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Abstract  

The purpose of this study was to analyze the effects of providing metaconceptual 

awareness questions on the conceptual change and metaconceptual awareness of students 

in the chemistry classroom. This quasi-experimental study with a repeated-measures 

design analyzed the effects of providing metaconceptual awareness questions on the 

conceptual change and metaconceptual awareness of high school chemistry students. The 

intervention consisted of providing metaconceptual awareness questions nine times to the 

experimental group over a three-week period. The chemistry conceptual knowledge of 

both groups was assessed three times: pretest, posttest, and a delayed retention test. The 

metaconceptual awareness of the students was assessed twice with a pretest and a 

posttest. An ANOVA with repeated-measures was performed for both the chemistry 

conceptual knowledge data and the metaconceptual awareness data. A significant 

between subject-effect of F(1,98) = 10.17, p = .002, ηp2 = .10 indicates that 10% of the 

variance in chemistry scores was explained by the intervention. The average posttest 

scores were significantly higher for the experimental group with a Cohen’s d of .63. The 

retention test scores were also significantly higher with a Cohen’s d of .85. The ANOVA 

with repeated-measures did not indicate a significant effect of the intervention on 

metaconceptual awareness scores. These findings indicate more research is warranted for 

the intervention of providing metaconceptual awareness questions in the science 

classroom.   

 Keywords: metaconceptual, framework, conceptual change, metaconceptual 

awareness, science education 
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Chapter 1 

Introduction 

Background 

 Recently, in 2015, John Hattie updated his meta-analysis data on education 

interventions that increase student learning to include conceptual change interventions. 

He calculated conceptual change interventions to have an effect size of 1.16 and a 

ranking of 5 out of 195 influencers on student achievement (Hattie, 2015). This effect 

size of conceptual change interventions is far higher than many other influencers 

including reciprocal teaching at .74 and direct instruction at .6 (Hattie, 2015, p. 82).  

Hattie’s meta-analysis focused primarily on the use of conceptual change curriculum in 

the science classroom. His subsequent 2017 meta-analysis included conceptual change 

with an effect size of .99 (Hattie, 2017). Even though Hattie’s addition of conceptual 

change programs to his meta-analysis of instructional programs is recent (Hattie, 2015), 

the term “conceptual change” has been around in educational research since the 1970s 

(Hattie, 2015; Vosniadou, 2007). Much research has been done in both psychology and 

education on conceptual change, including the definition of a “concept,” the importance 

of conceptual change for students, and the best instructional methods for facilitating 

conceptual change for students (Yürük et al., 2008). Conceptual change is different from 

other areas of learning such as skill acquisition (basic algorithms) or acquiring new facts 

(names of capitals or math facts) (diSessa, 2014).  

Purpose 

The purpose of this study was to examine how using metaconceptual scaffolding 

questions in the science classroom impacts conceptual change and students’ 
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metaconceptual awareness. Several science education researchers claim that 

metaconceptual awareness is a prerequisite for conceptual change to occur (Carey, 2009; 

Vosniadou, 2014). In fact, lack of metaconceptual awareness has been identified as a 

cause for students reverting back to inaccurate preconceptions after time has passed 

(Huang et al., 2016). However, few empirical studies have addressed increasing a 

student’s metaconceptual awareness as an intervention to increase student’s science 

conceptual understanding. Only recently has an instrument been developed to measure 

students’ metaconceptual awareness, the Metaconceptual Awareness and Regulation 

Scale (MARS) (Kirbulut et al., 2016).  

Significance 

 In 1978,  Driver and Easley published a seminal paper on students’ inaccurate 

science preconceptions and their resistance to change despite teaching students 

scientifically accurate information. Since that paper, decades of science education 

research have been devoted to understanding and facilitating conceptual change in the 

science classroom (Kirbulut et al., 2016; Taasoobshirazi et al., 2016). Science students 

revert back to their initial science preconceptions when their ideas are not conceptually 

changed (Mason et al., 2017; Syuhendri, 2017). Therefore, much attention has been given 

to facilitating conceptual change in the science classroom. Recently, there has been a 

shift in conceptual change research in science education from classical conceptual change 

