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ABSTRACT OF THE DISSERTATION 

Ultrasound guided Diffuse Optical Tomography for breast cancer diagnosis: Algorithm 

Development  

by 

K M Shihab Uddin 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2020 

Professor Quing Zhu, Chair 

 

According to National Breast Cancer Society, one in every eight women in United States is 

diagnosed with breast cancer in her lifetime. American Cancer Society recommends a semi-annual 

breast-cancer screening for every woman which can be heavily facilitated by the availability of 

low-cost, non-invasive diagnostic method with good sensitivity and penetration depth. Ultrasound 

(US) guided Diffuse Optical Tomography (US-guided DOT) has been explored as a breast-cancer 

diagnostic and screening tool over the past two decades. It has demonstrated a great potential for 

breast-cancer diagnosis, treatment monitoring and chemotherapy-response prediction. In this 

imaging method, optical measurements of four different wavelengths are used to reconstruct 

unknown optical absorption maps which are then used to calculate the hemoglobin concentration 

of the US-visible lesion. This dissertation focuses on algorithm development for robust data 

processing, imaging reconstruction and optimal breast cancer diagnostic strategy development in 

DOT. The inverse problem in DOT is ill-posed, ill-conditioned, and underdetermined. This makes 

the task of image reconstruction challenging, and thus regularization-based method need to be 

employed. In this dissertation, a simple two-step reconstruction method that can produce accurate 
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image estimates in DOT is proposed and investigated. In the first step, a truncated Moore-Penrose 

Pseudoinverse solution is computed to obtain a preliminary estimate of the image. This estimate 

can be reliably determined from the measured data; subsequently, this preliminary estimate is 

incorporated into the design of a penalized least squares estimator that is employed to compute the 

final image estimate. Using physical phantoms, the proposed method was demonstrated to yield 

more accurate reconstruction compared to other conventional reconstruction methods.   The 

method was also evaluated with clinical data that included 10 benign and 10 malignant cases.  The 

capability of reconstructing high contrast malignant lesions improved by the use of the proposed 

method.  

Reconstructed absorption maps are prone to image artifacts from outliers in measurement data 

from tissue heterogeneity, bad coupling between tissue and light guides, and motion by patient or 

operator.  In this dissertation, a new automated iterative perturbation correction algorithm is 

proposed to reduce image artifacts based on the structural similarity index (SSIM)) of absorption 

maps of four optical wavelengths. The SSIM was calculated for each wavelength to assess its 

similarity with other wavelengths. Absorption map was iteratively reconstructed and projected 

back into measurement space to quantify projection error. Outlier measurements with highest 

projection errors were iteratively removed until all wavelength images were structurally similar 

with SSIM values greater than a threshold.   Clinical data demonstrated statistically significant 

improvement in image artifact reduction.   

US guidance with DOT helps to reduce false positive rate and hence reduce number of unnecessary 

biopsies. However, DOT data processing and image reconstruction speed remains slow compared 

to real-time US.  Real-time or near real time diagnosis with DOT is an important step toward the 

clinical translation of the US-guided DOT.  In this dissertation, to address this important need, we 
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present a two-stage diagnostic strategy that is computationally efficient and accurate. In the first 

stage, benign lesions are identified in near real-time by use of a random forest classifier acting on 

the DOT measurements and radiologists’ US diagnostic scores.  The lesions that cannot be reliably 

classified by the random forest classifier will be passed on to the image reconstruction stage.  

Functional information from the reconstructed hemoglobin concentrations is used by a Support 

Vector Machine (SVM) classifier for diagnosis in the second stage. This two-step classification 

approach that combines both perturbation data and functional features results in improved 

classification, as quantified using the receiver operating characteristic (ROC) curve.   Using this 

two-step approach, area under the ROC curve (AUC) is 0.937 ± 0.009 with sensitivity of 91.4% 

and specificity of 85.7%.  While using functional features and US score, AUC is 0.892 ± 0.027 

with sensitivity of 90.2% and specificity of 74.5%.  The specificity increased by more than 10% 

due to the implementation of the random forest classifier.   
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Chapter 1: Introduction 

Breast cancer is the second leading cause of cancer death among women in the United States [1]. 

About 276,480 new invasive breast cancer cases will be diagnosed in 2020, and 41,170 women 

will die of it [2]. Near infrared (NIR) diffuse optical tomography (DOT) or diffuse optical 

spectroscopy (DOS), non-invasive imaging and spectroscopic techniques, have demonstrated their 

clinical potential for probing tumor angiogenesis, which can be quantitatively assessed by total 

hemoglobin (tHb) concentration. Tumor angiogenesis, i.e., the creation of new blood vessels, is a 

hallmark of cancer that reflects the aggressive growth of the cancer cells. Thus, functional 

information provided by DOT can be useful in breast cancer diagnosis.  

In DOT, multiple wavelengths are used to reconstruct the optical absorption and scattering of the 

tissue, and these data are used to measure oxy and deoxy Hb concentrations. But due to intense 

light scattering, the diffused NIR light yields low resolution and makes tumor location uncertain. 

On the contrary, ultrasound can detect very small lesions at depths as deeps as a few millimeters, 

but it cannot be used in diagnosis since it returns overlapping characteristics for benign and 

malignant tumor. Hence, ultrasound is used for detecting the location of tumors and diffused light 

is used for separating benign and malignant tumors based on optical properties. But due to the 

chest wall effect and data saturation, the actual number of measurements is much less than the 

number of properties to be reconstructed. Moreover, perturbations produced by heterogeneities is 

much smaller than the background signals. DOT reconstruction is thus sensitive to measurement 

errors and noise.  
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Our lab uses US guided DOT by deploying NIR source-detector fibers and ultrasound array on the 

same probe. This co-registration permits joint evaluation of acoustic and optical properties. With 

a priori knowledge of a tumor’s shape and location, DOT reconstruction can be localized to a 

specific 3-dimensional location known as a Born Sphere. While US guidance helps to reduce the 

number of voxels that need to be examined, our reconstruction problem is still ill-posed and under-

determined. This dissertation focuses on (1) robust DOT reconstruction for accurate quantification 

of blood chromophores, i.e., oxy-hemoglobin and deoxy-hemoglobin, (2) reducing imaging 

artifact by perturbation correction, and (3) developing the optimal diagnostic strategy to provide 

near real time assessment of benign tumors and reduce unnecessary biopsies. The dissertation is 

organized as follows. 

In chapter one, we review facts about breast cancer, then discuss its causes and conventional 

treatment methods. We also discuss the principles of DOT and its application in breast cancer 

diagnosis and chemotherapy treatment monitoring. Finally, the US guided DOT system developed 

in our lab is introduced, and its data acquisition and system calibration methods are explained. 

In chapter two, we introduce a novel two-step imaging reconstruction method for DOT. Both the 

DOT forward and inverse problems are presented in detail, and optimization strategies to solve the 

inverse problem are discussed. Both phantom and clinical study results are presented to prove the 

effectiveness of the proposed method. Optimal regularization parameter selection strategies are 

discussed as well. 

In chapter three, an iterative perturbation correction scheme is proposed and evaluated with clinical 

data. The structural similarity of multiple wavelength reconstructed images is used as a criterion 

to find images with artifacts for the evaluation.  
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In chapter four, we propose an optimal diagnostic strategy for breast cancer, using both ultrasound 

and optical data. Random forest classifiers are used to filter out most of benign cases in near real 

time, based on ultrasound BI-RADS scores and DOT perturbation data. Suspicious lesions are then 

classified using a support vector machine. 

In chapter five, we summarize the dissertation and present some future work directions in robust 

US image processing, DOT reconstruction, and the evaluation of reconstructed images. 

 

1.1 Breast Cancer 

The human breast is mostly made of fat cells known as adipose tissue [1]. Lobules in the breast 

are the basic structural units of the mammary gland that produces milk [3]. A side view and a top 

view of the breast are shown in figure 1.1, which is adopted from ref [4]. The breast size increases 

in the second half of the menstrual cycle, following ovulation [5]. During this natural cyclic growth 

of the breast, angiogenesis is highly restricted [6]. Angiogenesis is the process of creating new 

blood vessels from existing vasculature. When tissue starts to grow rapidly, more blood vessels 

are created to supply nutrition to the fast-growing area, creating a lump of tissue or tumor. If the 

tumor does not invade the surrounding tissue and spread into other organs, then it is considered 

benign tumor. But the tumor contains cancer cells that grow aggressively and can attack nearby 

tissues or move into blood or lymph nodes, then the tumor is labeled as malignant [7].  
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Figure 1.1: Female breast anatomy, with a side cross-sectional view on the left and a frontal 

cross-sectional view on right [4] 

 

Breast cancers or malignant tumors are classified in different grades according to their growth 

rates and metabolic activity levels, which result in widely varying functional characteristics [8]. 

Breast cancer can be ductal carcinoma, starting in a milk duct; lobular carcinoma, starting in a 

breast lobule; or inflammatory, where the breast appears swollen. Additionally, benign breast 

disease encompasses a heterogeneous group of lesions that vary in vascular content, proliferative 

index, and metabolic activity, all of which may or may not be associated with future risk of breast 

cancer [9].   Benign breast tumors can variously be a fibroadenoma, a solid tumor, and intraductal 

papilloma, a fluid filled cyst, or an area of fat necrosis. Breast cancer symptoms, on the other hand, 

may not be noticeable or visible without professional screening. A lump in the breast, a distorted 
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shape of the breast, a red and swollen nipple area, and discharge from the nipple might be 

symptoms of breast cancer [5]. 

Breast cancer incidence has steadily increased over the past decade with a rate of 0.3% annually 

[2]. But the breast cancer death rate decreased by 1.3% per year from 2013 to 2017. Figure 1.2 

shows the breast cancer incidence rate for 15 years, from 2001 to 2016, and the survival rate for 

31 years, from 1976 to 2017. Increased awareness, better diagnostic methods, and improvement 

treatment have all helped to reduce the death rate. Despite the advances in diagnostic methods, 

hundreds of thousands of biopsies are performed each year, but most of them prove unnecessary, 

yielding benign results [10]. So, Better diagnostic tools are needed to reduce false positives in the 

clinical management of breast cancer. 

 

Figure 1.2: Breast cancer statistics (a) breast cancer incidence rate over 15 years and (b) survival 

rate over 31 years, (NH for Non-Hispanic) [2]. 
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1.1.1  Breast Cancer Risk Factors 

Risk factors are not definite indicators of breast cancer; rather they are associated with the 

probability of having breast cancer. Risk factors can be related to one’s genetics, family history, 

age, weight, physical activities, diet, menopausal state, and many other conditions [11]. Our age 

and genetics are beyond our control, but breast cancer risk increases with age and a history of 

breast cancer in immediate family members.  Alcohol consumption is associated with a moderate 

increase of breast cancer. Daily consumption of 10 g alcohol (one serving) can increase cancer risk 

by 10%; while 30g per day can increase the risk by as much as 30% [12]. Menopausal age is also 

associated with breast cancer risk. A postmenopausal woman will have a higher risk of breast 

cancer than a premenopausal woman of the same age. Some factors lower the risk of the breast 

cancer. Though childbearing can increase cancer risk immediately after birth, it later protects 

against breast cancer [13-14]. Women who have had at least one full term pregnancy, have a 25% 

lower risk of breast cancer than women who never were pregnant [14]. Moderate exercise and a 

healthy diet containing fruits, vegetables, meat, and fiber can reduce the risk of cancer. 

Breastfeeding helps to reduce risk of pregnancy, too. Women who had breastfed a total of 25 

months had a 33% lower risk of cancer than women who never breastfed [13]. 

1.1.2  Breast Cancer Staging 

Based on the growth and size of the tumor, breast cancer can be classified into different stages 

using the Manchester classification or the International TNM classification [4]. According to 

Manchester classification, breast cancer is diagnosed as Stage I, II, III, or IV cancer based on the 

cancer’s progress and growth. Stage I cancer is confined in an organ, with no palpable axillary 

lymph node. Stage II cancer is also regional, or growth is limited to a region only, but with a 

palpable axillary lymph node. Stage III cancer is locally advanced cancer which has penetrated to 
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other tissues, such as the skin, chest wall muscles, or ribs. Stage IV is the final metastatic stage of 

cancer. Metastasis is the process of tumor progression into distant areas of the body, e.g., bones, 

the liver, and the kidneys [15]. TNM classification is based on tumor size (T for tumor), presence 

of palpable axillary nodes (N for node), and metastasis (M for metastasis). A tumor, with  a 

diameter less than 2 cm, is classified as T1; with a diameter of 2 to 5 cm, it is T2; with a diameter 

of 5 to 10 cm, it is T3; and with a diameter greater than 10 cm, it is T4. Axillary nodes can be N0 

with no palpable axillary nodes, N1 with regional mobile axillary nodes, N2 with regional fixed 

nodes and N3 with cancer in internal mammary lymph nodes. Metastatic state M0 refers to no 

metastasis, and M1 signifies a distance metastasis. As an example, T1-N0-M0 would mean that 

patient has a tumor with diameter less than 2 cm, no palpable axillary node, and locally confined 

with no distant metastasis.  

1.1.3  Breast Cancer Diagnostic Methods 

Different diagnostic methods have been used for breast cancer diagnosis over the past three 

decades including but not limited to x-ray mammography, ultrasound (US), magnetic resonance 

imaging (MRI), position emission tomography (PET), computed tomography (CT), and biopsy. 

Biopsy is considered the gold standard for cancer diagnosis [16-19], but it is very costly and not 

applicable for rapidly repeated screening. X-ray mammography is routinely used in breast cancer 

screening. While X-rays have excellent spatial resolution and imaging depth, their ionizing 

radiation might increase the breast cancer risk [20]. PET presents a radiation problem too [19]. 

MRI has good resolution and imaging depth and does not pose an ionizing radiation problem, but 

its data acquisition is slow, and the imaging is expensive [18]. Ultrasound offers a good tradeoff 

between imaging depth, resolution, and cost, and can provide real time imaging, but the functional 

contrast between solid benign and malignant tumors is poor for ultrasound [17]. Diffuse optical 
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imaging has also been investigated as a potential diagnostic tool over past few decades [21-51]. It 

has good imaging depth with excellent tissue contrast, fast data acquisition, a low cost, and non-

ionizing radiation. The only problem with optical imaging is poor resolution, which can be 

improved by guiding the imaging using a high-resolution imaging modality [26-34]. Our lab 

investigated ultrasound guided diffuse optical tomography as a potential diagnostic tool for breast 

cancer [52-56]. 

 

1.2 Diffuse Optical Tomography 

1.2.1  DOT Principles and Imaging 

DOT is a noninvasive imaging modality that provides the optical properties of the object being 

imaged by using optical illumination in the diffusive regime [21]. The spatial resolution of DOT 

imaging is limited [22], but its good contrast mechanism, higher penetration depth, low cost, and 

high speed have established diffuse optical imaging as an alternative to conventional radiological 

imaging techniques. Near infrared light can penetrate several centimeters through the scalp, breast 

fat, and brain making a useful range of investigation. DOT image reconstruction involves both a 

forward and an inverse problem. The forward problem uses the diffusion equation to predict the 

distribution of reemitted light on the basis of presumed parameters for both the light and object. 

The inverse problem uses the forward problem to reconstruct the distribution of the optical 

properties of the object from a measured data set. The DOT forward and inverse problems will 

both be discussed in chapter two.  

