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Abstract

This article presents the dynamics of a discrete-time prey-predator system with square root functional response incorporating θ−logistic growth. This type
of functional response is used to study the dynamics of the prey-predator system where the prey population exhibits herd behavior, i.e., the interaction
between prey and predator occurs along the boundary of the population. The existence and stability of fixed points and Neimark-Sacker Bifurcation (NSB)
are analyzed. The phase portraits, bifurcation diagrams, and Lyapunov exponents are presented and analyzed for different parameters of the model.
Numerical simulations show that the discrete model exhibits rich dynamics as the effect of θ−logistic growth.
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1. Introduction

For the purpose of system modeling and analysis in biomathematical literature, discrete-time models are more
considered an essential tool. Firstly, discrete-time models are more suitable for describing systems which evolve
over time. Secondly, compared with continuous-time models, the advantage they offer is that they are generally
more direct, more convenient, and more accurate to formulate. Thirdly, recent works have shown that for
discrete-time models the dynamics can produce a much richer set of patterns than those observed in
continuous-time models [1–4]. In the research articles [5–7], the authors studied the various dynamical
behaviours of discrete predator-prey systems with refuge. Stability, bifurcation, chaos are studied by authors
[8–11] in discrete-time predator-prey.

In ecology, depending on the abundance of the populations, various authors use different types of functional
responses in population models. Hence, the choice of functional response is important to make a realistic model.
The useful functional responses are the three Holling-type functional responses. But there are some prey
populations which exhibit herd behavior, i.e., the interaction between prey and predator occurs along the
boundary of the prey population. This type of interaction cannot be explained fully using the Holling-type
responses. In reality, a class of prey population exhibits herd behavior so that the capturing rate of prey by a
predator will be different from usual models. For example, the capturing rate of zooplankton by a fish in the
ocean is greater than the capturing rate of phytoplankton by a fish. In this case, the phytoplankton exhibits herd
behavior. To interpret the herd behavior of the prey population, we took into account the square root of the prey
population so that the predator interacts with the prey along the outer corridor of the herd of the prey. Even
though the logistic model includes more population growth factors, the basic logistic model is still not good
enough. As a large population size continues to grow, the individual growth rate should slow down. This new
finding is not included in the classical model. In order to fit data better and address the limitations from the
classic logistic model, Gilpin and Ayala presented a new version of the logistic model called “theta-logistic
model”[12, 13]. A new term θ is added to the classic logistic model. The linear density dependence held by the
classical logistic model can be altered to curvilinear. It is this θ that provides the additional generality and
flexibility to explain the impact by the change of individual growth rate parameter r with respect to population
density x.

The rest of the paper is organized as follows: In Section 2, a discrete-time prey-predator model is formulated.
Section 3 deals with the local stability analysis of the proposed model. Bifurcation of the proposed system studied
in Section 4. Section 5 presents numerical simulations to support the dynamical analysis of the proposed model.
Finally, this paper ends with a conclusion in Section 6.
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2. Mathematical model

This works studies the modified Lotka-Volterra prey-predator model with square root functional response
incorporating θ−logistic growth. The prey-predator dynamics is governed by following system of equation:

dx
dt

=rx
(

1−
( x

k

)θ
)
− cy
√

x,

dy
dt

=dy
√

x− f y,
(1)

with initial condition
x(t) ≥ 0, y(t) ≥ 0, (2)

where x and y denote the density of prey and predator populations respectively at any time t. All involved
parameters are kept positive and their biological meanings are as follows: r is the intrinsic per capita growth
rate of prey population, θ is a dimensionless parameter influencing the curvature of the relationship between
the exponential rate of growth and prey population density, k is the environmental carrying capacity of prey
population, c is the maximal per capita consumption rate of predators, d is the efficiency with which predators
convert consumed prey into new predators, and f is the per capita death rate of predators.

To derive a discrete-time model from (1), let dx
dt =

xt+h−xt
h , and dy

dt =
yt+h−yt

h , where xt and yt are the densities of
the prey and predator populations in discrete time t. Let h→ 1 and f = 1, we have the equations for the (n + 1)th

generation of the prey and predator populations replacing t by n as follows:

xn+1 =(r + 1)xn

(
1− r

(r + 1)

( xn

k

)θ
)
− cyn

√
xn,

yn+1 =dyn
√

xn.
(3)

Let r
kθ(r+1) =

1
bθ and (r + 1) = a, we obtain the discrete-time predator-prey system from (3) as follows:

xn+1 =axn(1−
( xn

b

)θ
)− cyn

√
xn,

yn+1 =dyn
√

xn,
(4)

where a, b, c, d and θ are all positive constants. By the biological meaning of the model variables, we only consider
the system in the region Ω = {(x, y) : x ≥ 0, y ≥ 0} in the (x, y)−plane.

