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Abstract 

Over the past few years, the number of sensors spread across cities has significantly increased. 

This led to an exponential growth in data volume, which can only be treated with Big Data 

techniques. Having such a large amount of generated data, turns possible to apply machine 

learning techniques more accurately, with the goal of making data predictions over time, finding 

anomalies, performing classification, among other tasks. This article aims to show the 

application of machine learning techniques, using a variant of the Recurrent Neural Networks, 

the Long Short-Term Memory (LSTM), in order to predict city's energy consumptions for the 

near future. This forecast will support municipal entities decisions, helping them to improve the 

managing of energy consumptions and budgets. 

Keywords: Machine Learning, Smart Cities, Internet of Things, Big Data, LSTM 

1. INTRODUCTION 

Currently, electric energy is an essential asset for everyone. It is used in our homes, through 

electronic equipment and lighting, and also in agriculture, industry, public lighting and other varied 

forms in cities. 

The fast urbanization of cities and the growth of the population, tend to hinder the energy 

consumptions management (Ejaz, Naeem, Shahid, Anpalagan and Jo, 2017). Solving this problem, 

will help counties to achieve proposed sustainability goals, which some are obligated to comply, 

improving the general quality of life of their population. Consequently, municipalities would have a 

greater view of their economy, being able to reduce costs in some areas. Moreover, this would result 

in a performance improvement in other domains, such as health and education (Pérez-Chacón, Luna-

Romera, Troncoso, Martínez-Álvarez and Riquelme, 2018). 

A possible solution to the presented problem is the use of Machine Learning (ML) algorithms in 

energy data to predict consumptions, for the near future. This is not exactly a new topic: currently, 

the scenario where this is most used is not in a cities’ context, but in buildings’ energy consumption 

or other isolated premises. A city scenario involves more challenges, since there are multiple factors 

that can influence these forecasts, such as temperature and air quality. 

mailto:fra_serio@hotmail.com
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Forecasting energy consumptions in cities was not as easy to perform as it is today, due to the lack 

of data from partners. Currently, there are already several devices of all types providing data. For 

example, smart meters, present information about the energy consumption in a web page. Every user 

of such devices can access data through their personal account (Lima, 2015). 

In order to make accurate use of ML possible, concerning energy consumption data, and also data 

from other types of sources, a large data set is necessary. Having plenty of data, the algorithm can 

train, recognize patterns and be prepared for specific forecasts required by the user, providing the 

forecasts with lower percentage of error. 

However, large amounts of data (Big Data), in itself, may not be totally advantageous for machine 

learning, if the data has no quality. Sometimes it is preferable, for example, to discard some of the 

data attributes than use them all and even add some more, so that the algorithm obtains a better 

result. Therefore, the importance of data mining and data science (Sessions and Valtorta, 2006). 

This article aims to show the application of Machine Learning techniques on real energy 

consumption data from a city, with the goal of forecasting consumptions in the near future. The 

studies conclude that the county is able to take better decisions based on these forecasts, as well as 

to better manage its resources, avoiding waste and over-reaching their expectations. 

Also, with this project, it is intended to contribute in the scientific community, with regard to the 

forecast of energy consumptions, in smart cities’ scenarios. 

The paper is organized as follows. Section 2 summarizes the state of the art, describing the concepts 

of Smart Cities, Internet of Things, Big Data, Machine Learning and Long Short-Term Memory. 

This section also describes appropriate related work. Section 3 details the various steps of the 

experimental setup, starting with the data set used, the feature engineering applied, the construction 

of the model and its evaluation. Section 4 presents the conclusions of the article. 

2. STATE OF ART 

In this new era of Smart Cities, there are several interconnected areas, working together to obtain a 

single result. This is the case of the areas mentioned in the next sections. 

2.1. Smart Cities 

Over the past few years, the concept of Smart Cities has been appearing more frequently, and the 

trend is to rise more and more. As Bolívar (2015) says, in recent years, cities managers are 

increasingly aware of the Smart City concept and developing several methods with the aim of turning 

the cities intelligent on their own and offering more efficient control over the cities. 
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Currently, there are several definitions about this concept that appeared for the first time in 1998 

(Anthopoulos, 2015). According to Su, Li and Fu (2011), a smart city is a specific region, in which 

information and integrated management of the city are carried out. Further, from the same source, it 

can also be said that it is an intelligent and effective integration of planning ideas, modes of 

construction, management methods and development approaches. On the other hand, with the arrival 

of the concept of “Internet of Things” (IoT), Arasteh et al (2016) say that a smart city is equipped 

with different electronic devices, for different applications, such as, for example, surveillance 

cameras placed on the streets and sensors for transport systems, thus showing the importance of IoT 

in a smart city. 