The operation of the imaging probe is based on the use of diffuse photon density waves. Diffused 

photon waves are scalar, overdamped traveling waves of photon density. They propagate through 
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turbid media such as breast tissue, wherein the transport of light energy density is governed by a 

diffusion equation. A light source with an intensity modulated at frequency ω generates a diffused 

photon density wave in an optically turbid medium. For a sinusoidally modulated source, the 

resultant diffusive wave obeys the Helmholtz equation. Detailed methods for solving the equation 

for an infinite medium are discussed in ref 2. we solve the equation for a semi-infinite boundary 

condition since we use a reflection geometry imaging probe. The probe is painted black with a 

nominal reflection coefficient of zero, which ensures light propagates only in one direction, 

towards the breast. The DOT forward problem is solved by using the Born approximation and the 

Green function to approximate a point source response [23].  

DOT can operate in one of the three modes: time domain (TD), frequency domain (FD), and 

continuous wave (CW) or direct current. The time domain mode uses a short-pulsed laser beam 

and thus contains a broad frequency spectrum [24]. The frequency domain mode uses a source 

light of a single wavelength, modulated by a higher frequency signal. Time domain systems 

perform better than frequency domain systems in terms of optical crosstalk reduction but are more 

expensive than frequency domain systems [25]. CW systems use a constant current of zero 

frequency, which provides less information than FD systems but is much cheaper. A frequency 

domain system offers a good trade-off between data acquisition speed and accuracy of target 

quantification. 

 In our lab, we use a frequency domain DOT imaging system. DOT suffers from poor lesion 

localization due to intense light scattering. To improve the target quantification and lesion 

localization, DOT is often guided by other high-resolution imaging modalities, referred as dual 

modality imaging method [26-34]. DOT can be guided by MRI [26-28], X-ray [29-30] or US [31-

34]. Using high resolution imaging modalities, a lesion’s location and dimensions can be 
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approximated, thus DOT can be confined to a smaller region of interest.  US-guided DOT, as used 

in our lab, will be discussed in section 1.3. 

 

1.2.2  Breast Cancer Diagnosis using DOT 

Functional information, e.g., the hemoglobin concentration, oxygen concentration, and water and 

lipid concentrations of breast tissue are important in diagnosis of breast cancer. Thus, NIR DOT 

imaging, which provides this information, has been successfully used in breast cancer diagnosis 

over past two decades. Using NIR imaging, Colak et al. studied 10 patients with 5 benign and 5 

malignant [35]. All 5 malignant cases were successfully diagnosed, while one fibroadenoma case 

was missed, resulting in an accuracy of 90%.  Tromberg et al., introduced a frequency domain 

imaging system in 1997 which successfully diagnosed two patients, one having fibroadenoma and 

another having fluid filled cyst [36]. Thus, in this limited study, NIR imaging was capable of 

detecting both solid and fluid filled tumors. Using a CW system, Cheng et al. studied 50 human 

subjects for breast cancer diagnosis [37] and obtained a sensitivity of 92% and specificity of 67%. 

Van veen et al., reported a 74% accuracy among 24 breast cancer patients studied [38]. Too deep 

tumors and very small tumors (less than 10 mm in size) were excluded from the study. Taroni et 

al. studied 101 breast cancer patients using four wavelengths ranging from 683 to 975 nm [39]. 

They found 81% of the malignant tumors and 70% of the cysts were diagnosed correctly, while 

only 37% of the fibroadenoma and 33% of the other types of abnormalities were diagnosed 

correctly. Nioka et al. used a CW system to do spectroscopic measurements of 116 human subjects 

[40]. They reported a sensitivity of 96%, specificity of 93%, positive predictive value (PPV) of 

89% and negative predictive value of 97%. Choe et al. used a parallel plate diffuse optical 

tomography system to image 51 lesions in 47 patients, out of which 41 were malignant and 10 
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were benign [41]. They showed a higher contrast for total hemoglobin, oxy hemoglobin and 

reduced scattering coefficient between the malignant and benign groups. A sensitivity of 98% and 

specificity of 90% were achieved. Mastanduno et al. studied 16 benign and 28 malignant breast 

tumors using MRI-guided DOT [28]. Two tailed t-test between the benign and malignant groups’ 

total hemoglobin concentrations provide a p value of 0.0037, which was found to be significant. 

Fang et al. studied 189 breasts from 139 subjects [29]. Total hemoglobin in malignant tumor group 

was significantly greater than fibrograndular tissue with p-value of 0.0062, solid benign lesions 

with p-value of 0.025 and cystic lesions with p-value of 0.0033. Using an ultrasound guided DOT 

system, our lab, led by Dr Quing Zhu, studied 288 patients with 55 malignant lesions and 233 

benign lesions [34]. We reported a sensitivity of 96.6%-100% and specificity of 77.3-83.3%. 

 

1.2.3  Breast Cancer Treatment Monitoring using DOT 

Beyond diagnosis, DOT has been widely used in chemotherapy response prediction. Change of 

functional parameters provided by DOT can be a good indicator of responder or non-responder 

patients. If the patient does not respond to chemotherapy, doctors need to change the chemo or 

adopt alternative treatment options. So, it’s important to predict chemotherapy response as early 

as possible in the treatment cycle. Using diffuse optical spectroscopic measurements, Jakubowski 

et al. studied a 54-year-old postmenopausal Caucasian female with malignant tumor [42]. The total 

hemoglobin concentration in tumor area of the patient breast decreased by 56% in 10 weeks of 

treatment. Half of the decrease happened in the 1st week. DOT was successful to identify the patient 

as a responer in about a week. Using the same system in 2005, Tromberg et al. studied 12 

premenopausal patients age ranging from 30 to 39 [43]. All patients were responders. Within one 
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week of treatment, tissue optical index decreased more than 50%. Tissue optical index was 

calculated using hemoglobin, water and lipid concentrations. Choe et al. studied a 35-year-old 

premenopausal patient with ductal carcinoma [44]. Her total hemoglobin concentration decreased 

from 21.4 𝜇𝑀 to 9.1 𝜇𝑀 in 12 weeks of treatment period. Her oxygen saturation, sO2, decreased 

sharply from 89% to 59% up to 5th chemotherapy cycle, and then did not vary much further. Zhou 

et al. studied a 45-year-old premenopausal Caucasian woman [45]. The patient was a responder 

and total hemoglobin concentration decreased after only 4 days of treatment; after 7 days, it was 

significantly lower. Cerussi et al. studied 11 patients, 6 responders and 5 non-responders [46]. For 

the 6 responders, total hemoglobin and oxy hemoglobin concentration decreased by 27% to 33% 

within 1 week of treatment, but these parameters did not vary much for the 5 non-responder cases. 

The total hemoglobin concentration was found to be the single best predictor, with a sensitivity of 

85% and a specificity of 100%. By combining all predictors, a sensitivity of 100% and specificity 

of 100% were achieved. Jiang et al. studied 7 patients with 4 responders and 3 non-responders 

[47]. After 4 weeks of treatment, total hemoglobin decreased by 64.2% on average for responder 

group, but it increased by 16.1% on average for non-responder group. sO2 was found to be 

insignificant in chemotherapy response prediction. Soliman et al. studied 10 patients, with 5 

responders and 4 non-responders, and 1 patient who responded after chemo change [48]. After 4 

weeks of treatment, oxy and deoxy hemoglobin concentration decreased by 67.6% and 58.9% 

respectively for responder group, and 17.7% and 18% for non-responder group. Roblyer et al. 

studied 24 tumors from 23 patients with 11 partial responder, 8 complete responder and 5 non-

responders [49]. After just day one of treatment, significant difference in oxy hemoglobin was 

observed between non-responder group and complete or partial responder group. Ueda studied 42 

tumors, with 12 responders and 30 non-responders [50]. With a threshold of 76% for sO2, a 
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sensitivity of 75% and specificity of 73.3% were obtained from responder vs non-responder 

comparison. Combining estrogen receptor with sO2 further improved sensitivity to 100% and 

specificity to 85.7%. Jiang et al. studied 19 patients in 2014, with 9 responders and 10 non-

responders [51]. Mean total hemoglobin reduction for responder group was 74%, and reduction 

for non-responder group was 43%.  

1.3  Ultrasound guided Diffuse Optical Tomography 

The Optical and Ultrasound Imaging Group in Department of Biomedical Engineering at 

Washington University in St Louis, is a pioneer in ultrasound guided optical imaging technologies, 

led Dr. Quing Zhu. We have developed frequency domain ultrasound guided DOT imaging 

systems and applied them in breast cancer diagnosis and neoadjuvant chemotherapy treatment 

monitoring over last two decades. In this section, I will briefly introduce the introduce the 

evolution of our DOT system and properties of our current DOT system used at the Washington 

University Medical School. DOT data acquisition and system calibration techniques are also 

discussed. 

1.3.1  Evolution of US guided DOT  

 The first NIR DOT System was developed in 2001 by Dr. Quing Zhu [52]. The DOT system was 

frequency domain imaging system whose probe had 12 sources and 8 detectors. A dual wavelength 

laser diode was used as light source. Data was acquired at 780 and 830 nm. The Laser source 

output was modulated at 140 MHz . System design of the first-generation DOT system and its 

probe design are shown in Figure 1.3. The Noisy ultrasound image made it harder to localize 

tumors with this system, which inspired the development of next generation systems. Second 

generation system solved the ultrasound noise problem by using a commercial ultrasound system 
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with the home-made DOT system [53]. Three laser diodes, at 690 nm, 780 nm and 830 nm, were 

the light sources. There were 9 sources and 12 detectors was A National instruments data 

acquisition card (NI-DAQ) was used to acquire data, which greatly enhanced the signal to noise 

ratio. But NI-DAQ card was bulky, data acquisition was very slow, and the system has also had 

source-detector coupling noises. 

 

Figure 1.3: First generation (a) DOT system (b) imaging probe [52] 

Design of the third-generation DOT system accelerated the DOT data acquisition speed by 

replacing by NI-DAQ board with an FPGA-based data acquisition card [54]. The number of laser 

diodes was increased to four, with wavelengths of  740,780, 808 and 830 nm. The number of 

detector channels was increased to 14, compared to the 10 in second-generation system. Optical 

isolators were used for noise reduction. Custom made software was developed for data acquisition.  

The fourth-generation DOT system [55], which is currently used in our research, is similar to the 

third-generation system in principle and features. Figure 1.4 shows the current US guided DOT 

imaging system and setup with the probe design. Four laser diodes with wavelengths of 740, 780, 
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808, and 830 nm are sequentially switched by a 4 × 1 and a 1 × 9 optical switch to deliver light 

modulated at 140 MHz to each of the nine source positions on the probe.  Fourteen parallel 

photomultiplier tubes (PMTs) detect reflected light via light guides from the tissue.  A custom A/D 

board samples detected signals from all channels and stores data in a PC.   

One important difference is that the laser control and detector gain control are all automated and 

integrated in the software now. The system is portable, and the probe design is optimized to avoid 

photomultiplier saturation.  

 

Figure 1.4: Portable NIR DOT System with handheld imager. Smaller circles on the probe are 

sources, and larger circles are detectors; the hole in the middle is used to insert a US transducer 

[4]. 
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1.3.2 DOT Data Acquisition and System Calibration 

One of the challenges encountered in the design of a NIR imaging system is the huge dynamic 

range of signals received at various source–detector distances. For example, for a semi-infinite 

phantom made of 0.5% intralipid solution, the amplitude measured at 1 cm away from a source is 

approximately 5000 times larger than that at 8 cm separation. In addition, perturbation due to 

embedded heterogeneities with optical properties similar to a tumor is normally a few percent of 

the background signal. So, for each detector channel, we vary the photomultiplier (PMT) gain to 

reduce the dynamic range of the signal. After the data acquisition, we have to calibrate the gain 

and phase shift of the data, which is referred as system calibration. In our imaging system, we 

collect three types of data: intralipid, reference, and target data. Intralipid data is collected from a 

homogeneous intralipid solution that is used in system calibration. Reference data is collected from 

the normal patient’s breast, and target data is collected from the breast with a lesion. Reference 

breast is assumed to be homogeneous. For heterogeneous dense breasts, reference smoothing is 

done [56]. The calibration process is discussed in detail in ref [52]. In short, the detected amplitude, 

𝐴𝑠𝑑 and phase, 𝜙𝑠𝑑 of the signal are related to the source detector distance, 𝜌𝑠𝑑, between source, 

𝑠, and detector, 𝑑: 

log[𝜌𝑠𝑑
2 𝐴𝑠𝑑] = log[𝐼𝑠] + log[𝐼𝑑] − 𝑘𝑖𝜌𝑠𝑑 , and 

𝜙𝑠𝑑 = 𝜙𝑠 + 𝜙𝑑 + 𝑘𝑟𝜌𝑠𝑑   , s=1,2 …m, and d=1,2, ... n,                                                       Eq (1.1) 

where m and n are the number of sources and detectors, 𝐼𝑠 and 𝐼𝑑 are gains for the  source and 

detector,  𝜙𝑠 and 𝜙𝑑 are the source and detector phase shifts. 𝑘𝑖 and 𝑘𝑟 are the imaginary and real 

part of wavenumber 𝑘. For both gain and phase shift calculation, we will have m×n number of 

equations for m source and n detectors, but only m+n+1 number of unknowns to reconstruct. 
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Usually m+n+1<m×n, so this problem is overdetermined. The least square solution gives the 

estimated system gains and phase shifts. Compensating for the system gain, we have  

log[𝜌𝑠𝑑
2 𝐴𝑠𝑑] = −𝑘𝑖𝜌𝑠𝑑 , and 

𝜙𝑠𝑑 = 𝑘𝑟𝜌𝑠𝑑   , s=1,2 …m, and d=1,2, ... n.                                                                       Eq (1.2) 

Examples of calibrated and uncalibrated signal for a homogeneous reference are shown in figure 

1.5. 