2.1. Positivity

Theorem 1. Every solution of system (1) with initial conditions (2) exists in the interval [0, ∞) and x (t) ≥ 0, y (t) ≥ 0
for all t ≥ 0.

proof. Since the right hand side of system (1) is completely continuous and locally Lipschitzian on C, the solution
(x(t), y(t)) of (1) with initial conditions (2) exists and is unique on [0, ξ), where 0 < ξ ≤ +∞. From system (1)
with initial conditions (2), we have

x (t) = x (0) exp
[∫ t

0

{
r
(

1−
(

x(s)
k

)θ
)
− cy(s)√

x(s)

}
ds
]
≥ 0,

y (t) = y (0) exp
[∫ t

0

{
d
√

x(s)− f
}

ds
]
≥ 0,

which completes the proof. �

2.2. Boundedness

The boundedness of a model guarantees its validity. The following theorem ensures uniform boundedness of all
solutions of the system (1).

Theorem 2. All solutions of system (1) are uniformly bounded.
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proof. Let (x(t), y(t)) be any solution of system (1). Since dx
dt ≤ rx(1− ( x

k )
θ), we have lim

t→∞
sup x(t) ≤ k. Let

w = x +
c
d

y.

Then
dw
dt

=
dx
dt

+
c
d

dy
dt

= rx(1− (
x
k
)θ)− c f

d
y ≤ 2rk− ρw, where ρ = min {r, f } .

Therefore
dw
dt

+ ρw ≤ 2rk.

Applying a theorem on differential inequalities, we obtain

0 ≤ w (x, y) ≤ 2rk
ρ

+ w (x(0), y(0)) exp (−ρt) ,

and for t→ ∞,

0 ≤ w (x, y) ≤ 2rk
ρ

.

Thus, all solutions of (1) enter into the region

B =

{
(x, y) : 0 ≤ w (x, y) ≤ 2rk

ρ
+ ε, for any ε > 0

}
.

�

3. Fixed points and stability analysis

Fixed points of the system (4) are determined by solving the following non-linear system of equations:

x =ax
(

1−
( x

b

)θ
)
− cy
√

x,

y =dy
√

x.

We get three non-negative fixed points by solving above equations: (i) P0 = (0, 0) , (ii) P1 =

(
b
(

a−1
a

) 1
θ , 0
)

,

a > 1, and (iii) P2 = (x2, y2) , here x2 = 1
d2 and y2 = 1

cd

[
a
(

1−
(

1
bd2

)θ
)
− 1
]

, b
(

a−1
a

) 1
θ
> 1

d2 .

3.1. Dynamic behavior of the discrete system

The discussion about the dynamical behaviour of model (4) is carried out in this sub-section. The Jacobian Matrix
J for the system (4) is

J =

 a
(

1− (θ + 1)
( xn

b
)θ
)
− cyn

2
√

x −c
√

xn
dyn

2
√

xn
d
√

xn

 .

The characteristic equation of the matrix J is λ2 − £λ += = 0, where

£ =a
(

1− (θ + 1)
( xn

b

)θ
)
− cyn

2
√

xn
+ d
√

xn,

= =ad
√

xn

(
1− (θ + 1)

( xn

b

)θ
)

.

Hence the discrete-time system (4) is said to be:

(i) a dissipative dynamical system if
∣∣∣ad
√

xn

(
1− (θ + 1)

( xn
b
)θ
)∣∣∣ < 1,

(ii) a conservative dynamical system if and only if
∣∣∣ad
√

xn

(
1− (θ + 1)

( xn
b
)θ
)∣∣∣ = 1, and

(iii) an undissipated dynamical system otherwise.
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3.1. Stability and dynamic behavior at P1

The Jacobian matrix at the fixed point P1 =

(
b
(

a−1
a

) 1
θ , 0
)

is

J =

 1− θ(a− 1) −c
√

b
(

a−1
a

) 1
2θ

0 d
√

b
(

a−1
a

) 1
2θ

 .

