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ABSTRACT OF THE DISSERTATION

Self Capacitance based Wireless Power Transfer for Wearable Electronics:

Theory and Implementation

by

Yarub Omer Naji Alazzawi
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Wireless power transfer (WPT) is a technology of transmitting power through different

mediums to electronic devices that can be wearable or implantable for the purpose of energy

harvesting. Conventionally, there are four standard types of WPT; Radio Frequency (RF),

Magnetic Induction (Ind), Ultrasound (US), and Capacitive Coupling. Some of these are

remotely delivered, others are locally. Conventional WPT approaches work on the principle

of mutual coupling where the return paths for the source current and the load current

are separate. As a result of that, the power transfer efficiency (PTE) of these approaches

scales non-linearly with cross-sectional area of the transducers and the relative distance and

respective alignment between the transducers.

In this work, we have invested the special properties of the self-capacitance (SC) of any

electrically isolated body to deliver the power wirelessly to wearable or surface mounted
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electronics. SC-based WPT is a technique that converts electrostatic energy into DC volt-

age, which has been used here for delivering the power over the human body surface to

wearable electronic devices. The main goals of the design are to achieve the high power

transfer efficiency (PTE) and deliver the power to the mm-sized electronics over a compara-

ble long delivery distance. SC-based WPT has not been explored before, which uses floating

electrodes for both power source and receiver to construct a hypothetical external ground

that serves as the return path for the displacement current.

We showed that the SC-based WPT technology can be extended to provide the necessary

energy to numerous low-power, wirelessly connected mm-sized nodes as needed for the next

generation of the Internet of Things (IOT); specifically on the human body for the purpose of

wireless health monitoring and/or fitness tracking such as in smart rooms application. The

work also includes the design and implementation of power efficient wearable electronics

(sensors and wireless receivers) using a common reference circuit called Proportional-To-

Absolute-Temperature (PTAT) circuit. Using PTAT circuit, we have been able to reduce

the complexity of the standard ultrasound receiver and the biosensor, hence making them

both highly efficient in terms of noise and power consumption in addition to reducing the

size of wearable electronics accordingly. We believe that our proposed WPT technique will

have a great impact on the field of energy harvesting and wearable electronics, making the

possibility of smart clothings and smart utilities in the near future a reality.
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Chapter 1

Introduction

1.1 Motivation

Biomechatronics engineering is the field of studying the design and implementation of Mecha-

tronics (Mechanics and Electronics) systems for biological applications such as therapy and

diagnostic devices that can make the patients live easier. Hence, it bridges the gap between

biology and Mechatronics. This thesis utilizes this new technology to deliver power wirelessly

to wearable electronic devices that are responsible for wireless health monitoring and fitness

tracking.

In recent years, smart watches and fitness trackers have become common and recognized

as wearable electronic devices as shown in Figure 1.1 (a). They are important for health

monitoring and tracking activity, which aid in monitoring the increasing incidents of cancers

and chronic diseases like diabetes, cardiac shock and Alzheimer. The future promises even

more innovations, given the rapid advancement of nanotechnology that will lead to the

development of critical things such as smart clothing, electronic patches connected to the

Internet as shown in Figure 1.1 (b). These wearable and implantable electronics require an

energy source in order to be functional, and batteries currently act as the most common and
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Figure 1.1: Remote monitoring of wearable electronic devices; (a) Health monitoring and
fitness tracking devices; and (b) Wearable biomedical sensors.

standard energy source. The problem with batteries is that their energy capacity is limited

by the size, which eventually determines both the size and weight of the wearable device.

The common solution to this problem that researchers have come up with is to harvest body

energy. This can be achieved by using piezoelectric, triboelectric, electromagnetic inertial

induction or electromagnetic gear-and-generator actuators. In doing this, mechanical energy

from bodily movement from the foot, knee, lower limb hip and/or upper limb converts to

electrical energy that powers wearable and implantable electronics. The problem with this

approach is the volume of the harvester determines the size of the wearable device. Different

parts of the human body also have different energy density. Researchers have turned to

wireless power transfer (WPT) technology to overcome these disadvantages. WPT is the

technology of transferring the power from the source to the receiver without the help of
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wires, and power allows to take different forms (e.g. Electromagnetic, Electrostatic, RF and

ultrasound waves). Many WPT modalities are available today and have been thoroughly

verified, with the conventional approaches being radio frequency (RF), Induction (Ind),

ultrasound (US) and capacitive coupling. Some of these are remotely delivered, while others

are delivered locally.

𝐝

Tx
IS

IS
𝑨

IL

Rx

IL

𝑨

𝜂

𝜂𝑚𝑎𝑥

misalignment

𝜂

𝜂𝑚𝑎𝑥

𝐝(a)

(b)

(c)

Figure 1.2: Disadvantages of conventional WPT approaches; (a) schematic of mutual cou-
pling of conventional WPT approaches; (b) nonlinearity scaling of the PTE with the cross-
sectional area of the transducers; and (c) nonlinearity scaling of the PTE with the relative
distance between the transducers.

Conventional approaches for wireless power transfer rely on the mutual coupling (near-field

or far-field) of the transmitter (Tx) and receiver transducers (Rx) as shown in Figure 1.2 (a)

where the return paths for the source (IS) and the load (IL) currents are separate. As

a result of that there is a fixed amount of power gets dissipated in the transmitter side

and only a fraction of that power gets delivered to the receiver side, and the power transfer

efficiency (PTE or η) of these approaches decays non-linearly with both respective alignment
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of the transducers and with the relative distance between them as shown in Figure 1.2 (b)

and (c) respectively. This thesis investigates an alternate mechanism of WPT that exploits

self-capacitances (SC). Self-capacitance is an intrinsic property of any electrically isolated

body and arises because fringe electrostatic fields always exist between the body and a

theoretical but omni-present, infinitely-large ground plane. In practice, self-capacitances

manifest themselves as parasitic elements that either serve as a nuisance during system

design or could be exploited for sensing applications. However, self-capacitances can also

serve as a return path for displacement currents emanating from a power-source through the

external ground back to the source. In my preliminary study using a simple equivalent circuit

model, I have shown that when the operational power-budget requirements are in the order

of microwatts, the SC-based WPT has significant advantages. These advantages include

power transfer-efficiency (PTE), receiver form-factor and system scalability when compared

to other WPT approaches. This preliminary result forms the basis for my doctoral research

aims to accomplish three specific aims:

1.2 Aims

� Aim 1: Using a cadaver phantom, I investigate the feasibility, advantages and limita-

tions of SC-based WPT and its ability to remotely energize a wearable implant. As a

proof-of-concept, I investigate the feasibility of a hybrid telemetry system that harvests

microwatts of power from SC-based WPT approach and uses them for back-scattering

a radio-frequency signal. In doing so, I demonstrate the utility of this hybrid sensing

system for remote sensing in-vivo physiological parameters like temperature.
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� Aim 2: In this research objective, I investigate if the SC-based WPT can be scaled to

simultaneously power multiple wearable devices attached to multiple bodies that are

spatially separated from each other. For this purpose, I exploit the broad-band and

high PTE features of the SC-based WPT approach. In doing so, I demonstrate its

utility for designing diagnostic mouse cages and smart rooms.

� Aim 3: I investigate sensing and telemetry circuits that can be efficiently energized

using the proposed SC-based WPT. Using a minimum number of circuit modules, I

exploit the ability of a proportional-to-absolute-temperature (PTAT) circuit to im-

plement rectification, regulation and sensing functions. In addition, I investigate the

energy-efficiency and limitations of this approach in order to demonstrate the function-

ality of the PTAT circuits using prototypes fabricated in a standard CMOS process.

This work invests the SC phenomenon for wireless power transfer for wearable electronics.

The self-capacitance-based modal of a human body connected to power source and receiver

system is a quasi-static phenomenon. It has been used before for wireless communication,

but to the best of our knowledge nobody explored the wireless power transfer using this

technology. In this dissertation, I show that when the operational power-budget require-

ments are in the order of microwatts, a SC-WPT has significant advantages over other WPT

methods in terms of the power transfer-efficiency (PTE), receiver form-factor, and system

scalability. I present a simple and tractable equivalent circuit model that can be used to

study the effect of different parameters on the SC-based WPT. I also demonstrate the feasi-

bility of a hybrid telemetry system where the microwatts of power, which can be harvested

from SC-based WPT approach, is used for back-scattering a radiofrequency (RF) signal.

This modal is used for remote sensing of in-vivo physiological parameters such as tempera-

ture. I have further verified the functionality of the hybrid system using a cadaver mouse
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model housed in a cage retrofitted with 915 MHz RF back-scattering antennas. I believe

that the proposed remote power-delivery and hybrid telemetry approach would be useful in

the remote activation of wearable devices. This could also be useful in the design of energy-

efficient animal cages used for long-term monitoring applications. In order to use the remote

monitoring applications, the reliable deployment of many wireless sensor nodes is required

for remote monitoring applications. These applications include the Internet of Things (IOT)

for human body such as monitoring health and tracking fitness. It is likely that these nodes

must be deployed for a long period of time. Most current wireless sensors contain replace-

able primary or rechargeable batteries as a standard power source, thus making batteries

impractical for long term deployment. In this case the wireless power transfer (WPT) is the

common candidate solution. The existing approaches of wireless power transfer (WPT) to

wearable and implantable electronics include near-field magnetic coupling, far-field power

transfer using electromagnetic radiation and airborne ultrasound. Using these approaches,

the amount of received or harvested power by the receiver is limited due to the WPT path

loss. This existing technology can be limited by a variety of factors including low power

transfer efficiency (PTE), a large-size receiver, short distance of power transfer and to the

misalignment sensitivity. These shortcomings create a big problem in the context of the

Internet of Things (IOT) for the human body because the number of small size wearable

and implantable electronics is expected to raise up to several billions of devices in only the

next few years. SC-based WPT is considered inherently safe because live tissue behaves

as a capacitor, which means the power transfer is approximately lossless and the Specific

Absorption Rate (SAR) is low.

So far, we have been discussing the issue of design and implementation of the wireless power

transfer, but we have not yet touched the other side which is the power consumer (i.e. the

receiver). By improving the efficiency of the receiver device, we have improved the power
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transfer efficiency to a wide extent. Making the receivers or sensor nodes more power effi-

cient is another challenge, as it is always required to reduce the power consumption of these

devices as much as possible while keeping them functional. In the usual case, the wearable

electronics (sensors, actuators and/or receivers) are made of electronic devices (Transistors,

diodes, capacitors, resistors. . . . etc.). Thus, there is always a trade-off associated with their

performance, in the sense that reducing power consumption, for example, reduces sensitiv-

ity. In order to design and implement an acceptable device, there must be a compromise

depending on the application it will be used for: reduced power will reduce the sensitivity,

while high sensitivity will require higher power.

This study has neglected most of the parasitic capacitances that might exist due to their

non-significant influence on the total power consumption.

1.3 Organization of the Thesis

This thesis presents Self Capacitance based Wireless Power Transfer for Wearable Electron-

ics: Theory and Implementation. It has been organized in the form of chapters that have

been described below.

In chapter 2, the modeling and investigation of the self-capacitance based wireless power

transfer efficiency is presented and compared with the conventional modalities, with the help

of analytical results and discussion. Using a simple case-study, I examine different factors

that determine the system PTE and compare the results with other WPT methods. I present

experimental results using a mouse cadaver which has been used to verify the SC model and

I also demonstrate the feasibility of a hybrid telemetry system for continuous monitoring
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in-vivo temperature variations. I conclude the chapter with a discussion of limitations and

extensions of the SC-based WPT method.

In Chapter 3, I present the extension of the SC-WPT to a wireless power broadcasting

(WPB) framework that can simultaneously power multiple devices worn by multiple human

subjects. Experimentally, I investigate the performance and design trade-offs involved when

designing a self-capacitance based WPB system.

In Chapter 4, A system level architecture of a compact and energy-efficient instrumentation

as receivers that can operate over a wide range of input signal using PTAT reference circuit

are presented and compared with the conventional receivers showing all the necessary trade-

offs. I briefly introduce a standard PTAT based ultrasound receiver circuit and describe the

implementation of the receiver in a standard CMOS process. Then I describe an experimental

setup that have been used to validate the fabricated prototype and along with the measured

results. Finally, we summarizes the chapter with some discussion about future work.

In Chapter 5, A expected extension for the SC-WPT for both wearable and implantable

electronic devices on different kind of substrates that are electrically isolated is discussed. In

addition, some common examples of wearable/implantable electronic devices for substrate

computing (sensing and communication) are presented, and the conventional methods for

their powering technique with their limitations are explored. I conclude the chapter showing

some important points that need to be taken care of in the future.

The research work is summarized in Chapter 6. Achievements are listed, and suggestions for

future work are presented.
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Chapter 2

Exploiting Self-Capacitances for Wireless Power Transfer

In this chapter, I present the the phenomenon of self-capacitance (SC) of any electrically

isolated conductors, and the way I exploit it for wireless power transfer (WPT) to wear-

able electronic devices when the operational power-budget requirements are in the order of

microwatts. I experimentally verify the validity of the self-capacitance equivalent circuit

using a cadaver mouse model and a human head phantom setup through the demonstration

of the feasibility of a hybrid telemetry system, where the microwatts of power that can be

harvested from SC-based WPT approach is used for back-scattering a radio-frequency signal

and is used for remote sensing of in-vivo physiological parameters like temperature. The

results of this chapter are based on [7].

2.1 Introduction

In practice, self-capacitances manifest themselves as parasitic elements that either serve as

a nuisance during system design or could be exploited for sensing applications [8]. However,

self-capacitances can also serve as a return path for displacement currents emanating from a

power-source through the external ground back to the source, as illustrated in Figure 2.1 (a)
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Figure 2.1: Different WPT approaches based on: (a) self-capacitance where the displacement
current ID flows back to the source through a fictitious ground; and (b) mutual coupling
where the return path for the source IS and the load IL currents are separated from each
other.

using an electrically isolated sphere. Since the path traversed by the displacement currents

could be long, this attribute has been exploited in literature for designing communication

links in wireless body-area-network (WBAN) [9–15]. In this work, we explore the feasibility

and limitations of using self-capacitances for wireless power transfer (WPT). Conventional

wireless power-delivery techniques [16,17] rely on the mutual coupling between the source and

receiver transducers, as illustrated in Figure 2.1 (b), and therefore the system power-transfer

efficiency (PTE) is determined by the cross-sectional area, the relative alignment and the

distance between the transducers. As shown in Figure 2.1 (b), the return path for the source

transducer current (Is) is separated from the return path of the load transducer current (IL),

as a result, the source dissipates a fixed amount of power and only a fraction of the source

power gets coupled to the load. In the case of self-capacitance, the return path for the source

current only exists through the load and through the parasitic elements, which should lead

to a high power-transfer efficiency (PTE). Also, since self-capacitances scale linearly with

dimensions, we will show in this thesis the maximum received power also scales linearly

with the receiver form-factor. This is in comparison to inductive WPT approach [18–21],
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PTE scales as a cube of the source/receiver coil dimensions. For ultrasound-based and

other far-field WPT approaches [6, 22–24], the transfer-efficiency scales as the square of the

transducer dimensions. Specifically, we show in this thesis, that for power-budgets less than

10 µW, SC-based WPT offers significant advantages compared to other WPT methods, in

terms of powering distances, transducer form-factor and system scalability. Additionally, the

SC-based approach is robust to transducer alignment artifacts, which presents a significant

challenge for other WPT modalities. The key contributions of this work in this chapter can

be summarized as follows:

� A self-capacitance based simple and tractable wireless power-delivery model that can

be used for system optimization and comparison with other WPT methods. Compared

to the previously reported finite-element approaches [12,14] to model body-capacitance,

the self-capacitance based approach is analytic and can be applied to complex geome-

tries and substrates.