 

Figure 1.5: Measurement amplitude and phase before and after system calibration (a) Amplitude 

before calibration (b) Amplitude after calibration (c) Phase before calibration (d) Phase after 

calibration 
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Equation 1.3 establishes a linear relationship between the source-detector separation and the 

measured signal, as seen in figure 1.5 as well. The Slope of the fitted straight line from the 

amplitude and phase plot gives the wavenumber, 𝑘. We will discuss in Chapter 2 how we solve 

our forward problem using this fitted wavenumber from a reference breast. 
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Chapter 2: Two Step Imaging Reconstruction 

for US guided DOT 
 

2.1 Introduction 

DOT reconstruction problem is ill-posed and often underdetermined due to smaller number of 

measurements compared to number of unknown properties to be reconstructed and intense 

scattering of light in diffusive regime. A variety of image reconstruction methods have been 

employed to improve target reconstruction accuracy in DOT.  This includes the algebraic 

reconstruction technique (ART) [1], nonlinear iterative gradient based optimization methods [2-

4], and Newton-like methods that requires the direct calculation and inversion of the Jacobian or 

weight matrix [5-6].    Reconstruction methods using a prior information determined from co-

registered high-resolution MRI [7-9], x-ray imaging [10-11], and ultrasound imaging (US) [12-

13] have been investigated extensively.  These methods segment the lesion and background 

regions, or different tissue types seen by a high-resolution modality, and therefore reduce voxels 

with unknown optical properties and improve the ill-posed and underdetermined DOT 

reconstruction problem. Another means of incorporating a prior information into an iterative image 

reconstruction method is through the initial image estimate.  Behnoosh and Zhu proposed a two-

step reconstruction using Genetic Algorithm (GA) to find a suitable initial image estimate that was 

subsequently refined by use of a conjugate gradient (CG) method, which showed improved target 

quantification as compared to CG with zero initial estimate [14].  However, GAs are time-

consuming and an optimal CG stopping criterion for use with experimental data is difficult to 

specify.   
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In this chapter, a simple two-step reconstruction method that can produce useful image estimates 

in DOT is proposed and investigated. In the first step, a truncated Moore-Penrose Pseudoinverse 

(MPP) solution is computed to obtain a preliminary estimate of the target image that can be reliably 

determined from the measured data; subsequently, this preliminary estimate is incorporated into 

the design of a penalized least squares estimator that is employed to compute the final image 

estimate. The MPP was employed to compute the initial estimate of the target image for several 

reasons.  Firstly, the MPP pseudoinverse, by definition, produces the least-squares estimate of the 

image that possess the minimum norm.  This yields a solution that can be interpreted as an 

orthogonal projection of the true target image onto a subspace that is the orthogonal complement 

to the null space of the imaging operator.  Therefore, the MPP solution describes the estimate of 

the target  that is closest to the true target but contains no component in the null space.  This is a 

reliable strategy for image reconstruction when no reliable a priori information about the target is 

available.  Secondly, the MPP pseudoinverse solution can be easily regularized by excluding 

contributions that correspond to small values.  Therefore, there is little ambiguity in how to choose 

the regularization parameter. Thirdly, the MPP pseudoinverse operator for our system can be 

explicitly stored in memory, which leads to near real-time image reconstruction.  By use of 

phantom data, the proposed method was demonstrated to yield more accurate images than those 

produced by conventional reconstruction methods.   The method was also evaluated with clinical 

data that included 10 benign and 10 malignant cases.  The capability of reconstructing high contrast 

malignant lesions was demonstrated to be improved by use of the proposed method.  Methods and 

results of this chapter are adopted from my published article in biomedical optics express [13]. 
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2.2 Materials and methods 

2.2.1  DOT Forward Problem 

The propagation of light through tissue is described by radiative transfer equation (RTE) [15-17]. 

For computational efficiency an approximation of RTE is used for diffused photon, which is 

known as diffusion equation [18]. The propagation of diffused light through tissue can be described 

by photon diffusion approximation as :                  
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)( 222 ,                                         Eq. (2.1) 

where S(r) is the equivalent isotropic source and, U(r) is the photon density wave, D is the diffusion 

coefficient, 𝜇𝑎 and 𝜇𝑠′ are the absorption and reduced scattering coefficients, respectively. k is the 

wavenumber that we estimated from reference data as discussed in section 1.3. The inverse 

problem is typically linearized by Born approximation [18]. By digitizing the imaging space into 

N voxels, the resulted integral equations are formulated as following:      

                                      WXWU NaNMMsc ==  11 ][][][  ,                                                  Eq. (2.2) 

where 𝑈𝑠𝑐  is the measured scattered photon density wave, M is the number of measurements, 

denotes the unknown changes of absorption coefficient at each voxel. The weight matrix, W, 

describes the distribution of diffused wave in the homogenous medium and characterizes the 

measurement sensitivity to the absorption and scattering changes. 

2.2.2  DOT Inverse Problem 

At the end, the inverse problem can be formulated as an unregularized optimization problem as:  
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           𝑓(𝑥) = arg min
𝑋

‖𝑈𝑠𝑐 − 𝑊𝑋‖2                                                     Eq. (2.3) 

In our ultrasound-guided DOT image reconstruction, a dual-zone mesh scheme is used to segment 

the imaging volume into a lesion region identified by co-registered US and a background region 

with fine and coarse voxel sizes, respectively [19]. This scheme effectively reduces the total 

number of voxels with unknown optical properties. The conjugate gradient (CG) method is utilized 

to iteratively solve the inverse problem.   As a result, the target quantification accuracy can be 

significantly improved.  However, when the lesions are larger, the total number of finer voxels and 

coarse voxels, N, can be much larger than the total measurements, M, which is the number of 

sources × the number of detectors × 2=14×9×2=252 counting for both amplitude and phase data.  

Due to the correlated nature of diffused light measured at closely spaced source and detector 

positions and also measurement noise, increasing the number of sources and detectors does not 

effectively mitigate the ill-conditioned nature of the DOT inversion problem.   

In this manuscript, we formulate the inverse problem as:  

                           𝑓(𝑥) = arg min
𝑋

( ‖𝑈𝑠𝑐 − 𝑊𝑋‖2 +
𝜆

2
‖(𝑋 − 𝑋0)‖2 ),                              Eq. (2.4) 

where 𝑿𝟎 is a preliminary estimate of the optical properties that can be reliably determined from 

the measured data and λ is a regularization parameter.  A Newton-like or conjugate gradient 

optimization method will be employed to approximately solve Eq. (2.4).   No spatial or temporal 

filters were used on solution 𝒇(𝒙).  

http://scholar.google.com/scholar?q=spatial+and+temporal&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwjnurvf4PHWAhWB4SYKHQEkAk8QgQMIJDAA
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2.2.3  Truncated pseudoinverse as an initial estimate 

We propose to employ a truncated pseudoinverse (PINV) operator  1−

PINVW of 𝑊 to form the 

preliminary estimate of 𝑋0 as 
scPINV UWX

10 −
= , which appears in the second term in Eq. (2.4). 

According to singular value decomposition (SVD) theory, 𝑊 can be decomposed as: 

                                                          𝑊 = ∑ √𝜎𝑛𝑢𝑛𝑣𝑛
†𝑅

𝑛=1  ,                                              Eq. (2.5) 

{𝑢𝑛} and {𝑣𝑛}  are left and right singular vector of W or orthonormal eigenvector of 𝑊𝑊† , {𝜎𝑛} 

are nonzero eigenvalues of 𝑊†𝑊 or 𝑊𝑊† and R is the number of nonzero singular values. 

MPP of W is,   

                                                         𝑊𝑃𝐼𝑁𝑉
−1 = ∑

1

√𝜎𝑛
𝑣𝑛𝑢𝑛

†𝑅
𝑛=1                                              Eq. (2.6) 

From system of linear equations, Eq.(2), 

                                        �̃� = 𝑊𝑃𝐼𝑁𝑉
−1 𝑈𝑠𝑐  = ∑

1

√𝜎𝑛
𝑣𝑛𝑢𝑛

†𝑅
𝑛=1 𝑈𝑠𝑐                                         Eq. (2.7) 

Since our measurement contains noise, we assume additive noise n, 𝑈𝑠𝑐 = 𝑈𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠 + 𝑛.  Then 

the reconstructed absorption �̃�  is given as: 

        �̃� = 𝑊𝑃𝐼𝑁𝑉
−1 (𝑈𝑛𝑜𝑖𝑠𝑒𝑙𝑒𝑠𝑠 + 𝑛)                      

                                                           = 𝑋 + 𝑋𝑛𝑜𝑖𝑠𝑒  ,       𝑋𝑛𝑜𝑖𝑠𝑒 = ∑
1

√𝜎𝑛
𝑣𝑛𝑢𝑛

†𝑅
𝑛=1 𝑛                Eq. (2.8) 

For very small singular values √𝜎𝑛 → 0, 𝑋𝑛𝑜𝑖𝑠𝑒  may contain image artifacts. 

In the truncated MPP approach, a threshold √𝜎𝑡ℎ   is set for singular values and the initial solution 

using MPP is: 

            𝑋0 = 𝑊𝑃𝐼𝑁𝑉
−1 𝑈𝑠𝑐 = ∑

1

√𝜎𝑛
𝑣𝑛𝑢𝑛

†  𝑈𝑠𝑐 , √𝜎1, √𝜎2, ………… √ 𝜎𝑅′ ≥ √𝜎𝑡ℎ
𝑅′

𝑛=1           Eq. (2.9) 

In the phantom and clinical data, we have chosen √𝜎𝑡ℎ   as 10% of √𝜎1 as a cut off value. From 

the truncated pseudoinverse, a preliminary estimate of unknown optical properties can be obtained. 
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Pseudoinverse of forward imaging operator is also used for image reconstruction in fluorescence 

molecular tomography (FMT) [20], nuclear imaging [21] and photoacoustic imaging [22].  A 

simple projection operation is used to suppress pixels outside the region of interest identified by a 

sphere B obtained from measurements of co-registered ultrasound image.  This projected 

absorption map is used as an initial solution for Newton or conjugate gradient search method. 

2.2.4  Newton Method 

The Newton method uses 2nd derivative of objective function (known as Hessian) to calculate a 

2nd order search direction resulting in quadratic convergence rate. We reformulate our penalized 

least square problem as a quadratic optimization problem,  

                                           𝑓(𝑥) =
1

2
𝑋𝑇𝑄𝑋 − 𝑏𝑇𝑋 − 𝑐 

                                           𝑄 = 2𝑊𝑇𝑊 + 𝜆𝐼 ,   𝑏 = 2𝑊𝑇𝑈𝑠𝑐 + 𝜆𝑋0                          Eq. (2.10) 

Clearly, the hessian is positive definite when 𝜆 > 0. Our solution is iteratively updated using 

following equations, 

        𝑋𝑘+1 = 𝑋𝑘 − (∇2𝑓(𝑋))
−1

(∇𝑓(𝑥)),   ∇𝑓(𝑥) = 𝑄𝑋 − 𝑏,   ∇2𝑓(𝑋) = 𝑄            Eq. (2.11) 

The iteration process is terminated when change of objective function between successive 

iterations become smaller than a preset tolerance. Choice of the regularization parameter is a 

critical part of solution design. Based on tumor size measured from ultrasound image and largest 

singular value of weight matrix, 𝜎1 we empirically chose our regularization parameter as 𝜆 =

𝑝√𝜎1, where p is proportional to tumor size. 
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2.2.5  Conjugate Gradient Method 

The Conjugate gradient (CG) method is a well-known iterative technique for solving symmetric 

positive definite linear systems of equations. We investigated this method both with regularization 

and without regularization. For the unregularized optimization formulation as given in Eq. (3), 𝑊 

is only positive semi-definite because it possesses singular values that take on zero values. From 

phantom experiments using absorbers with known optical properties, we determined 3 iterations 

as a stopping criterion because the reconstructed absorption coefficients are close to known values.  

For the regularized least square formulation 𝑄 = 2𝑊𝑇𝑊 +
1

2
𝜆𝐼, and 𝑄 is, by construction, 

symmetric and positive semi-definite. For any choice of 𝜆 > 0, 𝑄 will be a positive definite matrix 

since the lower bound for the singular values of 𝑄 is 
𝜆

2
 .  Again, 𝜆 = 𝑝√𝜎1,   is chosen with p 

proportional to the target size measured from US.  The algorithm for implementing the CG method 

is adapted from Ref. 23.  

2.2.6  Comparison of five reconstruction methods 

Five reconstruction methods have been compared using phantom and clinical data. Using zero as 

an initial estimate of target optical properties and regularized Newton optimization (Newton Zero 

initial) and regularized CG optimization (CG Zero initial);  using PINV as an initial estimate of 

target optical properties and regularized Newton optimization (Newton PINV initial), regularized 

CG optimization (CG PINV initial), and using zero initial estimate and unregularized CG.  

Additionally, target centroid error i.e. the absolute difference between the center of a phantom 

target measured by co-registered US and the centroid of corresponding reconstructed target 

absorption map, is calculated as a measure of reconstruction quality. 
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2.2.7 Choice of regularization 

Proper choice of regularization parameter, λ, is an important part of reconstruction. If λ is too 

small, then penalty may not have any effect on reconstruction, however, a larger λ heavily 

penalizes data fidelity term and solution may not converge near true minimum of unconstrained 

objective function.  In our approach, λ is chosen as  𝝀 = 𝒑√𝝈𝟏.  Table 2.1 shows the 𝝀/𝝈𝒏 , 

n=1,2,3,4, as function of 𝝁𝒔𝟎′   with  𝝁𝒂𝟎  as parameters.  The target size is 3 cm and the first four 

eigenvalues are about the threshold 𝝈𝒕𝒉.    𝝀/𝝈𝒏  decreases with  𝝁𝒔𝟎′   of background  𝝁𝒂𝟎 and  

𝝁𝒔𝟎′  (see table 4) and typical target size of p from 1 to 5 cm,  λ is a few percent of first two largest  

eigenvalues of Q matrix (Eq. 2.11)  for different combination. Thus our regularization is such a 

way that our solution is regularized more when background absorption increases, since it will be 

difficult to a reliable estimate from iterative update. 

 

Table 2.1:   Ratio of Regularization parameter, λ to first four eigenvalues of Q 

𝝁𝒂𝟎 𝝁𝒔𝟎′ 𝝀/𝝈𝟏 𝝀/𝝈𝟐 𝝀/𝝈𝟑 𝝀/𝝈𝟒 

0.01 4-9 0.65-1.39% 6.4-15.8% 17.1-31.7% 19.6-40.3% 

0.02 4-9 0.69-1.44% 6.5-15.9% 17.3-31.1% 19.5-41.2% 

0.03            4-9 0.74-1.50% 6.7-15.9% 17.2-32.3% 19.2-41.4% 

0.04 4-9 0.78-1.55% 6.8-15.9% 16.9-32.3% 18.7-41.2% 

0.05 4-9 0.82-1.52% 6.9-15.8% 16.7-32.3% 18.3-40.8% 

0.06 4-9 0.86-1.64% 7.0-15.7% 16.4-32.2% 17.8-40.4% 

0.07 4-9 0.90-1.69% 7.0-15.8% 15.7-31.8% 17.0-39.3% 

0.08 4-9 0.94-1.73% 7.1-15.7% 15.7-31.8% 17.4-39.8% 
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2.3 Results 

2.3.1  Phantom experiment results 

Phantom experiments were performed with solid ball phantoms of different sizes and different 

optical contrasts emulating tumors.  These targets were submerged in 0.08% intralipid solution of  

𝜇𝑎  in the range of 0.02-0.03 𝑐𝑚−1 and  𝜇′
𝑠 in the range of 7 to 8  𝑐𝑚−1 emulating homogeneous 

background tissue. We use 3 different size solid balls with diameters of 1, 2 and 3 cm submerged 

in depths of 1.5 cm to 3 cm in 0.5 cm step in depth. The calibrated high and low contrast phantoms 

were  𝜇𝑎 = 0.23 𝑐𝑚−1 and 𝜇𝑎 = 0.11 𝑐𝑚−1 mimicking malignant and benign lesions, 

respectively.   An absorption map for each target location, size and contrast was reconstructed and 

maximum  𝜇𝑎  is obtained for quantitative comparison.   An average reconstructed maximum  

𝜇𝑎 from all target conditions using Newton Zero initial, Newton PINV initial, CG Zero initial, CG 

PINV initial and unconstrained CG are given in Table 2.2 and shown in figure 2.1.  Errors of both 

high and low contrast targets reconstructed using different methods are given in Table 2.3.  As 

seen from the Table, Newton and CG with PINV as an initial accurately estimate absorption 

coefficient while Newton and CG with a zero initial produce larger errors.  Unconstrained CG 

gives a better estimate for high contrast phantoms but results in under reconstruction for low 

contrast ones.  

