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Abstract 

Participating longevity-linked life annuities (PLLA) are an interesting solution to manage systematic 

longevity risk in markets in which alternative risk management solutions are scarce and/or expensive and 

in which there are significant demand- and supply-side constraints that prevent individuals from annuitizing 

their retirement wealth. In this paper we revisit, complement and expand previous research on the design, 

valuation and willingness to pay for various index-type PLLA structures. Contrary to previous studies that 

use a single model to forecast mortality rates, we develop a novel approach based on a Bayesian Model 

Ensemble of generalised age-period-cohort stochastic mortality models. To determine which models 

received a greater or lesser weight in the final projections, we implemented a backtesting cross-validation 

approach. We use Taiwan (mortality, yield curve and stock market) data from 1980 to 2019 and adopt a 

longevity option decomposition valuation approach. The empirical results provide significant valuation and 

policy insights for building post-retirement income, particularly in Asian countries. 

Keywords: Longevity-linked life annuities; Bayesian Model Ensemble; forecasting methods; longevity 

options; Pension design. 

 

1. INTRODUCTION 

Pension funds and annuity providers face uncertainty regarding financial returns and systematic longevity risk 

due to unexpected future mortality improvements. Although advances in longevity are not homogenous across 

socioeconomic groups, providing an efficient risk pooling mechanism that addresses the (individual) 

uncertainty of death through the provision of a lifetime annuity is one of the main mechanisms pension schemes 

are considered to redistribute income in a welfare-enhancing manner (Ayuso, Bravo and Holzmann, 2017a,b, 

2020; Bravo, 2019). Without such an instrument, individuals risk outliving their accumulated wealth or leaving 

unintended bequests to his/her dependants. Traditional life annuities are a key instrument in mandated Defined 

Benefit (DB) pension schemes, in financial (FDC) and non-financial Notional (NDC) Defined Contribution 

schemes and in private pensions provided by insurance companies (Bravo and Herce, 2020). 

Contrary to standard Modigliani life-cycle model of savings and consumption prediction, the voluntary market 

purchase of retirement annuities is in most countries very limited and decreasing and the actual 

saving/dissaving behaviour after retirement is often at odds with economic theory (Holzmann et al., 2020). 

Several demand side (e.g., perceived poor value-for-money, the existence of annuity alternatives, bequest 

motives, behavioural and informational limitations, taxation1) and supply-side (e.g., the regulatory burden of 

 

1 See, e.g., Bravo (2016) for a detailed discussion on the taxation of pensions. 
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annuity providers, with onerous capital requirements for unhedgeable risks (e.g., longevity risk) within 

Solvency II, nearly zero interest rate environment and significant interest rate risk and credit risk exposure2, 

long-term financial risk, the cost of loss control and loss financing longevity risk management solutions, 

limited reinsurance capacity to absorb massive exposure-to-risk) arguments have been put forward to explain 

this "annuity puzzle", i.e., to explain why the level of annuitization by individuals is much smaller than 

economic theory would suggest. Together with the development of capital market longevity-linked securities 

and their derivatives and innovative reinsurance designs, this has increased the attention towards new contract 

structures involving financial and longevity risk sharing mechanisms between the annuity provider and 

annuitants, and increased recommendations towards the use of deferred annuities. 

Several alternative index-type and indemnity-type mechanisms have been proposed in the literature to directly 

or indirectly share financial and longevity risks between annuity providers and individuals. They typically 

involve updating the annuity benefit according to observed mortality and investment developments. Depending 

on the contract design and underlying asset performance, future annuity benefits may decline with time, an 

undesirable feature that must be compensated at contract inception through lower prices or higher initial 

benefits (a risk premium). For instance, in investment-linked annuities payments fluctuate according to the 

actual return of the asset portfolio backing the contract. In traditional participating (with-profit) annuities 

payments depend on the providers overall performance regarding mortality, investments, and expenses. In 

longevity-linked life annuities (Bravo and El Mekkaoui de Freitas, 2018) benefits are updated periodically 

based on the dynamics of both a longevity index and of an interest rate adjustment factor. Lüthy et al. (2001) 

suggest updating benefits based on the ratio between the annuity factor computed at contract inception and the 

one based on the latest mortality forecast. Richter and Weber (2011) and Maurer et al. (2013) suggest setting 

up a contingency fund to reduce the risk of insufficiently funded contracts originated by longevity risk and 

propose a benefit updating mechanism in which policyholders participate in surplus due to mortality 

fluctuations but do not have to cover deficit scenarios. Alho, Bravo and Palmer (2013) investigate the 

consequences of introducing periodically revised annuities in NDC pension schemes and suggest updating 

benefits periodically based on the relationship between expected and observed period life expectancy. Denuit 

et al. (2015) propose sharing longevity risk by updating the deferment period of longevity-contingent deferred 

life annuities to accommodate mortality improvements while keeping payments fixed once they start. Blake et 

al. (2003) propose participating annuities which pay survivor credits to annuitants according to the mortality 

experience of a given pool of annuitants. Alternative ways of sharing longevity risk have been proposed in the 

context of the design and reform of public pension schemes, e.g., the conditional indexation in collective DC 

plans in the Netherlands and the so-called defined-ambition schemes (Bovenberg et al., 2015), the automatic 

adjustment mechanism in NDC schemes (Sweden) or the reform project of the first pillar in Belgium with the 

adoption of a points system with Musgrave rule (Devolder & de Valeriola, 2019), in tontine annuities 

 

2 See, e.g., Bravo and Silva (2006) and Simões, Oliveira and Bravo (2019) for single and multiple ALM interest rate risk immunization 

strategies for pension funds and annuity providers and Chamboko and Bravo (2016, 2019a,b, 2020) and Ashofteh and Bravo (2019, 

2020) for a discussion on credit risk. 
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(Milevsky and Salisbury, 2015, 2016; Chen et al., 2018), and in non-insurance (closed or open) pooling 

mechanisms that do not provide financial or longevity guarantees (insurance) like Group-Self Annuitization 

(GSA) schemes (Piggott et al., 2005; Valdez et al., 2006; Qiao and Sherris, 2013; Hanewald et al., 2013; Boyle 

et al., 2015), Pooled Annuity Funds (Stamos, 2008; Donnelly et al., 2013; Bräutigam, Guillén and Nielsen, 

2017), and Annuity Overlay Funds (Donnelly et al., 2014; Donnelly, 2015). 

Against this background, this paper revisits, complements and expands previous results on the design and 

pricing of index-type Participating Longevity-Linked Life Annuities (PLLA). We consider an index-type 

PLLA and empirically investigate the pricing of both immediate and deferred participating and non-

participating annuity structures. Contrary to previous studies that use a single model to forecast mortality rates, 

we develop a novel approach based on a Bayesian Model Ensemble (BME) of six well known Generalised 

Age-Period-Cohort (GAPC) stochastic mortality models, all of which probabilistically contribute towards 

projecting future age-specific mortality rates, survival probabilities and PLLA prices. Ensemble methods 

reduce the inherent uncertainty in the choice of the appropriate projection model (model risk) and account for 

additional sources of risk not captured in a single model framework. Moreover, the BME considers how well 

each individual model performs in predicting mortality rates at the time of computing final projections. To 

determine which models received a greater or lesser weight in the final projections, we carry out a backtesting 

exercise to determine individual model forecasting accuracy considering a common "lookback window" and a 

5-year forecasting horizon. 