� Experimental verification of the self-capacitance based power-delivery using a cadaver

mouse model.

� Experimental demonstration of a hybrid telemetry system based on RF back-scattering

that is energized using the self-capacitance based wireless power transfer.

2.2 Self-capacitance based Power-transfer Model

Before presenting a more general SC-based WPT model that could be applied to complex

geometries and substrates, we present a simple lumped-parameter model that can be used
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Figure 2.2: A simple case study used for comparing different WPT approaches based
on: (a) Self-Capacitances; (b) near and far-field radio-frequency coupling; and (c) ultra-
sonic/acoustic coupling.

for optimization and for comparison with other WPT techniques. The model as shown in

Figure. 2.2 (a)-(c) uses a homogeneous sphere of diameter d as a transmission substrate or as

a wave-guide, as described in [25]. In each of these cases, the objective is to transfer power

from the source connected at one end of the substrate, to the load resistance RL connected

to the other end of the substrate. The power-transfer efficiency (PTE) η that has been used

for comparison is defined as:

η =
Pr
Ps

(2.1)

where Pr is the power dissipated at the resistor RL and Ps is power dissipated at the source.

In the SC-based WPT model, as shown in Figure 2.2 (a), the self-capacitance of the substrate

is modeled as Cb. The coupling capacitance Cc and the resistance Rs is used to model

the interface between the power-source to the load RL. As shown in Figure 2.2 (a), the

respective displacement currents flow-back to the power source through Cb and through

the self-capacitance of the load, modeled using a sphere of radius ar. If d � ar, then the

self-capacitance of the load Cs can be approximated as [26]:

Cs = 4πεar

∞∑
n=1

sinh(ln(D +
√

(D2 − 1)))

sinh(n ln(D +
√

(D2 − 1)))
≥ 4πεar (2.2)
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In the expression, the ε is the dielectric constant of the medium and D = (d/ar) where d

is the distance between the load and the substrate. Irrespective of the magnitude of the

ratio D, the self-capacitance Cs can be lower-bounded by the 4πεar, which represents the

worst-case self-capacitance. We will use this simpler, worst-case expression to estimate the

minimum power that can be delivered to RL. In the following section we are going to apply

the standard circuit analysis technique to Figure 2.2 (a) to derive the expression for the

efficiency of power transfer and the power Pr dissipated at the load RL.

2.2.1 Derivation of PTE and received power for SC-based WPT

For the circuit shown in Figure 2.2 (a) denote:

Zs =
1

jωCs

Zb =
1

jωCb

Zc =
1

jωCc

Then,

Vo = V s
RL

RL + Zs

(RL + Zs) ‖ Zb
(RL + Zs) ‖ Zb + (Zc +Rs)

=
RLZbVs

(Zc +Rs)(RL + Zb + Zs) + Zb(RL + Zs)
(2.3)

which leads to
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Pr =
Vo

2

RL

=

RLV
2
s

|(Cb
Cc

+ jRsCbω)(RL − j Cs+CbCsCbω
) + (RL − j 1

Csω
)|2

=

RLVs
2(

RL(1 + Cb
Cc

) +Rs(1 + Cb
Cs

)
)2

+
(
RLRsCbω − Cc+Cb+Cs

CcCsω

)2 (2.4)

Zin = (Zc +Rs) +
Zb(RL + Zs)

(RL + Zb + Zs)
(2.5)

Ps =
Vs

2

|Zin|
=

Vs
2

|(Zc +Rs) + Zb(RL+Zs)
(RL+Zb+Zs)

|
=

Vs
2
[
RL +R2

LRs(Cbω)2 +Rs(1 + Cb
Cs

)2
]

(
RL(1 + Cb

Cc
) +Rs(1 + Cb

Cs
)
)2

+
(
RLRsCbω − Cc+Cb+Cs

CcCsω

)2 (2.6)

The PTE (η) can then be estimated according to equation 2.1 as

η =
RL

RL +R2
LRs(Cbω)2 +Rs(1 + Cb

Cs
)2

η =
1

1 +RLRs(4π2ε0fd)2 + Rs
RL

(1 + d
2ar

)2
(2.7)
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Figures 2.3 and 2.4 plot the efficiency (η) and received power (Pr) for different values of

RL, Rs, ar, d and f . The results show that η and Pr vary monotonically with respect to

Rs, ar, d and f , except for the load resistance RL. Thus, the expression in equation 2.7 can

be maximized with respect to RL by setting:

(a) (b)

(c) (d) 𝑎𝑟

𝑃 𝑟

𝑑

Figure 2.3: Estimated PTE (a)-(b) and received power Pr (c)-(d) as a function of delivery
distance d, form factor ar, frequency f and source resistance Rs respectively; (a) and (c)
when f = 10 MHz, ar = 10 mm and Rs = 5 Ω, (b) and (d) when f = 10 MHz, d = 0.1 m
and Rs = 5 Ω.

∂η

∂RL

= 0, RL ≈
1

8π2ε0far
=

1

Csω
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Figure 2.4: Estimated PTE (a)-(b) and received power Pr (c)-(d) as a function of delivery
distance d, form factor ar, frequency f and source resistance Rs respectively; (a) and (c)
when d = 0.1 m, ar = 10 mm and Rs = 5 Ω, and (b) and (d) when f = 10 MHz, ar = 10
mm and d = 0.1 m.

which leads to

ηmax =
1

1 + 8π2ε0fRs(ar + d+ d2

2ar
)

(2.8)
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This maximum efficiency is achieved for the condition RL = 1
Csω

and the corresponding

power dissipated by the load RL is given by :

Pr,max =
CsωVs

2

2
(
Cc+Cb
Cc

)2 =
4π2ε0farVs

2(
1 + 2πε0d

Cc

)2 (2.9)

Note that in equation 2.9 we have assumed Rs = 0 since Pr is monotonic with respect to Rs.

The expressions in equations 2.8 and 2.9 have been used for comparing the PTE of the

SC-based approach with other WPT approaches, and is summarized in Figures 2.5 and 2.6.

For other WPT methods, we have used standard mathematical models as reported in lit-

erature [27–33]. Note that in the case of RF-based WPT, as shown in Figure 2.2 (b), the

energy is delivered over the air, rather than through the substrate, where as in the case of

inductive and ultrasound based WPT the power is delivered through the medium, as shown

in Figure 2.2 (b) and (c). The expressions for the power transfer efficiency η for each of the

WPT approaches (Ind: inductive, RF : far-field radiofrequency and US: ultrasound) are

given by:

η =



QrQtηrηt
ar3at3π2

(d2+at2)3
Ind

GrGt
4

(
2ar
πd

)2
RF

ar2

at2
e−2αfβd US,

(2.10)

where

Qt = Quality factor of the transmitter coil.
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Qr = Quality factor of the receiver coil.

ηt = efficiency of the transmitter coil.

ηr = efficiency of the receiver coil.

at = radius of the transmitter.

ar = radius of the receiver.

d = Distance between transmitter and receiver.

Gt = Gain of transmitter antenna.

Gr = Gain of receiver antenna.

f = frequency of US wave (Hz).

α = Attenuation Parameter (neper/mMHz−β).

β = Attenuation Coefficient.

The respective parameters used for this comparative study are summarized in Table 2.1.

Figure 2.5 shows that as the transmission distance increases, the SC-based WPT demon-

strates a superior PTE compared to the other WPT techniques. In this comparison, the

diameter of the receiver transducer (coil or antenna size) was chosen to be ar = 10 mm. In

Figure 2.6 we compare the PTE for different WPT approaches as the transducer form-factor

is varied while keeping the delivery distance constant at d = 0.1 m. The results again show

SC-based WPT demonstrates a superior PTE compared to other approaches. Note that

for the other WPT approaches, the transfer frequency needs to be adjusted to ensure ideal

impedance matching between the antenna/transducer to the substrate. Whereas, SC-based

WPT is broad-band in nature (as will be verified in our experimental results), and therefore

does not require any frequency adjustment when the transducer size or alignment changes.
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Table 2.1: Parameters used for comparing different WPT methods [6].

Property Description Value

Cc Source coupling capacitance 10 pF
α Attenuation parameter 0.086 (neper/mMHz−β)
β Attenuation Coefficient 1.5
Gt Gain of Tx antenna 7.5 dB
Gr Gain of Rx antenna 7.5 dB

2.2.2 Generalization of Self-capacitance based Model

Using the self-capacitance based modeling, we can extend the framework to substrates with

arbitrary shapes and comprising of heterogeneous materials. The approach is illustrated

here using a mouse model as a substrate and is shown in Figure 2.7 (a). However, the

approach can be easily extended to other animal models as well. As shown in Figure 2.7

(a), the power source is capacitively coupled (through capacitance Cc) to the tail of the

mouse and the energy harvester is connected to one of the fore-limbs. The harvester in this

example comprises of a rectifying diode bridge which drives the load resistance RL and the

reference terminal is connected to a floating-electrode. The self-capacitance of the mouse

body is estimated by first segmenting different regions of the substrate and approximating

each region using a simple shape, for example a sphere or a cylinder, as shown in Figure 2.7

(b). The closed-form expressions for self-capacitances in each of these simple 3-dimensional

shapes are well documented in literature [26] and can be estimated as a function of their

respective dimensions. For instance, the self-capacitance of a cylindrical shape is estimated

as Ccylinder = 2πεh
ln(

r2
r1

)
where h is the length of cylinder, r1 and r2 are the inner and outer

radius of the cylinder and ε is the permittivity of the substrate. Similarly, for a spherical
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shape (modeling the head), the self-capacitance is given by Cspherical = 4πεr1. With respect

to the energy-harvester, each of these self-capacitances (Cb1, Cb2, Cb3, Cb4, Cb5 and Cb6) can

be considered to be in parallel to each other (independent path for displacement currents to

flow-back to the source). If we ignore the capacitive cross-coupling between these different

shapes, all of these elements could be lumped together into a single capacitance Cb to form

the equivalent circuit shown in Figure 2.7 (c). Figure 2.7 (c) also shows a cross-coupling

capacitance between the floating-electrode and the body self-capacitance. For all practical

purposes if the size of the floating-electrode is small, the coupling capacitance could be

ignored. The equivalent circuit in Figure 2.7 (c) also shows a lumped resistance Rs that

models the resistivity between the coupling electrode and the harvester. In its exact form,

Rs and Cb would comprise of distributed elements, but as we will show in our experimental

results, Rs ≈ 0, leading to the lumped equivalent circuit shown in Figure 2.7 (c).

1

Figure 2.5: Comparison of PTE and received power Pr for different WPT methods when the
receiver transducer dimension is chosen to be ar = 10 mm, f = 5 MHz and Rs = 5 Ω.
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𝑎𝑟

Figure 2.6: Comparison of PTE for different WPT methods when the transmission distance
n is chosen to be d = 0.1 m, f = 5 MHz and Rs = 5 Ω.

2.3 Experimental Results

2.3.1 Characterization of SC-based power delivery

In the first set of experiments, we used a mouse cadaver model to characterize the SC-based

power delivery. The experimental setup is shown in Figure 2.8 (a) where the cadaver is kept

electrically insulated from environmental factors to ensure a capacitive coupling between the

body and return path (external ground in this case). The material and methods for storing

and reviving the cadaver in this experiment is described in Appendix B. First, we used an

impedance analyzer (Omics Bode 100 vector network analyzer) to measure the equivalent

impedance between the source and the harvester. The resulting smith-chart corresponding

to the frequency of 10 MHz is shown in Figure 2.8 (b) which shows that the substrate

impedance is predominantly capacitive. This is true even when a resistive load is connected

to the energy-harvester, as the body self-capacitance is much larger than the self-capacitance
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Figure 2.7: Generalization of self-capacitance modeling to substrates with complex geome-
tries: (a) Case study based on a mouse cadaver model; (b) Approximation of the self-
capacitance by decomposing different segment of the substrate into simple shapes; and (c)
lumped-parameter equivalent circuit for SC-based WPT to a simple harvester circuit

of the floating-electrode. Next, a modulating energy source (an earth-grounded Tektronix

DG4102 function generator) is capacitively coupled to the tail of the cadaver. The power

source is programmed to generate a sinusoidal wave at a potential of 20 Vpk−pk and at variable

frequencies. The harvester comprised of a single-stage diode bridge shown in Figure 2.8 (a)

constructed using two Schottky diodes. The output of the diode bridge was measured using

a battery-powered voltmeter with no direct conductive path to ground. Also, connected to

the diode-bridge is a load resistor whose magnitude could be varied. Note that the other end

of the diode bridge forms the floating-electrode providing a return path for the load-current

to the source.
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Figure 2.8: Experimental characterization of the cadaver mouse as a substrate: (a) Ex-
perimental setup; (b) Measured Smith-chart showing that the substrate is predominantly
capacitive; (c) Measured voltage at the output of the harverster at an input frequency of
f = 10 MHz; and (d) Broad-band response of the SC-based WPT for a load RL = 1 MΩ.

Figure 2.8 (c) shows the measured voltage across different the load-resistance as the resistance

value is varied. For this experiment the source voltage was programmed to 20 Vpk−pk with

an operating frequency of 10 MHz. Based on the plot in Figure 2.8 (c), one can estimate

the delivered power to be approximately 45 µW . As described in equation 2.9, the delivered

power could be increased by increasing the size of the coupling capacitance or by increasing

the size of the floating-electrode’s self-capacitance. In the next experiment, the voltage across

the load RL = 1 MΩ was measured for different operating frequencies. The result is shown in

Figure 2.8 (d), which shows a broadband response within the frequency range of 1−15 MHz.

This result can be understood using the equivalent circuit model shown in Figure 2.7 (c).

The input coupling capacitor Cc blocks low-frequencies where as the coupling capacitor Cp

bypasses high-frequencies to the load RL. Also, at higher frequencies the substrate itself acts

as an antenna [10] and hence manifests as a radiation resistance in parallel with the load

resistance RL. environment.
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2.3.2 Mouse-cage and Hybrid Telemetry Experiments

In this section, we demonstrate that the beneficial features of the SC-based WPT can be

exploited for designing power-efficient animal cages for long-term and ambulatory monitoring

applications. Previous designs of smart animal cages have used inductive coils embedded

inside the flooring of the cage [34]. Since the SC-based WPT operates by capacitively

coupling an energy source through the body of the animal, the insulated base of the cage

can be directly used as the coupling capacitor. This is shown in Figure 2.9 (a), where the

power is coupled through different body segments as the animal is moving around in the

cage. Note that the series resistance of a thick conductive underlay Rs could be very small

(in the orders of 2.65 ∗ 10−8 Ω.m ), which implies that the PTE according to equation 2.8

could be close to 100%. However, due to the size limitations on the floating-electrode self-

capacitance, only microwatts of power could be delivered to any ex-vivo part of the animal

body. Here, we show that this limitation could be overcome by using a hybrid telemetry

approach as shown in Figures 2.9. The power harvested from the SC-based WPT approach

is used to modulate the impedance of an RF antenna on the device S, in Figure 2.9 (a).