With the rapid growth of the population in recent years and the constant migration of them from the 

countryside to the urban area, many cities are having problems related to their sustainability, 

affecting the citizens’ lives. Some of the problems are in waste management, air pollution control, 

traffic congestion, deterioration of buildings, among many others (Chourabi et al, 2012). 

In order to solve such kind of problems, many cities have created initiatives and projects, not only 

to improve the quality of life of their inhabitants, but also to meet sustainability goals imposed on 

them (Arroub, Zahi, Sabir and Sadik, 2016). 

2.2. Internet of Things and Big Data 

Like Smart Cities, the Internet of Things (IoT) and Big Data are two concepts that have appeared 

more frequently over the past few years and, due to that, several meanings have appeared. 

According to Patel and Patel (2016), IoT is like a network of devices that are connected, where the 

information produced by them can be accessed by everyone, anytime and anywhere. Madakam, 

Ramaswamy and Tripathi (2015) say that IoT is a technological revolution, representing the future 

of computing and communications, from wireless sensors to nanotechnology, with the aim of control 

these technological innovations and monitoring the information flow produced by them, even in real 

time. 

About Big Data, De Mauro, Greco and Grimaldi (2016) think that it is a large amount of information 

characterized by its volume, velocity and variety. So, knowledge from other areas, such as Data 

Science and Data Mining, is needed to get the real value from that information. With a similar idea, 

Youssra and Sara (2018) state that Big Data refers to large diversified data sets, consisting of 

structured, semi-structured and unstructured data, where they are increasingly arriving data more 

quickly, mentioning the three “V's” once again: Volume, Velocity and Variety. 

Over time, these two terms have been increasingly directly related. De Mauro, A. Et al (2016) even 

say that IoT generates Big Data for several reasons. One of them is the speed associated with the 

massive IoT devices’ production and the wide variety of data that different sensors produce daily, 
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generating more and more different kinds of data. This augment can have very positive consequences 

for some areas of information technology, mostly for Data Analytics and Machine Learning, because 

without a large amount of data, these two areas are unable to give the user the best results (Bomatpalli 

and Vemulkar, 2016). 

2.3. Machine Learning 

Machine learning is a concept that has been gaining more importance in the last years, due to the 

increase of data. It has been applied to several areas, such as health, industry, agriculture, among 

others. 

According to El Naqa and Murphy (2015), machine learning is a branch of computational algorithms 

with the aim of simulating the human intelligence that learns with the environment that surrounds 

it. With a similar idea, Surden (2014) says that machine learning is a branch of artificial intelligence 

where the computer system can learn from experience, improving its performance in some tasks 

over time. 

A generic framework for cognitive cities was proposed by Carvalho, Pinto, Borges, Machado and 

Oliveira (2019). Machine Learning techniques were applied to enhance the city management by 

predicting behaviors and automatically adapt rules mechanisms in order to mitigate city problems. 

The application of Machine Learning in electricity consumption has been widely used, especially in 

buildings, such as schools, personal houses and skyscrapers, due to the growing number of IoT 

devices present in the markets. 

Currently there are several machine learning algorithms, each for its own purpose, type of problem 

and data. In the case of energy consumption forecasting, in most cases, data are associated with the 

time they were collected, which means that the data sets are time series. One of the models that, for 

this type of scenarios, has obtained better results is called the Artificial Neural Network (ANN) 

(Siami-Namini, Tavakoli and Namin, 2018). 

ANNs, over the last few years, have been widely used, due to their ability to solve complex 

classification problems and time series. 

This model is based on the Human brain and nervous system, as can be seen in Figure 1. In a neural 

network, the neuron of a human brain is represented by a neuron, which is basically a mathematical 

expression. These neurons together form the neural network, where each receives input values. 

These values are multiplied by their weights, passing, finally, to an activation function, producing a 

final value. This value passes to the next layer, repeating the process in all neurons until reaching 

the final layer, called Output layer, which will generate the set of output values (Walczak and Cerpa, 

2003). 
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Figure 1 – Example of a typical neural network1 

In a typical ANN, two successive inputs are independent of each other. However, there are scenarios 

where the inputs depend on the previous ones. For example, for forecasting the price of a stock, 

based on time or predicting the next word in a given sequence, ANNs are not the most suitable. For 

these types of problems, there are the Recurrent Neural Networks (RNN), where each layer is 

dependent on the previous one, allowing the cell to have a kind of memory. However, this kind of 

neural network has the problem of vanishing gradient and exploding gradient. So, in practice, they 

are difficult to train when it is necessary to memorize a large amount of previous sequential data. To 

solve this problem, a variant of the RNN, called Long Short-Term Memory, was created (Yue, Fu 

and Liang, 2018). 