(where the student’s prior alternate conception is replaced) to a theoretical framework 

that acknowledges that the student will retain their prior alternative theory. More detail 

will follow in the chapter two literature review regarding this shift of understanding of 

conceptual change, including recent neuroscience findings regarding conceptual change.  
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This modern theory of conceptual change, known as Framework Theory, was first 

put forth by Vosniadou in 2007. In 2017, Vosniadou was the keynote speaker at the 

National Association for Research in Science Teaching (NARST) where she presented 

research supporting the claim that students arrive in science class with a framework 

theory of how the world operates. Furthermore, she discussed the need for students to 

possess metaconceptual awareness as a prerequisite for conceptual change (Vosniadou, 

2017). Secondly, she discussed that student’s theories are not replaced when new 

scientific knowledge is learned but rather when they no longer offer students the greatest 

explanation (Vosniadou, 2017).  Few researchers have tried to increase student’s 

metaconceptual awareness as a way of facilitating conceptual change, with no studies 

occurring in high school chemistry. This study explored the effects of metaconceptual 

prompts on students’ conceptual change. The effects of using metaconceptual prompts on 

metaconceptual awareness were also analyzed.  

Questions and Hypotheses 

This study examined the effect of utilizing metaconceptual scaffolding on 

conceptual change in high school chemistry students. This study also examined the 

correlation between using metaconceptual prompts and metaconceptual awareness.  

Research Question 1: Is there a statistically significant difference in chemistry 

conceptual knowledge between students who receive metaconceptual scaffolding 

questions and students who receive the same chemistry instruction for three weeks 

without metaconceptual scaffolding questions? 

H0 = There is a statistically non-significant difference between groups 

(metaconceptual treatment and nontreatment) on chemistry conceptual knowledge as 
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measured by the American Association for the Advancement of Science (AAAS) 

conceptual chemistry assessment. 

H1 = There is a statistically significant difference between groups (metaconceptual 

treatment and nontreatment) on chemistry conceptual knowledge as measured by the 

AAAS conceptual chemistry assessment. 

Research Question 2: Does the use of metaconceptual scaffolding increase 

students’ retention of chemistry concepts over time? 

H0 = There is a statistically non-significant difference between groups 

(metaconceptual treatment and nontreatment) on delayed posttest on chemistry 

conceptual knowledge as measured by the AAAS conceptual chemistry assessment four 

weeks after the study. 

H1 = There is a statistically significant difference between groups on posttest and 

retention posttest on chemistry conceptual knowledge as measured by the AAAS 

conceptual chemistry assessment four weeks after the study. 

Research Question 3: Is there a statistically significant difference in 

metaconceptual awareness for students who receive metaconceptual scaffolding questions 

when compared to students who receive the same chemistry instruction for three weeks 

without metaconceptual scaffolding? 

H0 = There is a statistically non-significant difference between groups 

(metaconceptual treatment and nontreatment) on metaconceptual awareness as measured 

by the Metaconceptual Awareness and Regulation Scale (MARS). 

H1 = There is a statistically significant difference between groups (metaconceptual 

treatment and nontreatment) on metaconceptual awareness as measured by the MARS. 



 

 

6 
 
 
Defining Terms 

Metaconceptual Awareness: learners ability to understand, monitor, and evaluate 

their conceptual learning, this includes the awareness of existing and preexisting 

conceptual understanding (Yürük et al., 2008)  

Conceptual Change: change of understanding from a prior, naive, conception to a 

scientific conception widely held by the scientific community (Nadelson et al., 2018).  

Assumptions and Limitations 

 This study had several assumptions and limitations due to the natural classroom 

setting of the study. Assumptions include that the experimental and comparison groups 

contain similar student learners. The four intact chemistry classes are the same level of 

high school chemistry with the same math and science prerequisites. Pretests were 

administered to all students and results analyzed for significant differences between 

groups. In using an analysis of variance (ANOVA) with repeated measures, several 

assumptions must be met including normality of data, no significant outliers, 

homogeneity of variance, categorical independent variable, and continuous dependent 

variable (Field, 2013). This study had several limitations inherent in a natural classroom 

setting including nonrandom assignment of participants. Instead the study has random 

assignment of intact classes to the experimental and comparison groups. Student absences 

due to illnesses and fire drills were unavoidable interruptions of instruction that occurred. 