Table 2.2: Maximum reconstructed absorption (cm-1) (mean ± standard deviation) for phantom 

 Newton with 

zero Ini 

Newton with 

PINV ini 

CG with zero 

ini 

CG with  

PINV ini 

CG 

unconstrained 

Error (high 

contrast) 

0.097 ± 0.018 0.099 ± 0.016 0.093 ± 0.012 0.100 ± 0.017 0.107 ± 0.069 

Error (low 

contrast) 

0.191 ± 0.042 0.229 ± 0.021 0.191 ± 0.041 0.228 ± 0.021  0.222 ±0.027 
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Table 2.3: Errors in reconstructed absorption coefficient using different method 

 Newton with 

zero Ini 

Newton with 

PINV ini 

CG with zero 

ini 

CG with PINV 

ini 

CG 

unconstrained 

Error (high 

contrast) 

11.6±13.8% 0.04±9.1% 11.8±13.2% 0.1±9.0% 3.5±9.9% 

Error (low 

contrast) 

12.0±16.1% 9.6±14.6% 15.6±10.9% 8.8±15.8% 26.5±8.5% 

 

 

Figure 2.1:   Box plot of phantom data obtained from 1 to 3 cm size absorbers of high contrast 

(red) and low contrast (blue) located at different depths (1.5-3.5cm center depth) using zero and 

PINV as an initial guess and Newton as optimization, respectively (first and second columns), 

zero and PINV as initial guess and CG, respectively (third and fourth columns), and 

unconstrained CG (last column) 
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2.3.2  Clinical study  

Performance of proposed method is demonstrated using clinical data obtained from 20 patients 

[12].  Based on biopsy results, 10 patients had benign lesions and 10 patients had cancers. The 

study was approved by the local Institution Review Boards (IRB) and was compliant with the 

Health Insurance Portability and Accountability Act (HIPPA).  Informed consent was given by 

each patient.  Data used in this study have been de-identified.   

An example of a cancer case is shown in Figure 2.2.  Figure 2.2 (a) is the co-registered US image 

with the suspicious lesion marked by a circle.  Absorption maps of PINV initial image from 

truncated PINV (b) and reconstructed images using Newton with zero initial (c), PINV initial (d), 

CG with zero initial (e), CG with PINV initial (f) and unregularized CG (g) have shown similar 

lesion position and shape, however, the Newton’s method with PINV initial yields highest 

reconstructed µa=0.268 cm-1. Each map shows 7 sub-images marked as slice 1 to 7 and each sub-

image shows spatial x and y distribution of absorption coefficients reconstructed from 0.5 cm to  

3.5 cm depth range from the skin surface. The spacing between the sub-images in depth is 0.5 cm.  

The color bar is absorption coefficients in cm-1. We chose the µa display range from 0 to 0.2 cm-1 

because most of the reconstructed absorption values fall within this range.  Each subfigure 

dimension is 8cm x 8cm with scales from -4 cm to 4 cm in both X and Y axis.    
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Figure 2.2: Reconstructed absorption map at 780 nm of a malignant case.  (a) co-registered US 

image, (b) PINV initial image, Max µa=0.194 cm-1 (c) Newton with zero initial, Max µa=0.179 

cm-1 (d) Newton with PINV initial, Max µa=0.268 cm-1 (e) regularized CG with zero initial, Max 

µa=0.179 cm-1  (f) regularized CG with PINV initial,  Max µa=0.267 cm-1 and (g) unregularized 

CG, Max µa=0.216 cm-1.   

An example of a benign lesion is shown in Figure 2.3.  Figure 2.3 (a) is the co-registered US image 

with the suspicious lesion marked by a circle. Absorption map of MPP estimated image is shown 

in Figure 2.3 (b), reconstructed images using five corresponding reconstruction methods are given 

in Figure 2.3 (c)-(g) and reconstructed maximum µa are quite similar. Box plot of maximum total 

hemoglobin (tHb) of all clinical cases is shown in Figure 2.4. The two-sample t test was performed 

between malignant and benign groups of each method.  Newton’s method and CG with PINV as 

an initial provide highest statistical significance.    
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Fig. 2.3: Reconstructed absorption map at 780 nm of a benign case.  (a) co-registered US image, 

(b) PINV reference image, Max µa=0.076 cm-1 (c) Newton with zero initial, Max µa=0.078 cm-1 

(d) Newton with PINV initial,  Max µa=0.087 cm-1 (e) regularized CG with zero initial,  Max 

µa=0.077 cm-1  (f) regularized CG with PINV initial,  Max µa=0.088 cm-1 and (g) unregularized 

CG, Max µa=0.092 cm-1.  The absorption maps have the same scale as Fig.2.   

Additionally, the malignant to benign contrast ratios are 1.61, 2.11, 1.61, 2.07, 1.93, for Newton’s 

with zero initial, PINV initial, CG zero initial, PINV initial and unregularized CG respectively. 

The average and standard deviation of maximum tHb concentration obtained from each method is 

given in Table 2.4. For benign cases, reconstructed tHb are comparable using five methods, 

however, for malignant cases the total Hb contrast is much higher when Newton’s and CG are 

used with PINV initial estimate.  

 

Table 2.4: Total Hb concentration (μM) for clinical cases using different methods 

 Newton with 

zero Ini 

Newton with 

PINV ini 

CG with  

zero ini 

CG with  

PINV ini 

CG 

unregularized 

Total Hb conc. 

(Benign) 

47.5±14.2 49.4±10.6 47.5±14.3 50.4±9.8 48.5±16.3 

Total Hb conc. 

(Malignant) 

76.4±23.9 104.2±23.6 76.5±23.8 104.2±23.6 93.5±26.9 
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Figure 2.4:  Box plot of total hemoglobin concentration of 20 patients (malignant (red), n=10, 

benign (blue) n=10) using five methods.  PINV as an initial guess and Newton as optimization 

(first and second columns), zero and PINV as initial guess and CG (third the fourth columns), 

and unregularized CG (last column). 

We also calculated the detectabilty, 𝑆𝑁𝑅𝑡 for comparing all the five methods using the following 

formula, [24], 

                                                         𝑆𝑁𝑅𝑡 =
〈𝑡〉1−〈𝑡〉2

√
1

2
𝜎1

2+
1

2
𝜎2

2
                                                      Eq. (2.12) 

Where, 〈𝑡〉1 and 〈𝑡〉2 are mean tHb for malignant and bening group respectively, and 𝜎1
2 and 𝜎2

2 

are variance of malignant and benign group respectively. 
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From the detectability, AUC was calculated using equation (6) in ref 25. The result is shown in 

table 2.5. For 20 samples studied in this project, we obatained an AUC of 0.8498 for newton with 

zero initial, 0.9829 for newton with PINV initial, 0.8591 for CG with zero initial, 0.9824 for CG 

with PINV initial and 0.9238 for unregularized CG. The detectability values are 1.4646 for newton 

with zero initial, 2.9939 for newton with PINV initial, 1.4773 for CG with zero initial, 2.9790 for 

CG with PINV initial and 2.0234 for unregularized CG. Both the AUCs and detectabilty values 

show similar trend as p-values calculated earlier: PINV initial is better than zero initial, and 

unregularized CG performs better than zero initial but worse than PINV initial. 

Table 2.5: Detectability and AUC values for clinical cases using different methods 

 Newton with 

zero Ini 

Newton with 

PINV ini 

CG with  

zero ini 

CG with  

PINV ini 

CG 

unregularized 

Detectability 1.4646 2.9939 1.4773 2.9790 2.0234 

AUC 0.8498 0.9829 0.8591 0.9824 0.9238 

 

 

2.3.3  Convergence Analysis 

Utilizing PINV as an initial estimate of lesion optical properties, Newton and CG have 

demonstrated better classification of benign and malignant tumors because of improved 

convergence rate and solution stability. To compare the convergence of different reconstruction 

methods, we normalize the objective function for each method to the power of scattered field, 

‖𝑈𝑠𝑐‖
2, which is the initial objective function for unconstrained CG method. Shown in Fig. 2.5 is 

the mean and standard deviation of normalized object functions of five methods using phantom 

data.  Truncated pseudoinverse provides a good initial guess which reduces the initial objective 

function to 4%.    Newton and CG with PINV as an initial estimate converge in 1 and 2 iterations, 

respectively.  Newton and CG with zero initial converges in 1 and 3 iterations, respectively, and 
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the residual normalized objective function of CG is slightly higher than that with PINV as an 

initial.  Unconstrained CG converges in 3 ietrations.  Note that for our early studies using 

unconstrained CG, the iteration was stopped at 3 ietrations because  it provided optimal 

performance for phantom  data. 

Figure 2.6 shows normalized object functions of a typical malignant and a typical benign case.   

Interestingly, the convergenece tread follows phantom data  well.  After 3 or 4 iterations 

unconstrained CG method has a larger residual than other four methods . With PINV as an  initial 

estimate, Newton converges in one iteration and  CG two iterations.  If zero initial is used, Newton 

converge quickly about two iterations, while CG  converges in 4 to 5 iterations.  Table 2.6 and 2.7 

show mean and standard deviations of normalized objective functions for five  methods up to 5 

iterations.  Newton with PINV as an initial is the best and convergeres in one iteration with the 

lowest  residual normalized objective function and standard deviation.  The unconstrained CG has 

the largest residual and standard deviation and may not converge after 4 iterations.  

For unconstrained CG method, reduction of object function doesn’t always guarantee better 

reconstructed image quality. Because of the ill-conditioned and underdetermined DOT 

reconstruction problem, there are many local minima of object function for unconstrained 

formulation.  Regularization parameter balances data fidelity and penalty term.   Pseudoinverse is 

dominated by first few singular values which are significantly larger than other singular values. 

These large singular value components are less affected by noise. Initial estimate from only first 

few singular values are hence reliable and can help Newton and CG search algorithms converge  

quickly.  Additionally, applying a regularization factor obtained from the first singular value and 

target size is more individualized to the weight matrix and help stabilize the reconstruction.  
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Figure 2.5:  Normalized object functions of five different methods using phantoms data. 
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Figure 2.6:   Normalized object functions of five different methods of (a) a malignant lesion and 

(b) a benign lesion. 

 

       Table 2.6: Normalized objective function (mean ± standard deviation) for malignant cases 

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Newton with 

zero Ini 

10.0%± 5.6 10.0%± 5.6 10.0% ± 5.6 10.0% ± 5.6 10.0%± 5.6 

CG with 

zero ini 

22.5%± 8.7 16.4% ± 6.8 12.6 %± 5.6 11.0%± 5.5 10.2% ± 5.5 

Newton with 

PINV ini 

7.8% ± 4.9 7.8% ± 4.9 7.8% ± 4.9 7.8%± 4.9 7.8%± 4.9 

CG with 

PINV ini 

10.2 %± 5.5 9.2%± 5.3 8.6 %± 4.9 8.1%± 4.9 7.9%± 4.9 

unconstrained 

CG  

22.5% ± 8.7 17.1%± 7.0 15.6% ± 7.1 18.1% ± 10.2 29.2% ± 29.6 

 

 

Table 2.7: Normalized objective function (mean ± standard deviation) for benign cases 

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Newton with 

zero Ini 

22.8 ± 18.2 22.8 ± 18.2 22.8 ± 18.2 22.8 ± 18.2 22.8 ± 18.2 

CG with 

zero ini 

35.1 ± 24.3 25.9 ± 20.3 23.6 ± 18.4 22.9 ± 18.3 22.8 ± 18.2 

Newton with 

PINV ini 

18.7 ± 15.6 18.7 ± 15.6 18.7 ± 15.6 18.7 ± 15.6 18.7 ± 15.6 

CG with 

PINV ini 

21.2 ± 16.6 19.7 ± 16.3 18.9 ± 15.7 18.7 ± 15.6 18.7 ± 15.6 

CG 

unconstrained 

38.6 ± 32.5 32.3 ± 34.1 30.7 ± 34.6 31.1 ± 34.7 33.2 ± 34.8 

 
 

2.3.4  Target Centroid Error Analysis 

To compare different reconstruction methods, the target centroid error i.e. the absolute difference 

between the center of a phantom target measured by co-registered US and the centroid of 
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corresponding reconstructed target absorption map, is calculated as a measure of reconstruction 

quality.  Phantom data of both low and high contrast targets of 1 cm diameter located at different 

depths and measured at 780 nm were used to estimate the centroid error and results are shown in 

Table 2.8.  MATLAB function ‘regionprop’ is used to estimate the centroid of target absorption 

map and the difference between the estimated centroid and the measured target center from 

corresponding co-registered US is calculated.  As seen from Table 2.8, the target centroid error 

which is less than one voxel size of 0.25 cm does not depend on reconstruction method.  Thus, all 

reconstruction methods provide the same target centroid. 

Table 2.8: Object centroid error (∆𝑥, ∆𝑦) (mean ± standard deviation) for phantom data 

 Newton with 

zero ini 

Newton with 

PINV ini 

CG with 

zero ini 

CG with 

PINV ini 

CG unregularized 

Object 

centroid 

Error (Δx) 

0.157±0.093 0.157±0.093 0.157±0.093 0.157±0.093 0.163±0.091 

Object 

centroid 

Error (Δy) 

0.225±0.101 0.225±0.101 0.225±0.101 0.225±0.101 0.190±0.069 
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2.4 Summary and Discussion 

Choice of regularization parameter, λ, is an important part of reconstruction. If λ is too small, then 

the penalty may not have any effect on reconstruction, however, a larger λ heavily penalizes data 

fidelity term and solution may not converge near true minimum of unregularized objective 

function.  In our approach, λ is chosen as  𝝀 = 𝒑√𝝈𝟏 which decreases with  𝝁𝒔𝟎′   and increases 

with background  𝝁𝒂𝟎 .  Thus, for higher background 𝝁𝒂𝟎, the λ regulates more to improve the 

conditioning of the Q matrix.  Additionally, because the huge difference between the first and the 

rest of the eigenvalues, the   𝝀/𝝈𝒏  increases with n and therefore λ regulates more for smaller 

eigenvalues and further improves the conditioning of Q matrix.  Choice of regularization parameter 

is always a difficult problem and mathematical techniques like L-curve and U-curve are not often 

useful [26-27].  We have determined regularization parameter by trial and error using phantom 

data to ensure convergence, reconstruction accuracy and lower image artifacts. In further study, 

we will apply machine learning techniques to automatically select regularization parameter to 

minimize the reconstruction error.  The ultimate clinical use of ultrasound-guided diffused light 

imaging is to maximize the separation of benign and malignant lesions. 

In the past two decades, researchers in DOT community have tried to simultaneously reconstruct 

target absorption coefficient, 𝜇𝑎,  and diffusion coefficient, D ( '3/1 sD = , see Eq. (2.1)).  

However, since the lesion diffusion coefficient is much smaller than the absorption coefficient, 

correctly reconstructing the scattering coefficient is a challenge.  Also, simultaneously 

reconstructing the absorption and diffusion coefficients doubles the number of unknown optical 

parameters to estimate.  Therefore, the reconstruction becomes more ill-posed and under-

determined.   However, with a better initial estimate and an appropriate choice of regularization 

parameter λ, it is possible to explore simultaneous reconstruction of both parameters. This has 
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been demonstrated in reference 14 using GA as an initial estimate and unregulated CG to 

iteratively reconstruct target absorption and scattering maps.  In this manuscript, our objectives 

were to 1) evaluate the performance of the proposed simple, robust, two-step reconstruction 

algorithm; and 2) compare this algorithm with a group of four algorithms including the unregulated 

CG algorithm that we have used in the past.  Therefore, we did not attempt to simultaneously 

reconstruct both parameters but focused on absorption coefficient, 𝜇𝑎, which is the most important 

parameter to reveal tumor angiogenesis.  Thus, our phantoms have similar reduced scattering 

coefficient as the background medium.  In future study, we will evaluate the performance of the 

proposed novel algorithm in simultaneously recovering both target absorption and scattering maps. 