2.4. Long Short-Term Memory (LSTM) 

LSTM networks are a specific kind of Recurrent Neural Networks, created to solve the problem 

mentioned in the previous section. These neural networks are one of the most used over the past few 

years, especially to solve problems where data are sequential, such as speech recognition, stock 

forecasting, among others (Fischer and Krauss, 2018). 

The architecture of an LSTM cell, which is represented in Figure 2, consists of 3 gates (Forget gate, 

Input gate and Output gate) and 2 cells, one of memory (Memory) and another of state (Hidden 

state). 

 

 

1 Source: https://www.mdpi.com/2624-6511/2/2/9/htm [consulted in 08/05/2020]. 

https://www.mdpi.com/2624-6511/2/2/9/htm
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Figure 2 –LSTM architecture2 

The Forget gate is responsible for removing information from the State cell, which is the output of 

the previous unit. This is an important operation to optimize the performance of the neural network, 

because it eliminates information that is no longer needed or that has no longer importance. The 

Forget gate (Ft) is defined by the following expression (1), where σ is the sigmoid activation 

function, Xt is the input at a given time, the Wxf and Whf the weights of the matrices, the Ht−1 the 

Hidden State and o bf the bias: 

Ft = σ (XtWxf + Ht−1Whf + bf)                                                    (1) 

The Input gate (It) is responsible for adding information to the State cell. This gate has two parts: 

the first (2) is similar to the Forget gate, where it filters all the information from the State cell and 

the Input and the second (3), where it transforms that information into a vector and adds it to the 

State cell ( Hu and Balasubramaniam, 2008). 

It = σ (XtWxi + Ht−1Whi + bi)                                                   (2) 

Ct = tanh (XtWxc + Ht−1Whc + bc)                                               (3) 

Output gate (Ot) selects useful information from the current State cell (4). Then, the tangent 

hyperbolic (tanh) activation function is applied in order to create a vector with values between -1 

and +1 (5) (Kim, Kim, Thu and Kim, 2016). 

Ot = σ (XtWxo + Ht−1Who + bo)                                                 (4) 

Ht = Ot * tanh (Ct)                                                          (5) 

2.5. Related works 

The idea of forecasting energy consumptions is not exactly new. Many researchers have tried to find 

the algorithm with the lowest percentage of error in forecasting this kind of time based data. 

 

2 Source: Hu, X., & Balasubramaniam, P. (2008) 
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Edwards, New and Parker (2012), having data from sensors in three residential buildings, applied 

machine learning algorithms to predict the energy consumptions of buildings for the next hour, with 

very positive results, mostly for the LS-SVM (Least-squares Support-vector Machine). 

In a similar project, Ahmad, Mourshed and Rezgui (2017) used two ML algorithms, ANN and 

Random Forest (RF), to predict energy consumptions in buildings. In this work, a hotel data set was 

used to make consumption forecasts for the next hour. The algorithm with the best results was ANN. 

On the other hand, Seyedzadeh, Rahimian, Glesk and Roper (2018) compared four of the most well-

known ML models for predicting the consumption of electrical energy in buildings. The models are: 

Artificial Neural Network, Support Vector Machine (SVM), Gaussian-based Regression and 

Clustering. With this research, it was concluded that all these models have their advantages and 

disadvantages, depending on the type of data and the input variables. 

Amasyali and El-Gohary (2016) used the SVM algorithm to forecast building lighting consumptions. 

In these forecasts, the variables used were the type of day and the sky coverage. This work allows 

to conclude that this algorithm can be applied, successfully, in the prediction of lighting energy 

consumptions. 

Vinagre, Pinto, Ramos, Vale and Corchado (2016) used, once again, the SVM algorithm to predict 

the energy consumption of a building. The data was collected every 10 seconds and used to forecast 

energy consumption on the last Friday of each month. This experience showed that it is possible to 

use this algorithm to predict this kind of data, in complex scenarios, even with better results than 

ANN algorithm. 

3. EXPERIMENTAL SETUP 

In the following sections, some ML techniques are presented, as well as the steps applied in an 

experimental work. This work aims to build a model for making predictions of energy consumptions 

in a city, using the LSTM. 

3.1. Dataset 

Finding a dataset from an entire city is a real challenge, because what is usually found are datasets 

about buildings and houses. There is also the question of data confidentiality, where many companies 

are not comfortable providing data for studies. 