This modulation is then received as a backscattered RF signal emitted by the transmitter

antenna Tx and received by the receiver antenna Rx. In literature, this approach has been

effectively used for backscattering WiFi signals [35,36] and for biotelemetry applications [37].

Two examples of the biotelemetry interface is shown in Figures 2.9 (b) and (c). In both the

designs, a low-power oscillator T is used to switch the impedance of the antenna B. The

frequency of the oscillator and hence the modulation frequency of the antenna is determined

by a resistor RL whose value changes according to the sensor signal being sensed. Thus, the

sensor signal is effectively backscattered on the signal received by the receiver Rx. Figure 2.9

(b) represents a battery powered variant of the telemetry interface and has been used for
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Figure 2.9: Hybrid telemetry experimental setup: (a) The insulated underlay of the cage
is powered and delivers power to an implant or a head-stage that communicates with the
receiver using RF-backscattering; (b) Schematic of a battery-based backscattering interface
used as a control; and (c) Schematic of the sensing/telemetry interface powered using SC-
based WPT.

control experiments, where as Figure 2.9 (c) represents the variant that is powered using

SC-based WPT approach.

The experimental setup used to verify the operation of the hybrid telemetry system is shown

in Figure 2.10 (a). Similar to the previous experiments, a mouse cadaver has been used

to emulate the animal in a diagnostic cage. The bottom overlay of the cage, as shown in

Figure 2.10 (b) is designed using an Aluminum sheet (6 Ω) that is sandwiched between two

plexiglass insulators. The sheet is then connected to one of the outputs of a power source,

as shown in Figure 2.10 (c). Two 915 MHz ultra-high-frequency (UHF) antennas, Tx and

Rx were used for backscattering. Both the antennas were controlled by a Software Defined

Radio (Ettus Research USRP N210) and was programed to transmit a carrier frequency and

to receive the backscattered signal. The mouse cadaver was implanted with a device that

can monitor variations in temperature at target locations in-vivo and then backscattering

the measurements to the receiver Rx. The surgical set up is shown in Figure 2.11 (a)

and the surgical protocol is described in Appendix B. The two types of implants (powered

using a battery and powered using SC-based WPT) is shown in Figure 2.11 (b) and (c).
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Figure 2.10: Experimental setup using a cadaver mouse housed in a diagnostic cage
retrofitted with the backscattering RF antennas; (a) Setup for measuring the backscattering
signal; (b) wireless diagnostic cage; (c) schematic for SC-based WPT.

The temperature sensor was implemented using a (NCP15WM474E03RC) thermistor whose

temperature sensitivity is given by (5.1 kOhm/◦C). The tip of the thermistor was surgically

implanted at a depth of 3 cm. The output of the thermistor was used to bias a TS3006

timer that implemented the backscatter according to the schematic described in Figure 2.9.

The backscatter was designed to operate on a single-supply voltage range between 1.55 V

and 5.25 V with typical supply currents remaining below 2.4 µA. Figure 2.12 (a) shows the

spectrum of the backscattered signal received at Rx, when centered around the 915MHz RF

carrier. To locally heat the tissue we used another piece of wire was inserted in proximity

to the area where the tip of the thermistor was located. Heat was applied to the other

end of the wire externally which would lead to change in resistance at the output of the

thermistor. This in turn would change the modulation frequency (labeled as A) in the

received spectrum. Figure 2.12 (b) plots the change in the modulation frequency as a function

of the temperature, measured using the SC-based implant. The result shows a monotonic
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scattering circuit in the cadaver mouse model: (a) implantation of the temperature sensor
at a specific location in-vivo; (b) Battery-powered control prototype; (c) Proof-of-concept
prototype powered using SC-based WPT.
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Figure 2.12: Measured results demonstrating the proposed hybrid telemetry approach; (a)
Backscattered spectrum showing the data modulation peak corresponding to a specific in-
vivo temperature; (b) Measured change in frequency as a function of temperature and the
comparison of the measured result with the output of the control (battery-powered proto-
type).

response in the frequency shift with respect to temperature with less than 1% variance

between the three trials. Thus, by measuring the frequency shift one could accurately infer

the magnitude of the in-vivo temperature. The average measured response is compared

against the average response measured from the battery-powered implant. The result shows

that the error between the two outputs ∆f is negligible.
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Table 2.2: comparison of the proposed self-capacitance WPT and most recent work.

Modality Form Factor Distance Efficiency

[38] Ind ar = 40 mm x h = 115 mm 70 mm 70 %o
[39] Ind ar = 50 mm 120 mm 72 %
[40] Ind ar = 33 mm 6 mm 58.6 %
[41] Ind 20 mm x 50 mm N/A 15.92 %
[42] US N/A 7 mm 25 %
[43] Rad ar = 2 mm 40 mm 0.04 %
[44] Cap ar = 60 mm 7 mm 66 %
[45] Cap ar = 83 mm 15 mm 2.6 %

This work Cap ar = 10 mm 70 mm 90 %

2.3.3 Cadaver Material and Methods

As described earlier, two different experiments have been conducted on the mouse cadaver;

one the first by surgically subcutaneously implanting a battery-based electronic circuit within

the mouse body. The battery and circuit were placed subcutaneously along the dorsum of

the back. The thermistor was implanted underneath the interscapular adipose tissue. The

incision was closed with glue to prevent exposing the implant in order to do the measure-

ments. We used the measured temperature data of the mouse tissue as a reference for the

next second experiment in which the battery-less wearable electronic circuit that harvests the

energy through the self-capacitance proposed was implemented. Three dead mice cadavers

have were used to statistically verify the results and compare that with the reference data.

There was no direct contact between the mouse body and the electric power source, but

instead we used an insulated wire and wrapped it around the mouse tail to form a coupling

capacitor.
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backscattering RF antennas; (a) Setup for measuring the backscattering signal; (b) Proof-of-
concept prototype powered using SC-based WPT; and (c) Schematic of the sensing/telemetry
interface powered using SC-based WPT.

2.3.4 Human Head Phantom Setup and Hybrid Telemetry Exper-

iment

In this experiment, and as another possible application of the SC-WPT, we used the same

prototype of Figure 2.11 (c) to characterize the performance of the SC-based wireless power

transfer using human head phantom setup shown in Figure 2.13. Power source (an earth-

grounded Tektronix DG4102 function generator) is capacitively coupled to the slime as
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shown in Figure 2.13 (a) where the electric charge propagates through the slime to the im-

plant shown in Figure 2.13 (b). A low-power timer oscillator shown in a block diagram in

Figure 2.13 (c) is used to switch the impedance of the antenna and the frequency of the

oscillator and hence the modulation frequency of the antenna is determined by a resistor RL

whose value changes according to the sensor signal being sensed. The power source is pro-

grammed to generate a sinusoidal wave at a potential of 20 Vpk−pk and at variable frequencies.

The harvester comprised of a single-stage diode bridge shown in Figure 2.13 (b) constructed

using two Schottky diodes, noting that the other end of the diode bridge forms the floating-

electrode providing a return path for the load-current to the source. For this experiment the

source voltage was programmed to 20 Vpk−pk with an operating frequency of 10 MHz. The

spectrum of the backscattered signal received at Rx when centered around the 915MHz RF

carrier was exactly the same as the previous experiment as shown in Figure 2.12 (a). Also,

the monotonic change in the modulation frequency as a function of the externally applied

temperature was plotted similarly as shown in Figure 2.12 (b). This experimental results

show the validity of investing the SC-WPT to deliver the electric power wirelessly to the

electronic devices implanted inside the oral cavity of the human head. The combination

of the SC-based WPT functionality along with the bi-directional telemetry functions are

needed to implement a complete transceiver for continuous health monitoring and substrate

computing.
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2.4 Summary

In this chapter we presented a wireless power transfer approach based on the intrinsic self-

capacitances of substrates. Compared to other WPT approaches, SC-based WPT demon-

strates higher PTE, when the target power-budgets are in the order of microwatts. In this

chapter we also presented a tractable, lumped-parameter model for SC-based WPT that

could be used for system optimization and comparison. This model has been validated

using experimental results which demonstrate a broad-band response (1−15 MHz) for har-

vestable power budgets of 20 − 200 µW . Furthermore, SC-based WPT can demonstrate

PTE (η > 90%) for distances greater than 10 cm which makes it attractive for large-scale

power delivery.

It can be envisioned that the diagnostic cage, as shown in Figure 2.10 (b) could be scaled to

larger dimensions, housing multiple ambulatory animals and each animal can wear multiple

electronic devices as shown in Figure 2.14 (a) and (b) respectively. Also, the power source is

capacitively connected to the body, which will obviate the initiation of any electrochemical

reactions at the electrode surface [46]. Using the lumped-parameter model, we also showed

in this chapter that the maximum harvestable power for SC-based WPT scales linearly with

the dimensions of the receiver transducer. As a result, the size of the wearable or implant

antenna could be reduced significantly. Note that the FDA limits on power dissipation

for SC-based WPT is estimated to be 2.5 mW/mm2 [47–49] which is significantly higher

than the microwatts power-budget reported in this thesis. In Table 2.2 we compare the

self-capacitance based WPT with the most recent related WPT technologies. Note that the

inductive and ultrasound WPT are used for delivering power in-vivo, and hence the powering

distances are relatively small. However, as the table shows, that the key advantage of the

self-capacitance based WPT is its power transfer efficiency.
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While in this work, we have only focused on delivering microwatts of power, there could be

several approaches to boost the power that can be delivered to the load using the proposed

SC-based WPT. Increasing the coupling capacitance Cc in the equivalent model in Figure 2.7

(c) is one possible approach, however, this might require modifying the dielectric property of

the substrate or the body. The power could be boosted by increasing the open-load voltage

of the source as described by equation 2.9. Note that this is viable option as long as the

voltage is within the limits of the dielectric breakdown of the material forming Cc. The last

option to boost the delivered power would be to increase the size of the self-capacitance of

the energy harvester Cs, described by the equation 2.9. However, the received power only

scales linearly with the dimensions of the receiver transducer/antenna, as a result beyond

a certain form-factor other WPT approaches might be more attractive compared to the

proposed SC-based approach. It is worth mentioning that self-capacitance Cs is a parasitic

element that will change based on the distribution of the fringe electric-field. However, given

a specific form-factor ar and the shape of the floating-electrode, one could lower-bound the

size of Cs using a close-form expression as shown in equation 2.2 for a spherical geometry.

This therefore signifies the worst-case Cs for which the load resistance RL and minimum
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delivered power could be estimated. However, to further enhance the delivered power, we

would need to do a post-deployment calibration and adjust RL according to the actual self-

capacitance value. Also self-capacitance might lead to an electrostatic charge build up due

to floating-electrodes. However, note that the WPT method using (1MHz-15MHz) AC and

the DC potentials at the source and the remote device are decoupled from each other. So,

the change in DC potential will not affect the WPT. In terms of safety, the self-capacitance

of the floating-electrode is in the order of pico-farads or less. Therefore, the charge build-up

at the device should be relatively small. Safety related to electrostatic charge buildup on

the body self-capacitance is similar to electrostatic discharge (ESD) safety, a topic that has

been extensively studied in the literature [50]. The proposed method is expected to apply to

ambulatory animal or human body, however and as a proof of concept the study has been

made on mouse cadavers because they are easy to work with to verify the concept. Also,

the cadaver accurately models the electrical characteristics of a live animal, provided they

have been stored and revived properly. Since the live animal and the cadaver will both have

capacitive coupling to the floor of the mouse cage, the WPT mechanism should translate

between the two set ups. Motion artifacts or intermittent brown-outs are generally not an

issue for energy harvesting as long as the voltage on the harvester is regulated or filtered,

and on an average the harvester is receiving microwatts of power. Furthermore, the beauty

of the self-capacitance based WPT is that the efficiency degrades only linearly with distance

(as shown in Figure 2.5), so the approach should be robust to ambulatory artifacts. The

worst-case configuration would be when only the tail of the mouse is in contact with the floor

and experimental setup in Figure 2.8 verified the WPT for that configuration. Note that

in all other ambulatory states, there will always be an additional capacitive coupling path

to the body (unless the animal is in the air). Also, any energy fluctuations due to motion

artifacts can be filtered out by the energy regulation unit on the harvester.
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Chapter 3

Self-capacitance based Wireless Power Broadcasting for Internet

of Medical Things (IoMT)

In chapter 2, We demonstrated the feasibility of exploiting the body’s self-capacitance to

wirelessly deliver electrical power to a wearable device. In this chapter we extend the previous

work to report a wireless power broadcasting (WPB) framework that can simultaneously

power multiple devices worn by multiple human subjects. The framework overcomes the

efficiency limitations of other WPB approaches that require sufficient power to be broadcast

at all times because the number and location of the wearable devices are not known in

advance. We investigate the performance and design trade-offs involved when designing a

self-capacitance based WPB system. Using a phantom setup we verify the WPB results for

different experimental conditions ranging from different numbers of human subjects, human

body posture and the geometry of the setup. The results of this chapter are based on [51].

3.1 Introduction

Wireless power broadcasting (WPB) refers to a framework of remotely and simultaneously

delivering power to multiple devices. While the concept of WPB has existed for more than
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Figure 3.1: Wireless power broadcast (WPB) modalities for smart home/room applications:
(b) Induction-based WPB, where the power is transferred magnetically from an embedded
transmitter (Tx) coil to a wearable device; (c) WPB through air by means of ultrasound
transmitted from an embedded Tx piezo; (d) Self capacitance (SC)-based WPB to a wearable
device, where the displacement current is capacitively coupled via an electrically isolated floor
with an embedded plate that is excited by an AC source.
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a hundred years [52], the proliferation of Internet of Medical Things (IoMT) and wearables

has highlighted the challenges related to continuous powering and monitoring, and the need

for better WPB [53]. Remote powering of IoMT (e.g. health monitors or smart-patches)

alleviates the need for periodic recharging of batteries, hence improving patient compliance

for long-term monitoring applications.

For smart room applications as shown in Figure 3.1 (a), a couple of existing WPB approaches

have been reported in literature which includes inductive powering as shown in Figure 3.1(b)

or acoustic energy transfer using ultrasound as shown in Figure 3.1c [38, 54]. For instance,

Rekhi et al. [55] proposed the use of ultrasound for WPB to energize a millimeter-sized device

and the reported simulation study demonstrated that it was possible to deliver 50 µW over-

the-air at a distance of 0.88 m using a 25 cm2 transmitter array tuned to 48.25 kHz. However,

for ambulatory subjects these types of WPB (inductive and ultrasound) are vulnerable to

low power transfer efficiency (PTE) due to transducer misalignment artifacts [8, 21–23, 29].