In summary, a simple, robust, two-step reconstruction algorithm has proposed, and its performance 

has demonstrated using phantom and clinical data.  Using a truncated pseudoinverse as a 

preliminary estimate of target optical properties and regularized Newton and CG optimization 

search methods to iteratively reconstruct target optical properties within region of interest 

identified by co-registered US gave best results. The truncated pseudoinverse as a preliminary 

estimate and regularized Newton optimization converges in one iteration.   This two-step 

reconstruction technique is generally applicable to x-ray-guided and MRI guided DOT imaging 

reconstruction.  
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Chapter 3: Imaging artifact reduction by 

perturbation outlier removal 

 

3.1 Introduction 

DOT reconstructed images can be distorted by image artifacts due to outlier measurements. due to 

wavelength-dependent tissue heterogeneity, bad coupling between tissue and sources and 

detectors, and patient motion or operator hand motion.   Several experimental and modeling 

approaches have been developed for system calibration of optical source strengths, detection 

channel gains and phase shifts [1-3], source and detector (optodes) position errors, and coupling 

errors between skin and optodes [4-8].  For correcting motion artifacts, different algorithms have 

been proposed, including cubic spline interpolation [9], adaptive Kalman filtering [10], and 

wavelet-based motion artifact removal [11]. To improve the imaging quality, projection error 

based adaptive regularization techniques have been employed which outperform standard 

Tikhonov regularization [12]. However, these approaches do not compensate for wavelength-

dependent problems. For example, the 740 nm wavelength is prone to measurement errors from 

tissue heterogeneity caused by dark skin and skin pigment. As another example, the 830 nm 

wavelength has lower SNR at longer source and detector distances due to the reduced sensitivity 

of photomultiplier tube detector beyond 800 nm.   

In our US-guided DOT approach to assessing breast cancer, perturbation, which is the normalized 

difference between the lesion breast and the contralateral normal breast (reference) measurements, 

is used for mapping lesion absorption at each wavelength.  The total hemoglobin map is computed 
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from the absorption maps of four optical wavelengths. The tissue heterogeneity of the reference 

measurements contributes to outliers in the perturbation measurements.  In a recent investigation 

by our group, Vavadi et al. [13] introduced a statistical method based on the semi-infinite tissue 

model to automatically remove outliers from contralateral normal breast measurements.  However, 

this method cannot be used for perturbation measurements because lesion measurements are 

expected to be more heterogeneous than the reference measurements. To separate the measurement 

errors from lesion heterogeneity, more information from multiple wavelength measurements can 

be incorporated in the preprocessing before image reconstruction.  Recently, Murad et al. 

introduced an approach for data filtering based on multiple wavelength measurements collected at 

the lesion site [14]. The method combines data collected from multiple sets of lesion measurements 

to detect and correct outliers caused by wavelength- dependent measurement errors in the 

perturbation.  However, this approach requires that 2-3 wavelength perturbation datasets must be 

correlated, and then the rest of the wavelength-dependent distortion can be compensated for.  

In this chapter, we propose a new iterative perturbation correction algorithm by using structural 

similarity index (SSIM) as an image quality assessment criterion.  The initial estimate of the 

absorption map is obtained from the truncated pseudoinverse solution. In subsequent iterations, 

the average SSIM for each wavelength and errors between the measurement and the projected data 

are computed and outliers are removed from the measurements based on the errors. This procedure 

is iterated until the SSIM reaches a preset threshold.  We demonstrate the effectiveness of this 

approach in phantoms and clinical data.  The methods and results of this chapter is partially 

adopted from my published article in Journal of biomedical optics [15]. 
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3.2 Materials and methods 

3.2.1  DOT Data preprocessing 

DOT data acquisition is performed on both a lesion breast and a contralateral normal breast, 

referred as the reference breast.  Amplitude and phase measurements are extracted from the 

detected RF signal using the Hilbert transform. For the 𝑖𝑡ℎ source-detector pair, reference 

measurement is given as  𝑈𝑟(𝑖) = 𝐴𝑟(𝑖)𝑒
𝑗𝜑𝑟(𝑖), and the lesion measurement is  𝑈𝑙(𝑖) =

𝐴𝑙(𝑖)𝑒
𝑗𝜑𝑙(𝑖), where 𝑖 = 1,2, … .𝑚 , and m is the total number of source-detector pairs or the total  

number of measurements.  Perturbation, 𝑈𝑠𝑐(𝑖), is defined as the normalized difference between 

the reference and target measurements. 

             𝑈𝑠𝑐(𝑖) =
𝐴𝑙(𝑖)𝑒

𝑗𝜑𝑙(𝑖)−𝐴𝑟(𝑖)𝑒
𝑗𝜑𝑟(𝑖)

𝐴𝑟(𝑖)𝑒𝑗𝜑𝑟(𝑖)   

                          = (
𝐴𝑙(𝑖)

𝐴𝑟(𝑖)
cos(𝜑𝑙(𝑖) − 𝜑𝑟(𝑖)) − 1) + 𝑗 (

𝐴𝑙(𝑖)

𝐴𝑟(𝑖)
sin(𝜑𝑙(𝑖) − 𝜑𝑟(𝑖))).                  Eq (3.1)                                                        

The first term is the real part of the perturbation, and the second term is the imaginary part of the 

perturbation. A typical 2D representation of perturbation data for a phantom is shown in Figure 

3.1, with real perturbation on the x-axis and imaginary perturbation along the y-axis. The unit 

circle represents the expected boundary that perturbation data should lie within. From simulations 

of different target contrasts and locations in depths, it was shown that maximum phase difference 

for any source detector pair should not exceed 90 degrees, even in extreme cases [13]. Since 0 ≤

cos (𝜑𝑙(𝑖) − 𝜑𝑟(𝑖)) ≤ 1 for  −
𝜋

2
≤ 𝜑𝑙(𝑖) − 𝜑𝑟(𝑖) ≤

𝜋

2
 for all 𝑖, real perturbation should be greater 

than -1. For a high contrast target, 𝐴𝑙 ≪ 𝐴𝑟, so perturbation is more skewed towards the negative 

real axis. For a low contrast target, perturbation is very small and clustered more towards the 
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positive real axis, while imaginary perturbation is evenly distributed around the origin, since −1 ≤

sin (𝜑𝑙(𝑖) − 𝜑𝑟(𝑖)) ≤ 1 for −
𝜋

2
≤ 𝜑𝑙(𝑖) − 𝜑𝑟(𝑖) ≤

𝜋

2
 . 

 

Figure 3.1: Phantom perturbation data.  (a) Data measured from a high contrast phantom target 

imbedded in intralipid solution.   (b) Data measured from a low contrast phantom target 

imbedded in intralipid solution. 

 

Figure 3.2 shows one set of perturbation data of a highly absorbing malignant breast lesion and a 

low absorbing benign breast lesion . As evident from the figure, clinical data is more scattered 

because of tissue heterogeneity, mis-coupling of the tissue and source and detector fibers, and 

patient movement or operator hand motions.  
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Figure 3.2: Clinical perturbation data. (a) A malignant breast lesion.  (b) A benign breast lesion. 

 

Multiple perturbation datasets are compiled together, and a multivariate Gaussian is fitted, and 

data points are removed if there are any with a Mahalanobis distance greater than the threshold 

computed from the inverse chi-square distribution with a cumulative probability of 99%. Based on 

chest wall matching of the reference and lesion breast, a single measurement dataset is selected 

from multiple measurements. The structural similarity-based perturbation correction algorithm 

depicted in Figure 3.3 is applied to perturbation data to obtain corrected perturbation and artifact-

free images. 

3.2.2  Image Quality Assessment 

In DOT reconstruction, quantitative assessment of imaging quality poses a challenge. Previously, 

image distortion and inconsistent images for different wavelengths were visually inspected, and 

perturbation was manually corrected by an experienced operator. Such manual data processing is 

operator-dependent and time consuming.  In this manuscript, we propose to use the structural 
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similarity index (SSIM) to quantitatively evaluate imaging quality by taking all four wavelength 

images into account. The SSIM measure is a function of the image’s luminance, contrast, and 

structure [16-17]. The SSIM between two images 𝑋 and 𝑌 is defined as in Ref. 16, 

                            𝑆𝑆𝐼𝑀(𝑋, 𝑌) = [𝑙(𝑋, 𝑌)]𝛼 ∙ [𝑐(𝑋, 𝑌)]𝛽 ∙ [𝑠(𝑋, 𝑌)]𝛾                               Eq. (3.2) 

where 𝑙(𝑋, 𝑌), 𝑐(𝑋, 𝑌) and 𝑠(𝑋, 𝑌) are the luminance, contrast and structure similarity 

respectively, and 𝛼 > 0, 𝛽 > 0, 𝛾 > 0 are three parameters used to adjust relative importance of 

the three components of similarity measure. The luminance, contrast, and structure of an image 

are computed from mean, standard deviation and normalized images [17] as 

𝑙(𝑋, 𝑌) = (2𝜇𝑋𝜇𝑌 + 𝐶1)/(𝜇𝑋
2 + 𝜇𝑌

2 + 𝐶1) 

𝑐(𝑋, 𝑌) = (2𝜎𝑋𝜎𝑌 + 𝐶2)/(𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2) 

                                               𝑠(𝑋, 𝑌) = (𝜎𝑋𝑌 + 𝐶3)/(𝜎𝑋𝜎𝑌 + 𝐶3)                                    Eq. (3.3) 

Here, 𝜇𝑋, 𝜇𝑌, 𝜎𝑋, 𝜎𝑌, and 𝜎𝑋𝑌 are the means of pixel values of image X and image Y, the standard 

deviation of image X and image Y, and the covariance of image X and Y, respectively. C1, C2, C3 

are constants. 

For each wavelength, 𝜆𝑖 ∈ {740,780,808,830 𝑛𝑚}, the other three wavelength images are used as 

references to compute SSIMs for three image pairs. An average of the three SSIMs is the 

quantitative image quality index, 𝑆𝑆𝐼𝑀(𝜆𝑖) , used to evaluate the reconstructed image quality of 

wavelength  𝜆𝑖 as given below: 

𝑆𝑆𝐼𝑀(𝜆𝑖) =
1

𝑛𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ−1
 ∑ 𝑆𝑆𝐼𝑀(𝑖𝑚𝑎𝑔𝑒𝑖, 𝑖𝑚𝑎𝑔𝑒𝑗).

𝑛𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ

𝑗=1,𝑗≠𝑖
                                Eq. (3.4) 
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3.2.3  Iterative Perturbation Correction 

Iterative perturbation correction is performed based on 𝑆𝑆𝐼𝑀(𝜆𝑖) for each wavelength.  The 

wavelength with the minimum 𝑆𝑆𝐼𝑀(𝜆𝑖) is corrected first.  The initial estimate is from the 

truncated pseudoinverse (PINV).  If 𝑆𝑆𝐼𝑀(𝜆𝑖) is lower than a preset threshold (0.9), perturbation 

from 𝜆𝑖 wavelength is corrected based on the original perturbation and projected perturbation. The 

reconstructed image, 𝛿𝜇𝑎′, for 𝜆𝑖 is projected into measurement space by multiplying the weight 

matrix, 𝑾, to obtain projected data: 

                                                 [𝑈𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑] = [𝑊][𝛿𝜇𝑎′]                                              Eq. (3.5) 

Based on the Euclidean distance of original perturbation data, 𝑈𝑠𝑐, and projected data, 𝑈𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑, 

projection error, 𝐸𝑝𝑟𝑜𝑗, is calculated as 

                                                𝐸𝑝𝑟𝑜𝑗 = ‖𝑈𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 − 𝑈𝑠𝑐‖
2
.                                          Eq. (3.6) 

The data point with maximum projection error is removed from 𝑈𝑠𝑐.  Modified perturbation is 

again used to reconstruct the absorption map for wavelength 𝜆𝑖 using regularized CG.   𝑆𝑆𝐼𝑀(𝜆𝑖)  

is recomputed and compared with the threshold.  This process is repeated until the lowest 

𝑆𝑆𝐼𝑀(𝜆𝑖)  is greater or equal to the threshold.  This iterative correction procedure is performed for 

each wavelength until the 𝑆𝑆𝐼𝑀(𝜆𝑖)  values for all four wavelengths are above the threshold.    
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Figure 3.3: Data preprocessing and iterative perturbation correction algorithm 

 

3.3 Results 

3.3.1  Phantom experiment  

In phantom experiments, intralipid solution was used to simulate a homogeneous background 

medium. The experiment was repeated for solid spherical balls with different contrasts and sizes 

simulating different types of tumors in intralipid solution in different depths. The average image 

similarity index was computed for all phantom absorption map images. The reconstructed 

absorption map for a ball of 2 cm diameter at 2 cm depth is shown in Figure 4. The average 
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structural similarity indices for four wavelengths —740 nm, 780 nm, 808 nm, and 830 nm—are 

0.98, 0.97,0.99, and 0.96, respectively.  

 

 

Figure 3.4: Reconstructed image similarity for phantom data (a) US image (b) reconstructed 

absorption maps (2 layers at 𝑧 = 1.5 𝑐𝑚 and 𝑧 = 2 𝑐𝑚) for all four wavelengths. Each 2D layer 

is 8 𝑐𝑚 × 8 𝑐𝑚. Average SSIMs are 0.98, 0.97, 0.99, 0.96 for 740 nm,780 nm, 808 nm and 830 

nm respectively. 

 

Pairwise SSIMs (mean ± standard deviation) are presented in Table 1. Large similarity indices 

indicate strong structural similarity among different wavelengths, which is visually apparent in 

figure 3.4.  

 

Table 3.1: Structural similarity index (mean ± standard deviation) for phantom data 

 740 nm 780 nm 808 nm 830 nm 

740 nm —  0.976 ± 0.004 0.988 ± 0.003 0.942 ± 0.015 

780 nm 0.976 ± 0.004 — 0.985 ± 0.006 0.943 ± 0.023 
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808 nm 0.988 ± 0.003 0.985 ± 0.006 — 0.947 ± 0.020 

830 nm 0.942 ± 0.015 0.943 ± 0.023 0.947 ± 0.020 — 

Average 0.954 ± 0.019 0.969 ± 0.008 0.957 ± 0.018 0.974 ± 0.009 

 

  

3.3.2  Clinical study  

A clinical study was approved by the local Institutional Review Board (IRB) and was compliant 

with the Health Insurance Portability and Accountability Act (HIPPA). Informed consent was 

given by each patient. Data used in this study have been de-identified. A total 40 patients were 

studied including 13 malignant and 27 benign lesions, based on biopsy results. All patients were 

categorized into two categories, patients with image artifact present in one or more wavelength 

absorption maps (17 patients) and patients with no image artifact (23 patients). This categorization 

was based on a present cutoff value of 0.9 for structural similarity among the four wavelengths 

reconstructed absorption map images. An example of   benign fibroadenoma is shown in Figure 

3.5. Figure 3.5(a) shows the ultrasound image with the lesion marked by a white ellipse. Figure 

3.5(b) shows reconstructed absorption maps for four wavelengths. Each wavelength absorption 

map has one 2D layer at depth, 𝑧 = 1 𝑐𝑚. The mean SSIMs for the four wavelengths 740, 780, 

808, and 830 nm are 0.87, 0.91, 0.87, and 0.82. The reconstructed absorption coefficients are 

0.2463 cm-1, 0.2069 cm-1, 0.1326 cm-1 and 0.3316 cm-1, respectively.  Image SSIM indicates that 

there is image artifact at wavelength 830 nm and visual inspection confirms this. Figure 3.5(c) 

shows reconstructed absorption maps after perturbation correction. The mean SSIMs for the four 

wavelengths changes to 0.95, 0.97, 0.97, and 0.96 while absorption coefficients change to 0.1582 

cm-1, 0.1470 cm-1, 0.1345 cm-1, and 0.1484 cm-1 respectively. 
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Figure 3.5: Image artifact reduction for a benign case (a) US image, 1 cm lesion depth (b) 

absorption maps for original data before perturbation correction (c) absorption maps after 

perturbation correction 

 

Iterative changes in the perturbation and absorption map for this case at 830 nm are shown in 

Figure 3.6. For iteration 0, we see the original dataset and the absorption map: the map is similar 

to that in Figure 3.5(b). In successive iterations we removed perturbation points denoted by red 

dots. We continue to remove perturbations until absorption map is structurally similar to the maps 

of other wavelengths. 
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Figure 3.6: Iterative changes in absorption map and perturbation filtering for 830 nm for the 

benign case. Red dots denote removed data points. 