The equilibrium point P1 is said to be:

(i) Sink if |1− θ(a− 1)| < 1, and
∣∣∣∣d√b

(
a−1

a

) 1
2θ

∣∣∣∣ < 1,

(ii) Source if |1− θ(a− 1)| > 1, and
∣∣∣∣d√b

(
a−1

a

) 1
2θ

∣∣∣∣ > 1,

(iii) Saddle if |1− θ(a− 1)| > 1, and
∣∣∣∣d√b

(
a−1

a

) 1
2θ

∣∣∣∣ < 1; or |1− θ(a− 1)| < 1, and
∣∣∣∣d√b

(
a−1

a

) 1
2θ

∣∣∣∣ > 1,

(iv) Non-hyperbolic if |1− θ(a− 1)| = 1 or
∣∣∣∣d√b

(
a−1

a

) 1
2θ

∣∣∣∣ = 1.

3.1. Dynamic behavior around the interior fixed point

From the Jacobian matrix at the interior fixed point P2 (x2, y2) , we get

1− £ += =1− a
(

1− (θ + 1)
( x2

b

)θ
)
+

cy2

2
√

x2
− d
√

x2 + ad
√

x2

(
1− (θ + 1)

( x2

b

)θ
)

,

1 + £ += =1 + a
(

1− (θ + 1)
( x2

b

)θ
)
− cy2

2
√

x2
+ d
√

x2 + ad
√

x2

(
1− (θ + 1)

( x2

b

)θ
)

.

If 1− £ + = > 0, then interior equilibrium point P2 (x2, y2) is: (i) Sink if 1 + £ + = > 0 and = < 1, (ii) Source
if 1 + £ + = > 0 and = > 1, (iii) Saddle if 1 + £ + = < 0, (iv) Non-hyperbolic if 1 + £ + = = 0 and £ 6= 0, 2, or
£2 − 4= < 0 and = = 1.

If 1− £ += > 0, £2 − 4= < 0, and = = 1, then P2 (x2, y2) can undergo NSB.

4. Neimark-Sacker bifurcation

In this section, we discuss NSB for the positive fixed point P2 (x2, y2) of system (4) taking θ as a bifurcation
parameter. NSB is equivalent to the Hopf bifurcation in continuous time system. We discuss the NSB of the
discrete prey-predator model (4) at P2 (x2, y2) for the parameters lies in the following set A = {(a, b, c, d, θ) :
1− £ += > 0, £2 − 4= < 0, = = 1}.

In analyzing the NSB, θ is used as the bifurcation parameter. Further θ∗ is the perturbation of θ where |θ∗|≪ 1,
we consider a perturbation of the model as follows:

xn+1 =axn(1−
( xn

b

)θ+θ∗

)− cyn
√

xn ≡ f (xn, yn, θ∗),

yn+1 =dyn
√

xn ≡ g(xn, yn, θ∗).
(5)

Let un = xn − x2, vn = yn − y2, then equilibrium P2 (x2, y2) is transformed into the origin, and further expanding
f and g as a Taylor series at (un, vn) = (0, 0) to the third order, the model (5) becomes

un+1 =α1un + α2vn + α11u2
n + α12unvn + α22v2

n + α111u3
n + α112u2

nvn+

α122unv2
n + α222v3

n + O((|un|+ |vn|)4),

vn+1 =β1un + β2vn + β11u2
n + β12unvn + β22v2

n + β111u3
n + β112u2

nvn+

β122unv2
n + β222v3

n + O((|un|+ |vn|)4),

(6)

where α1 = fx(x2, y2, 0), α2 = fy(x2, y2, 0), α11 = fxx(x2, y2, 0), α12 = fxy(x2, y2, 0), α22 = fyy(x2, y2, 0),
α111 = fxxx(x2, y2, 0), α112 = fxxy(x2, y2, 0), α122 = fxyy(x2, y2, 0), α222 = fyyy(x2, y2, 0), β1 = gx(x2, y2, 0),
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Figure 1. Bifurcation diagram with respect to a

Figure 2. Lyapunov exponents with respect to a

Figure 3. Phase portraits of the system for different values of a

β2 = gy(x2, y2, 0), β11 = gxx(x2, y2, 0), β12 = gxy(x2, y2, 0), β22 = gyy(x2, y2, 0), β111 = gxxx(x2, y2, 0),
β112 = gxxy(x2, y2, 0), β122 = gxyy(x2, y2, 0), and β222 = gyyy(x2, y2, 0).

Note that the characteristic equation associated with the linearization of the model (6) at (un, vn) = (0, 0) is given

by λ2 − ℘(θ∗)λ + ℵ(θ∗) = 0. The roots of the characteristic equation are λ1,2(θ
∗) =

℘(θ∗)±i
√

4ℵ(θ∗)−(℘(θ∗))2

2 .

From |λ1,2(θ
∗)| = 1, and θ∗ = 0, we have |λ1,2(θ

∗)| = [ℵ(θ∗)] 1
2 and l =

[
d|λ1,2(θ

∗)|
dθ∗

]
h∗=0

6= 0.