Since neither the location or number of subjects and IoT devices are known a priori, these

WPB sources must constantly broadcast power in excess of the amount required for suffi-

ciently energizing the devices. As a result, the subjects in the room could be exposed to

unnecessary EM or ultrasonic radiation (i.e. the reported ultrasound frequencies would be

a disturbance to common household pets). The low PTE will also result in a significant

amount of power dissipation at the power source for the source to provide meaningful power

to millimeter-scale IoTs with small antennas (or transducers). This is specifically problem-

atic for IoMTs like smart-patches where batteries are unable to buffer sufficient energy for

continuous operation [56].

In this chapter, we overcome these challenges by extending our previously reported self

capacitance (SC)-based wireless powering technique [7] for WPB. Figure 3.1 (d) shows the
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SC-based WPB framework in the context of a smart room. Self capacitance is an intrinsic

property of any electrically isolated body which arises because there exists fringe electrostatic

fields between a body and a theoretical, but omnipresent, infinitely-large ground plane.

Rather than considering the self capacitance as a parasitic element, SC-based power transfer

exploits this element as a path for a displacement current emanating from a power source;

propagating through the body channel to return back to the power source. This is illustrated

in Figure 3.1 (d), where an alternating-current (AC) power source connected to a floor-plate

is capacitively coupled to the human body. It was shown in [7], using an animal cadaver,

that SC-based method can wirelessly deliver up to 100µW of power with PTE higher than

99%.

This chapter investigates the trade-offs involved in using a SC-based approach for WPB, with

respect to the number of human subjects, body posture, proximity between the subjects,

number of wearables and system geometry and configuration.

3.2 Self-Capacitance-based WPB Model

3.2.1 Basic SC-based WPT Model

The fundamental theory and analysis of SC-based wireless power transfer has been reported

in [7], which we summarize in this subsection for the sake of completeness. Also, we will

formulate the equivalent WPT model for powering a wearable device on a human subject, as

illustrated in Figure 3.2 (a). A person is assumed to be standing on an electrically insulated

floor (F) with an embedded conductive plate (C). The conductive plate is connected to

one end of a two-terminal AC source, with the other end of the source connected to the
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Figure 3.2: Approximation of the Self-Capacitance based WPT for the Internet of Things for
the human body; (a) Schematic of a single human body capacitively coupled to the power
source for SC-based WPB; (b) Approximation of the self-capacitance by decomposing differ-
ent segment of the human body into simple shapes; and (c) Lumped-parameter equivalent
circuit for a single human body objects having one defined load RL.

building ground. We will also assume that the wearable comprises of an electrode that is in

direct contact with the skin of the subject, whereas the ground reference of the wearable is

kept floating in reference to the person. Since the form factors of the human body and the

wearable can be considered as being much smaller than the effective wavelength of the AC

source (e.g. a 1 MHz signal would have a 1
4
λ of 75 m), the underlying electrical property

can be modeled using lumped circuit elements.

The power dissipated at the wearable is modeled using an equivalent load resistance RL and

the self-capacitance between the floating-electrode and the omnipresent ground is denoted
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as Cs. Even though the human torso can be modeled as a combination of different shapes,

as shown in Figure 3.2 (b), the self capacitance from each of those shapes are combined into

a single lumped capacitance, Cb, similarly connected to the omnipresent ground as shown in

the lumped parameter equivalent circuit of Figure 3.2 (c). From literature [26], the expression

of each shape can be estimated as a function of their respective dimensions. For instance, the

self-capacitance of a cylindrical shape is estimated as Ccylinder = 2πεh
ln(

r2
r1

)
where h is the length

of cylinder, r1 and r2 are the inner and outer radius of the cylinder and ε is the permittivity

of the substrate. Similarly, for a spherical shape (modeling the head), the self-capacitance

is given by Cspherical = 4πεrh. Cc is the capacitance that models the coupling between the

conductive plate C and the feet of the human subject. This assumption is driven by the

fact that the body parts closest to the conductive plate will have the largest capacitance

and dominate the equivalent circuit. This assumption would not hold if the subject were

lying down on the floor, as we will consider in a later example. A detailed derivation of the

maximum PTE to the load RL is available in [7], with the final form given as:

η =
1

1 +RLRs(Cbω)2 + Rs
RL

(1 + Cb
Cs

)2
(3.1)

3.2.2 SC-based WPB Equivalent Circuit Model

To extend the self-capacitance-based wireless power transfer (WPT) into wireless power

broadcasting (WPB), we consider three people (n = 3), in a standing posture, wearing

different shoes that can be modeled using coupling capacitors Cc1, Cc2 and Cc3, respectively.

The shoe material will affect the coupling ratio to the embedded, conductive substrate that
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Figure 3.3: Self-capacitance based wireless power broadcasting (WPB) for three persons (n =
3) in standing posture; (a) Three human bodies in standing posture wearing three different
shoes represented by different coupling capacitors (Cci); (b) Equivalent circuit showing the
coupling capacitances (Cij) due to the bodies proximity, where i and j = 1, 2, 3.....N and N
represents the number of human bodies involved (Noting that ZR represents the characteristic
impedance of the plate in free space at a specific frequency bandwidth).
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is driven by an AC power source, as illustrated in Figure 3.3 (a). The simplified equivalent

circuit, including the characteristic impedance ZR of the conductive substrate’s dissipative

EM properties, is shown as Figure 3.3 (b). For properly selected conductive substrate sizing

and AC frequencies, ZR is large enough that it can be ignored for a first-order estimate, thus

reducing the equivalent model to a capacitor network that can be described using charge.

The inter-body coupling capacitances are defined as Cij for i, j ∈ (1, 2, . . . , n) and i 6= j,

which for this example are simply: C12, C23 and C13. The value of the inter-body coupling

capacitances will vary based on the proximity of the bodies to each other and will have a

direct effect on the received power. Using i to denote a person’s index, the received power is

Pri. In the next section, we will derive the matrix form expression of the three nodal charge

equations of Figure 3.3 (b).

3.3 Analysis of a Three Person Case Study Model

Using the charge conservation law, the three nodal charge equations of Figure 3.3 (b) can

be expressed in matrix form as follows:

Simplifying the equivalent circuit model of Figure 3.3 (b) after neglecting the effect of the

source resistor Rs results in the equivalent circuit model shown in Figure 3.4.

Considering the human bodies as nodes 1, 2 and 3, and applying the charge conservation

law, we get :

Cc1(V1 − Vs) + Cb1V1 + Cs1(V1 − Vout1)

+C12(V1 − V2) + C13(V1 − V3) = 0 (3.2)
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Cc2(V2 − Vs) + Cb1V2 + Cs2(V2 − Vout2)

+C12(V2 − V1) + C23(V2 − V3) = 0 (3.3)

Cc3(V3 − Vs) + Cb3V3 + Cs3(V3 − Vout3)

+C13(V3 − V1) + C23(V3 − V2) = 0 (3.4)

RL1

Cs1

Cb1

CC1

𝑉𝑠

C12

C13

𝑉𝑜𝑢𝑡1

𝑉𝑜𝑢𝑡2

CC2

Cb2

CC3
C23

RL3

Cs3

𝑉𝑜𝑢𝑡3Cb3
C𝑠2

RL2

1 2 3

Figure 3.4: Simplified equivalent circuit model for a three person case study of Fig. 3.3 (b).

And from the voltage divider between each node and load Ri, we get in Laplace form :

Vout1 = V1
RL1

RL1 + 1/sCs1
(3.5)

Vout2 = V2
RL2

RL2 + 1/sCs2
(3.6)
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Vout3 = V3
RL3

RL3 + 1/sCs3
(3.7)

Now substituting (3.5), (3.6), and (3.7) into (3.2), (3.3) and (3.4), respectively and solving

for Vouti, we get:

[
Cs1 + (Cc1 + Cb1 + Cs1 + C12 + C13)

(
1 +

1

sRL1Cs1

)]
Vout1

−C12

(
1 +

1

sRL2Cs2

)
Vout2

−C13

(
1 +

1

sRL3Cs3

)
Vout3 = Cc1Vs (3.8)

[
Cs2 + (Cc2 + Cb2 + Cs2 + C12 + C23)

(
1 +

1

sRL2Cs2

)]
Vout2

−C12(1 +
1

sRL1Cs1
)Vout1

−C23(1 +
1

sRL3Cs3
)Vout3 = Cc2Vs (3.9)

[
Cs3 + (Cc3 + Cb3 + Cs3 + C23 + C13)

(
1 +

1

sRL3Cs3

)]
Vout3

−C13(1 +
1

sRL1Cs1
)Vout1

−C23(1 +
1

sRL2Cs2
)Vout2 = Cc3Vs (3.10)
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In general, the capacitively coupled human network with an arbitrary number of people, n,

can be generalized with the following expression:

n∑
j=1

n∑
i=1

[
Csj + (Ccj + Cbj + Csj + Cij)

(
1 +

1

sRLjCsj

)]
Voutj

−Cij
(
1 +

1

sRLiCsi

)
Vouti = CcjVs, i 6= j (3.11)

where the connections are assumed to be undirected, i.e., Cij = Cji .

In a matrix form, (3.8), (3.9), and (3.10) can be represented as :

[
A
]
{Vout} =

[
Cc
]
Vs (3.12)

where, the matrix [A] is defined as below,

{Vout} represents the output voltages vector, and [Cc] contains only real-valued time invariant

elements. The corresponding power (Pri) dissipated by the load (RLi) is given by:

Pri =
(Vouti)

2

RLi

(3.13)
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Table 3.1: Show Sole Materials Properties and their effect on the coupling capacitance Cc.

Shoe Sole Material Electrical Properties Dimensions Capacitance

Rubber εr = 7 [57] A = 30− 160 cm2, t = 2− 5 cm 3.7− 50 pF

Leather εr = 3.4 [58] A = 30− 160 cm2, t = 2− 5 cm 1.8− 5 pF

And the total power dissipated at the entire module load is the summation of the individual

power dissipation at the load of each circuit branch, and is given by

Pr =
n∑
i=1

Pri (3.14)

The range of the capacitance values depends on variables such as the material of the shoe’s

sole and the size of the shoe. Table 3.1 shows representative values of the coupling capacitance

range.

There are many important parameters in (3.12) that have a direct effect on the received power

Pr. Shown in Figure 3.5 (a) and (b) are the simulated received powers for each person, as a

function of the coupling capacitance Cc3, for two cases of inter-body coupling between person

1 and person 3, C13 ∈ (1 fF − 100 pF ). In the case of Figure 3.5 (a), a weak inter-body

coupling C13 =1 fF , means that changing coupling capacitance of person 3 to the conductive

substrate (i.e. sweeping Cc3) does not significantly affect the power delivered to person 1 or

2. However, in Figure 3.5 (b), person 1 and 3 were modeled as being close to each other,

hence a larger C13 of 100 pF is used in the simulations. This yields improved power transfer

for person 3, even when they have a small coupling to the conductive substrate (CC3 <25 pF ,

since the power can traverse a capacitively coupled path through person 1. This results in
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0.1

RL1 = 1MΩ
RL2 = 1MΩ
CC3 = 25pF

RL1 = 1MΩ
RL2 = 1MΩ
RL3= 0.1MΩ
𝐂𝟏𝟑 = 𝟏𝐟𝐅

2 2

RL1 = 1MΩ
RL2 = 1MΩ
RL3= 0.1MΩ
𝐂𝟏𝟑= 𝟏𝟎𝟎𝐩𝐅

(b)(a)

(c) (d)

Figure 3.5: Simulated power received, Pr, as a function of coupling capacitance Cci, sep-
aration distance between two human bodies represented by Cij, and load resistance RLi;
(a) Pri as a function of Cc3 for large separation between person 1 and person 3 simulated
with C13 =1 fF ; (b) Pri as a function of Cc3 for small separation between person 1 and
person 3 simulated as C13 =100 pF ; (c) Pr1 as a function of Cij for constant load resistance
RL1 =1 MΩ, Cc1 =25 pF , Cc2 =2 pF and Cc3 =50 pF ; (d) Pri as a function of the load
resistance RL3 with constant coupling capacitance Cc3 =25 pF and C13 =1 fF .
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the received power of person 1 being negatively affected when person 3 is weakly coupled,

but also allowing greater power delivery when the shared coupling capacitance of the two

subjects is greater. In this example, the received power for person 2 remains constant since

it is not affected by the swept capacitance, nor the change in inter-body capacitance from

Figure 3.5 (a) to Figure 3.5 (b) as C12 = C23 =1 pF . Figure 3.5 (c) shows the received

power by person 1 (Cc1 =25 pF , RL =1 MΩ when sweeping the inter-body capacitance

Cij, assuming that person 2 has a small coupling capacitance to the conductive substrate

(Cc2 =2 pF , while person 3 is larger (Cc3 =50 pF . Again, we see that changing the inter-

body capacitance of non-person 1 subjects, C23, does not adversely affect the received power

for person 1. We can also observe that a stronger coupling between person 1 and 2 reduces

the received power of person 1, due to a larger portion of the total delivered power to person

1 and 2 being shared to person 2. Conversely, a stronger coupling to person 3, with a larger

coupling capacitance, allows person 1 to receive additional power. Figure 3.5 (d) shows the

variation of the received power Pri as a function of the load resistance RL3, where it is clearly

shown that the loading on any branch of the setup does not affect the received power of other

branches.

3.4 Experimental Results

The system prototype of the proposed WPB module for a smart room application is com-

posed of three main parts: AC source, conductive substrate, and portable multimeters for

measurement and characterization purposes as shown in Figure 3.6 (a). The AC source (a

mains-grounded Tektronix DG4102 function generator), provides power to the self-capacitance-

based WPB by connecting its positive terminal to a conductive substrate. In this setup, the
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Figure 3.6: Experimental setup: (a) a sketch showing an SC-WPT configuration for a hu-
man body; (b) Two-stage Dickson multiplier (AC-DC rectifier and charge pump) that is
conductively connected to a human body and charges a 2.2 µF load capacitor; (c) Output
voltage versus time of the two-stage multiplier across C1 and C2 capacitors.

substrate is a 60 cm×150 cm aluminum sheet. The negative terminal of the function gen-

erator, which is internally connected to mains ground, is otherwise kept floating. When

a human subject stands on the sheet wearing shoes, the soles provide an insulating layer

between the conductive substrate and the human body. This is conceptually equivalent to

a capacitor that is directly proportional to the area of the sheet/human body overlap area

and inversely proportional to the sheet/body separation distance.

When an alternating current is applied to the sheet, a displacement current flows through

the structure which capacitively couples energy to the human body. SC-based WPB will

be affected by different postures (standing, sitting, or laying on the plate) which is simply

described as one node of the equivalent electric circuit [59], and the insulated base of the

shoes or any other electrically insulator can be directly used as the coupling capacitor.

In practice, the conductive substrate could be placed under an insulating floor layer (tile,
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concrete, wood subfloor, etc) which would also dictate the coupling capacitance. A simplified

device is comprised of a two-stage Dickson multiplier charging a 2.2 µF load capacitor, as

shown in Figure 3.6 (b). The device was not optimized for performance and used off-the-

shelf 1N4002 diodes and 10 pF ceramic capacitors. The charging curve of the load capacitors

at the two stages of the multiplier are presented in Figure 3.6 (c) for a 1 MHz, 20 Vpk−pk

AC excitation being applied to the conductive substrate. Measurements are obtained from

battery-powered multimeters with no direct conductive path to mains ground. The floating-

electrode’s return path for the load current to the source must go through the omnipresent

capacitance to ground. A two-stage example was used for simplicity, but multiple charge

pump stages, or switching regulators could be employed to achieve a target DC voltage level.