We investigate alternative annuity arrangements in which both financial and longevity risks are shared between 

the provider and annuitants, including capped PLLAs that limit benefit volatility and provide longevity 

insurance. For the valuation, we use a longevity option decomposition approach and present new results for 

deferred PLLAs. Additionally, we empirically investigate price sensitivity with regards to changes in the the 

guaranteed interest rate and in the investment strategy by considering a more aggressive lifecycle approach. 

We use Taiwan (mortality, yield curve and stock market) data from January 1980 to June 2019 to calibrate the 

models. Previous studies have focused on the development of innovative annuity contracts in mature European 

or North American markets. In this paper we contribute to the literature by focusing instead on emerging and 

high potential Asia Pacific annuity markets in which building post-retirement income is an urgent issue due to 

advances in longevity and in which Equity-indexed annuities and variable annuities are becoming increasingly 

important (Chiu, Hsieh, and Tsaib, 2019).  

The setting comprises a risk-neutral, frictionless and continuous financial market in which the annuity provider 

invests the insurance premium in a portfolio of dividend-paying stocks and coupon bonds, and a risk-free 

interest rate. We assume the yield curve dynamics is well captured by a two-factor equilibrium Vasicek (1977) 

model and the stock market index follows a standard geometric Brownian motion diffusion process. To account 

for the longevity risk premium in pricing the contracts, we compute cohort-specific risk-adjusted survival 

probabilities by using a risk-neutral simulation approach assuming the dynamics of mortality rates is well 

represented by a BME of stochastic mortality models, with period and cohort indices modelled using standard 
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time series methods and risk neutral distribution of the innovations obtained using the Wang transform. We 

assume individuals want to optimize the expected present value of utility derived from consumption (annuity 

income) through their remaining lifetime and compute the fair value of the utility-equivalent fixed life annuity 

that delivers the same lifetime utility as the PLLA, considering for alternative time preference and risk aversion 

parameters. A sensitivity analysis of model results is provided. The remainder of the paper is organized as 

follows. In Section 2, we briefly describe the benefit structure and risk sharing design of PLLAs and introduce 

the valuation setup. Section 3 describes the financial and stochastic mortality models adopted to empirically 

investigate the fair value of the contracts. In Section 4 we analyse and discuss the simulation results for the fair 

value of participating and non-participating PLLAs and embedded longevity options and investigate the 

robustness of the results against changes in some key models and parameters. Section 5 concludes and provides 

guidance for further research. 

2. THE SETUP 

2.1. Benefit Structure and Risk Sharing design 

Consider an index-type participating longevity-linked life annuity (PLLA) along the lines proposed by Bravo 

and El Mekkaoui de Freitas (2018). Under this contract, the annuity benefit is updated periodically based on 

both the observed survival experience of a reference pool and the investment performance of the financial 

assets backing the contract. Without loss of generality, let us assume that annuitants contribute equal amounts 

into the annuity fund and, in return, receive equal annuity benefit payments 𝑏𝑡 at time 𝑡. The authors show 

that the annual benefit at some future date 𝑡0 + 𝑘, 𝑏𝑡0+𝑘 will depart from the initial benefit 𝑏𝑡0
 depending on 

the dynamics of both a longevity factor 𝐼𝑡0+𝑘 and an interest rate adjustment (IRA) factor 𝑅𝑡0+𝑘, 

𝑏𝑡0+𝑘 = 𝑏𝑡0
× 𝐼𝑡0+𝑘 × 𝑅𝑡0+𝑘,      𝑘 = 1, … , 𝜔 − 𝑥0, (1) 

where 𝐼𝑡0+𝑘 is a ratio between the expected survival probability and the survival rate observed in a reference 

population, defined by 

𝐼𝑡0+𝑘 =
𝑝𝑘 𝑥0

[𝐹0]
(𝑡0)

𝑝𝑘 𝑥0

[𝐹𝑘]
(𝑡𝑘)

= ∏
𝑝𝑥0+𝑗

[𝐹0]
(𝑡0 + 𝑗)

𝑝𝑥0+𝑗
[𝐹𝑘]

(𝑡0 + 𝑗)
,

𝑘−1

𝑗=0

 (2) 

with 

𝑝𝑘 𝑥0+𝑗
[𝐹0]

(𝑡0 + 𝑗) = ∏[1 − 𝑞𝑥0+𝑗(𝑡0 + 𝑗)],

𝑘−1

𝑗=0

 (3) 

denoting the k-year survival probability of some reference population cohort aged 𝑥0 at time 𝑡0 (𝐹0 measurable, 

i.e., computed at contract inception on a market or national population life table) and 𝑝𝑘 𝑥0

[𝐹𝑘]
(𝑡𝑘) is the 

corresponding k-year survival probability observed at time 𝑡𝑘 (𝐹𝑘 measurable) and 𝜔 the highest-attainable 
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age. In (3), 𝑞𝑥0+𝑗(𝑡0 + 𝑗) is the 1-year death probability of an individual aged 𝑥0 + 𝑗 at time 𝑡0 + 𝑗. The IRA 

factor 𝑅𝑡0+𝑘 is defined by 

𝑅𝑡0+𝑘 =
∏ (1 + 𝑅𝑡)𝑘−1

𝑗=0

(1 + 𝑖𝑡0
)

𝑘
, (4) 

where 𝑅𝑡 denotes the observed net investment return in year 𝑡 and 𝑖𝑡0 is the (generally non-negative) guaranteed 

minimum interest rate set at time 0. If 𝑅𝑡 = 𝑖𝑡0 t and mortality improvements are as expected (i.e., 𝐼𝑡0+𝑘 = 1 

k), the arrangement resembles a classical life annuity with fixed-return and fixed-benefit. If 𝑅𝑡 = 𝑖𝑡0
 and 

observed longevity improvements are higher (lower) than predicted, i.e., 𝐼𝑡0+𝑘 < 1 (𝐼𝑡0+𝑘 > 1) k, the annuity 

payments will decline (increase) along with the dynamics of 𝐼𝑡0+𝑘. If mortality improvements are as expected 

and investments perform above the guaranteed interest rate (i.e., 𝑅𝑡0+𝑘 > 1  k), the extra return is returned 

to participants in the form of a higher benefit payment. If 𝐼𝑡0+𝑘 < 1 and 𝑅𝑡0+𝑘 > 1 the better than expected 

investment returns may at least partially compensate the negative impact of higher than expected mortality 

improvements. At annuity inception, the longevity and the IRA indexes are random variables and, hence, future 

annuity benefits are uncertain. This contrasts with traditional fixed life annuity contracts that guarantee a 

constant benefit while the annuitant is alive, independently of longevity and financial performance 

developments, transferring thus all risks (financial and biometric) to the provider. 