 

An example of malignant breast cancer with mixed ductal and lobular features is shown in Figure 

3.7. Figure 3.7(a) shows an ultrasound image with a lesion marked by a white ellipse. Figure 3.7(b) 

shows reconstructed absorption maps for the four wavelengths. Each wavelength absorption map 

shows two layers at depths, 𝑧 = 1.5  𝑎𝑛𝑑 2 𝑐𝑚. Mean image similarity indices for the four 

wavelengths 740, 780, 808, and 830 nm are 0.83, 0.82, 0.77, and 0.79, and reconstructed absorption 

coefficients are 0.254 cm-1, 0.237 cm-1, 0.070 cm-1, and 0.054 cm-1, respectively. Image artifact is 

present in 808 and 830 nm absorption maps. Figure 3.7(c) shows reconstructed absorption maps 

after perturbation correction. Mean SSIMs for four wavelengths improves to 0.94, 0.94, 0.93, and 

0.91 while reconstructed absorption coefficients changed to 0.2542 cm-1, 0.2371 cm-1, 0.2281 cm-

1, and 0.1754 cm-1, respectively. 
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Figure 3.7: Image artifact reduction for a malignant case (a) US image, 1.5 and 2  cm lesion 

depths (b) absorption maps for original data before perturbation correction (c) absorption maps 

after perturbation correction 

 

Figure 3.8 shows iterative changes of perturbation and absorption maps for the malignant case at 

808 nm. In iteration 0, we have original dataset and absorption map similar to that in Figure 3.7(b). 

In successive iterations we removed perturbation points denoted by red dots. We continue to 

remove perturbations until absorption map is structurally similar to maps of other wavelengths. 
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Figure 3.8: Iterative changes of absorption map and perturbation filtered at 808 nm, for  the 

malignant case. Red dots denote removed data points. 

Another malignant example with small tumor is shown in Figure 3.9. Figure 3.9(a) shows the 

ultrasound image with lesion marked by white ellipse. Figure 3.9(b) shows reconstructed 

absorption maps for four wavelengths. Each wavelength absorption map shows only 1 layer at 

depth, 𝑧 = 1.5 𝑐𝑚. Mean image similarity indices for four wavelengths 740, 780, 808, 830 nm are 

0.86, 0.84, 0.85, 0.81 and reconstructed absorption coefficients are 0.2509 cm-1, 0.2289 cm-1, 

0.2440 cm-1 and 0.3182 cm-1 respectively. Image artifact is present in 808 and 830 nm absorption 

maps. Figure 3.9(c) shows reconstructed absorption maps after perturbation correction. Mean 

SSIMs for four wavelengths changes to 0.93, 0.94, 0.93, 0.92 while reconstructed absorption 

coefficients changed to 0.2509 cm-1, 0.2289 cm-1, 0.2658 cm-1 and 0.2623 cm-1, respectively. 
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Figure 3.9: Image Artifact reduction for a malignant case (a) US image (b) absorption maps for 

original data before perturbation correction (c)absorption maps after perturbation correction 

Iterative change of perturbation and absorption map for the malignant case for 830 nm wavelength 

is shown in figure 3.10. In iteration 0, we have original dataset and absorption map similar to that 

in figure 3.9(b). In successive iterations we removed perturbation points denoted by red dots. We 

continue to remove perturbations until absorption map is structurally similar to maps of other 

wavelengths. 
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Figure 3.10: Iterative change of absorption map and perturbation filtering for wavelength 830 nm 

for a malignant case. Red dots denote removed data points. 

Perturbation correction statistically improves the SSIM among different wavelengths, as depicted 

in Figure 3.11. A two-tailed paired t-test was done for images with artifacts both before and after 

perturbation correction, and the SSIM is statistically higher after perturbation correction, with a p-

value less than 0.001. Student t-test on images with no artifacts shows no significant change in 

terms of structural similarity (p-value 0.52), which is expected.  
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Figure 3.11: Comparison of SSIMs of reconstructed images before perturbation correction (blue 

box) and after perturbation correction (red box) 

 

3.3.3  Perturbation correction vs Noise based down-weighting 

An alternative method to complete removal of outlier data is to down weight the noisy data. The 

measurements are properly weighted in the inverse problem using variance of repeated 

measurements collected from each location of tissue in individual wavelength reconstruction 

solving a weighted least square problem [18]. Detailed procedures and findings are discussed 

below. 
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Given the measurement vector x, unknown optical property, θ and system matrix, H, linear model 

can be written as, 

                                                        𝑥 = 𝐻𝜃 + 𝑤                                                                    Eq. (3.7) 

Where, θ has random prior PDF 𝑁(𝜇𝜃, 𝐶𝜃) and noise vector, w has a statistical characterization, 

𝑁(0, 𝐶𝑤) i.e. zero mean gaussian noise.  

The posterior PDF of the optical properties, 𝑝(𝜃|𝑥) has mean, 

                   𝐸(𝜃|𝑥) = 𝜇𝜃 + (𝐶𝜃
−1 + 𝐻𝑇𝐶𝑤

−1𝐻)
−1

𝐻𝑇𝐶𝑤
−1(𝑥 − 𝐻𝜇𝜃)                                  Eq. (3.8)   

We take three repeated measurements for a benign patient from a particular tumor location. For 

each source-detector pair, variance of these three measurements are taken and then diagonalized 

to make noise covariance matrix, 𝐶𝑤. This method should appropriately down weight the 

measurement with higher measurement variance instead of completely removing them. 

Results from the aforementioned algorithm are compared with the proposed algorithm in figure 

3.12 for the benign case presented in figure 3.5. Maximum absorption coefficients for different 

algorithms are presented in Table 1. 
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Figure 3.12: Comparison of Reconstructed absorption maps for different perturbation correction 

approaches (a) US image (b) Original Data (c) Image similarity-based data trimming approach 

(d) measurement variance based noisy data down-weighting approach 

 

Table 3.2: Maximum absorption coefficient (cm-1) for different perturbation correction 

approaches 

 740 nm 780 nm 808 nm 830 nm 

Original 

Data 

0.24 0.21 0.13 0.33 

Data trimming 

approach 

0.16 0.15 0.13 0.15 
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Noise data down- 

weighting scheme 

0.40 0.31 0.18 0.52 

 

As we can see from the results, down weighting the noisy data didn’t help in accurately 

reconstructing absorption maps for a benign case resulting in much higher artifacts. This may not 

be surprising. Our system noise comprises of both coherent and incoherent components and 

modeling it as a white additive noise may not be the best choice for our system.  For our 

reconstruction, we avoid artifact from noisy data using regularization or early stopping in our 

iterative optimization problem [19]. Availability of a good prior is also crucial for our 

reconstruction. Thus, due to the lack of a good noise characterization and good prior PDF of optical 

properties, alternative method may not be useful in our case.  

  

3.4 Summary and Discussion 

In summary, an iterative perturbation correction algorithm based on image similarity is introduced 

and its performance in image artifact reduction is demonstrated using clinical data. This algorithm 

follows two simple assumptions. First, absorption map images for all four wavelengths are 

assumed to be structurally similar.  Since we are imaging the same tissue region with closely 

spaced wavelengths, the image structure should be similar, even though the local absorption 

coefficients might differ due to wavelength-dependent absorption variations. Second, image 

artifacts in all four wavelengths are assumed to be dissimilar. Data acquisition is done sequentially, 

from one wavelength after another, in a few seconds. Motion or experimental errors can affect one 

or more wavelengths, but these effects are random and are unlikely to generate structurally similar 

artifacts at all four wavelengths.  Additionally, certain tissue heterogeneity caused artifacts may 
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not be present at all wavelengths, for example 740 nm is very sensitive to dark skin pigment than 

other wavelengths.  The total hemoglobin distribution, which is calculated by linear weighting of 

multi-wavelength absorption maps based on extinction coefficients, is significantly improved due 

to artifacts reduction.  However, the average maximum total hemoglobin levels which we have 

used to classify malignant vs. benign lesions   remain statistically the same as compared with no 

perturbation correction.  This is because one or two absorption distributions are often significantly 

improved on artifacts, but the maximum total hemoglobin level may not change much.   

Other approaches, such as weighted least-square (WLS) approach [18, Chapter 4], can compensate 

measurement differences between different wavelengths (or source/detector channels).  Such 

method depends on the accurate modeling of the system noise.  However, the noise in the DOT 

measurements includes coherent and incoherent components as well as random motion produced 

noise.  We have evaluated the WLS approach to compensate measurement differences among 

source-detector pairs and found that it may not be suitable for the measurement noise we 

experienced in patient data.     

The proposed iterative artifact reduction algorithm significantly reduces the effect of wavelength-

dependent measurement errors in DOT perturbation, which helps to achieve more accurate 

reconstruction of the optical properties of breast lesions.  This automated method also helps to 

minimize both the user interface and the time for data preprocessing.  The average time for an 

experienced user to manually perform data preprocessing for one patient’s data is from 15 minutes 

to 30 minutes.  The automated method could reduce this time to less than a minute and facilitate 

the clinical translation of US-guided DOT technology.  Although the method is 

demonstrated using ultrasound-guided DOT data, it is applicable to any DOT data preprocessing 

obtained with multiple wavelengths.  
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Chapter 4: Optimal Breast Cancer 

Diagnostic Strategy  

 

4.1 Introduction 

Multiple imaging modalities are currently used for breast cancer screening and diagnosis.  X-ray 

mammography is the predominant imaging modality for both screening and diagnostic imaging.  

Breast Ultrasound (US) is the second most common diagnostic imaging modality and is also used 

for screening average to moderate risk women with dense breast composition [1-3].  Due to its 

high cost and limited access, MRI is reserved for screening high risk women and has application 

to a very narrow group of diagnostic indications.  While the characteristics of malignant and benign 

breast lesions are well established by conventional imaging techniques [4-6], their overlapping 

appearances result in approximately one million image-guided breast biopsies each year in the 

United States, most yielding benign results [7].  An optical tomography system that reveals 

functional differences in breast abnormalities could greatly improve diagnostic accuracy and 

reduce the number of benign biopsies.   In the last 20 years, optical breast imaging using diffused 

light has been widely explored to develop non-invasive imaging tools to detect and diagnose breast 

cancer, and to predict and monitor its treatment response [8-26].  Initially these systems were 

investigated as primary or ‘stand-alone’ modalities [8-15].  However, it became clear that the 

accuracy of DOT could be enhanced on lesion localization and quantification by use of a priori 

information from other conventional breast imaging modalities like mammography/ tomosynthesis 

[24-25], ultrasound (US) [16-17,20,26] and MRI [21-23].  The dual-modality characterization, 

incorporating structure from conventional imaging and function from enhanced optical imaging, 
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provides complementary information to improve diagnosis. Ultrasound-guided DOT has 

demonstrated its translational potential for distinguishing breast cancers from benign lesions [16-

17, 26], and for predicting and monitoring the neoadjuvant chemotherapy (NAC) response of 

breast cancers [18,27]. One major challenge for dual-modality breast cancer diagnosis is DOT’s 

relatively slow data processing and image reconstruction speed as compared to the real-time 

imaging capabilities of US.   Near real-time diagnosis is critical for the clinical translation of a 

US-guided DOT dual-modality technique.   The random forest classifier is an ensemble learning 

method that has been employed widely in medical imaging applications [28]. It makes a decision 

based on majority vote of many individual decision trees which are trained on predictive features 

[29].  Random forest classifiers have demonstrated promising results for computer aided breast 

cancer diagnosis utilizing US [30], mammogram [31] and biopsy data [32-33].  

In this chapter, we investigate a two-stage diagnostic strategy for breast cancer clinical 

management.   The first stage seeks to identify benign lesions in near real-time based on 

radiologists’ US scores and DOT measurements in the form of perturbation data that have not 

undergone image reconstruction.   This is accomplished by use of a random forest classifier.   

Intermediate lesions that cannot be identified as benign with high confidence are flagged and 

functional images are subsequently reconstructed off-line from the DOT measurements.   In the 

second stage of the diagnostic strategy, features are extracted from the reconstructed DOT images 

and a supper Vector Machine (SVM) classifier is employed for diagnosis.    This proposed 

diagnostic strategy has showed significant improvement over DOT functional feature and US 

based diagnosis only by increasing AUC (area under ROC curve) from 0.892 to 0.937. To the best 

of our knowledge, this is the first time a two-step automated diagnostic strategy is proposed with 

near real-time assessment capability of majority of benign lesions. 
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4.2 Materials and methods 

4.2.1  DOT perturbation features 

The DOT perturbation,  𝑈𝑠𝑐, is defined as normalized difference between lesion and reference 

measurements, which is related to differential absorption of lesion and reference normal tissue. 

For the 𝑖𝑡ℎ source-detector pair, 

    𝑈𝑠𝑐(𝑖) =
𝐴𝑙(𝑖)𝑒

𝑗𝜑𝑙(𝑖)−𝐴𝑟(𝑖)𝑒
𝑗𝜑𝑟(𝑖)

𝐴𝑟(𝑖)𝑒𝑗𝜑𝑟(𝑖)
=

𝐴𝑙(𝑖)𝑒
𝑗𝜑𝑙(𝑖)

𝐴𝑟(𝑖)𝑒𝑗𝜑𝑟(𝑖)
− 1                   𝑖 = 1,2, ………𝑚                   Eq. (4.1)                                     

where m is the number of measurements, 𝑈𝑙(𝑖) = 𝐴𝑟(𝑖)𝑒
𝑗𝜑𝑟(𝑖) and 𝑈𝑟(𝑖) = 𝐴𝑙(𝑖)𝑒

𝑗𝜑𝑙(𝑖) are  lesion 

and reference measurements, respectively. A two-dimensional representation of DOT perturbation 

measurements is shown in Fig. 4.1(a) for benign and Fig. 4.1(b) for malignant lesion.  The unit 

circle represents the expected boundary for perturbation data.   A convex hull or envelope of the 

data distribution is marked by a black polygon.  For benign lesions, perturbation is skewed towards 

positive real axis or evenly distributed around both positive and negative real axis while 

perturbation for malignant lesion is skewed toward negative real axis  due to high absorption of 

cancer which leads to lower ratio of  
𝐴𝑙(𝑖)

𝐴𝑟(𝑖)
 (eq. (4.1), [34]). This difference in data distribution are 

quantified by data features extracted from the perturbation that are useful in differentiation of 

benign and malignant lesions. 
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Figure 4.1: Two-dimensional representation of perturbation measurements for (a) Benign lesion, 

(b) Malignant lesion. The convex hull is marked by black polygon. 