Four experimental configurations were tested to characterize the proposed self-capacitance

based WPB setup, and in each experiment the voltage across the load RL =1 MΩ was

measured for different operating frequency since frequency is one of the critical parameters

for identifying the limitations, robustness, and achievable physical range of the power trans-

fer. All experiments involving human subjects were performed under approved IRB protocol

#201907109. The first experiment is to characterize the posture effect of the human body

(standing, sitting and laying down) on the received power and the result is shown in Fig-

ure 3.7 (a), where, as expected, larger power delivery occurs in a laying down posture because

of the bigger coupling capacitance Cc it constructs compared with the other two postures.

For all postures, an insulative layer between the human body and the conductive substrate

was maintained.

In a second set of experiments, we used one human body in a standing posture holding

either one or two resistive loads of 1 MΩ. When holding two 1 MΩ loads in parallel,

the effective load to be driven by the person becomes 500 kΩ and that increased loading
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(a) (c)

(d)(b)

1 2 3

Figure 3.7: Experimental results showing prototype setup characterization for different con-
ditions: (a) Human body posture (Supine, Sitting and Standing), (b) One person in a
standing posture, driving one or two 1 MΩ loads, (c) WPB situation with multiple people,
(d) Effect of conductive substrate size.

causes significant increase in the received power per load (total received power for the person

increases) as shown in Figure 3.7 (b). Figure 3.7 (c) shows the measured effect of WPB to

multiple humans using the same conductive substrate. Increasing the number of bodies

(hence increasing the total loading as each person is driving a 1 MΩ load), reduces the

received power at each load.

As shown in Figure 3.7, the received power shows a strong dependence on the AC source

frequency; this is partially due to the large size of the conductive plate causing it to act

as a radiative antenna, thus dissipating some of the input energy as electromagnetic (EM)

waves. The EM waves effectively add a parallel load to the wearable load RL of the human

subjects. The amount of EM radiation increases as the source frequency increases, or as the
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Figure 3.8: Experimental results showing the effect of sheet sizing for WPT to a single
person: (a) Power transfer efficiency (PTE) as measured by the reflection coefficient S11;
(b) Smith chart measurement for power radiation at higher frequencies on a 37.5 cm×60 cm
sheet.

conductive substrate size increases, as shown in Figure 3.7 (d) for a single human body in a

standing posture driving RL =1 MΩ.

In the final set of data shown in Figure 3.8, we replaced the function generator with a Vector

Network Analyzer (VNA) for the AC source. This setup allows us to measure the amount

of power dissipation due to EM radiation and to demonstrate the high PTE potential, as

measured using the S11 parameter. Three different sheet sizes were used to verify the effect

of EM losses, which confirmed that for frequencies less than 1 MHz there was no significant

loss to EM radiation. The existence of a human body loading the conductive substrate did

cause measurable shifts in the location of the peak EM radiation, but those occurred for

frequencies larger than 10 MHz and only had a marginal influence for the frequencies of

interest in SC-based WPB. Figure 3.8 (b) shows the measurements for the 37.5 cm×60 cm

sheet in a conventional Smith chart.
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3.5 Summary

In this chapter we extended the results of our previous work illustrated in chapter 2, regarding

self-capacitance-based wireless power transfer (WPT), to a wireless power broadcast (WPB)

approach. We have implemented a small-scale prototype WPB for smart room applications as

shown in Figure 3.9 (a) to deliver energy through an electrically isolated conductive substrate

to the human body for levels of power required by Internet of Medical Things (IoMT)

applications such as remote health monitoring or fitness tracking. We characterized the

prototype by verifying the effect of including more human bodies, differing load resistances,

the human posture, and the substrate size on the amount of the received power at each load.

Compared to other WPB approaches, SC-based WPB demonstrates higher PTE and a better

solution of delivering the power to the small size wearable electronics without orientation

losses.

In this chapter we also presented a lumped-parameter model in which we identified two model

scenarios; one is the model for adding more human bodies to the system configuration, and

the other is of adding more load or wearable electronics to each individual body. We showed

that the addition of more human bodies causes voltage decay at each individual circuit

branch, especially at high frequencies, but holistically this increases the amount of power

delivered due to the increase in the total coupling capacitance Cc which has been proven in

chapter 2. The prototype results showed that the received power can be improved by simply

subdividing the floor into reasonably small sizes as shown in Figure 3.9 (b) in order to limit

the losses to EM radiation whilst still providing full room coverage.

Future work will involve optimizing the setup to maximize usability of WPB regardless of

the load configurations. It is also preferable to reduce the power consumption of wearable
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Figure 3.9: Modification of the smart home’s floor for power transfer optimization: (a)
Simplified, illustrative SC-WPB conductive floor design; (b) Subdivided conductive floor
into many small and electrically isolated conductive floor segments to limit the RF power
radiation and make construction modular.

electronic devices in addition to reduce their sizes while preserving good performance in

order to improve the power transfer efficiency of the SC-WPT as we will see in the next

chapter.
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Chapter 4

A Compact and Energy-efficient Instrumentations using PTAT

Reference Circuit

In this chapter, I present an energy-efficient ultrasound electronic receiver and general pur-

pose sensor as electronic wearable devices that can operate over a wide range of input vari-

ables. I use the proportional-to-absolute-temperature (PTAT) reference circuit to directly

inject the ultrasound signal, and hence eliminate the pre-amplification and rectification stages

used in a conventional ultrasonic receiver which leads to a significant improvement in the

system energy-efficiency. The results of this chapter are based on [60].

4.1 Introduction

Self capacitance based WPT for wearable or mountable devices demonstrates higher PTE

compared with other WPT modalities, but that is true when the power budget of wearable

devices is in the order of microwatts as I explained in chapter 2 and chapter 3. Therefore,

wearable devices have to be energy-efficient in order to be powered by this WPT approach.

Examples of wearable devices are the ultrasound receivers.
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Figure 4.1: (a) Conventional ultrasonic receiver topology comprising of preamplification,
rectification, demodulation and reference modules; (b) Proposed topology using only the
reference circuit and demodulation modules.

Ultrasound transceivers are commonly used in many different applications ranging from

biomedical imaging [33] to communications through different substrates [61, 62]. In these

applications, portability and autonomy are some of the key requirements that requires the

transceiver to be compact and energy-efficient. With regard to system energy-efficiency, the

front-end circuits of a typical ultrasound receiver is important because these modules have

to be active all the time for sensing, amplifying and detecting any incident ultrasonic pulses.

These front-end modules are shown in Figure 4.1 (a) and comprises of preamplification, rec-

tification and demodulation stages. Also shown in Figure 4.1 (a) is a reference module that

generates the bias signal for each of these modules. The pre-amplification stage amplifies
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the incident ultrasonic signal (as generated by a piezoelectric transducer - labeled as Piezo

in Figure 4.1 (a)), which is then rectified and filtered by the rectification stage. The demod-

ulator compares the rectified energy with a threshold to determine the received symbol (’0’

or a ’1’). In this chapter we investigate if the pre-amplification and rectification stages can

be eliminated by directly injecting the incident ultrasonic signal into the reference circuit,

as shown in Figure 4.1 (b). As a result, the reduced topology in Figure 4.1 (b) would yield

superior energy-efficiency compared to the topology shown in Figure 4.1 (a). Specifically, we

show that a standard proportional-to-absolute temperature (PTAT) current reference circuit

can be used as an ultrasonic receiver front-end. It can be noted here that for operation at

a very low supply voltages, bandgap references like the PTAT are the most suited topolo-

gies among all other references [63]. By construction, the PTAT implements a fixed-point

circuit [64, 65], that generates a constant current that is theoretically independent of the

supply-voltage fluctuations. The location of the fixed point (and hence, the output reference

current) can be modulated by changing the value of the PTAT resistor and in the proposed

implementation (shown in Figure 4.2 (a)), the piezoelectric transducer is connected in paral-

lel to the resistor R. The transduced ultrasound signal is therefore injected into the PTAT,

resulting in the change in the output current. In this mode of operation, the magnitude

of the PTAT current is constrained only by the maximum drain-current of the MOSFET

transistors, as a result of which, the output current can vary depending on the magnitude of

the signal injected into the PTAT. This overcomes the dynamic-range limitations exhibited

by most common pre-amplifier topologies used in ultrasound receivers that are based on

transconductance [66–69] or transimpedance [70–73] elements, where the bias current deter-

mines the output dynamic range and the threshold of the rectifying diode determines the

sensitivity of receiver.
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Figure 4.2: PTAT-based receiver circuit: (a) Interface between the PTAT and the piezo-
electric transducer equivalent circuit; (b) Frequency response of the piezoelectric generated
current ip at different mechanical damping constant Rp values when the ultrasound pressure
is fixed to 10 MPa;Inset shows the variation of ip at resonance with Rp; (c) Frequency re-
sponse analysis of the received ultrasound pressure P through the piezoelectric transducer
at different values of mechanical damping constant Rp when the absolute value of ip is fixed
to 25mV/R; Inset shows the variation of the fixed value of the pressure at resonance, Pfixed,
with Rp.

4.2 Principle of Operation

4.2.1 PTAT Ultrasound Receiver

Since PTAT circuits have been extensively studied in literature [74, 75], in this section we

only provide a brief summary of the principle of operation in the context of ultrasonic receiver

design. A standard PTAT circuit, as shown in Figure 4.2 (a) operates on the principle of

settling to a fixed operating point [76] which corresponds to the intersection between a linear

function (implemented by transistors P1 and P2) and a nonlinear function (implemented by

the transistors N1, N2 and the resistor R). When an external current ip is injected into
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the node X of the PTAT as shown in Figure 4.2 (a), the large-signal model governing the

dynamics of the PTAT is given by

f−1(
I2

I0

)− (I2 + ip)R = f−1(
I2

MI0

) (4.1)

where I2 denotes the drain current through P2. Io denotes the specific current [77], M

represents the ratio of the sizes of transistors N1 and N2, and f(.) is a positive real-valued

function, which depends on the operational regime of N1 and N2.

As ip is varied about the biasing point, the fixed-point and hence the output current I2 of

the PTAT circuit also varies according to the solution of the Equation (4.1). We assume here

that ip changes quasi-statically with respect to the intrinsic time-constant of the PTAT [76],

and that VX remains clamped to ηUT ≈ 25 mV , thus acting as a virtual ground at which

the current is rectified. Since Equation (4.1) above also has a trivial solution implying a no

output case, we can write the solution to the above as follows:

Iout = I2 =

 0 ip >
25mV
R

g(ip) ip ≤ 25mV
R

,
(4.2)

where g(·) : R 7→ R+ is any positive real-valued function of the input current ip which

corresponds to the non-trivial fixed point, and is parameterized by the properties of the

circuit elements in the PTAT circuit. It can thus be observed from Equation (4.2) that

irrespective of the polarity of ip, the lower bound of the output current I2 will always be

clamped to zero and hence the PTAT acts as a current rectifier. When the transistors are

biased in sub-threshold or weak-inversion, equation (4.1) reduces to
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Iout = I2 =
ηUT
R

ln(M)− ip. (4.3)

where η denotes the subthreshold slope and UT is thermal voltage which is approximately 25

mV at room temperature [77]. It should be noted here that since ip can either flow into and

out of the output node X, the output current Iout can take a wide range of values depending

on the value of ip. This, however, includes the pathological case when ip = −I2, resulting in

no bias current being generated by the circuit.

By replacing the current source by a piezoelectric transducer, as shown in Figure 4.2 (a),

the PTAT can be used to directly sense and rectify the current generated by the transducer.

To simulate the functionality of this topology, we have used an equivalent circuit model

of a piezoelectric transducer [78], where the mechanical and the electrical parameters of

the transducer are coupled through a transformer. The representative electro-mechanical

equation relating the change in the current output to the change in the ultrasound pressure

sensed by the transducer is given by:

∆ip = n∆u− Cpv̇p,

∆ip = n
∆F

Z
− Cpv̇p, (4.4)

where n denotes the electromechanical coupling factor of the transducer, v̇p is the rate of

change of voltage across the crystal, Cp is the intrinsic capacitance of the crystal, u is the

rate of change of the transducer stain, ∆F represents the variation in ultrasound pressure

∆P over the surface area A of the transducer, and Z is the mechanical impedance of the

piezoelectric transducer. The mechanical impedance Z is given by (Z = Rp+j(ωmp−Kp/ω))
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Table 4.1: Parameters used to analyze the frequency response of the PTAT receiver.

Parameter Description Value

mp piezoelectric mass 0.075 g
kp piezoelectric stiffness 0.0477 GN/m
n electromechanical coupling 0.75
Cc Coupling capacitance 15 pF
Cp piezoelectric intrinsic capacitance 1 nF
d piezoelectric diameter 5 mm
t piezoelectric thickness 0.4 mm

as shown in Figure 4.2 (a), where Rp is the damping constant, mp is the mass and Kp is the

stiffness of the piezoelectric transducer, and ω is the frequency of the mechanical vibration.

At resonance, the reactive part of the mechanical impedance vanishes leading to Z = Rp.

Assuming that the voltage at node X shown in Figure 4.2 (a) is constant and the transistors

are biased in sub-threshold regime, we arrive at the following two equations:

Cpv̇p + Ccv̇p = nA
∆P

RP

, (4.5)

and

∆I2 = −∆ip (4.6)
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The change in the output current with respect to the change in the ultrasound pressure is

given by

∆I2

∆P
=


− nACc
RP (Cp + Cc)

P > Pfixed

0 P ≤ Pfixed,

(4.7)

where Pfixed represents the lower bound of the fixed ultrasound pressure corresponding to the

non-trivial fixed point of the circuit. Figure 4.2 (a) also leads us to the following expression

for the ultrasound pressure applied to piezoelectric receiver by considering the constituent

equation of the piezoelectric transducer [79, 80] at resonance:

P =
Rp

A
u+

n

A

(
VX +

ip
Ccf

)
(4.8)

In the next section, we will derive the expression of the frequency response transfer function

of the piezoelectric transducer connected to the PTAT receiver.

4.2.2 Derivation of the ultrasound receiver transfer function

For the circuit shown in Fig. 4.2 (a), the constituent equations of the piezoelectric transducer

are given by:

ip = nu− Cpv̇p (4.9)

PA = Zu+ nvp, (4.10)
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where Z and ip from the Fig. 4.2 (a) can be represented as:

Z = Rp + j(ωmp −Kp/ω)

ip = Cc(vp − VX).

