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We would like to thank all commentators for their insightful comments, all

of them contributing to enrich and complement our review. Among them, the

comments by Agúndez - Cernicharo [1], Hochlaf [2], and Feng - Gou [3] provided

the opportunity to further extend the discussion.

1. Collisional broadening of the rotational transitions: experimental5

information on collisional rate coefficients

The reply “The Place of Quantum Chemistry in Molecular Astrophysics”

by Marcellino Agúndez and José Cernicharo [1] reports three interesting exam-

ples about the contribution that quantum chemistry can provide to molecular

astrophysics, which is how astrophysicists tend to call what chemists define as10

astrochemistry. The last example concerns the calculation of the rate coeffi-

cients for inelastic collisions, the latter being a critical information for deriving

molecular abundance from astronomical spectra. This was indeed a topic not
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Figure 2: The J = 3411,23 - 3410,24 rotational transition of SO2 broadened by H2: linear fit

of the collisional half-widths versus the partial pressure of H2.

[5, 6]. These quantities are expressed in terms of the scattering matrix S, which

in turn can be calculated by solving the time-independent Schrödinger equa-

tion involving the interaction potential V of the colliding system. Therefore, a

high-accuracy potential energy surface (PES) for the interaction between the30

tracer molecule and a perturber (He or H2) should be computed. While this

aspect is touched later on in the reply to the comment by Majdi Hochlaf [2],

here, we address the fact that scattering parameters can be also experimen-

tally derived using the collisional broadening of rotational transitions. Indeed,

the line-broadening and line-shift coefficients are related to the real and imag-35

inary parts of the cross-section and of the efficiency function, both derived via

the scattering matrix S. The experimental information on the line-widths can
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then be obtained by carrying out line measurements in controlled pressure and

temperature conditions, i.e. by performing pressure broadening measurements.

Although these studies can not directly estimate state-to-state rates, they pro-40

vide an important experimental validation of the computational procedure. In

fact, the parameters derived by line-profile studies represent not only a strin-

gent test for the accuracy of the PES used in the scattering calculations, but

they also provide a mean to improve the theoretically computed potential by

morphing it to fit the experimental data [7].45

The experimental procedure is rather simple: a rotational transition or a

portion of spectrum of the tracer molecule is recorded at low pressure; then, the

selected line or the collection of transitions are recorded at increasing quantities

of the perturber. The line profiles of the recorded spectra are analyzed in order

to retrieve the corresponding line widths and the line shifts. The model to be50

used in this analysis is a critical issue, see –for example– ref. [8] and references

therein. The pressure broadening (or shift) coefficients are then determined by

linear fits of the retrieved line widths (or shifts) versus the perturber pressure

values. An example of line profile analysis is shown in Figure 1, while Figure 2

depicts an example of the linear fit mentioned above. Both examples considers55

SO2 as the tracer and H2 as the perturber. Data are taken from ref. [9].

2. Non-reactive potential energy surfaces: Effective yet accurate en-

ergetics and modeling

In the comment “In-silico astrochemistry of life’s building blocks” by Majdi

Hochlaf [2], an interesting (and important at the same time) point has been60

mentioned, which has not been addressed in our review [4]: the derivation of

the molecular abundances from astronomical spectra also requires the collisional

rates of the molecules of interest (i.e. the tracers) with the most abundant per-

turbing species, namely H2 and He [6]. At the basis of the evaluation of the colli-

sional rates, there is the quantum-chemical calculation of the multi-dimensional65

potential energy surface (PES) for the tracer-perturber interacting system. In
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ref. [2], the good performance of explicitly correlated coupled-cluster methods

for the generation of such potentials is assessed [10, 11]. In particular, in refs.