Appropriate bounds to the longevity and IRA adjustment factors (or to the benefit amount) can in principle be 

introduced to offer partial guarantees, limit the volatility of annuity payments, to provide effective longevity 

insurance or to limit the profit-share. For instance, in Bravo and El Mekkaoui de Freitas (2018) the authors 

suggest to limit the risk beared by policyholders by adding (possibly) time-dependent upper 𝐼𝑡0+𝑘
𝑚𝑎𝑥(𝑡) and lower 

𝐼𝑡0+𝑘
𝑚𝑖𝑛 (𝑡) barriers for the longevity index, i.e., 0 < 𝐼𝑡0+𝑘

𝑚𝑖𝑛 (𝑡) < 1 < 𝐼𝑡0+𝑘
𝑚𝑎𝑥(𝑡). In the particular case caps and 

floors are constant during the whole contract, 𝐼𝑡0+𝑘
𝑚𝑎𝑥(𝑡) = 𝐼𝑚𝑎𝑥 and 𝐼𝑡0+𝑘

𝑚𝑖𝑛 (𝑡) = 𝐼𝑚𝑖𝑛 for 𝑘 = 1, … , 𝜔 − 𝑥0. In 

a capped PLLA the longevity index is replaced by its capped version 

𝐼𝑡0+𝑘 (𝐼𝑡0+𝑘
𝑚𝑖𝑛 (𝑡), 𝐼𝑡0+𝑘

𝑚𝑎𝑥(𝑡)) = 𝑚𝑎𝑥{𝑚𝑖𝑛(𝐼𝑡0+𝑘
𝑚𝑎𝑥(𝑡); 𝐼𝑡0+𝑘); 𝐼𝑡0+𝑘

𝑚𝑖𝑛 (𝑡)}. (5) 

Equation (1) states that in a PLLA annuity benefits are adjusted upwards (downwards) depending on whether 

the observed survival probability is higher (lower) than predicted at contract inception and the realized 

investment return is above (below) the guaranteed interest rate. The risk (and profit)-sharing mechanism can 

further be limited by specifying at contract inception a maximum age to apply the benefit adjustment (1), 

eventually in combination with caps and floors, i.e., a contract structure combining a temporary PLLA with a 

deferred life annuity with unknown benefit at time 0. 

2.2. Valuation 

Without loss of generality, consider an immediate PLLA contract with initial benefit 𝑏𝑡0
= 1 offered to an 

individual aged 𝑥0 at time 𝑡0 with remaining lifetime 𝑇𝑥0
(𝑡0) = 𝜔 − 𝑥0. Denoting by {𝑟𝑡: 𝑡 ≥ 0} the risk-free 
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instantaneous interest rate process, and by ℚ the equivalent martingale measure associated to the numeraire 

"money-market account", the ℱ-measurable fair value (single premium) of this contract at time 𝑡0 is given by 

𝑎𝑥0
𝑃𝐿𝐿𝐴(𝑡0) = ∑ 𝐸ℚ

𝜔−𝑥0

𝑘=1

[𝐵(0, 𝑘) ∙ 𝑝𝑘 𝑥0

[ℱ𝑘]
(𝑡𝑘) ∙ 𝐼𝑡0+𝑘 ∙ 𝑅𝑡0+𝑘|ℱ], (6) 

where 𝐵(𝑡, 𝑇) is, for a given interest rate process, an appropriate (deterministic or stochastic) discount factor. 

In the case 𝑅𝑡0+𝑘 = 1, all systematic longevity risk is transferred to annuitants and a pure PLLA is obtained. 

If 𝐼𝑡0+𝑘 = 𝑅𝑡0+𝑘 = 1 (∀𝑘) the design (6) is equivalent to that of a classical fixed level annuity. Consider now 

a deferred PLLA due with initial benefit 𝑏𝑡0
= 1 payable from time 𝑡0 + 𝑢 to an individual then aged 𝑥0 + 𝑢. 

The fair value of this contract is 

𝑎̈𝑢| 𝑥0
𝑃𝐿𝐿𝐴(𝑡0) = ∑ 𝐸ℚ

𝜔−𝑥0−𝑢

𝑘=𝑢

[𝐵(0, 𝑘) ∙ 𝑝𝑘 𝑥0

[ℱ𝑘]
(𝑡𝑘) ∙ 𝐼𝑡0+𝑘 ∙ 𝑅𝑡0+𝑘|ℱ]. (7) 

Similarly, the fair value of an immediate capped PLLA (CPLLA) can be expressed as follows 

𝑎𝑥0
𝐶𝑃𝐿𝐿𝐴(𝑡0) = ∑ 𝐸ℚ

𝜔−𝑥0

𝑘=1

[𝐵(0, 𝑘) ∙ 𝑝𝑘 𝑥0+𝑗
[ℱ𝑘]

(𝑡𝑘) ∙ 𝑚𝑎𝑥{𝑚𝑖𝑛(𝐼𝑡0+𝑘
𝑚𝑎𝑥(𝑡); 𝐼𝑡0+𝑘); 𝐼𝑡0+𝑘

𝑚𝑖𝑛 (𝑡)} ∙ 𝑅𝑡0+𝑘|ℱ]. (8) 

For the valuation of the contract, we adopt the longevity option decomposition developed by Bravo and El 

Mekkaoui de Freitas (2018). Without loss of generality, assume that 𝑏𝑡0
= 1 and that 𝐼𝑡0+𝑘 < 1 and 𝑅𝑡0+𝑘 = 1 

for 𝑘 = 1, … , 𝜔 − 𝑥0. The fair value of a PLLA at time 𝑡0 can be decomposed into a long position in a classical 

fixed annuity 𝑎𝑥0

[ℱ0]
(𝑡0) and a short position in an embedded European-style longevity floor 𝐿ℱ (𝑡0) with 

underlying 𝐼𝑡0+𝑘, constant strike equal to one unit of currency and maturity 𝜔 − 𝑥0 

𝑎𝑥0
𝑃𝐿𝐿𝐴(𝑡0) = 𝑎𝑥0

[ℱ0]
(𝑡0) − ℒℱ (𝑡0), (9) 

with 

ℒℱ (𝑡0) = ∑ 𝐸ℚ

𝜔−𝑥0

𝑘=1

[𝐵(0, 𝑘) ∙ 𝑝𝑘 𝑥0

[ℱ𝑘]
(𝑡𝑘) ∙ (1 − 𝐼𝑡0+𝑘)

+
|ℱ], (10) 

where 𝑎+ ≔ 𝑚𝑎𝑥(𝑎, 0) is the positive part of 𝑎 ∈ ℝ. The longevity floor can be decomposed into a portfolio 

of European-style longevity floorlets with common constant strike and maturities matching the annuity 

payment dates. Similar equations may be derived for a deferred PLLA due with a deferral period of 𝑢 years. 

3. MODEL AND CALIBRATION 

3.1. Mortality forecasting using Bayesian Model Ensemble 

We assume the PLLA’s payoff is dependent on the dynamics of the longevity index computed for Taiwan 

general male population and that individual mortality rates evolve independently from the financial market. 
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Contrary to previous studies that use a single model to forecast mortality rates, in this paper we develop a novel 

approach based on a Bayesian Model Ensemble (BME) of six well known Generalised Age-Period-Cohort 

(GAPC) stochastic mortality models. Ensemble learning methods train several baseline models and use rules 

to combine them together to make predictions. It is an innovative statistical approach to inference in the 

presence of multiple competing statistical models. When compared to a single model, ensemble learning has 

demonstrated to improve traditional and machine learning forecasting results and has been widely applied in 

social and health science areas (see, e.g., Kontis et al., 2017; Bravo and Coelho, 2019; Bravo et al., 2020). 

