. 

Within this panel, we used three conditions by adding either PBS, PVO4 or TNFa to stimulate 

samples. Final concentrations for PVO4 and TNFa are 125uM and 20ng/mL, respectively. For 

panel 2, we included a series of interleukins and interleukin receptors. The inclusion of the 

aforementioned targets are based on their dysregulation in multiple myeloma 216,217. We included 

two components within AP-1 complex, JUN and FOS, in panel 2 as well. To stimulate the 

production of cytokines, we used three conditions by adding either PBS, R848, or TNFa. Final 

concentrations for R848 and TNFa are 5ug/mL and 20ng/mL, respectively. Protein transporter 

inhibitors were added to each condition 2 hours after the beginning of stimulation, and co-

incubation lasted for another 2 hours. Gating and data analysis were done using WUSTL 

Cytobank. Live, single cells are selected by gating out cells/debris with outlier cisplatin and 

DNA intercalator staining. To perform t-SNE analysis, we used the scaled expression of cell 

surface marker, including CD34, CD123, CD38, CD3, CD4, CD8, CD19, CD138, CD14, CD16, 

CD11c, CD56. 

AP-1 targets were identified using ChIP-seq data (ENCODE accession number 

ENCSR000EYZ)218,219. We included 4 additional myeloma patient samples for expression 

profiling via CyTOF experiment. For each CyTOF run, a sample from healthy donor would be 

included. Expression of cell surface markers are used for t-SNE. Cells from patient samples 
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which does not overlap those from healthy donors on t-SNE plot are further checked for their 

expression of CD138, CD38 and CD45. Accordingly, the qualified cells are termed as plasma 

cells. 

Subclonal analysis 
 

The R package SciClone 152 algorithm was used to define clonal architecture, and tumor 

phylogeny was illustrated using Fishplot 158.  
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Chapter 6: Future Directions 
 

Automating high-resolution multi-omic data integration for 
cancer story-telling 
 

As scientists, we are called to be responsible story tellers. Responsible because what we 

say should be accurate and in the public interest. Story tellers because our mission requires 

others benefitting from our findings, and we have failed if we toil in isolation. Many fields 

require story telling, but scientific story telling is unique because our role in society is predicated 

upon being trustworthy, data-driven, and unbiased. Our work is meaningless if we do not 

communicate, and our work is wasted if we squander public trust through disingenuous behavior. 

We tell stories by interpreting data and contextualizes our conclusions in a way that is 

meaningful and beneficial to others. 

When we approach a problem, we are blinded to the whole of reality. Our instruments 

and methods of observation restrict our field of view to specific conditions and outputs, and each 

data type alone tells only part of the story. When we combine data types, we must do so 

understanding the limitations of each. But where one data type falls short, another may add 

value, and so we are compelled to integrate different viewpoints to form a more complete 

picture. Do so responsibly, repeatably, and transparently requires intentional effort from the 

beginning of study design to the implementation of analysis code. We have seen this applied 

successfully to study complex tumor dynamics over time and within samples (Fig. 1). Designing 

tools to purposefully integrate and magnify the impacts of each data type is the computational 

complement to ongoing technology development that we rely on to do good genome science. 
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Figure 1. Automating high-resolution multi-omic data integration for cancer story-telling. 
Integrated single-cell cell type, gene expression, copy number, and somatic mutations from a 
relapse sample of multiple myeloma patient 27522. This manual curation of data types, carefully 
scaled and mapped to align each data type, can be automated for deeper understanding. In this 
case, the relationship of three tumor subclones can be delineated by focusing on various 
mutation and expression patterns. Overexpression of FGFR3 is seen in two plasma cell 
subclusters showing association with t(4;14). The same two subclusters have a later chr13 
deletion, followed then by NRAS somatic mutations, which appear only in one subcluster. 
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Cancer disparities research can bridge gaps in health care 
outcomes 
 

Multiple myeloma (MM) is the second most common hematologic malignancy in the 

United States, diagnosed in approximately 14,500 Americans each year, and is responsible for 

2% of all cancer deaths (SEER.cancer.gov). MM is a malignancy of antibody-secreting plasma 

B-cells whose etiology is poorly understood and is incurable in the vast majority of patients. MM 

is always preceded by monoclonal gammopathy of undetermined significance (MGUS) 220-222 a 

condition that can be detected with a simple blood test. MGUS is an asymptomatic condition for 

which patients are not routinely screened since there is currently no treatment that has 

demonstrated efficacy in reducing the risk of progression of MGUS to MM223. There has been 

progress in the treatment of MM, but due to the aging population, the incidence of MM is 

expected to increase along with the associated costs. Total healthcare costs in the first year after 

diagnosis of MM is $118,353224. 

There is well-established and long-standing disparity with excess incidence and mortality 

among African Americans225. Incidence of multiple myeloma is approximately two times higher 

in African-Americans compared to the general population (12 compared to 6 per 100,000) 

(Figure 3A-C).226 Our collaborative germline predisposition study with Dr. Lucy Godley from 

the University of Chicago using >900 spontaneous cases and 57 families has identified BRCA2, 

ATM, CHEK2, and KDM1A as predisposition genes in MM (Figure 3E-G). Previous studies have 

begun to examine genomic differences present in African-Americans compared to others, 

includes SNPs and translocations, finding preliminary evidence that translocations associated 

with lower risk (e.g. t(11;14)) are more prevalent in African-Americans than others.227,228 

Ongoing studies to understand why the incidence rate of multiple myeloma is higher in African-
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Americans as well as how to improve health care access and outcomes are important for 

reducing health care disparities. Equal access to quality care is of major importance to reduce 

health disparities in all underserved communities. 
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Figure 2. Multiple myeloma incidence and outcome disparity of African American patients. 
A. Incidence of multiple myeloma per 100,000 people in the United States. B. Proportional 
representation of patients in the MMRF cohort compared to the general USA population, 
stratified by reported ancestry. C. Comparison of MMRF patient age at diagnosis, annotated with 
the proportion of patients under 50 years old. D. Kaplan-Meier curves modeling overall survival 
rates in MMRF. E. Somatic events detected in the MMRF cohort with a significantly different 
number of patients observed to have that event compared to expectation. F. Number of 
pathogenic, likely pathogenic, or prioritized variants of uncertain significance reported from 
MMRF and family study cohorts. G. Pathogenic and likely pathogenic germline variants 
reported in black patients from MMRF. 
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