Substituting v̇p = ip
Cc

in Equation (4.9) and Z in Equation (4.10) in time domain leads to

the following:

ip = nu− Cp
Cc
ip (4.11)

mpu̇+Rpu+Kp

∫
udt = PA− nvp (4.12)

Equation (4.11) can be rewritten as:

u =
1

n
(1 +

Cp
Cc

)ip (4.13)

Also, since

vp =
1

Cc

∫
ipdt, (4.14)
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We can substitute Equations (4.13-(4.14) into Equation (4.12) to obtain the following fre-

quency response:

(mpjω +Rp +
Kp

jω
)(
Cc + Cp
nCc

)IP (ω) = P (ω)A− n

Ccjω
Ip(ω) (4.15)

=⇒ [n2 + (Kp −mpω
2)(Cc + Cp) + jRpω(Cc + Cp)]IP (ω)

= jnCcAωP (ω) (4.16)

The transfer function is thus given by:

∣∣∣∣Ip(ω)

P (ω)

∣∣∣∣ =

nCcAω√
[n2 + (Kp −mpω2)(Cc + Cp)]2 + [Rpω(Cc + Cp)]2

(4.17)

Also, the lower band ultrasound pressure at resonance (Pfixed), can be obtained from Equa-

tion (4.10) when ip = 25mV
R

, as follows:

Pfixed =
Rp

A
u+ 0.025(1 +

1

RCcf
)
n

A
(4.18)

It can be seen from Figure 4.2 (b) that for a fixed pressure amplitude value of 10 kPa, at

resonance, the peak value of the generated current Ip significantly changes with Rp using the

parameter values shown in Table 4.1. Pfixed is thus linearly proportional to Rp, and the value

of Pfixed corresponding to the non-trivial lower limit of the input current ip = 25 mV/R for

different values of RP value can be obtained from Figure 4.2 (c) depending on the value of
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Figure 4.3: PTAT-based receiver circuit response: (a) Input voltage pulses of varying ampli-
tude at 450 KHz and inter-pulse interval of 10 ms, when a coupling capacitor of 15 pF is used;
(b) Corresponding PTAT output. Insets show the zoomed in versions of the different pulses;
(c) Variation of the output energy per pulse with change in vp, normalized with respect to
the energy in the absence of any coupling input (vp = 0 V ); (d) Variation of the output
energy per pulse with change in the value of R for three different peak-to-peak amplitudes
of the input voltage vp, normalized with respect to the output energy when R = 1 MΩ for
each case.

Rp. The insets in Figures 4.2 (b) and (c) also show the variation of ip and Pfixed respectively

with Rp.

Additionally, Figures 4.3 (a) and (b) show the simulation results corresponding to different

amplitudes of the input signal, using a coupling capacitance Cc = 15 pF . The simulations

were performed by assuming the piezoelectric crystal to have a nominal capacitance of Cp =

1 nF , with a 100 Hz signal being used to mimic the piezo output. Figure 4.2 (d) shows

input pulses of different amplitudes, with a 450 kHz pulsating signal having an inter-pulse
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interval of 10 ms, while 4.2 (e) shows the output current of the PTAT for the same. The

waveform shown in Figure 4.3 (a) very closely resembles the actual piezo output, as shown

later in Section 4.4. The proposed circuit can thus track the changes in vp very faithfully,

and also produces a rectified current output whenever ip ≤ 25mV
R

, thus obviating the need

for a rectification circuit before interfacing to the actual system. Figure 4.3 (c) shows the

variation of the output energy per pulse, normalized with respect to that obtained in the

absence of any input injected at node X. It can be clearly observed that the output energy

bears a monotonic relation to the amplitude (and hence, the energy) of the input signal,

and becomes practically linear for higher values of the input signal amplitude. Additionally,

the output does not saturate for higher voltages, unlike as in the transconductance and

transimpedance based receiver topologies. Figure 4.3 (d), on the other hand, shows the

variation of the output energy per pulse with change in the value of the resistor R for three

different values of input signal amplitude, with each case being normalized with respect to

the output corresponding to R = 1 MΩ. We observe that the energy decreases with increase

in the value of R, and the energy corresponding to a particular value of R increases with

increase in the input voltage amplitude.

Note that Equation (4.7) shows that the output current is theoretically independent of

temperature even though the basic PTAT circuit shows a strong dependence with respect to

temperature. This is because temperature variations are considered a relatively slow process

and can be compensated using adaptive sampling.

It is worth mentioning that by considering the PTAT circuit poles and zeros, the proposed

PTAT-based receiver has a band-pass frequency response as shown in Fig. 4.4, where the

frequency bandwidth can be controlled by selecting the right value of the coupling capac-

itance Cc based on the required frequency range and the suppressing of the out-of-band
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Figure 4.4: Simulation results of the frequency response of the PTAT-based receiver when
its input is connected to the coupling capacitor Cc and the amplitude of the input voltage
is 150 mV , with R = 1MΩ.

components such as motion artifacts associated with the mechanical vibrations of the plate

that can be picked up by the piezoelectric transducer. Figure 4.5 (a) and (b) show variation

of the output current Iout of the PTAT-based and TCA-based receivers respectively with

change in the value of input voltage Vin for four different values of the coupling capacitance

Cc, when R = 1MΩ and the input frequency is 450 kHz. Whereas Cc does not have a sig-

nificant effect on the sensitivity of the TCA-based receiver, it has a significant effect on the

sensitivity of the PTAT-based receiver, especially at higher values of Vin. Figure 4.5 (c) and

(d) similarly show variation of the output current Iout of the PTAT-based and TCA-based

receivers respectively with change in the value of input voltage Vin for five different values

of the resistance R, when Cc = 15 pF . We can observe that, the same sensitivity value

of S = 0.11 nA/mV can be achieved when R = 15 MΩ for the PTAT-based receiver and
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(c) (d)

(a)
(b)

Figure 4.5: Simulation results showing the variation of the output current Iout of the PTAT-
based and TCA-based receivers respectively with change in the value of input voltage Vin,
for a signal frequency of 450 kHz: (a) Iout variation of the PTAT-based receiver for four
different values of the coupling capacitance Cc when R = 1 MΩ; (b) Iout variation of the
TCA-based receiver for four different values of the coupling capacitance Cc when R = 1 MΩ;
(c) Iout variation of the PTAT-based receiver for five different values of the resistance R,
when Cc = 15 pF ; (d) Iout variation of the TCA-based receiver for five different values of
the resistance R, when Cc = 15 pF .
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R = 1 MΩ for the TCA-based receiver configuration. This would lead to a power dissipa-

tion of 17 nW for the PTAT-based receiver, and a dissipation of 340 nW for the TCA-based

receiver.

4.3 Circuit Implementation of PTAT receiver

We have prototyped an ultrasonic receiver based on the proposed PTAT configuration, as

shown in Figure 4.6 (b). For purposes of comparison and benchmarking, I have also pro-

totyped a TCA-based receiver [24, 81], as shown in Figure 4.6 (a) that I used it before for

different substrate computing and ultrasound communication as I explained in chapter 3.

Note that two stage operational transconductance amplifier (OTA) is the common modal-

ity used to design the operational preamplifier for ultrasound transducers [82,83] However,

since reducing the complexity and power consumption of the OTA is the main goal of this

paper, we have used a telescopic cascode OTA (TCA) to compare it with the proposed

PTAT-based receiver topology. The die micrograph of the fabricated chip (0.5 µm CMOS

process) containing both the receiver topologies is shown in Figure 4.7.

The TCA-based receiver circuit topology shown in Figure 4.6 (a) consists of a current refer-

ence circuit shown in Figure 4.6 (b) which generates the bias current for the transconductor

formed by the pMOS transistors P1 − P5 and the nMOS transistors N1 − N4. Diodes D1

and D2 implement a rectifying operation to produce the Iout. Note that the input of the

transconductor is biased using a resistive divider (R1 and R2), whose values need to be cho-

sen to provide a good impedance match to the piezoelectric transducer. The PTAT-based

receiver configuration, shown in Figure 4.6 (b) uses cascoded topologies to reduce the effect

of output impedance and uses a standard startup circuit configuration formed by N6, N7 and
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Figure 4.6: System level architecture of two different receiver circuit configurations (a)
Transconductance based; (b) PTAT reference based receiver circuit topology, and (c) Cur-
rent to frequency converter (Demodulator). The proposed PTAT based reference topology
incorporates the preamplification and rectification stages directly within the reference circuit
module.

the capacitor Cs. The piezoelectric transducer is interfaced to the PTAT resistor R through

a coupling capacitor Cc. Both R and Cc can be adjusted to control the sensitivity of the

receiver.

In each of the PTAT-based and TCA-based topologies, the output current is then integrated

over the capacitor CR (1 pF) shown in Figure 4.6 (c), and the integrated voltage thus

produced is proportional to the total energy in the received ping. Once the integrated

energy value exceeds the receiver voltage threshold Vref (1.5 V), CR is discharged by the

nMOS transistor N5. The frequency of the generated pulses is therefore proportional to the

received energy and can be used to detect a received pulse. In both of these topologies, the

sensitivity of the receiver can be adjusted by changing the biasing current or by varying Vref

or by adjusting the value of CR [24]. Figure 4.8 shows the linear relationship between the

demodulator output frequency and input current Iout when R = 1 MΩ and Vref = 1.5 V .
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Figure 4.7: Micrograph of the prototypes for Fig. 4.6 fabricated in 0.5 µm CMOS process.

Slope = 5 nA/kHz

Figure 4.8: Simulation results of the input/output relationship of the modulator shown in
Figure 4.6 (c), when R = 1 MΩ and Vref = 1.5 V .
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It should be noted here that for both the implementations, the PTAT current reference can

be tuned by externally connecting a series or a parallel resistor to the internal resistor R

(=1.5 MΩ). Since the output of both receivers is in the form of pulse trains, a digital signal

processor can be used to decode the received digital data.

4.3.1 Noise Analysis of the PTAT Receiver Circuit

In this section, we present the noise analysis for the PTAT based receiver circuit and compare

that with the TCA based receiver circuit using the models shown in Figure 4.6 (a) and

(b) respectively, where the noise contribution of the cascoded transistors to the output is

considered to be negligible, especially at low frequencies [77]. The 1pF capacitor of the

PTAT receiver shown in Figure 4.6 (b) shunts the noise generated by the transistor N3

to the ground. We will assume that the input referred noise will be dominated by only

the thermal noise [84, 85], even though the effect of flicker-noise could also be incorporated

[86,87].

The input-referred noise voltage and noise current for the PTAT-based receiver circuit shown

in Figure 4.6 (b) can be expressed as:

V 2
n ,in = 8kTγ(

gmP2

g2
mN4

+
1

gmN4

) +
4kT

Rg2
mN4

I2
n,in =

8kTγ

R2
(
gmP2

g2
mN4

+
1

gmN4

) +
4kT

R3g2
mN4

(4.19)
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Hence the total input referred noise voltage of the PTAT based topology due to V 2
n ,in and

I2
n,in for a source impedance Zs can be represented as:

Vn,in,total =
Vn,inR + In,inZsR

R + Zs
(4.20)

Notice that the input-referred noise voltage is independent of the preceding stage Zs [77].

For typical values (W/L) = 3, I2 = 1.67 nA, µnCox = 50 µAV −2, γ = 1, and R = 15 MΩ,

the transconductance can be found to be gm = 0.708 µAV −1, and the total input referred

noise voltage therefore to the PTAT based receiver topology is Vn,in,total ≈ 35.3 nV/
√
Hz.

V 2
n ,in = 8kTγ(

1

gmP3

+
gmN5

g2
mP3

) +
I2
n,PTAT

g2
mP3

(4.21)

where I2
n,PTAT is the PTAT reference output noise current given by

I2
n,PTAT = 8kTγ(gmP2 + gmN4) +

4kT

R
(4.22)

For the same typical values of Equation (4.19), with the current I2 = 25 nA and gm =

2.7386 µAV −1 to achieve same sensitivity (0.11 nA/mV ), the input referred noise from

Equation (4.21) is 416.7 nV/
√
Hz.

In addition to higher level of input referred noise and lower energy-efficiency, the TCA

circuit configuration also suffers from limited dynamic range leading to a non-linear out-

put response. The performance comparison of the proposed PTAT-based receiver and the

transconductance-based receiver is concluded in Table 4.2.
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Table 4.2: Performance comparison of the proposed PTAT-based receiver and the TCA-based
receiver.

Property PTAT TCA

Circuit dimensions 0.55× 0.2 mm2 0.72× 0.2 mm2

Power dissipation for same

sensitivity (0.11nA/mV ) 0.017 µW 0.34 µW

Circuit performance linear nonlinear

Input referred noise 35.3 nV/
√
Hz 416.7 nV/

√
Hz

4.4 Measurement Results

4.4.1 Experimental Setup

Characterization of the ultrasound receiver was performed using an experimental setup con-

sisting of two 5 mm diameter, 475 kHz resonance frequency piezoelectric transducers (PZT-

5H) implanted on a rectangular aluminum plate (300 mm x 200 mm x 1.5 mm). An il-

lustration of the setup is shown in Figure 4.9 (a), where one of the piezo transducers was

connected to a function generator (RIGOL DG4102, 100 MHz Arbitrary Waveform Gen-

erator) that emulates the transmitter Tx, while the other transducer was connected to an

oscilloscope (Tektronix MSO 2004B, 70 MHz Mixed Signal Oscilloscope) to act as the re-

ceiver Rx. We characterized the effect of the separation d between the transmitter and

receiver PZT transducers on the receiver voltage.

Figure 4.9 (b) shows the variation in the voltage at the receiver piezo crystal when the

distance of transmitting crystal is varied from 5-40 cm for a 20 V, 450 kHz sine wave applied
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Figure 4.9: (a) Experimental setup consisting of aircraft grade aluminum plate with trans-
mitter and receiver piezoelectric transducers, connected to the proposed receiver circuit; (b)
The variation in the received voltage when the transducer distance is varied from 5-40 cm
with 20 V peak-to-peak applied voltage; (c) Receiver voltage variation when the applied
voltage is varied from 0-20 V with an inter-crystal separation of 15cm; (d) Transmitter and
receiver pulses shapes.

as input to the transmitter. The variation in the receiver voltage when the applied voltage to

the transmitter is varied from 0-20 V peak-to-peak , while maintaining a constant frequency

of 450 kHz and a constant separation of 15 cm between the crystals is shown in Figure 4.9 (c).

It is thus evident from Figure 4.9 (b) that an inter-crystal separation of 15 cm is enough to

generate a detectable ultrasound wave by applying a short pulse at a specific frequency. The

amplitude of the ultrasonic wave generated by the receiver is in the range of 150 mV, and

the detection performance depends on the sensitivity of the receiver circuit.
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4.4.2 Receiver Characterization

Figure 4.10: The sensing of the received signal at different resistance values.

The performances of the prototyped PTAT-based and TCA-based receiver circuits shown in

the micrograph in Figure 4.7 were characterized using a similar methodology as described

in the previous section. Figure 4.9 (d) shows the pulses generated by the PTAT receiver

corresponding to data transmitted using ON-OFF keying, also illustrated in Figure 4.9 (d).