Ensemble methods offer an additional advantage in that they reduce the inherent uncertainty in the choice of 

the appropriate projection model (model risk) and in that they account for more sources of risk, overcoming 

the problem of drawing conclusions based on a single deemed to be "best" model. Let 𝑦 denote a quantity to 

be forecasted based on training data 𝑦𝑇 using 𝐾 statistical models {𝑀1, . . . , 𝑀𝐾}. The law of total probability 

tells us that the forecast PDF, 𝑝(𝑦), is given by 

𝑝(𝑦) = ∑ 𝑝(𝑦|𝑀𝐾) ∙ 𝑝(𝑀𝐾|𝑦𝑇)

𝐾

𝑘=1

 (11) 

where 𝑝(𝑦|𝑀𝐾) denotes the forecast PDF based on model 𝑀𝐾 alone, and 𝑝(𝑀𝐾|𝑦𝑇) is the posterior probability 

of model 𝑀𝐾 being correct given the training data, thus reflecting how well model 𝑀𝐾 fits the training data. 

The posterior model probabilities add up to one, i.e., ∑ 𝑝(𝑀𝐾|𝑦𝑇) = 1𝐾
𝑘=1  and can be interpreted as weights. 

The BME PDF is a weighted average of the PDFs given the individual models, weighted by their posterior 

model probabilities (Raftery et al., 2005). 

Let 𝐷𝑥,𝑡 denote the number of deaths recorded at age 𝑥 during calendar year 𝑡 from the population initially 

(𝐸𝑥,𝑡
0 ) or centrally (𝐸𝑥,𝑡

𝑐 ) exposed-to-risk. We follow Hunt and Blake (2015) and adopt a GAPC stochastic 

mortality model framework to describe the individual models used in this study. A stochastic GAPC model 

links a response variable (𝑞𝑥,𝑡 or 𝜇𝑥,𝑡) to an appropriate linear predictor 𝜂𝑥,𝑡, capturing the systematic effects 

of age 𝑥, calendar year 𝑡 and year-of-birth (cohort) 𝑐 = 𝑡 − 𝑥, given by 

𝜂𝑥,𝑡 = 𝛼𝑥 + ∑ 𝛽𝑥
(𝑖)

𝜅𝑡
(𝑖)

𝑁

𝑖=1

+ 𝛽𝑥
(0)

𝛾𝑡−𝑥 , (12) 

where 𝑒𝑥𝑝(𝛼𝑥) denotes the general shape of the mortality schedule across age, 𝛽𝑥
(𝑖)

𝜅𝑡
(𝑖)

 is a set of 𝑁 age-period 

terms describing the mortality trends, with each time index 𝜅𝑡
(𝑖)

 contributing in specifying the general mortality 

trend and 𝛽𝑥
(𝑖)

 modulating its effect across ages, and the term 𝛾𝑡−𝑥 accounts for the cohort effect with 𝛽𝑥
(0)

 

modulating its effect across ages. The framework assumes the number of deaths follows a Poisson 

𝐷𝑥,𝑡~𝒫(𝜇𝑥,𝑡𝐸𝑥,𝑡
𝑐 ) or a Binomial distribution 𝐷𝑥,𝑡~ℬ(𝑞𝑥,𝑡𝐸𝑥,𝑡

0 ) with 𝔼(𝐷𝑥,𝑡/𝐸𝑥,𝑡
𝑐 ) = 𝜇𝑥,𝑡 and 𝔼(𝐷𝑥,𝑡/𝐸𝑥,𝑡

0 ) =

𝑞𝑥,𝑡, respectively (Villegas et al., 2018). The specification is complemented with a set of parameter constraints 

to ensure unique parameter estimates. 
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Table 1 summarizes the structure of the GAPC mortality models considered in this paper. The set of models 

includes: (LC) the standard age-period Lee-Carter model under a Poisson setting (Brouhns et al., 2002; 

Renshaw and Haberman, 2003); (APC) the age-period-cohort (APC) model proposed by Currie (2006); (RH) 

the generalization of the Lee-Carter model by incorporating cohort effects (Renshaw and Haberman, 2006); 

(CBD) the CBD model considering a predictor structure with two age-period terms, pre-specified age-

modulating parameters 𝛽𝑥
(1)

= 1 and 𝛽𝑥
(2)

= (𝑥 − 𝑥̅), with 𝑥 the average age in the data, no cohort effects, 

assuming a Binomial distribution of deaths and using a logit link function targeting the one-year death 

probabilities 𝑞𝑥,𝑡 (Cairns et al., 2006); (M7) an extension of the original CBD model with cohort effects and a 

quadratic age effect (Cairns et al., 2009); and (Plat) the three period factor model proposed by Plat (2009). 

Parameter estimates are obtained using maximum-likelihood (ML) methods. 

 

Model Predictor 

LC 𝜂𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥
(1)

𝜅𝑡
(1)

 

APC 𝜂𝑥,𝑡 = 𝛼𝑥 + 𝜅𝑡
(1)

+ 𝛾𝑡−𝑥 

RH 𝜂𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥
(1)

𝜅𝑡
(1)

+ 𝛽𝑥
(0)

𝛾𝑡−𝑥 

CBD 𝜂𝑥,𝑡 = 𝜅𝑡
(1)

+ 𝜅𝑡
(2)(𝑥 − 𝑥̅) 

M7 𝜂𝑥,𝑡 = 𝜅𝑡
(1)

+ 𝜅𝑡
(2)(𝑥 − 𝑥̅) + ((𝑥 − 𝑥̅)2 − 𝜎)𝜅𝑡

(3)
+ 𝛾𝑡−𝑥 

Plat 𝜂𝑥,𝑡 = 𝜅𝑡
(1)

+ 𝜅𝑡
(2)(𝑥 − 𝑥̅) + (𝑥̅ − 𝑥)+𝜅𝑡

(3)
+ 𝛾𝑡−𝑥 

Table 1 − Structure of the GAPC mortality models used in this paper 

 

To forecast age-specific mortality rates, we first calibrate the models using Taiwan male population data from 

1980 to 2014 and for ages in the range 50-95. Mortality data is obtained from the Human Mortality Database 

(2019). To forecast and simulate mortality rates, we assume the age vectors 𝛼𝑥 and 𝛽𝑥
(𝑖)

 remain constant over 

time and model period indices 𝜅𝑡
(𝑖)

 using a multivariate random walk with a drift. Cohort indices 𝛾𝑡−𝑥 were 

modelled with univariate ARIMA models (Haberman and Renshaw, 2011). To determine which models 

received a greater or lesser weight in the final projections, we first measured the predictive performance of 

individual models for each subpopulation (male, female). We carry out a backtesting exercise in the spirit of 

Dowd et al. (2010) and use the forecast error in mortality rates as measured by the symmetric mean absolute 

percentage error (SMAPE) to assess the forecasting accuracy. The historical "lookback window" is set from 

1980 to 2009 for all models and a 5-year forecasting horizon is considered. Second, we computed model 

weights using the normalized exponential function, i.e., in a way that assigns larger weights to models with 

smaller forecasting error, with the weights decaying exponentially the larger the forecasting error. Finally, in 

step 3 we compute the final projections by probabilistically combining the six individual models. Figure 1 plots 
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the crude mortality rates by year (1980-2014) and age (50-95) for Taiwan's male population. We can observe 

a clear downward trend in the mortality rates at all ages and years, more pronounced in the age range 60-85. 