Two sets of DOT data features were extracted from perturbation measurements: morphological 

features from convex hull of data distribution and histogram features. Four features extracted from 

the convex hull are: area, perimeter, moment of inertia and centroidal polar moments. The moment 

of inertia, 𝐼𝑚 is the quantitative measurement of resistance of an object against angular 

acceleration. The centroidal polar moment, 𝐼𝑝, denotes resistance of the object against torsion or 

twisting. The definition of moment of inertia and centroidal polar moment are as follows [35], 

                                        𝐼𝑚 = ∫𝑟2𝑑𝑚 ,                   𝐼𝑝 = ∫𝑟2𝑑𝐴 ,                                        Eq. (4.2) 

Where, 𝑑𝑚 and 𝑑𝐴 are differential mass and area elements respectively and r is the distance from 

axis of rotation to these elements.  

For each lesion, all measurements were compiled to generate two separate univariate histograms 

of the real and imaginary perturbations. A representative example of univariate histogram for a 

benign lesion is shown in Fig. 4.2(a) for real perturbation and Fig. 4.2(b) for imaginary 
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perturbation. A histogram of a malignant lesion is shown in Fig. 4.2(d) for real perturbation and 

4.2(e) for imaginary perturbation. From each histogram, six features - mean, standard deviation, 

skewness, kurtosis, energy and entropy - were extracted.   In total we obtained 12 features from 

these two univariate histograms. Real and imaginary perturbations were used together to obtain a 

bivariate histogram as shown in Fig. 4.2(c) for benign and 4.2(f) for malignant case. Four features 

of mean distance from the centroid, standard deviation of distance from the centroid, multivariate 

skewness and multivariate kurtosis are calculated from each bivariate histogram.  Two tailed t-test 

was performed for each feature to calculate p-value, which is an estimate of the predictive 

capability of the respective feature. All features were ranked in the ascending order of p-values 

and features with p-value less than 0.05 are used in the classification.  A total of 12 features were 

found significant and used in the random forest classifier described below. 
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Figure 4.2: Example histogram from a benign lesion perturbation.  (a) univariate histogram for 

real perturbation, (b) univariate histogram for imaginary perturbation, and (c) bivariate 

histogram.  Example histogram from a malignant lesion perturbation.   (d) univariate histogram 

for real perturbation, (e) univariate histogram for imaginary perturbation, and (f) bivariate 

histogram. 

   

4.2.2  Patients and Ultrasound BIRADS grading 

A total of 188 patients were studied for evaluating the proposed diagnostic scheme with 47 patients 

having malignant lesions and 141 with benign lesions based on biopsy results. The clinical study 

was approved by the local Institutional Review Board and was compliant with the Health Insurance 
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Portability and Accountability Act.  Informed consent was signed by each patient.  Data used in 

this study were obtained from an earlier study and patients were de-identified [26]. 

For each lesion, a sequence of US images was obtained and retrospectively reviewed by two 

radiologists who were blind to optical results. The lesions were graded using Breast Imaging 

Reporting and Data System (BI-RADS) based on US. For each lesion, one of the four grades were 

given, 4A, 4B, 4C and 5 based on the suspicion level of malignancy. BI-RADS 4A refers to ≤10% 

likelihood of malignancy while 4B, 4C and 5 denotes 10% to 50%, 50% to 95% and ≥95% 

likelihood of malignancy [4]. In the classification process, all BI-RADS grades (4A to 5) were 

encoded into numeric number from 0 (4A), 1(4B), 2(4C) and 3 (5) inclusive in step of 1 based on 

increasing suspicion level. These numerical scores from two radiologists were used as 2 additional 

features along with 12 perturbation features in random forest classifier.  

  

4.2.3  Random Forest Classifier 

A random forest is an ensemble of decision tree classifiers where each decision tree independently 

casts vote for a certain class based on randomly chosen subset of all features. The final outcome 

of the forest is based on majority voting of all the trees. In this study, total 14 features including 

12 perturbation features and 2 sets of US BIRADS scores from two radiologists were used for 

classification.  The random forest classifier employed in this study consisted of 50 decision trees 

(CART). Each tree works on 6 randomly selected features out of 14 features. Information gain is 

used to calculate the best split at each decision tree node. Decision trees can safely handle 

correlated features too, since once a feature is used to split the samples, information gain on the 

split samples in the child node would be lower for correlated features [36-37]. Another feature of 
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random forest classifiers is that they can possess attractive bias-variance trade-offs if suitably 

defined.  To realize this, in this study, we limited each individual decision tree depth to five and 

number of minimum required samples to split a node is set to four.  

4.2.4  DOT Functional features 

In DOT image reconstruction, the entire 3-dimensional breast volume to be reconstructed is 

segmented into voxels with finer voxels within a lesion area identified by the co-registered US 

image and coarse voxels in the background region [38].  Fitted optical properties from the 

contralateral reference breast measurements are used to calculate weight matrix W (chapter 1, 

section 2) for the voxels. The total absorption of each voxel is reconstructed and then divided by 

the voxel volume to obtain differential optical absorption coefficient, 𝛿𝜇𝑎.  The inverse problem 

is linearized by use of the Born approximation to obtain a linear equation relating changes of 

optical absorption coefficients to perturbation measurement, 𝑈𝑠𝑐, 

                                        [𝑈𝑠𝑐]𝑚×1 = [𝑊𝐿 ,𝑊𝐵]𝑚×𝑛 [
𝛿𝜇𝑎𝐿

𝛿𝜇𝑎𝐵
]
𝑛×1

                                          Eq. (4.3) 

    𝑈𝑠𝑐 = 𝑊𝑋,   𝑊 = [𝑊𝐿 ,𝑊𝐵],    𝑋 = [
𝛿𝜇𝑎𝐿

𝛿𝜇𝑎𝐵
] 

where, 𝑊𝐿 and 𝑊𝐵 are voxel weights in lesion and background respectively; 𝛿𝜇𝑎𝐿 and 𝛿𝜇𝑎𝐵 are 

unknown optical properties of voxels in lesion and background respectively; n is the total number 

of voxels to be reconstructed. The optical absorption coefficients were reconstructed by solving a 

L2 regularized unconstrained optimization problem using conjugate gradient method [39].  

                     �̂� = arg min
𝑋

( ‖𝑈𝑠𝑐 − 𝑊𝑋‖2 +
𝜆

2
‖𝑋‖2 ).                                                      Eq. (4.4) 
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Oxy and deoxy hemoglobin concentrations, (𝐶𝐻𝑏𝑂2
, 𝐶𝐻𝑏), were calculated from 4 wavelength 

absorption maps using extinction coefficient, 휀, for different wavelengths,  

                                                

[
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=
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[
𝐶𝐻𝑏

𝐶𝐻𝑏𝑂2

] .                                      Eq. (4.5) 

The total hemoglobin concentration, 𝐶𝑡𝐻𝑏,  is defined as the summation of 𝐶𝐻𝑏𝑂2
and  𝐶𝐻𝑏 . 

Functional features were extracted from the reconstructed total hemoglobin map. Three features 

are calculated from all lesion images, 𝐶𝐻𝑏𝑂2
,  𝐶𝐻𝑏 , 𝐶𝑡𝐻𝑏.    Two features, 𝐶𝐻𝑏𝑂2

 and 𝐶𝑡𝐻𝑏, are used 

in classification.  The light shadowing effect was also used as a functional imaging feature [40].  

Because malignant lesions are highly absorbing, photons are absorbed more by a top target layer 

in depth that creates shadow in deeper target layers.  To quantify the light shadow effect, the 

shadow parameter was calculated as the average ratio of 𝐶𝑡𝐻𝑏 calculated from the topmost layer in 

depth and the average of the subsequent layers in depth.  An example of quantifying light shadow 

effect is given in Fig. 4.3.  These three functional features, oxy hemoglobin, deoxy hemoglobin 

and light shadow parameters are the functional features used in second step of diagnosis by SVM 

classifier. 
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Figure 4.3: Light shadowing effect observed in large tumors. (a) US image, (b) total Hemoglobin 

concentration map for a large malignant lesion.  Each 2D slice has dimension 4.5 cm × 4.5 cm 

and Slice 1 to 7 are at 0.5 cm to 3.5 cm depth with 0.5 cm increment. Mean ratio of the topmost 

layer in depth and the average of subsequent layers in depth is 4.52. 

 

4.2.5  Support Vector Machine Classifier 

Support vector machine (SVM) is a binary classifier that uses a linearly separating hyperplane 

which have maximum distance from both of the classes [41]. SVM can be extended to multiclass 

classification too [42]. SVM is considered non-parametric since the model parameters are not 

predefined and needs to be learned from training data. Hinge loss function with linear kernel and 

L2 regularization is used in our application. While bias of the SVM model can be decreased by the 

use of a nonlinear kernel e.g. gaussian kernel, more training data would be required to reduce the 

variance of the model. Hence, linear kernel is used for our application. Regularization parameter 

is selected by cross-validation on the training data. SVM is well known and widely used classifier 

and its detailed description can be found in ref 41. 
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4.2.6  Two-step Classification 

Diagnosis of breast lesions was performed in two steps. Immediately after data acquisition, 

perturbation features were extracted, and US BIRADS scores were be obtained from radiologists.  

These perturbation features and BIRADS scores were used in a random forest classifier to identify 

lesions having high probability of benign.  The total number of decision tree votes required to 

decide benign lesion is set to be very high so that false negative rate can be very small or 

nonexistent in near real-time assessment. Two-thirds of the malignant samples and same number 

of benign samples are used for training and rest of testing. The training set comprises of 32 

malignant and 32 benign cases. The test set was comprised of the remaining 15 malignant and 109 

benign cases. In this first step, all 32 benign and 32 malignant cases were used for training. 

Hyperparameter tuning was performed by 5-fold cross-validation on the training set.  

Image reconstruction and functional feature extraction were done for lesions with intermediate 

diagnosis. These samples were classified using a SVM classifier based on functional features.  

Here, all 32 malignant cases were again used in training; however, for benign cases, lesions with 

higher malignancy probability were used in training. Again, hyperparameters were selected by 5-

fold cross-validation performance.  The test set of 15 malignant and 109 benign were not employed 

for training or validation. Thus, the test data were unseen to both the random forest and SVM 

classifiers. This entire two-step process was repeated 20 times for different random train-test split 

as illustrated in Fig. 4.4.  At the first step in training, perturbation features and US BIRADS scores 

of all training samples were used to train a random forest classifier. Each decision tree outputs a 

binary decision of either benign or malignant for each training sample. In general, if more than 

half of the decision trees in the forest provide a benign decision, that sample was assumed to be 

benign.  However, in this classification scheme, the threshold for the total number of decision tree 
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votes to determine benign was set as high as possible to avoid false negatives in the first step. A 

greedy search was applied to find the threshold. Initially the threshold i.e. number of votes required 

to determine benign, was set to the maximum number of decision trees, which is 50. Then the 

threshold was decreased in steps of 1 as long as there is no false negatives. Using this approach, 

the minimum threshold that provides 100% training sensitivity was achieved in the first step. While 

in testing, a sample was classified as ‘confirmed benign’ in first step only when the total number 

of trees voting benign is greater or equal than the threshold. In the second step of diagnosis, image 

reconstruction was done to obtain a hemoglobin map for the remaining samples. The maximum 

total hemoglobin, maximum oxy hemoglobin and light shadow quantitation parameters were 

extracted from the maps. These functional features were used to classify rest of the samples using 

SVM classifier.  

 

Figure 4.4: Two-step diagnosis scheme; Two different steps are denoted by dashed rectangles. 
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4.2.7 Performance Evaluation 

To evaluate the performance of the classification algorithms, for each sample in the test set, we 

computed the probability of malignancy from the respective classifier. The receiver operating 

characteristic (ROC) curve and the area under the curve (AUC) was used as performance measure 

to evaluate the classifiers. 20 runs with different random train-test splits were performed for each 

classifier where the mean AUC denotes how well the classifier can separate benign and malignant 

classes and standard deviation indicates the robustness the classifier for varying training and 

testing data sets. Sensitivity and specificity were calculated at the threshold of 0.5 from the mean 

ROC curve. To evaluate the radiologists’ performance, sensitivity and specificity were calculated 

based on BIRADS scores; 4A and 4B are grouped as benign, and 4C and 5 as malignant. 

 

 

4.3 Results 

4.3.1  Perturbation Feature Selection 

A total of 20 features were extracted from perturbation data and listed in table 1. Box plots and 

p-values of all significant features are shown in Fig. 4.5. 
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Table 4.1: List of extracted perturbation features; Corresponding p-value for each feature is 

shown in brackets next to it. 

Histogram features Morphological features 

Univariate 

(Real) 

Univariate 

(Imaginary) 

Bivariate Convex hull 

• Mean 

(P<0.001) 

• Standard 

deviation 

(P=0.006) 

• Skewness 

(P=0.097) 

• Kurtosis 

(P<0.001) 

• Energy 

(P=0.432) 

• Entropy 

(P=0.153) 

• Mean 

(P=0.034) 

• Standard 

deviation 

(P=0.064) 

• Skewness 

(P=0.039) 

• Kurtosis 

(P=0.329) 

• Energy 

(P=0.026) 

• Entropy 

(P=0.019) 

• Mean 

(P=0.261) 

• Standard 

deviation 

(P=0.015) 

• Skewness 

(P=0.136) 

• Kurtosis 

(P=0.033) 

• Area 

(P=0.001) 

• Perimeter 

(P<0.001) 

• Moment of inertia 

(P=0.102) 

• Centroidal polar moment 

(P=0.018) 
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Figure 4.5: Boxplot with p-values for selected statistically significant perturbation features.  