For each case, the receiver output is encoded by the frequency of the waveform generated

by the current to frequency converter. It can be seen from Figure 4.9 (d) (inset) that there

is a latency of about 25 µs between the transmitted and received pulses, which confirms

that ultrasound communication over a 15 cm link distance in the aluminum plate (through

which sound travels at around 6000 m/s) is feasible. An MSP430 microcontroller (not

shown in the figure) was used to generate the digital data for transmission and as well as

for analyzing the received digital data from the receiver output, based on a preprogrammed

protocol. Figure 4.10 shows the variation of the output frequency of the receiver with
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variation in the transmitted signal for different values of internal resistance value of the

PTAT. A comparison of the receiver response using the transconductance-based and PTAT-

based topologies is shown in Figure 4.11. Figure 4.11 shows that the output frequency of

the PTAT-based receiver for biasing current 25 nA is linearly proportional to the input

signal and has a sensitivity of 21 Hz/mV, while the inset in Figure 4.11 for the same biasing

current shows that the transconductor based topology exhibits saturation due to the dynamic

range limitations of the transconductance amplifier, and has a much lower sensitivity of 4

Hz/mV. The experimental observations are consistent with the simulation results as well,

thus proving the validity of the proposed circuit for deployment as an ultrasonic receiver. The

sensitivity of the receiver can also be controlled by adjusting the external coupling capacitor

and/or resistor in the high pass filtering module in the PTAT topology. It should however be

noted that the receiver output for the PTAT based receiver will practically saturate due to

limitations of the current to frequency converter circuit, and the sensitivity can be increased

by improving the converter design.

4.4.3 Bit-Error-Rate Experiments

Bit error rate (BER) performance of the proposed receiver topology corresponding to differ-

ent transmitted power levels were carried out based on experimental data collected at the

output of a cleaning circuit in cascade with the current to frequency converter. The cleaning

circuit outputs a high or a low pulse, depending on whether the frequency of the signal

at the frequency converter output is above or equal to its baseline frequency. The results

obtained (using the experimental setup described in Subsection (4.4.1) by transmitting 20 s

of alternate high and low pulses at a frequency of 300 Hz have been shown in Figure 4.12,

with the transmitted power being calculated in terms of the transmitter voltage normalized
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Slope = 21 Hz/mV

Slope = 4 Hz/mV

Figure 4.11: Comparison between PTAT and TCA based receiver responses; (inset is a
zoomed in version of the TCA receiver sensitivity for lower voltages), for the same biasing
current, when IBias = 16.67nA (which corresponds to R = 1.5MΩ).

Figure 4.12: Variation of the BER with the SNR calculated using transmitter voltage values
normalized with respect to a baseline level.
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with respect to a baseline voltage of 2 V. It can be observed that the BER monotonically

decreases with increase in the transmitted power, thus validating the feasibility of using the

PTAT based receiver configuration for ultrasound communication.

4.5 Summary

In this chapter we presented the feasibility of using a PTAT-based current reference circuit

as a wide-dynamic-range ultrasound receiver and low complexity biosensor. The dynamics of

the receiver confirms to the dynamics of fixed-point circuits and thus the system stability is

guaranteed at all points of time because of the inherent tendency of the network to settle to

its fixed point(s). Compared to the standard ultrasonic receiver circuit topologies existing

in the literature, the proposed PTAT-based receiver not only demonstrates significantly

higher dynamic range, increased sensitivity, lower power dissipation and reduced form-factor,

but also demonstrates increased linearity of operation. Additionally, it produces a rectified

current output which can be readily fed to the frequency conversion circuitry, thus obviating

the need for a separate rectification stage downstream from the PTAT circuit. The BER plots

obtained from experimental results further corroborate the feasibility of using the proposed

PTAT based receiver circuit in ultrasound communication.

It is envisioned that the receiver will be integrated with a digital processor which will be

programmed to process the produced digital output. The processor will also be programmed

to implement communication protocols that can be used to form a sensor network inside

the substrate such that important information related to the health of the structure can be

reliably communicated. On integrating our PTAT-based receiver with a digital processor

programmed to implement communication protocols, each resulting module can be used
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to form an independent node in a sensor network inside the substrate such that important

information related to the health of the structure can be reliably communicated [81]. Moving

forward, we would like to develop a decentralized substrate communication network with

each agent communicating exclusively with the substrate for exchanging information, while

maintaining the network stability. Also, we will optimize the biosening functionality in terms

of stability and selectivity of the sensing element.

The PTAT circuit can also be used for designing a low complexity and compact sensing

element for a wide range of applications. For example, in the future we will combine our

proposed self-capacitance based WPT technology with a PTAT-based resistive and/or ca-

pacitive biosensor for measuring physiologically relevant data for the human oral cavity.

Figure 4.13 shows a vision of an oral cavity wireless PTAT-based biosensor as an electronic-

tooth to be used for sensing important biomarkers from the saliva and sending the data

wirelessly to the reader for postprocessing purposes. The biosensor and the wireless demod-

ulator are powered by the SC-based WPT shown from the figure.
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Figure 4.13: The concept of the Self-Capacitance based wireless power transfer WPT showing
the flow of the displacement current ID through the conductive part of the oral cavity feeding
the PTAT-based biosensor mounted on a tooth and flows back through a fictitious ground [1].
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Chapter 5

Extending SC-WPT for Substrate

Computing

In chapter 2, we defined the self-capacitance as an intrinsic property of any electrically iso-

lated body. The isolated body could be any conductive substrate. In this chapter, I show

some examples of wearable and implantable electronic devices that are used for substrate

computing (e.g. communications and sensing), and the substrate here represents any electri-

cally isolated conductor (e.g. animal tissue or conductive metal) that can be used to deliver

the power wirelessly to these wearables through the proposed self-capacitance based WPT

technique. The results of this chapter are based on [24,81].

5.1 Self-powered System-on-Chip for Substrate Com-

puting and Ultrasonic Communications

Advances in miniaturization are enabling novel sensing technologies that promise break-

throughs in all areas of science and engineering. Nowhere is the impact more evident than in
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Figure 5.1: The concept of smart substrate plates (SSPs) with a fabric of embedded sensors.
The sensors operate by harvesting energy from ambient vibrations in the substrate and
communicate through the substrate using ultrasonic pulses. Large-structures like an aircraft
wing can be assembled without the need to separate instrumenting the sensors. (Aircraft
image source: Google image).

the area of structural engineering where the integration of “smart” sensors with novel mate-

rials fabrics is promising a new generation of “smart” structures that can potentially “sense”,

“feel” and “diagnose” its structural state [88]. The grand-vision, as illustrated in Figure 5.1,

is that without the aid of batteries or remote powering, these sensors would harvest the

power directly from the host structure and continuously monitor the statistics of different

sensory conditions like localized strain, temperature, moisture content, aerodynamic shear

stress and pressure [89]. Due to their low-cost and small form factor these micro-sensors could

be embedded inside hard-to-access structural components such as rotors of aircrafts, aircraft

wings, and turbine blades, without compromising the structural or aerodynamic integrity of
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the host structure. The ubiquitous nature of these sensors will be complemented by their

ability to compute, make decisions locally and transmit any impending mechanical failure

events remotely. The fabric of embedded sensors will also facilitate organic assembly of such

large synthetic structures through the use of ”smart substrate plates” (SSPs) [90]. Without

the need for post-construction subsystem enhancements like sensor deployment, wiring or

wireless networking, these“plates” are able to compute, detect anomalies and communicate

events seamlessly through the structure substrate. In this section we present the design of

a CMOS transceiver that can be used for through-substrate communications in SSPs us-

ing an ultrasonic data link (i.e., without a separate medium such as radio or embedded

wire) – all using harvested power from its own ambience such as mechanical vibration. The

use of through-substrate communications also makes the design immune to electromagnetic

jamming and interference and the ability to harvest its operational energy from ambient

vibration obviates the need for sensor maintenance.

5.1.1 Circuit Implementation of SSP Transceiver

The system level architecture of a complete SSP transceiver is shown in Figure 5.2. The

transceiver comprises of different energy harvesting and telemetry modules namely: (a) a

voltage multiplier; (b) a voltage regulator; (c) an ultrasound transmitter; and (d) an ultra-

sound receiver. The circuit schematic of each of these modules are also shown in Figure 5.2.

The transceiver interfaces with three piezoelectric transducers type Lead Zirconate Titanate

(PZT), one for harvesting energy from mechanical vibrations and the other two are used for

ultrasonic telemetry. A standard Dickson voltage multiplier (shown in Figure 5.2) is used for

rectifying and boosting the output of the harvesting transducer onto a storage capacitor. A

83



VDC
Piezo_P

Piezo_N

Clock

Voltage Multiplier

PZT

PZT

Voltage

Regulator

Voltage

Multiplier

Transmitter ReceiverPZT

Vdd

Ib

1pF

1pF R
TuneP

TuneS

Voltage Regulator

P1 P2

P3 P4
N1

N2 N3

N4 N5
N6

2pF

VDC

�����_�

(a)
(b)

(c) (d)

CR

VREFr

Vin1
Vin2

Receiver

VRout

P1

P2 P3

P4 P5

N5

N1 N2

N3 N4

INV1 INV2

Ib

Vb11pF

1pF

Vb3

Vb4

R
TuneP

TuneS

Reference

P1 P2

P3 P4
N1

N2 N3

N4 N5
N6

Vdd

CT

Transmitter

VTout

P1

P2

P3

INV Driver

N1

N2

VREF

S1

VLoad

Ib

Vb1

Vb2

1pF

1pF

Vb3

Vb4

R
TuneP

TuneS

Reference

P1 P2

P3 P4
N1

N2 N3

N4 N5
N6

Vdd

Figure 5.2: System level architecture of the SSP transceiver comprising of the voltage mul-
tiplier, regulator, piezoelectric driver and ultrasonic receiver. (a) a voltage multiplier; (b) a
voltage regulator; (c) an ultrasound transmitter; (d) an ultrasound receiver.

linear regulator is then used to filter out the voltage ripples and deliver current to the trans-

mitter and receiver modules. The implementation is based on a relaxation oscillator circuit

which generates a sequence of ultra-wide-band (UWB) pulses based on an OOK modulation.

A standard proportional to absolute temperature PTAT externally circuit topology has been

used to generate the bias voltages Vb1 - Vb4 and also provide additional voltage regulation.

Note that for this implementation, the PTAT can be tuned by externally connecting a series

(to node TuneS) or a parallel resistor (to node TuneP) to the internal resistor R (1.5 MΩ).

For the transmitter, the frequency of the output pulses is determined by the comparator

reference voltage VREF , the charging capacitor value CT and by the magnitude of the bias

currents generated by the reference circuit. When the integrated voltage on the capacitor CT

exceeds VREF , the capacitor CT is discharged by the transistors N1 and N2. The shape and
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Figure 5.3: Micrograph of the prototype fabricated in 0.5µm CMOS process.

the duration of the UWB pulse is determined by the size of the discharging transistor and

is important to ensure that sufficient energy is delivered by the driver to the piezoelectric

transducer. The transducer forms a resonant circuit and naturally performs pulse-shaping

and pulse-modulation when driven by UWB pulses.

The receiver circuit also comprises of a relaxation oscillator circuit except that the current

charging the capacitor CR is generated by a transconductor formed by the pMOS transistors

P1 - P5 and the nMOS transistors N1 - N4. The two pMOS-based diodes implement a

rectifying operation and the rectified current is then integrated on the capacitor CR. Thus

the integrated voltage on CR is proportional to the total energy in the received ping. Thus,

when the integrated energy crosses the threshold of the comparator, the receiver produces a

digital pulse and the time interval between the pulses encodes the magnitude of the received
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Table 5.1: Specifications of the self-powered transceiver.

Parameter Specification

Circuit dimensions 1000µm x 475µm
Power dissipation 55 µW at 8KHz data rate
Generated DC voltage 3.44V
DC voltage settling time 10s
Regulator Dropout 1V
Transmitter pulse transition time 2µs
Received Voltage Range 350 mV
Receiver sensitivity 4Hz/mV
Material PZT-5H Piezo-crystal
Resonance frequency 230kHz
Bandwidth ≈ 200KHz

energy. Note that the receiver transducer works as a tuned-circuit and naturally filters

out-of-band interference.

5.1.2 Experimental Results

The proposed SSP transceiver circuit was prototyped in a 0.5µm CMOS process and Fig-

ure 5.3 shows the micrograph of the fabricated prototype. Each of the individuals modules

were characterized and in Table 5.1 we summarize the measured specifications. In the first

set of experiments we verified the functionality of the voltage multiplier and the voltage

regulator. Figure 5.4 shows the measured result when the voltage multiplier is excited by

a broad-band source of amplitude 800mV and with a load current of 15µA. The voltage

ripples can be clearly seen around the multiplied voltage of 3.4V. The measured response of
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Figure 5.4: Measurement results of the voltage multiplier and drop-out regulator.
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Figure 5.5: Measured results obtained using (a) prototype Aluminum SSP ; (b) transmitted
and received pulse shapes ; (c) transmitter ; and (d) receiver characteristics.
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the voltage regulator is shown in Figure 5.4 (inset) which exhibits a drop-out voltage of 3V

at an input of 4V when driving a load of 10µA.

In the next set of experiments we characterized the performance of the telemetry circuits

using a prototype of a SSP formed using an Aluminum plate shown in Figure 5.5 (a). Three

230kHz PZT-5H transducers (5mm diameter) were attached to the plate and used for har-

vesting and ultrasonic telemetry. The pulses generated by the transmitter and the receiver

are shown in Figure 5.5 (b) (inset) in the context of data transmitted using ON-OFF keying

also illustrated in Figure 5.5 (b). The frequency of pulses (inversely proprotional to TX in

Figure 5.5(b)) emitted by the transmitter can be controlled externally using the reference

voltage VREF as shown in the measured result in Figure 5.5 (c). Similarly, the sensitivity

of the receiver can also be controlled by adjusting the external resistor of the PTAT. Figure

5.5 (d) shows the measured response of the receiver where the output frequency (directly

proportional to TR in Figure 5.5 (b)) is linearly proportional to the power of the input sig-

nal, measured at output of the receiver PZT transducer. The sensitivity of the receiver was

measured to be 4Hz/mV which can also be controlled by adjusting the value of the resistor

in the reference circuit.

5.2 Design of CMOS Telemetry Circuits for In-vivo

Wireless Sonomicrometry

In this section we present the design of an integrated circuit (IC) that can be interfaced with

a sub-millimeter-scale sonomicrometry crystal and can be used for bi-directional telemetry

through different types of in-vivo structures (bones and tissues). In our previous work [91]
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we demonstrated that a miniature piezoelectric transducer could be used to harvest energy

from a diagnostic B-mode ultrasound scanner; and the harvested energy was shown to be

sufficient to establish a telemetry link with the scanner. Implantation of millimeter-scale

sonomicrometry crystals [92] for tissue tagging offers an advantage over echocardiography

or magnetic resonance imaging in achieving a better trade-off between signal sampling rate

and spatial resolution. Sonomicrometry has also been demonstrated for imaging mitral valve

dynamics in the study of fine 3D geometric perturbations associated with ischemic mitral

regurgitation (IMR) [2]. However, as shown in Figure 5.6 (a) [2], the current state-of-the-art

sonomicrometry system requires hard-wiring of the crystals to an external data acquisition

and a power source. This limits the number of sites that can be marked and also prevents

the implantation of the crystals on moving structures, such as valve leaflets, and prevents

implantation inside hard-to-access structures like bone-marrow. In addition, hard-wiring

constrains the animals or subjects to be intubated and hence the current technology cannot

be used for chronic, long-term studies.