In addition, it is required that when θ∗ = 0, λi
1,2 6= 1, i = 1, 2, 3, 4, which is equivalent to ℘(0) 6= −2,−1, 1, 2.

To study the normal form, let γ = Im(λ1,2) and δ = Re(λ1,2). We define T =

[
0 1
γ δ

]
, and using the
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Figure 4. Bifurcation diagram with respect to θ

Figure 5. Lyapunov exponents with respect to θ

Figure 6. Phase portraits of the system for different values of a

transformation
[

un
vn

]
= T

[
x̄n
ȳn

]
, the model (6) becomes

x̄n+1 =δx̄n − γȳn + f1(x̄n, ȳn),
ȳn+1 =γx̄n + δȳn + g1(x̄n, ȳn),

(7)

where the functions f1 and g1 denote the terms in the model (7) in variables (x̄n, ȳn) with the order at least two.

In order to undergo NSB, we require that the following discriminatory quantity Ω be nonzero:

Ω = −Re
[
(1− 2λ̄)λ̄2

1− λ
ξ11ξ20

]
− 1

2
|ξ11|2 − |ξ02|2 + Re(λ̄ξ21),
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where

ξ20 =
δ

8
(2β22 − δα22 − α12 + 4γα22 + i (4γα22 − 2α22 − 2δα22)) +

γ

4
α12

+ i
1
8

(
4γβ22 + 2γ2α22 − 2α11

)
+

β12

8
+

δα11 − 2β11 + δ3α22 − δ2β22 − δ2α12 + δβ12

4γ
,

ξ11 =
γ

2
(β22 − δα22) + i

1
2
(γ2α22 + α11 + δα12 + δ2α22) +

β11 − δα11 + δβ12 − δ2α12 − 2δ2β22 + 2δ3α22

2γ
,

ξ02 =
1
4

γ(2δα22 + α12 + β22) + i
1
4
(β12 + 2δβ22 − 2δα12 − α11)−

β11 − δα11 + δβ12 − δ2α12 + δ2β22 − δ3α22

4γ

+
1
4

α22i(γ2 − 3δ2),

ξ21 =
3
8

β222(γ
2 + δ2) +

β112

8
+

δ

4
α112 +

δ

4
β122 + α122(

γ2

8
+

3δ2

8
− δ

4
) +

3
8

α111 + i
3
8

α222(γ
2 + 2δ2)

+ i
3γδ

8
α122 −

1
8

β122γi− i
3γδ

8
β222 − i

3β111 − 3δα111

8γ
− i

3δβ112 − 3δ2α112

8γ
− i

3δ2β122 − 3δ3α122

8γ

− i
3δ3β222 − 3δ4α222

8γ
.

Finally, we have the following result from the above analysis.

Theorem 3. If Ω 6= 0 then the model (4) undergoes NSB at P2 (x2, y2) when the parameter θ∗ varies in a small
neighborhood of the origin. If Ω < 0 (Ω > 0), then an attrcting (repelling) invariant closed curve bifurcates from
P2 (x2, y2) for θ∗ > 0 (θ∗ < 0).

5. Numerical simulations

In this section, some numerical simulations are provided to confirm our analytical and mathematical
investigations.

Example 1. Choosing parameters a ∈ [2, 3.4], b = 1.0, c = 0.5, d = 2.0, θ = 0.8, and with initial condition
(0.6, 0.4) system (4) undergoes NSB when a ≈ 2.461001. Bifurcation diagrams, Lyapunov exponents and and
phase portraits of the corresponding system are depicted in Figures 1 to 3 respectively.

Example 2. Choosing parameters a = 3.0, b = 1.0, c = 0.5, d = 2.0, θ ∈ [0.5, 0.9], and with initial condition
(0.6, 0.4) system (4) undergoes NSB when θ ≈ 0.655555. Bifurcation diagrams, Lyapunov exponents and and
phase portraits of the corresponding system are depicted in Figures 4 to 6 respectively.

6. Conclusion

In this paper, the effects of θ−logistic growth for prey on a prey-predator interaction are studied through the
analytical and graphical approach. We have discussed the effects concerning the local stability of the interior
equilibrium point and the long-term dynamics of the interacting populations. The results show that the impact
of θ−logistic growth for prey can destabilize the interior equilibrium point of the proposed prey-predator model.
We have studied the bifurcations of the proposed discrete prey-predator model. It is shown that the model
exhibits Neimark-Sacker Bifurcation, as the values of parameters vary.
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