 

Figure 1 –Taiwan: Crude mortality rates by year (1980-2014) and age (50-95), male population 

 

For pricing purposes, we need to consider the market price of longevity risk (Bravo and Nunes, 2020). Since 

the underlying longevity index is not an existing tradable asset in a liquid market, we use a distortion operator 

to create an equivalent risk-adjusted probability distribution for 𝑞𝑥,𝑡 or 𝜇𝑥,𝑡 to compute the fair value of the 

derivative security, an approach recommended when pricing long-term contracts (Blake et al., 2006).3 To be 

 

3 Alternative approaches have been proposed to price longevity-linked securities, including the arbitrage-free pricing framework of 

interest-rate derivatives (see, e.g., Cairns et al., 2006), using the instantaneous Sharpe ratio (see, e.g., Milevsky et al., 2005), adopting 

the Equivalent Utility Pricing Principle (see, e.g., Cui, 2008), the CAPM- and CCAPM-based approaches (see, e.g., Friedberg and 

Webb, 2006) or the cost of capital approach. 
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more specific, we use the flexible risk-neutral simulation approach proposed by Boyer and Stentoft (2013) 

using the classical Wang transform as a risk measure (Wang, 2002). This method involves risk-neutralizing 

the innovations in stochastic mortality models that assume Gaussianity to represent mortality process risk (e.g., 

members of the GAPC family of models) using the Wang distortion operator 𝜆. For a given parameter 𝜆 ∈

(0; 0.3), a simulation consists of 𝑁 = 10000 trajectories for the cohort survival probability and the longevity 

index. Figure 2 presents a fan plot of the simulated survival probability of a cohort aged 50 in 2014 over 10000 

replications. 

 

Figure 2 – Fan plot of simulated survival probability of the male cohort aged 50 in 2014 

Finally, to close the prospective life tables at high ages and to establish the highest attainable age 𝜔, we use 

the Denuit and Goderniaux (2005) method with ultimate age set at 𝜔 = 125 for all years. 

3.2. Financial market 

In a risk-neutral, frictionless and continuous financial market, we assume the annuity provider invests the 

insurance premia collected into a portfolio of dividend-paying stocks (30%) and straight 10-year coupon bonds 

(70%). Regular bond coupon and dividend payments are invested in a riskless short-term bank account until 

the next (annual) portfolio rebalancing period. At the beginning of each year, the insurance company pays 

annuitants benefits from asset income and from assets sold at market prices. Depending on the insurer's 

mortality and investment experience, annuitants may receive surplus payments in addition to their guaranteed 

return. This surplus is generated when observed policyholder mortality exceeds that assumed at contract 

inception, and/or when total investment return exceeds the guaranteed return. We assume that the insurer's 

solvency capital always exceeds a pre-specified solvency limit such that the period's total surplus can be fully 

paid out to annuitants. We assume the yield curve dynamics is well captured by a two-factor equilibrium 

Vasicek (1977) model. The model proved to explain significantly more yield curve shifts that are observed at 
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the market than its one-factor variant (Diez & Korn, 2019). The model assumes that 𝑟𝑡 is a sum of two 

independent Ornstein-Uhlenbeck processes 𝑥𝑡 and 𝑦𝑡 (generally modelled as the short-term rate and the long-

term rate) 

𝑟𝑡 = 𝑥𝑡 + 𝑦𝑡 

𝑥𝑡 = 𝛽𝑥(𝜇𝑥 − 𝑥𝑡)𝑑𝑡 + 𝜎𝑥𝑑𝑊1(𝑡) 

𝑦𝑡 = 𝛽𝑦(𝜇𝑦 − 𝑦𝑡)𝑑𝑡 + 𝜎𝑦𝑑𝑊2(𝑡) 

(13) 

where 𝑟0 = 𝑥0 + 𝑦0, 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, and (𝑊1, 𝑊2) is a two-dimensional Brownian motion with 

instantaneous correlation 𝜌, 𝑑𝑊1(𝑡)𝑑𝑊2(𝑡) = 𝜌, with 𝑥0, 𝑦0, 𝛽𝑥, 𝛽𝑥, 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 positive constants. To 

calibrate the yield curve model, we use daily data on Taiwan 2-year and 10-year maturity bond yields from 

January 2000 to June 2019. Estimates of the short rate and the long-rate stochastic processes are obtained using 

ML methods (Table 2). 

 𝛽𝑖 𝜇𝑖 𝜎𝑖 

Short rate 𝑥𝑡 0.8486580 0.8815142 0.6930047 

Long rate 𝑦𝑡 0.1493086 2.3225287 0.3526179 

Table 2 − Estimates of the 2-factor Vasicek model 

We estimate that 𝜌 = 0.4342177, which means the short- and long-term sections of the yield curve are 

positively but not perfectly correlated. We assume the value of the stock market index at time 𝑡, which is 

denoted by 𝑆𝑡, follows a standard geometric Brownian motion diffusion process 

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 , (14) 

where 𝑊𝑡 is a standard Wiener process with respect to the physical probability measure; 𝜇 and 𝜎 denote, 

respectively, the instantaneous stock price drift and volatility. The dynamics of stock prices is calibrated to the 

TSEC weighted index stock market data over the same period considering the index values adjusted for 

dividends and splits. The ML parameter estimates are (𝜇̂, 𝜎̂) = (0.03433942; 0.21188526). 

3.3. Welfare analysis 

We assume that individuals want to maximize the expected present value of utility derived from consumption 

through their remaining lifetime. To assess how individuals with different risk aversion and subjective time 

preferences value the stochastic payout stream from a PLLA, we compute the utility-equivalent fixed annuity 

income, 𝐸𝐴𝑡 (Mitchell et al., 1999): 

𝐸𝐴𝑡 = [
(1 − 𝛾)𝑉𝑡

∑ 𝑝𝑘 𝑥0

𝜔−𝑥0
𝑘=1 𝛽𝑘

]

1
1−𝛾

, 
(15) 

where 𝛽 is the subjective discount factor, 𝛾 is the coefficient of relative risk aversion and 𝑉𝑡 is the annuitant’s 

value function assuming preferences can be described by a standard time additive constant relative risk 

aversion (CRRA) utility function defined over consumption. Finally, taking the fixed annuity income (15) we 
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compute the fair value of the utility-equivalent fixed life annuity (EFLA) that delivers the same lifetime utility 

as the PLLA and compare it with that of a fixed level life annuity. In the simulations, we consider three 

alternative time preference and risk aversion parameters. For the subjective discount factor, we consider 

individuals that are 𝛽=0.98 (patient), 𝛽=0.96 (normal) and 𝛽=0.94 (impatient). For the coefficient of relative 

risk aversion, we classify policyholders as 𝛾=2 (low risk), 𝛾=5 (medium risk) and 𝛾=10 (high risk). 

4. RESULTS AND DISCUSSION 

4.1. Base Case 

Table 3 reports the mean of the simulated risk-neutral distribution of the annuity and longevity option prices 

for some representative ages and different values of the market price of longevity risk in the baseline scenario. 

We assume in this case: (i) a guaranteed interest rate of 0% per year, (ii) the reference life table is given by the 

mean of the simulated survival trajectories with zero longevity risk premium, (iii) the contract is non-

participating and pays an initial benefit of one monetary unit per year, and (iv) annuity payments are capped 

at the initial benefit. Each simulation consists of 10.000 independent sample paths for both the survival 

probability of a cohort aged 𝑥 in 2014 { 𝑝𝑘 𝑥0
(2014): 𝑥0 ∈ [50,90] } and the portfolio returns. Panel A reports 

the pure premium 𝑎𝑥0

[ℱ0]
(𝑡0) of a fixed immediate life annuity purchased at representative ages. Recall that for 

𝑖𝑡0
= 0%, the value of 𝑎𝑥0

[ℱ0]
(𝑡0) matches that of the remaining life expectancy at age 𝑥0. The baseline interest 

rate scenario resembles the current debt market conditions in Taiwan and in most G20 and OECD countries. 