However, these interruptions occurred at the same rate in the experimental group as the 

comparison group.  

Structure of Dissertation 
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 The remainder of this dissertation is divided into four subsequent chapters. The 

organization of these chapters follows.  

Chapter Two examines the historical development of conceptual change research 

in science education. This chapter also contains a summary of Framework Theory, which 

is the theoretical framework used in this study. A summary and analysis of empirical 

studies focused on metaconceptual awareness and neuroscience conceptual change 

studies are also included.  

Chapter Three describes the methodology used in this quasi-experimental study. 

The design of the study including sample, instrumentation, and data collection is 

presented.  

Chapter Four presents the results of this study. Descriptive and inferential 

statistics are included. A summary of results is presented in both narrative and table form.  

Chapter Five provides a summary and the author’s analysis of the findings 

organized by research question. Limitations of the study including internal and external 

threats to validity are also discussed. Finally, recommendations for future study are 

provided.  
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Chapter 2 

 Review of Literature 

 Conceptual change research in science education spans more than four decades 

(Kirbulut et al., 2017). Conceptual change research remains very relevant today despite 

its long research history. Stella Vosniadou was the keynote speaker on her Framework 

theory for conceptual change at the National Association for Research in Science 

Teaching 2017 Conference. In recent neuroscience studies, researchers have gathered 

data supporting the coexistence of conceptions, both pre-existing alternative and 

scientifically accurate conceptions within students (Potvin et al., 2015). This recent 

development varies widely from the largely held replacement theories from the 1990s and 

2000s (Dawson, 2014; Posner et al., 1982). Empirical studies from the last five years 

support the need for metaconceptual processing as students conceptually change the way 

they view natural phenomena (Huang et al., 2016; Sackes & Trundle, 2017).  

The current study focused on using metaconceptual scaffolding to facilitate 

conceptual change for chemistry students. This chapter includes the theoretical 

development of conceptual change in science education, neuroscience findings linked to 

conceptual change, background on an instrument to measure conceptual change, and 

empirical research on the relationship between metaconceptual processes and conceptual 

change. The review of empirical research is narrowly focused on the relationship between 

metaconceptual processes and conceptual change, the focus of this current study. 

Background Theory Development for Conceptual Change 

 Scientific historian Thomas Kuhn first used the phrase “conceptual change” in 

1962 to describe when concepts change their meaning due to a shift in theories and those 
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concepts are part of an overall framework that also changes (Kuhn, 2012). Conceptual 

change research can be traced back to the mid-20th century study of the nature of 

scientific discovery (Vosniadou, 2014). Two competing explanations emerged to explain 

the process of scientific discovery. One explanation was put forth by Kuhn (2012) in 

“The Structure of Scientific Revolutions,” where he argued that scientific discovery did 

not progress in a linear nature. Additionally, he identified different periods of scientific 

discovery, including normal science, paradigm shift, and revolution. During periods of 

normal science, puzzle solving takes place and problems are solved within the current 

field of knowledge (Kuhn, 2012, p. 181). Kuhn wrote “the most striking feature of 

normal research problems we have encountered is how little they aim to produce major 

novelties, conceptual, or phenomenal” (p. 185).  

Kuhn coined the term “paradigm shift” to describe when there is a scientific crisis 

and a revolution occurs. In Kuhn’s follow-up postscript to “Structure of Scientific 

Revolutions,” he offered a response to a lack of understanding of what a paradigm was 

and further defined it by retitling paradigm as a “disciplinary matrix.” Kuhn felt that 

readers were understanding the paradigm as he named it to be similar to a scientific 

theory or set of theories which he felt was too limited and not all-encompassing, thus 

leading him to retitle paradigm as disciplinary matrix (Kuhn,2012, p 181). The 

disciplinary matrix describes the area within which scientists operate during a Normal 

Science period, including symbolic generalizations, metaphysical models, values, and 

exemplars (Kuhn, 2012). According to Kuhn, scientists operate within this disciplinary 

matrix (paradigm) until there is an anomaly, an observation that does not fit within the 

paradigm and thus a crisis commences. The response to this crisis leads to a paradigm 
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shift which Kuhn writes is "the changes in which these discoveries were implicated were 

all as destructive as they were constructive" (p. 66). Kuhn writes that for a paradigm shift 

to occur the old disciplinary matrix must be replaced with the new disciplinary matrix or 

paradigm. He further states that a paradigm shift is "like the gestalt switch, it must occur 

all at once or not at all" (p. 149). He also wrote that when the new paradigm was 

incommensurable with the older paradigm, the two could not be compared because the 

new understanding represents a completely different worldview, a different disciplinary 

matrix (pp. 195-198).  