The data set chosen for the forecast of energy consumptions was the PJM Hourly Energy 

Consumption Data, from the city of Dayton (Ohio, United States of America). This data set is freely 

available by the PJM Interconnection organization. Figure 3 shows the first 10 rows of the data set. 
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This data set has 2 columns, the first referring to the collection date of each reading and the second 

to energy consumptions, in Megawatts. Data was collected since 2004, which is good for training 

ML models, because they usually require a lot of data and, since the forecast is based on time, it is 

important that the dataset has data over several years, what makes this dataset a great choice for this 

article. 

 

 

Figure 3 – Data set used 

It can be said that this data set is a univariate time series, because it only presents a single attribute 

which is, in this case, the energy consumption column. 

For a better visualization of the data set, a graph with the total data is shown in Figure 4, where the 

X axis represents the date of data collection and the Y axis the measures, in Megawatt. 

 

 

Figure 4 – Graphical view of the data set 
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3.2. Feature Engineering 

As stated in the previous section, the data set is a univariate time series. In order to generate a greater 

number of attributes, the feature engineering was made. This is a process of using the domain of 

knowledge of the data to create attributes, which may be used in ML as inputs. Using feature 

engineering, it is possible to get a greater knowledge of the data set and helps in the model validation 

(Zaidi, 2015). 

Through the column of time (Datetime), the columns “dayofweek”, “year”, “month”, “day” and 

“hour” were created, representing the day of the week, the year, the month, the day and the hour in 

which energy consumptions data were collected, respectively. 

These attributes were chosen because they are directly related to the increase of energy 

consumptions, as can be seen in Table 1. The table shows the variation of the average consumption 

depending on the day of the week. 

 

DAYOF THE WEEK ENERGY CONSUMPTION (MEGAWATT) 

Monday 2100.55 

Tuesday 2146.55 

Wednesday 2146.07 

Thursday 2136.36 

Friday 2085.28 

Table 1 – Average electricity consumption grouped by day of the week 

Checking the results, it can be concluded that from Monday to Friday, the average of the energy 

consumptions is higher than on Saturday and Sunday. These numbers can be considered within the 

normal band, because, on weekdays, for example, in the case of information technology companies, 

they spend more energy due to the use of computers, monitors, printers, among other equipment. At 

weekends, these companies are normally closed and that’s why there is a decrease in the average of 

energy consumptions. 

This kind of information is also important for the validation of the model. Considering the previous 

example, if, for example, a forecast of a data whose day of the week is “Tuesday” and has a 

consumption less than 2000 Megawatt, is possible to conclude that this forecast is probably wrong. 

3.3. Model 

The python programming language was used for the construction of the model, because there is a 

large community using it in the ML area. As a backend, were used the Tensorflow 2.0 and the Keras 

library, which offers an easy application programming interface (API) for several models, including 

LSTM. 



Sério et al. /Machine Learning techniques for energy consumption forecasting

 

 
20.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2020) 10 

 

Having the feature engineering performed, presented in the previous section, the final data set has a 

total of 7 columns, as shown in Table 2. The first column refers to the date when each energy 

consumption data was collected. This column was converted as an index of the table because it is a 

time series. The other 6 columns are the attributes that will be used in the model. 

 

DATETIME DAYTON_MW DAYOFWEEK YEAR MONTH DAY HOUR 

2004-10-01 01:00:00 1621.00 4 2004 10 1 1 

2004-10-01 01:00:00 2146.55 4 2004 10 1 2 

2004-10-01 03:00:00 2146.07 4 2004 10 1 3 

2004-10-01 04:00:00 2136.36 4 2004 10 1 4 

2004-10-01 05:00:00 2085.28 4 2004 10 1 5 

Table 2 – Data set with the first 5 rows 

For the data pre-processing, it was not necessary any kind of data cleaning technique, such as 

removing data with null values and changing data that are outside the normal range of the set, 

because the data set had all the data in the correct form and in the normal range. The only operations 

performed were the ordering of the data, in ascending order of the data collection date, and the 

normalization of the data with an interval between 0 and 1. This assures that the data can be within 

the same interval, to prevent the algorithm going the wrong direction due to the difference in the 

value of each data. 

For the future validation of the model, the data set was divided into training and test. The percentage 

chosen was 75% for training and 25% for test. Because it is a time series, the collection date matters 

and, therefore, the training data were the first 75% and the test data were the remaining 25% of the 

data set (Reitermanova, 2010). 

To use the API of the LSTM model, the Keras library requires an input format of a three-dimensional 

vector, where the first dimension is the number of data set rows (samples), the second represents the 

number of data that the neural network will have to remember (time steps) and the last one refers to 

the number of data set attributes (Brownlee, 2018). 