Panels B and C report, respectively, the fair value of the embedded European-style longevity floor options 

(with constant unit strike price and maturity 𝜔 − 𝑥0) for alternative values of the longevity risk premium in 

absolute and relative terms (i.e., as a percentage of 𝑎𝑥0

[ℱ0]
(𝑡0), in basis points), and Panel D reports the fair value 

of a non-participating PLLA together with the corresponding 95% confidence interval bounds. 

As expected, the fair value of a fixed annuity 𝑎𝑥0

[ℱ0]
(𝑡0) is smaller the older the policyholder at contract 

initiation, i.e., decreases with the reduction in the remaining life expectancy (Panel A). Similarly, the longevity 

floor prices are increasing in maturity (decreasing with the age of the policyholder at contract inception) and 

in the market price of risk (Panel B). For instance, for 𝜆 = 0 the longevity option price for a 50-year old 

individual at the end of 2014 is 0.54, whereas for an equivalent contract starting at age 65 the price is 0.35. For 

𝜆 = 0.3, the longevity floor option price increases to 1.92 (0.96) for a 50 (65)-year old individual. The 

embedded European-style longevity floor prices represent between 0.78% and 5.93% of the pure premium of 

a conventional fixed annuity (Panel C). This means, for instance, that a 50-year old male individual entering 

into a non-participating LLA contract should pay a pure single premium 5.93% smaller than that of an 

equivalent fixed annuity (for 𝜆 = 0.3) to accept the chance of annuity benefits declining if observed 

survivorship rates are higher than predicted. For this representative case, the 95% confidence interval for the 

mean estimate of the fair value is [28.30−32.62] with mean estimate 30.46 (Panel D).  
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Age 50 55 60 65 70 75 80 85 90 

Panel A: Pure premium of a fixed life annuity 

𝑎𝑥0

[ℱ0]
(𝑡0) 32.38 27.63 23.07 18.76 14.77 11.22 8.19 5.74 3.85 

          

Panel B: Longevity Floor price ℒℱ (𝑡0) 

λ=0.0 0.54 0.48 0.42 0.35 0.26 0.20 0.12 0.06 0.03 

λ=0.1 0.92 0.78 0.65 0.51 0.38 0.26 0.17 0.09 0.05 

λ=0.2 1.38 1.16 0.93 0.72 0.53 0.35 0.21 0.11 0.05 

λ=0.3 1.92 1.59 1.28 0.96 0.69 0.45 0.26 0.14 0.06 

          

Panel C: ℒℱ (𝑡0) as a % of 𝑎𝑥0

[ℱ0]
(𝑡0) (in b.p) 

λ=0.0 167 174 182 184 173 174 147 105 78 

λ=0.1 283 282 280 272 254 227 201 157 117 

λ=0.2 426 418 403 384 355 307 256 183 117 

λ=0.3 593 575 553 512 467 401 311 235 156 

          

Panel D: Pure premium of a non-participating PLLA 𝑎𝑥0
𝑃𝐿𝐿𝐴(𝑡0) 

λ=0.0 (mean) 31.84 27.15 22.65 18.42 14.52 11.03 8.07 5.68 3.82 

UB 95% 33.23 28.36 23.65 19.18 15.01 11.28 8.15 5.69 3.82 

LB 95% 30.45 25.94 21.65 17.65 14.02 10.77 7.99 5.67 3.82 

λ=0.1 (mean) 31.47 26.85 22.43 18.25 14.40 10.97 8.03 5.65 3.81 

UB 95% 33.21 28.35 23.65 19.17 14.99 11.26 8.12 5.67 3.81 

LB 95% 29.72 25.35 21.20 17.33 13.80 10.67 7.93 5.63 3.80 

λ=0.2 (mean) 32.38 26.48 22.14 18.04 14.25 10.88 7.98 5.64 3.81 

UB 95% 34.38 28.20 23.54 19.08 14.92 11.21 8.09 5.65 3.81 

LB 95% 30.38 24.75 20.74 17.00 13.57 10.54 7.87 5.62 3.80 

λ=0.3 (mean) 30.46 26.04 21.80 17.80 14.08 10.77 7.94 5.61 3.79 

UB 95% 32.62 27.90 23.32 18.94 14.82 11.14 8.05 5.62 3.79 

LB 95% 28.30 24.18 20.27 16.66 13.34 10.40 7.82 5.59 3.79 

Table 3 − Fair value of non-participating PLLA and embedded longevity floor option prices 

 

Figure 3 offers additional insight into the simulated risk-neutral distribution of longevity option prices for 𝜆 =

0.3. The variability of option prices is naturally higher at younger ages given the higher uncertainty regarding 

the remaining lifetime prospects at these ages, decreasing then steadily with age. These results are in line with 

those obtained by Bravo and El Mekkaoui de Freitas (2018) using data for France, although in this later case 

the higher trend risk observed in the French population resulted in higher longevity option prices. 

Table 4 reports the mean of the simulated risk-neutral distribution of the pure premium of a deferred non-

participating PLLA due assuming a deferment period of 15 year (𝑢 = 15). The prices of both the fixed and 

PLLA deferred contracts are now naturally smaller than that of immediate annuities at all ages and values of 

the market price of longevity risk since the number of potential annuity payments is reduced. For instance, for 

a 50-year old male individual the fair value of the deferred non-participating PLLA contract is now 55.4% 

(16.89) of that of the corresponding immediate annuity (30.46) for 𝜆 = 0.3. For contracts initiating at older 
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ages the annuity and longevity option prices decrease substantially and the confidence intervals are narrower 

since the number of potential annuity payments is smaller, and the survival probabilities are minimal. This 

makes the product potentially interesting for both providers and annuitants.  

 

Figure 3 – Boxplot of the simulated risk-neutral distribution of longevity option prices 

 

Empirical studies have shown that retirees are reluctant to convert retirement savings into annuities and that 

the levels of voluntary annuitization are low. As a result, insurance companies are putting a lot of effort to 

design more attractive annuity products. Deferred PLLA contracts, eventually incorporating bounds to the 

annuity benefit to limit the volatility of retirement income, are an interesting solution for the payout phase of 

pension schemes since it requires a smaller initial investment than immediate PLLAs and provide similar 

longevity insurance for the oldest-old. 

Moving now to contract structures in which the annuity benefit is bounded by some caps and floors, Table 5 

reports the monetary prices of European-style longevity floor options embedded in non-participating capped 

PLLAs for different constant threshold levels and selected ages at contract initiation. For instance, the case 

[𝐼𝑡0+𝑘
𝑚𝑖𝑛 , 𝐼𝑡0+𝑘

𝑚𝑎𝑥] = [0.8; 1.2] corresponds to a PLLA structure with 𝐼𝑡0+𝑘
𝑚𝑖𝑛 = 𝐼𝑚𝑖𝑛 = 0.8 and 𝐼𝑡0+𝑘

𝑚𝑎𝑥 = 𝐼𝑚𝑎𝑥 = 1.2 

for 𝑘 = 1, … , 𝜔 − 𝑥0, i.e., annuity payments can decline (increase) by a maximum of 20% of the initial benefit 

if observed survivorship rates are higher (lower) than predicted. The case [𝐼𝑡0+𝑘
𝑚𝑖𝑛 , 𝐼𝑡0+𝑘

𝑚𝑎𝑥] = [0.0; 2.0] refers to a 

structure in which all risk is transferred to annuitants, i.e., to a non-capped PLLA. 