In this section we explore interfacing the sub-millimeter sized sonomicrometry crystals with

integrated circuits which will enable system miniaturization and implantation (scales of

different components are shown in Figure 5.6 (b)). Figure 5.6 (b) also highlights another

potential application of a wireless integrated sonomicrometry system in the area of wireless

capsule endoscopy (WCE) [93]. For a WCE application, the crystal, the telemetry IC and a

battery could easily fit within the size of a pill (shown in Figure 5.6 (b)) and the pill can easily

be swallowed and can be made to wireless scan some vital parameters as it travels through

the digestive tract. When compared to an RF based WCE, sonomicrometry based endoscopy

obviates the need for aligning the transmission and receiving antennas/transducers. Also,

the data from the pill can be easily integrated using a portable ultrasound device [91], leading

to patient comfort. Yet another advantage of the proposed telemetry system is its ability to
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Figure 5.6: (a) Sonomicrometry crystals used for measuring mitral-valve dynamics [2]; (b)
sizes of different components of a wireless sonomicrometry transceiver compared to a stan-
dard pill.

communicate with monitoring devices that could be implanted in hard-to-access regions of

the body like the bone-marrow. Several studies have been reported to understand the effect

of ambient conditions on the development of marrow cells, however, they have been limited

to only cadavers or anesthetized animals [94].

5.2.1 Circuit Implementation

The schematic of the circuits implementing the telemetry functions are shown in Figure 5.7.

It comprises of a transmitter and a receiver module as shown in Figure 5.7 (a) and Fig-

ure 5.7 (b) which are biased respectively by a reference circuit module as shown in Fig-

ure 5.7 (c). The implementation of the reference circuit follows a standard PTAT topology

and generates voltage biases Vb1-Vb4. The detailed description of the PTAT reference has

been omitted here for the sake of brevity. Note that for this implementation the PTAT can
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Figure 5.7: (a) Schematic of the transmitter circuit; (b) Schematic of the reciever circuit;
(c) Schematic of the reference circuit.

be tuned by externally connecting a series (to node TuneS) or a parallel resistor (to node

TuneP ) to the internal resistor R. The architecture of both the transmitter and receiver

circuits is based on our previously reported circuit topology in section 3.1 and is based on

a relaxation oscillator circuit which has been modified to generate a sequence of ultra-wide-

band (UWB) pulses.

For the transmitter the frequency of the output pulses is determined by the comparator

reference voltage VREF , by the charging capacitor C and by the bias currents generated by

the reference circuit. When the integrated voltage on the capacitor C exceeds VREF , the

capacitor CT is discharged by the transistor N1. The shape and the duration of the UWB
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Table 5.2: Specifications of the sonomicrometry transceiver.

Parameter Specification

Resonant Frequency 1.8MHz
Material PZT-5H Teflon coated
diameter 1.0mm
Crystal Capacitance 120− 250pF
Bandwidth ≈ 200KHz
Circuit dimensions 530µm x 600µm
Received Voltage Range 200 mV
Power dissipation 611 µW at 1KHz data rate

pulse is determined by the size of the discharging transistor and is important to ensure that

sufficient energy is delivered by the driver chain (formed by two inverters INV1 and INV2)

to the sonomicrometry crystal.

Note that the input equivalent circuit of the crystal can be modeled by a series RLC circuit

with a transformer input. The transformer models the electro-mechanical coupling properties

of the crystal where the load parameters is determined by the equivalent mechanical com-

pliance of the crystal and the tissue’s acoustical impedance. As illustrated in Figure 5.7 (a),

the resonant circuit formed by the crystal shapes the UWB pulse S1 into an ultrasonic ping

S2. The time interval between two acoustic pings can be controlled by the voltage VREF

which can be used to turn ON and OFF the transmitter.

The receiver circuit shown in Figure 5.7 (b) also comprises of a relaxation oscillator circuit

except that the current charging the capacitor CR is generated by a transconductor formed

by the pMOS transistors P1 - P5 and the nMOS transistors N1 - N4. The diodes formed

by transistors P6 - P11 implement a rectifying operation and the rectified current is then
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Figure 5.8: The fabricated chip.

integrated on the capacitor CR. Thus the integrated voltage on CR is proportional to the total

energy in the received ping (as shown in Figure 5.7 (b)). Note that the bulk driven diodes

in this implementation reduce the coupling of the power supply noise onto the integrating

capacitor CR. Once the integrated energy value exceeds the receiver voltage threshold VREFr,

CR is discharged by the nMOS transistor N5. The frequency of the generated pulses is

therefore proportional to the received energy and could be used to detect a received pulse.

Note that in this topology the sensitivity of the receiver can be adjusted by changing the

input transconductance of the pMOS transistors P2, P3 or by varying VREFr or by adjusting

the value of CR. Since the output of the receiver is in the form of pulse trains, a digital

signal processor can be used to decode the received digital data.
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Figure 5.9: Measured response of the receiver circuit implementing a absolute value function.

5.2.2 Measured Results

A prototype of a wireless sonomicrometry transceiver was designed by integrating a commer-

cially available sonimicrometry crystal (purchased from Sonometrics Inc.) with a telemetry

circuit which fabricated in a standard 0.5-µm CMOS process. The specifications of the in-

tegrated transceiver is summarized in Table 5.2 and the micrograph of the fabricated circuit

is shown in Figure 5.8.

The first set of experiments were designed to characterize the response of the receiver for dif-

ferent values of the input differential voltages (V +
in−V −in ). The pulses generated by the receiver

were counted over a fixed time-interval to estimate the average frequency (pulses/sec). Fig-

ure 5.9 shows the measured pulse-rates for different values of the input voltages and different

94



Location of Crystal_1

Location of Crystal_2

Figure 5.10: Phantom setup comprising of a femoral bone extracted from a chicken.

Location of Crystal_2

Location of Crystal_1

Figure 5.11: Phantom setup comprising of a whole chicken with in tact skin, muscles and
bones.
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Figure 5.12: Measured receiver output waveforms for a specific phantom and for different
levels of transmitted power.

values of the reference resistor R (which controls the bias current through the transconduc-

tor). The response follows an approximation of an absolute value function where the output

saturates at a maximum pulse-rate that is determined by the parameters of the relaxation

oscillator. The receiver circuit exhibits an imbalance between both the differential branches

of the input current (due to transistors mismatch and finite drain impedance) which leads

to an offset and gain mismatch in the output response, as shown in Figure 5.9.

The next set of experiments were designed to evaluate the performance of the telemetry

circuits for three different phantom setups where a transmitter and receiver sonomicrometry

crystal were implanted in: (a) a water bath; (b) a 7cm long bone; and (d) a chicken cadaver.

Figure 5.10 and 5.11 show the pictures of the bone and chicken phantoms where the sonomi-

cometry crystals were connected to transceiver IC using a twisted cable. To characterize the

output of the receiver for different levels of input ultrasonic power, we used a commercial

echoscope (GS200 by gaMPT - Frequency range 1− 5MHz). The echoscope automatically
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Figure 5.13: Receiver output for different levels of transmitted power and for different phan-
tom setups.

matches the impedance of the source to that of the crystal to ensure maximum power trans-

fer. The echoscope was used to transmit the ultrasonic pulses every 2 ms and the output

of the receiver was measured. Figure 5.12 shows the measured receiver waveform when the

power of the ultrasound pulses was varied for a phantom comprising of chicken meat, as

shown in Figure 5.11. The measured output clearly shows that when the magnitude of the

transmitted power is increased, the density of logic ’1’s increases as well. The digital output

from the receiver could be decoded by a digital signal processor by averaging the output

and then normalizing with respect to the maximum value. Figure 5.13 plots the normalized

output for the three different phantom setups. The measured results show a monotonic re-

sponse verifying that the crystals could be used for communicating digital bit-steams where
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the higher levels of transmitted power (> 15dB) could be distinguished from no transmis-

sions. Also it can be seen from the measured results in Figure 5.13 that the receiver exhibits

a higher sensitivity (lower activation threshold) when the transmission media is dominated

by tissue. As expected the transmission through bone suffers from a higher attenuation but

these results show that telemetry from within the bone structures (like bone marrow) is still

feasible. In all the phantom experiments, the speed of data transmission determines the

duration of the integration window which in turns determines the resolution of the receiver.

5.2.3 Summary and Conclusions

In section 3.1, we have proposed a design of a self-powered CMOS transceiver that can be used

for through-substrate communications using ultrasonic pulses. The transceiver is powered

by energy that can be harvested from ambient vibrations present in the susbtrate and hence

can operate without batteries. It is envisioned that the transceiver will be integrated with a

digital processor (also powered by the energy harvesting modules) which will be programmed

to control the transmitter and also process the digital output produced by the receiver. The

processor will also be programmed to implement communication protocols that can be used

to form a sensor network inside the substrate such that important information related to the

health of the structure can be reliably communicated.

In section 3.2, we investigated the feasibility of a miniaturized, wireless sonomicrometry

based telemetry system that can be implanted inside biological structures like tissue and

bones. We have proposed transmitter circuits that can be used to drive the sonomicrometry

crystals (transmit data) and we have demonstrated that an on-chip receiver can be used to

measure or decode the transmitted data. The proposed system offers numerous advantages
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over a comparable RF telemetry system in terms of size and usability; and hence can be used

for in-vivo monitoring of different structures ranging from bone marrow to cardiac valves to

endoscopic structures. Characterization of the proposed telemetry system for these different

structures, combined with the ability of harvest ultrasonic energy [91] for real-time operation

will form the basis of future research in this area.

Three important notes we can get from tis chapter;

� First: the electrically isolated conductor for the application of SC-WPT can be any

conductive substrate (live tissue or any other conductive material). Therefore, we claim

that we can apply our proposed SC-WPT for wide range of applications for substrate

computing and health monitoring.

� Second: it is preferable to reduce the power consumption of the electronic devices in

addition to reduce their sizes while keeping them functional in order to improve the

power transfer efficiency,

� Third: It is always possible to combine ambient energy harvesters with the self-

capacitance based WPT to wirelessly self-power the electronic devices without involv-

ing an external power source.

In the next chapter, I will show some preliminary results and suggestions for future work to

make the SC-WPT applications a reality in the near future.
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Chapter 6

Conclusion

In this thesis, we focused on overcoming the problem of low power transfer efficiency (PTE)

associated with conventional wireless power transfer approaches. The conventional wireless

power transfer approaches use ; radio frequency (RF), Induction (Ind) and Ultrasound (US)

to deliver the power to wearable and implantable electronic devices. We introduced a new

highly efficient nonconventional wireless power transfer (WPT) technology through the in-

vestment of the human body’s self-capacitance (SC) to deliver electrical power wirelessly

to sub-millimeter sized wearable electronic devices and over a relatively long distance. We

proved theoretically and experimentally that the self-capacitance (SC)-based WPT has sig-

nificant advantages in terms of the power transfer-efficiency (PTE) (close to 99%), receiver

form-factor, and system scalability in addition to misalignment insensitivity when compared

to other approaches/modes of WPT methods. Wearable electronic devices are responsible

for wireless health monitoring and fitness tracking, and they consist of various functional

blocks for power management, sensing/actuation, communication and sometimes even signal

processing. Depending on their design and application’s constraints, their power consump-

tion varies from a few micro-Watts to a few milli-Watts. Also, in this thesis, we focused on

reducing the operational power consumption of wearable electronic devices by shrinking the
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size of their functional blocks which can lead to prolonging their lifetime and making their

future applications feasible.

6.1 Thesis Contributions

The main contributions of this thesis can be outlined as follows:

� The first to Introduce the concept of self-capacitance based wireless power transfer

(SC-WPT), which is capable of transferring adequate power on-demand to millimeter

size and less wearable electronic devices, and investigate its limitations.

� The first to investigate hybrid SC-WPT and telemetry/sensing, thereby developing

a complete design of the SC-WPT to transfer microwatts of power wirelessly to de-

signed and implemented power-efficient telemetry/sensors associated with radio fre-

quency RF-signal backscattering antenna used for remote sensing of important biolog-

ical/physiological parameters.

� The first to demonstrate and verify the SC-WPT technique through the modeling

and optimization to maximize the power transfer efficiency (PTE), where the PTE

parameter of the SC-WPT has been analyzed.

� The first to extend the SC-WPT to wireless power broadcasting (WPB) with appli-

cations for long-term monitoring through the design and implementation of energy-

efficient diagnostic cages and smart rooms.
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Figure 6.1: Self-powering based SC-WPT : (a) Experimental setup showing an SC-WPT
configuration using a piezo igniter as a power source; (b) Future envision of the Biomecha-
tronics approach showing self-powering based SC-WPT using the human shoe as a self-power
generator [3–5].

6.2 Future Work

The advantages of the proposed SC-WPT make it a better fit for wearable electronic devices

and possibly even implantable electronic devices. Therefore, I recommend in the future to im-

prove this approach even more through making the entire system self-powered by harvesting

the energy from the motion of the ambulatory system or from the environment using dif-

ferent methods of energy-harvesting modalities. We have preliminary data of self-powering

based SC-WPT from the experimental setup shown in Figure 6.1, where we replaced the

floating ground function generator in Figure 3.6 (a) with a piezo igniter (that creates voltage

as a single spark when it is struck) as shown in Figure 6.1 (a) and we were able to harvest

around 200 mV in the receiver side every time we click the igniter. In future, as a feasible

Biomechatronics approach we will work on designing a shoe power source for this purpose
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by setting a piezo igniter or similar inside the shoe to harvest the energy from human walk-

ing/running as shown in Figure 6.1 (b) to prove the concept. This energy harvesting ability

in the absence of an external power source will complement our proposed wireless power

transfer Biomechatronics approach and improve its reliability.

It could also be possible to extend the SC-WPT to be applicable for implantable devices

through converting the electrical energy into different energy forms that can penetrate or

propagate through a human body to reach implantable devices.

Finally, we will continue investigating different and alternative modalities of low-power ana-

log and digital circuits designs to relax their power requirements in addition to shrinking

their sizes, making the future design of applications for the Internet-of-things (IoT) even

more promising.
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Appendix A

Safety of Self-Capacitance-based
WPT

WPT systems induce electric fields in the human body tissue if a body is in close vicinity
to the power source. This near-field exposure may pose safety issues like tissue heating
from radio frequency absorption or nerve stimulation due to induced currents or fields [95].
Previously, some studies discussed the human body exposure to different WPT [96,97], but
the available data according to U.S. Federal Communication Commission (FCC) are scarce
and can not be used as a clear guideline for accurate quantification of this exposure.

In this thesis, we recruited human subjects for the obtaining experimental results to verify
the proposed power transfer technique under approved IRB protocol #201907109, safety is
an important factor that was considered. U.S. Food and Drug Administration (FDA) limits
on power dissipation for SC-based WPT is estimated to be 2.5( mW

mm2 ) [47, 49, 98] which is
significantly higher than the microwatts of power delivery reported in this paper. Further-
more, the devices used in sourcing the AC for these experiments were configured to limit the
potential for a shock hazard in a short circuit event. This limit is defined for the galvanic
DC current, but in our experiments we utilized the displacement current, which is safer than
DC current, and no human body came in direct contact with electrified conductive substrate
or power source electrode. Instead, the sole connection was through a coupling capacitor
constructed by the human body and the electrically-isolated source electrode.
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