In the model, using, then, the Keras library, were used 4 layers, the first (input layer) with 128 

memory cells, the next 2 layers (hidden layers) with the same number of memory cells and the last 

(output layer) with a single memory cell. The activation function used in each layer was the Tanh 

(hyperbolic tangent). At the end of each layer, a Dropout of 0.2 was used to prevent overfitting. This 

operator is very important, because it corrupts the information carried by the memory cells, forcing 

them to perform their intermediate calculations more robustly, preventing the neural network from 

“decorating” the data during training and offering incorrect predictions (Zaremba, Sutskever and 

Vinyals, 2014). The number of times used was 100 and the batch size was 64, which means that the 

neural network trains with 64 data at a time. 
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The number of layers, epochs, memory cells, dropout and the type of activation function were chosen 

precisely for this kind of data set. There is no general rule that says, for example, the ideal number 

of layers that a LSTM network must have. It is all about the type and quantity of the data set. Using 

the example of the number of layers chosen, if the data set had a higher level of complexity, it would 

be necessary a greater number of layers, so that the neural network could be able to know more 

complex patterns, which would imply that the network would take more time to train. 

3.4. Model evaluation 

Model evaluation was made by building models for 1, 10 and 100 periods and for two types of data 

sets: one with the original data set, which only has the attribute related to energy consumptions 

(univariate time series) and the other with the 6 attributes (multivariate time series), which was made 

after performing the feature engineering. 

For both models, it was used the Root Mean Square Error (RMSE) for the evaluation, because it is 

one of the most common metrics for evaluating numerical predictions (Roondiwala, Patel and 

Varma, 2017). The Table 3 shows the comparison between the results of the two models. 

 

EPOCHS UNIVARIATE TIME SERIES MULTIVARIATE TIME SERIES 

1 474 68 

10 349 22 

100 197 11 

Table 3 – Comparison between the results of the two models 

As can be seen in the previous table, the multivariate time series got better results, because has a 

lower RSME. About the number of epochs, it can be said that in both models that had more epochs, 

had better results. 

In order to compare which type of normalization would obtain better results, were built 3 more 

models with 3 of the most common types of normalization: MinMaxScaler (used in the previous 

models), RobustScaler and StandardScaler. For these models was used the multivariate data set. The 

Table 4 shows the comparation between the normalizations in 3 different epochs. 

 

EPOCHS MinMaxScaler RobustScaler StandardScaler 

1 68 54 66 

10 22 45 61 

100 11 39 57 

Table 4 – Comparison between the used types of normalizations 
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Regarding to the previous table, it can be concluded that the MinMaxScaler normalization type got 

better results with a greater number of epochs, compared to the other 2 types. 

Another important metric that deserves to be mentioned is the used activation function on the output 

layer. Were build models using 3 of the most used activation functions in ANNs: Tanh (used in the 

previous models), Sigmoid and ReLu. For these models was used the multivariate data set. The Table 

5 shows the comparation between the activation functions in 3 different epochs. 

 

EPOCHS Tanh Sigmoid ReLu 

1 68 68 66 

10 22 28 32 

100 11 33 13 

Table 5 – Comparison between the used activation functions 

As it can be seen in the previous table, Tanh activation function performed better than the others, 

when the number of epochs was greater. 

For a better visualization of the forecast made, it was made a graphical comparison between the 

actual data set and the predicted values. That comparation can be shown in the following figure. 

 

 

Figure 5 – Last current and forecast data 

Through the previous figure, it can be seen that the model was able to predict quite well, learning 

the different patterns that the data set had. 
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4. CONCLUSION 

The developed work allows to conclude that the use of Long Short-Term Memory in the energy 

consumption data of a city, is, in fact, a good option to make predictions for the next future. 

One of the steps of the machine learning process that is, sometimes, undervalued is the feature 

engineering. Based on this work it is also possible to conclude that it is important to have a data set 

with more than one attribute for time series problems, in order to try to reduce the error and getting 

better results in the forecast. 

It is important to note that the choice of the normalization type and the activation function on the 

output layer are important because some of these choices can obtain different results for other types 

of datasets. 

One limitation of this article is the number of attributes that the original dataset offers. It would be 

interesting if it had attributes about, for example, temperature, because not only could offer a better 

result in the forecasts, but also could help in the data analysis process. It would also be interesting 

to test the model in datasets from other cities, to verify if it would forecast as well as for this dataset. 

As a future work, we intend to build machine learning models, using LSTM, on other types of data 

from smart cities, such as data related to waste, water and air quality, temperature, among others, 

with the goal of enabling the city to forecast different uses, allowing to offer optimized services, 

improving citizens’ lives. 
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