  

4.3.2  Clinical Study Results 

To evaluate Using BI-RADS scores only and grouping 4A and 4B as benign, and 4C and 5 as 

malignant, the sensitivities for radiologist I and II were 70.9% (±0.3%) and 85.6% (±0.2%), and 

the specificities were 90.8% (±2.2%) and 63.5% (±2.4%), respectively. The ROC curves for 
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radiologist I and II are shown in Fig. 4.6(a) and 4.6(b), with AUC value 0.848±0.003 and 

0.783±0.031 respectively. The blue curve and the light blue shade denote the mean and standard 

deviation of 20 ROC curves obtained from 20 runs. Using functional features only in the SVM 

classifier, the AUC was 0.781±0.048, as shown in Fig. 4.6(c) with a sensitivity of 82.5% (±4.2%) 

and specificity of 72.9% (±1.0%). Using BIARDS scores along with functional features in the 

SVM classifier improved the AUC to 0.892 ± 0.027 (Fig. 4.6(d)), with a sensitivity of 90.2% 

(±1.9%) and specificity of 74.5% (±1.3%). The proposed two-step diagnosis significantly 

improved the AUC to 0.937 ± 0.009 (Fig. 4.6(e)), with a sensitivity of 91.4% (±0.6%) and 

specificity of 85.7% (±0.8%).  In the first step of the two-step method, 64.8% (±4.7%) benign 

samples were classified as benign by the random forest classifier. Even though a zero false negative 

rate was enforced in training, 1.9% (±0.6%) of malignant samples were misclassified as benign in 

testing in the first step. AUC for all different diagnostic schemes are summarized in Table 4.2. 
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Figure 4.6:  ROC curves of different classification methods.   (a) BI-RADS score for radiologist 

I, (b)BI-RADS score for radiologist II, (c) functional feature only, using SVM. (d) BI-RADS 

score with functional features using SVM. (e) Proposed two-step diagnostic scheme. 
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Table 4.2: AUC, sensitivity and specificity of different diagnostic methods 

Diagnostic 

Methods 

US BI-RADS 

Radiologist I 

US BI-RADS 

Radiologist 

II 

Functional 

Feature 

only 

Functional 

Feature with 

US BI-RADS 

Two-Step 

Diagnostic 

Scheme 

AUC 

(mean±std) 

0.848±0.003 0.783±0.031 0.781±0.048 0.892±0.027 0.937±0.009 

Sensitivity 

(mean±std) 

70.9±0.3% 90.8±2.2% 82.5±4.2% 90.2±1.9% 91.4±0.6% 

Specificity 

(mean±std) 

85.6±0.2% 63.5±2.4% 72.9±1.0% 74.5±1.3% 85.7±0.8% 

 

 

 

 

4.4 Summary and Discussion 

Deep In summary, a novel breast cancer diagnostic strategy based on a two-step classification 

strategy was proposed and validated with a large pool of patient data. This strategy involves near 

real-time automated assessment using a random forest classifier to filter out highly probable benign 

lesions based on perturbation data and US BI-RADS scores. Lesions that cannot be identified as 

benign with high confidence are flagged, and their functional images are subsequently 

reconstructed off-line from the corresponding DOT measurements.  In the second stage of the 

diagnostic strategy, features are extracted from the reconstructed DOT images, and a Support 

Vector Machine (SVM) classifier is employed for diagnosis.    Functional feature extraction can 

take up to two hours including manual US image segmentation and optical image reconstruction 

with artifact evaluation.  However, these steps are critical to provide high diagnostic accuracy.  

The random forest classifier reliably predicted more than half of benign lesions in near real time, 

shortly after perturbation features were extracted and radiologist’s BI-RADS scores were 
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available. In practice, BI-RADS are typically available within a few minutes after the patient exam.  

Such rapid diagnosis helps advance clinical management by identifying highly probable benign 

lesions and allowing the physicians to comfortably recommend follow-up instead of biopsy or 

surgical removal of the lesions.  Additionally, US BI-RADS evaluation is highly dependent on the 

radiologist’s experience; while the random forest classifier combines sensitive perturbation data 

with the BI-RADS to provide an improved diagnosis over that of a radiologist alone.   

The two-step diagnosis scheme improves the specificity of a breast cancer diagnosis over a 

diagnosis based on the BI-RADS score and DOT-derived functional parameters only. This 

improvement is due to the diagnosis of highly probable benign lesions by the random forest 

classifier.   A lower standard deviation across multiple cross-validations indicated this approach is 

very robust to different training and testing datasets and hence more reliable.  Introducing 

perturbation features in the first step improved the overall diagnostic performance and facilitated 

better clinical management of the benign lesions to reduce unnecessary biopsies. Although a 

hemoglobin map is reconstructed from perturbation data, the tumor size and location provided by 

co-registered US and the breast tissue optical background properties are also used in the 

reconstruction process. The tumor size and location define the fine mesh area and location, and the 

background optical properties are used to calculate the weight matrix. Thus, for similar 

perturbation data, the reconstructed functional features can be different for different background 

properties, and lesion dimensions and locations. Our results suggest that this additional 

information employed when reconstructing functional features is valuable to further differentiate 

benign and malignant lesions.  

For large benign lesions, even if the absorption coefficient is high, the hemoglobin concentration 

map shows less light shadowing and a more uniform distribution in depth, which is critical in 
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differentiating large benign lesions and malignant tumors.  For low grade carcinomas (14.63% in 

this study), the detection sensitivity of DOT can be lower due to the low level of tumor 

angiogenesis, however, the distorted tumor morphology evaluated by US BI-RADS is very helpful 

in improving diagnosis.  Additionally, certain types of fibroadenomas are vascularized and present 

as false positives to DOT, however, the fibroadenomas’ well circumscribed morphology in US 

image can help rule out malignance. This study has the limitation that radiologists’ evaluations 

were done on stationary ultrasound images. Real time assessment of ultrasound images while 

examining the patient may improve the overall diagnostic performance.  Additionally, with other 

diagnostic information, such as mammograms and patient family history, the overall diagnostic 

performance can be further improved.  This is a direction that we are pursuing in on-going clinical 

studies. 

The proposed novel two-step diagnostic strategy employing a random forest classifier as a first 

step to filter out low suspicious benign lesions during patients’ US exam has great potential to 

streamline breast diagnostic workflows by suggesting short-term follow-ups rather than biopsy.  

Based on a large patient pool, 64.8% of the benign lesions were identified by the first step random 

forest classifier with 1.9% false negative rate.  The next step using an SVM classifier combining 

DOT total hemoglobin functional maps with other diagnostic image features, provides high overall 

performance, AUC of 0.937, in breast cancer diagnosis.  The reported two-step diagnostic strategy 

can be generalized to other modality guided diffused optical tomography for the optimal 

management of breast cancer diagnosis.   
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Chapter 5: Summary and Future Work 

5.1 Summary 

This dissertation has focused on algorithm development for robust data processing, image 

reconstruction, and classification of benign and malignant breast tumors using ultrasound guided 

DOT. First project, described in Chapter 2, was related to robust reconstruction for DOT. We 

proposed a two-step imaging reconstruction method. Initial estimate was obtained by taking a 

truncated Moore Penrose pseudoinverse of the weight matrix. That initial solution was refined by 

solving a L2 regularized optimization problem. We validated the proposed reconstruction method 

by both phantom experiment and clinical study. Calibrated phantoms submerged in intralipid 

solution were imaged by our US guided DOT system, and the proposed method was shown to have 

higher reconstruction accuracy than conventional reconstruction techniques. We performed 

clinical study on 20 human patients, 10 of them having malignant lesions and 10 having benign 

lesions. While we did not know the actual total hemoglobin concentration in the patient’s breast, 

so it was not possible to calculate the reconstruction accuracy for clinical study, two step imaging 

reconstruction showed higher separation between the benign and malignant lesion groups. Thus, 

introducing pseudoinverse solution as preliminary estimate significantly increased diagnostic 

power of DOT. Choice of regularization was the most difficult part of this first project. Since DOT 

is a functional imaging modality, we could not arbitrarily try different regularization parameters 

to see which one worked best. Regularization was set to be proportional with largest singular value 

of weight matrix and the size of the tumor. This choice was heuristic but was consistently followed 

for all types of lesions. 
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We discussed an imaging artifact reduction technique in Chapter 3. Due to the tenfold noise 

reduction achieved in the system development and system calibration processes, our system had 

good signal to noise ratio, and most of the detector measurements could be used to reconstruct 

artifact-free images.  But their use in clinical study is still unpredictable: there can be outliers in 

measurements because of patient motion, operator hand motion, patient breathing, tissue 

heterogeneity in the normal breast, and bad coupling between the optical fibers and tissue surface. 

These outliers produce image artifacts in the reconstructed absorption maps. We proposed an 

iterative perturbation correction approach based on structural similarity of images reconstructed 

from multiple wavelengths. The inherent assumption of this idea was that outliers were random 

and would produce different types of artifacts in different wavelength images, since these 

wavelengths were switched sequentially. Image quality index of anyone wavelength image was 

average of its structural similarity indices with other wavelength images. Measurement outliers 

were detected and removed until all the wavelength images had image quality index higher than 

90%. Probability of a measurement being outlier was calculated by the distance between the 

original measurement and the projected measurement, which We obtained by projecting the 

reconstructed image onto the range of our imaging operator. This iterative perturbation 

measurement correction approach significantly improved the image quality for patients with 

inconsistent reconstructed absorption maps. Since, only one or two wavelengths images were 

changed, the total hemoglobin concentration might not change much, due to the perturbation 

correction. 

While DOT provides valuable functional information to increase sensitivity of breast cancer 

diagnosis, the imaging pipeline is not fully automated, and can it take hours to get the reconstructed 

image. In Chapter 4, we proposed two-stage imaging scheme in which a near real time 
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recommendation of confirmed benignity was made for majority of the benign lesions. This 

recommendation was based on the DOT measurement data and radiologists’ evaluations of US 

images, which were provided immediately. Morphological and histogram features were extracted 

from the measurement perturbation data. Those perturbation features were combined with 

ultrasound BIRADS scores and used in a random forest classifier to identify confirmed benign 

cases. Semi-automated ultrasound segmentation and image reconstruction were done for the rest 

of the lesions, which had intermediate suspicion level. Functional features were extracted, and 

suspicious lesions were classified as benign or malignant in the second stage of the imaging 

scheme. A support vector machine classifier was used in this stage. A random forest classifier 

correctly identified majority (65%) of the benign cases in near real time, with a very small false 

negative rate of 2%. This detection capability facilitates better clinical management of low risk 

breast cancer patients. Clinicians can adopt a less aggressive management for the confirmed benign 

patients, e.g., recommending a follow up instead of a surgical biopsy or removal of the breast. 

Introduction of perturbation features in the first stage improves specificity by more than 10% and 

thus can reduce unnecessary biopsies. Detailed methods, results and findings of the projects 

summarized in this section were published in different conference proceedings and journals [1-9]. 

  

5.2 Future Work 

As our research group on DOT is getting bigger, more research is focused on automated data 

processing, image segmentation and application of artificial intelligence in DOT cancer diagnosis. 

In this section, I present several research ideas, some from literature study and others from my 

own preliminary formulations. These research directions might be valuable for future students. 
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5.2.1  Fully Automated Ultrasound Segmentation 

DOT reconstruction is guided by ultrasound measurements. Lesion dimension and position 

extracted from the ultrasound images is used to identify the region of interested in dual mesh 

scheme DOT reconstruction [1]. Thus, fully automated ultrasound image segmentation is a critical 

step for clinical translation of DOT. Earlier research from our lab focused on semi-automated 

segmentation of US images [3], where user provides a seed for the lesion and draw a bounding 

polygon. Depth markers and chest walls were detected using edge detection techniques like sobel 

and canny edge detection. Instead of relying on a human to identify a region of interest, a region 

based convolutional neural network (r-cnn) can be used [10]. Convolutional neural network can 

be trained with labeled US images with regions marked as lesions. For test images, it first identifies 

the small candidate regions. Then those small regions are combined greedily based on how similar 

they are and how close they are. Based on predetermined features, final region will be selected 

from the shortlisted candidate regions. Another neural network-based segmentation model which 

is widely used now is mask r-cnn [11]. It extends the r-cnn by adding another branch for predicting 

object mask in addition to the bounding box prediction. Since DOT accuracy is not very sensitive 

to accuracy of the segmentation, a bounding box might be enough to perform the segmentation. 

The hardest part of this project would be labeling thousands of US images, since some images are 

unclear, and an undergraduate or graduate student researcher might need help from an experienced 

radiologist. 

5.2.2  Joint Reconstruction of Reference and Target Breasts 

An inherent assumption of DOT reconstruction is that the normal breast is homogeneous. This 

assumption is not true for many cases, and normal breast heterogeneity can result in imaging 
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artifacts which are difficult to get rid of. A possible solution to this problem would be to jointly 

reconstruct both the reference and target breasts. Objective function be written as follows: 

‖𝑃𝑟,𝑖 − 𝑊𝑖∆𝜇𝑎,𝑟‖
2
+ 𝜆1‖∆𝜇𝑎,𝑟‖2

2
+ ‖𝑃𝑙,𝑟 − 𝑊𝑟∆𝜇𝑎,𝑙‖

2
+ 𝜆2‖∆𝜇𝑎,𝑙‖2

2

+ [
𝜆𝑓𝑖𝑛𝑒 0

0 𝜆𝑐𝑜𝑟𝑎𝑠𝑒
] ‖

∆𝜇𝑎,𝑙,𝑓𝑖𝑛𝑒

∆𝜇𝑎,𝑙,𝑐𝑜𝑎𝑟𝑠𝑒
−

∆𝜇𝑎,𝑟,𝑓𝑖𝑛𝑒

∆𝜇𝑎,𝑟,𝑐𝑜𝑎𝑟𝑠𝑒
‖

2

2

           ,     (𝑒𝑞 5.1) 

where 𝑃𝑟,𝑖 is the perturbation from the fitted reference to the original reference, 𝑊𝑖 is the weight 

from the fitted reference, 𝑃𝑙,𝑟 is the perturbation from the reference to the lesion, and 𝑊𝑟 is the 

weight from three reconstructed reference. An example of perturbation from the fitted reference 

to the original reference is shown in Figure 5.1. 

 

Figure 5.1: Example of (a) reference fitting, where red circles correspond to fitted data and blue 

circles corresponds to actual measurements (b) perturbation from fitted data to actual reference 

measurements 
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A tentative algorithm for joint reconstruction of reference and target is presented in table 5.1.  

Table 5.1: Joint reconstruction of reference and target 

Initialize perturbation for reference, P_ref and perturbation for lesion, P_tar 

Initialize absorption for reference, Mua_ref and absorption for lesion, Mua_tar 

Weight for reference, W_ref (calculate from fitted background) and set W_tar=W_ref 

REPEAT 

 1. Update Mua_ref 

 2. Update W_tar using using Mua_ref 

 3. Update Mua_tar 

UNTIL converge (max_iteration) 

 

First, perturbation can be calculated for both reference and target sides. Refer to fig. 5.1 to see how 

to fit reference data and get the perturbation between the fitted reference and the original 

measurement data. In each iteration, first update reference absorption map. Based on the reference 

absorption map, update the weight matrix for target side. Since no analytical solution exists for a 

heterogeneous medium, we can use monte Carlo simulation [12] or finite element method [13] to 

generate the weight matrix. Finally, use this updated weight matrix to update lesion absorption 

map. 
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5.2.3  Simultaneous Reconstruction of Optical Absorption and Scattering 

In this dissertation, we always assumed that scattering coefficient was constant and same for both 

reference and target sides, and that perturbation was due to absorption only.  But human breast 

consists of different types of tissues with different scattering coefficients. Diffusion coefficient, 

which is inversely proportional to reduced scattering coefficient, is much smaller than absorption, 

so it is difficult to simultaneously reconstruct both absorption and scattering [1,14]. One possible 

solution would be to use weighted least squares by appropriately weighting the perturbation norms 

for absorption and scattering. We could introduce a regularization matrix, too, with varying 

regularization parameter for absorption and scattering. 

5.2.4  No Gold Standard Evaluation for DOT Reconstrued Images 

Absence of a gold standard is a big problem in clinical study.  For phantoms and numerical 

simulations, we can calculate accuracies and compare multiple algorithms for a task like image 

reconstruction or segmentation. But since, we have no gold standard for clinical data, it is often 

difficult to compare performance of multiple algorithms. A no gold standard (NGS) evaluation of 

reconstructed images or segmented ultrasound lesions can be adopted where performance of 

multiple algorithms can be compared without a gold standard [15-17]. This no NCS evaluation 

assumes a linear relation between the true and estimated parameter values for different algorithms 

under evaluation [15]. Two evaluation metrics, the mean square error (MSE) and the noise: slope 

ratio, are used to evaluate performance of each method or algorithm. Since our new research group 

is more focused on developing algorithms for DOT and we have a large patient pool for validating 

our algorithms, a no gold standard evaluation would be a valuable tool for future DOT researchers. 
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