The results in Table 5 show that for a 60-year old male individual entering a PLLA contract allowing for a 

maximum 10% variation in annuity payments the longevity floor price reduces from 1.28 in the non-capped 

equivalent structure to 0.90 (-29.4%). Stated differently, limiting the longevity risk borne by annuitants reduces 

the price discount to be offered in PLLAs when compared to both a traditional fixed annuity and the uncapped 

PLLA. 
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Age 50 55 60 65 70 75 

Panel A: Pure premium of a deferred fixed life annuity 

𝑎̈𝑢| 𝑥0

[ℱ0]
(𝑡0) 18.51 14.01 9.88 6.27 3.40 1.45 

       

Panel B: Deferred Longevity Floor price ℒ𝑢
ℱ(𝑡0) 

λ=0.0 0.46 0.40 0.33 0.25 0.16 0.08 

λ=0.1 0.77 0.65 0.52 0.38 0.23 0.12 

λ=0.2 1.17 0.96 0.75 0.53 0.34 0.16 

λ=0.3 1.63 1.33 1.03 0.73 0.44 0.21 

       

Panel C: ℒ𝑢
ℱ(𝑡0) as a % of 𝑎̈𝑢| 𝑥0

[ℱ0]
(𝑡0) (in b.p) 

λ=0.0 246 288 329 394 459 537 

λ=0.1 414 464 527 601 688 806 

λ=0.2 632 687 763 850 994 1075 

λ=0.3 878 947 1040 1161 1300 1433 

 246 288 329 394 459 537 

Panel D: Pure premium of a non-participating deferred PLLA 𝑎̈𝑢| 𝑥0
𝑃𝐿𝐿𝐴(𝑡0) 

λ=0.0 (mean) 18.06 13.60 9.55 6.03 3.24 1.37 

UB 95% 19.45 14.82 10.56 6.79 3.74 1.62 

LB 95% 16.67 12.39 8.55 5.26 2.75 1.12 

λ=0.1 (mean) 17.75 13.36 9.36 5.90 3.17 1.33 

UB 95% 19.49 14.86 10.58 6.81 3.76 1.63 

LB 95% 16.00 11.86 8.13 4.98 2.57 1.04 

λ=0.2 (mean) 18.51 13.05 9.12 5.74 3.06 1.30 

UB 95% 20.52 14.77 10.52 6.78 3.74 1.63 

LB 95% 16.51 11.32 7.72 4.70 2.39 0.96 

λ=0.3 (mean) 16.89 12.68 8.85 5.54 2.96 1.24 

UB 95% 19.05 14.54 10.37 6.69 3.70 1.61 

LB 95% 14.73 10.82 7.33 4.40 2.22 0.87 

Table 4 − Fair value of non-participating deferred PLLAs 

 

Our results also show that the fair value of the longevity floor and, consequently, the fair value of the capped 

PLLA converges steadily to that of the equivalent uncapped annuity design the larger the fraction of 

unexpected mortality improvements that is transferred to annuitants. We can observe that allowing for a 

maximum of 20% variation in annuity benefits transfers close to 90% of the longevity risk to annuitants. Partial 

risk-sharing annuity structures are an interesting alternative to cope with longevity risk when compared to, for 

instance, expensive longevity-linked reinsurance arrangements, increasing pricing loadings which reduce the 

attractiveness of annuity contracts or allocating more solvency capital. 
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 Age 

[𝐼𝑡0+𝑘
𝑚𝑖𝑛 , 𝐼𝑡0+𝑘

𝑚𝑎𝑥] 50 55 60 65 70 75 80 85 90 

[0.9;1.1] 1.31 1.11 0.90 0.71 0.53 0.36 0.23 0.12 0.06 

[0.8;1.2] 1.70 1.43 1.16 0.89 0.65 0.44 0.26 0.14 0.06 

[0.7;1.3] 1.85 1.53 1.23 0.95 0.68 0.45 0.26 0.14 0.06 

[0.6;1.4] 1.89 1.58 1.26 0.96 0.68 0.45 0.26 0.14 0.06 

[0.5;1.5] 1.91 1.59 1.26 0.96 0.68 0.45 0.26 0.14 0.06 

[0.4;1.6] 1.91 1.59 1.26 0.96 0.68 0.45 0.26 0.14 0.06 

[0.3;1.7] 1.92 1.59 1.28 0.96 0.69 0.45 0.26 0.14 0.06 

[0.2;1.8] 1.92 1.59 1.28 0.96 0.69 0.45 0.26 0.14 0.06 

[0.1;1.9] 1.92 1.59 1.28 0.96 0.69 0.45 0.26 0.14 0.06 

[0.0;2.0] 1.92 1.59 1.28 0.96 0.69 0.45 0.26 0.14 0.06 

Table 5 − Capped PLLA: Longevity floor option prices ℒℱ (𝑡0|𝐼𝑡0+𝑘
𝑚𝑖𝑛 , 𝐼𝑡0+𝑘

𝑚𝑎𝑥 ) 

 

4.2. Individual preferences and willingness-to-pay for the contract 

We consider individuals' preferences towards risk and evaluate the willingness-to-pay (WTP) for the contracts 

by computing the fair value of the EFLA that delivers the same lifetime utility as the PLLA. Table 6 reports 

the mean EFLA results for participating PLLAs considering three alternative time preference and risk aversion 

parameters. We assume the market price of longevity risk parameter is 𝜆 = 0.3 and the guaranteed interest rate 

is 𝑖 = 0%. For every age, the WTP results compare with that of a fixed life annuity. For instance, the WTP for 

a non-participating LLA for a 65-year old male policyholder with medium risk aversion (𝛾 = 5) and normal 

(𝛽 = 0.96) intertemporal preference is 16.31, a price that represents 95.6% of that of the corresponding fixed 

annuity. Non-participating PLLAs transfer all systematic longevity risk to policyholders and do not offer the 

upside potential of positive financial developments, reducing the utility drawn by high risk aversion and 

impatient annuitants from uncertain and potentially volatile annuity benefits. Consequently, policyholders will 

only be willing to enter the contract at a given price discount relatively to a standard fixed annuity. 

Alternatively, they would be willing to pay the same premium in exchange for a higher payout stream when 

compared to fixed annuities. 

The results in Table 6 also show that, for all ages and time preference and risk aversion parameters, the WTP 

for a participating PLLAs is higher than for a non-participating structure. For instance, the WTP for a PLLA 

for a 60-year old male policyholder with low risk aversion (𝛾 = 2) and low (𝛽 = 0.98) intertemporal 

preference is 23.94. Policyholders value favourably the possibility to profit from positive financial market 

developments (negative scenarios are bounded by the guaranteed interest rate) despite the increased variability 

in annuity benefits from the combined effect of longevity and financial market risks. The WTP for participating 

PLLAs is higher the lower the guaranteed interest rate. In a low (zero) interest rate environment, the upside 

potential carried by a PLLAs is more valued and can be sufficient to offset the disutility generated by lower 
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annuity payments if observed survival prospects are higher than anticipated. Similar conclusions were obtained 

for participating and non-participating capped PLLAs and deferred annuity structures.4 

 