[10, 11], it was pointed out that the CCSD(T)-F12/aug-cc-pVTZ level of theory

[12, 13, 14, 15] is suitable for the correct description of the critical regions of70

the PES and that diffuse functions are crucial for that purpose, the cc-pVnZ-

F12 (with n = D,T) basis sets being not adequate. Similar conclusions on the

need of incorporating diffuse functions for quantitative results were obtained

for intermolecular complexes in ref. [16], where the jun-ChS composite scheme

was introduced and validated. This modified version of the “cheap” composite75

scheme [17, 18] shows a very good compromise between accuracy and compu-

tational cost. The jun-ChS model starts from the CCSD(T)/jun-cc-pVTZ level

of theory [19, 20] and accounts for the contributions of the extrapolation to the

complete basis set limit and of the correlation of core electrons at the MP2 level

[21]. Since the computational bottleneck is the CCSD(T) calculation and the80

jun-cc-pVTZ basis set is by far smaller than the aug-cc-pVTZ set, the jun-ChS

scheme might offer an improved alternative to the CCSD(T)-F12/aug-cc-pVTZ

level of theory for the evaluation of the multi-dimensional PESs required for

deriving collisional rate coefficients. Nevertheless, the role of diffuse functions

on H (in H2) and He must be investigated in more details.85

Similar issues arise in the calculation of the rate constants for barrierless

elementary reactions, which often rule the entrance channels of radical-neutral

reactions occurring in the ISM. However, the dimension of the involved sys-

tems and the number of different reactions to be considered require the use of

more approximated models, where an effective radial potential is obtained from90

the proper averaging of the non-isotropic components of the interaction energy.

The simplest approach of this kind is the phase space theory (PST) [22, 23],

which leads to an analytical expression for the microcanonical or canonical rate

constant under the assumption that the effective potential can be fitted by a

Lennard-Jones function [24]. This model is applicable only if the dynamical95

bottleneck of the entrance channel occurs at large separations, where the in-

teracting fragments have free rotations and unperturbed vibrations. Such an
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assumption is generally valid for low-temperature phenomena, as those occur-

ring in the ISM. Despite its simplicity, PST often leads to rate constant within a

factor of two from accurate results, this accuracy being comparable to that issu-100

ing from accurate electronic structure computations [25]. Examples of successful

application of PST in conjunction with transition state theory for reaction steps

ruled by potential barriers are provided by the formation of formamide in cold

interstellar clouds [26], the gas-phase formation of glycolaldehyde, acetic acid,

and formic acid [27], as well as an ongoing study concerning the reaction of the105

CN radical with methylamine.

3. The role of hyperfine structures in astronomical spectra

An interesting point raised by the comment “Possibilities and challenges in

astrochemistry: Computational and spectroscopic strategies” by Gang Feng and

Qian Gou [3] concerns the fact that the pattern of the hyperfine structure of110

rotational transitions might help in the assignment of astronomical observed

spectra. In our review [4], the quantum-chemical aspects of rotational spec-

troscopy have been addressed, but no mention has been done on the hyperfine

structure. While it has been pointed out that even state-of-the-art quantum

chemistry is not able to provide predictions of rotational frequencies sufficiently115

accurate for guiding astronomical searches (see also refs. [28, 29]), different is

the situation for the hyperfine parameters, for which quantitative estimates can

be obtained (see, e.g., refs. [30, 31]). A significant example in this respect is

provided by the investigation of the hyperfine structure in the rotational spec-

trum of CF+ reported in ref. [32]. In that work, the spin-rotation interaction120

constant was accurately computed and allowed to explain (and perfectly repro-

duce) the double-peaked feature in the astronomical observation of the J = 1 – 0

transition. The role played by quantum chemistry was fundamental because the

spectroscopic study of CF+ was not able to resolve the hyperfine components

in the rotational spectrum [33]; indeed, for ionic species –produced on-the-fly125

by DC discharge– standard rotational spectroscopy techniques are not able to
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exploit the required sub-Doppler resolution.

Hyperfine structures of rotational transitions play an important role because

an error in the line width is transferred to the column density estimate. This

has been clearly pointed out in the recent investigation of the NH2D hyperfine130

structure revealed by astrophysical observations [34]. The authors found that

when the hyperfine splitting due to the D nucleus is neglected, the line analysis

leads to overestimating the line widths of the o/p-NH2D lines, with the error for

a cold molecular core being as large as 50%. However, the work reported in ref.

[34] only provided an incomplete determination of the hyperfine parameters,135

which have been exhaustively derived in a very recent spectroscopic work [35].

Even if the hyperfine structure is not resolved in the astronomical features, for

correctly retrieving their column density, it might be fundamental to take it into

account, as pointed out in ref. [31].
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