Parameters  Age 

𝜷 𝜸 50 55 60 65 70 75 80 85 90 

 2 33.90 28.80 23.94 19.42 15.25 11.58 8.47 5.94 3.98 

0.98 5 32.29 27.43 22.81 18.50 14.53 11.03 8.07 5.65 3.79 

 10 31.53 26.78 22.26 18.06 14.18 10.77 7.87 5.52 3.70 

 2 33.56 28.34 23.37 18.75 14.51 10.79 7.63 5.51 3.81 

0.96 5 31.00 26.69 21.72 17.17 13.94 10.31 7.20 5.08 3.58 

 10 29.93 25.60 21.74 17.15 13.00 10.27 7.18 4.97 3.57 

 2 33.03 27.74 22.71 18.03 14.01 10.24 6.95 5.08 3.72 

0.94 5 29.23 25.63 20.44 16.65 13.28 9.58 6.87 4.91 3.53 

 10 28.62 24.59 21.28 16.57 12.74 9.76 6.75 4.87 3.51 

Table 6 − WTP (EFLA) for PLLAs 

4.3. Sensitivity to Asset Allocation 

In the baseline scenario we assumed a static conservative asset allocation strategy. In real world investment 

environments, this involves setting target allocations for the asset classes (e.g., stocks, bonds) in which the 

annuity provider's portfolio is invested and periodically rebalancing to match the original allocations when, for 

instance, there are coupon/dividend payments and/or existing bonds mature and new issues start to be traded. 

This is often a buy-and-hold strategy. In this section we investigate the sensitivity of our results to alternative 

asset allocations, particularly a more aggressive lifecycle strategy. This strategy allocates 70% of the portfolio 

to stocks at contract inception and the remaining to coupon bonds, with the risky assets gradually reduced to 

30% at the end of the investment horizon. As the allocation to stocks is reduced, the allocation to debt 

instruments is increased, with the provider switching to the baseline conservative asset allocation strategy at 

the end of the horizon. Milevsky and Promislow (2001) suggest the need for holding a substantial stock 

allocation in retirement portfolios to enhance pension income. 

Table 7 reports the mean WTP (EFLA) results for the lifecycle asset allocation strategy for participating LLAs 

considering alternative time preference and risk aversion parameters. The results suggest that augmenting the 

exposure to stock markets early in the contract's life increases the expected annuity payments and benefit 

volatility. The enhanced right tail of the portfolio return distribution is positively valued by policyholders, 

particularly patient and low risk aversion individuals who appreciate the possibility of higher investment 

returns. In contrast, the increased variability in portfolio returns generated by the lifecycle asset allocation 

strategy acts against impatient and high-risk aversion annuitants since it makes it more difficult for retirement 

planning compared to a conservative (low risk) asset allocation strategy. 

 

4 We conducted a sensitivity analysis on the impact of the GIR on the WTP for PLLAs and concluded that for participating contracts 

higher guaranteed interest rates reduce the initial benefits and diminish the expected distributed surplus and upside potential when 

compared to a standard fixed annuity. 
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Parameters  Age 

𝜷 𝜸 50 55 60 65 70 75 80 85 90 

 2 35.93 30.49 25.33 20.52 16.10 12.22 8.92 6.24 4.17 

0.98 5 33.88 28.75 23.88 19.35 15.19 11.52 8.41 5.88 3.93 

 10 32.75 27.79 23.08 18.70 14.67 11.13 8.12 5.68 3.80 

 2 35.57 30.01 24.72 19.81 15.32 11.38 8.03 5.79 3.99 

0.96 5 32.53 27.97 22.74 17.96 14.56 10.77 7.50 5.28 3.72 

 10 31.08 26.57 22.54 17.76 13.45 10.62 7.41 5.12 3.67 

 2 35.01 29.37 24.02 19.04 14.79 10.80 7.32 5.33 3.90 

0.94 5 30.67 26.86 21.40 17.41 13.88 10.00 7.17 5.10 3.66 

 10 28.45 24.52 21.29 16.63 12.82 9.85 6.83 4.95 3.58 

Table 7 − WTP (EFLA) for participating PLLA with lifecycle asset allocation strategy 

5. CONCLUSION 

Participating longevity-linked life annuities include embedded longevity and financial options that allow the 

annuity provider to periodically revise annuity payments if observed survivorship and portfolio outcomes 

deviate from expected (or guaranteed) values at contract initiation. Contrary to standard fixed annuities in 

which the insurer bears all risk, PLLAs offer an efficient and transparent way of sharing biometric and financial 

market risks between annuity providers and policyholders. They are an interesting and promising product for 

the payout phase of pension schemes since the contract tackles some of the demand- and supply-side 

constraints that prevent individuals from annuitizing their retirement wealth and may contribute to help insurers 

writing new annuity policies. By linking the annuity benefit to the survival experience of a given underlying 

population and to the performance of the asset portfolio backing the contract PLLAs provide a direct 

mechanism to share financial and longevity risk and are an interesting alternative to manage systematic 

longevity risk in markets in which alternative risk management solutions (longevity-linked securities, 

reinsurance arrangements, capital allocation) are scarce and/or expensive. 

In this paper we empirically investigated the design and valuation of index-type participating longevity-linked 

life annuities using Taiwan (mortality, yield curve and stock market) data from January 1980 to June 2019, 

considering for both immediate and deferred, capped and uncapped participating and non-participating annuity 

structures. We expanded previous research by adopting a novel approach based on a Bayesian Model Ensemble 

of multiple generalised age-period-cohort stochastic mortality models, by investigating the robustness of 

results against alternative asset allocation strategies and different values for the guaranteed interest rate. The 

use of a Bayesian Model Ensemble allows us to explicitly capture model risk. This is the first study that 

provides empirical results of PLLA valuation for Asian annuity markets, in a scenario in which building post-

retirement income in Asian countries is crucial due to faster than predicted longevity improvements. 

Considering for alternative cohorts and values for the market price of longevity risk, our results show that the 

fair value of PLLAs should be lower than that of a traditional fixed annuity by up to 6% for annuitants to accept 

to share the impact of adverse longevity developments. The longevity floor prices embedded in PLLA decline 

with the age of the policyholder at contract inception and with the market price of longevity risk. The variability 
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of PLLA benefits and price is higher the younger the policyholder at contract initiation. Compared to 

immediate annuities, deferred PLLA contracts, eventually including for caps and floors, are an interesting 

solution for the payout phase of pension schemes since in exchange for a significantly smaller premium they 

provide protection against ones' outliving their (financial, housing, pension) wealth at old ages. Our results 

suggest that considering for a maximum of 20% variation in annuity benefits transfers close to 90% of the 

longevity risk to annuitants, allowing insurers to release some of substantial capital buffer they are required to 

hold to back annuity portfolios and limit default risk. The empirical results show that individuals with low risk 

aversion and low intertemporal preference value positively the chance to profit from right tail financial market 

developments in participating PLLAs (negative scenarios are bounded by the GIR) despite increased variability 

in annuity benefits. The adoption of a riskier lifecycle asset allocation strategy early in the contract's life 

increases the expected annuity payments and benefit volatility, a feature that is positively valued by patient 

and low risk aversion policyholders who appreciate the chance of higher investment returns. Further research 

should investigate the robustness of these results against changes in the method used to risk-neutralize the 

innovations in the stochastic mortality model used for forecasting or to account for the longevity risk premium 

(e.g., by adopting a cost of capital Solvency II approach). Further research is also needed to design and valuate 

alternative methods to directly share longevity risk between the provider and annuitants (e.g., by linking the 

benefits to periodically revised annuity factors). Further research is also needed to develop alternative methods 

for the valuation of the financial and longevity options embedded in PLLAs. 
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