One such paradigm shift as described by Kuhn is the transition from Ptolemaic to 

Copernican Astronomy (p. 68). The Copernican system no longer allowed the scientists 

to engage in “normal science” puzzle-solving as they discovered more and more 

anomalies between the Copernican system predictions and their planetary observations. 

The abundance of discrepancies led to a scientific crisis as more and more corrections 

were made to the Copernican system and yet it still did not accurately predict planetary 

motion (Kuhn, 2012, pp. 68-69). Copernicus wrote of the failing of the current system, 

thus a crisis, in the preface of his “De Revolutionibus,” where he explained his 

revolutionary theory for planetary motion (Copernicus, 1543). The shift from Ptolemaic 

to Copernican Astronomy demonstrates Kuhn's insistence that the new paradigm is 

incommensurable with the old paradigm and that it is a completely new worldview, not a 

continuation of the normal science period puzzle-solving.  

Following Kuhn’s work, the “Structure of Scientific Revolutions”, Stephen 

Toulmin wrote “Human Understanding” in 1972. Toulmin rejected the coherence of 

Kuhn's paradigm (disciplinary matrix), viewing knowledge that evolves through selection 
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and evolution rather than revolution (Toulmin, 1972). He also argued against Kuhn’s 

incommensurably between the new and old paradigms due to a lack of coherence within 

each paradigm. Toulmin maintained that scientific change was a process, not a gestalt 

switch (diSessa, 2014). Toulmin stated “this change of approach [away from strong 

coherence] obliges us to abandon all those static, ‘snapshot’ analyses. Instead, we must 

give a more historical, ‘moving picture’ account” (Toulmin, 1972, p. 85). Toulmin also 

described each person having a “conceptual ecology” in which concepts form based on 

the intellect and the physical environment of the person (Toulmin, 1972). So, when a 

person encounters new concepts, they fit into the conceptual structure the person already 

possesses (Posner et al., 1982; Toulmin, 1972). Posner et al. (1982), along with other 

more recent conceptual change theorists, continue to use and define conceptual ecology 

(diSessa, 2002). 

Classical Conceptual Change Theory 

Kuhn’s work in “The Structure of Scientific Revolutions” has become the basis of 

what is known as the classical approach to conceptual change (Vosniadou, 2014). In the 

classical approach, students, like scientists, have an understanding of the world that when 

confronted with an anomaly that does not fit into their worldview; they will reject their 

prior conception, and adopt the new way of thinking (diSessa, 2002, p. 144). This 

classical approach to conceptual change led to misconceptions research in the 1980s 

through the early 1990s (diSessa, p. 144). One example of this is the Private Universe 

research and videos by the Harvard-Smithsonian Center for Astrophysics (Shapiro, 

1987). These video segments highlight the enduring science misconceptions that students 

have from middle school through college graduation. Before showing Harvard students 
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displaying misconceptions, the narrator says, “Even the brightest students in the class 

have false ideas based on enduring misconceptions that traditional instructional methods 

cannot overcome” (Shapiro, 1987). The project shows teachers using traditional teaching 

methods unable to overcome middle school students’ science misconceptions and is an 

example of a project based on the classical conceptual change approach.  

 Susan Carey, a developmental psychologist, supports Kuhn’s incommensurability 

work stating that a key difference between enrichment and true conceptual change for 

both scientists and children is that the new understanding is incommensurable with the 

previous understanding (Carey, 2009, pp. 413-480). Carey wrote, “Incommensurability 

arises when episodes of conceptual development have required conceptual change” (p. 

471). Carey’s earlier work in 1986 bridged Kuhn’s theory of how scientists undergo 

conceptual change with how children undergo conceptual change while learning science, 

especially biology (Carey, 1986). Carey described how children learn science as very 

similar to how Kuhn described the crisis scientists undergo before a paradigm shift and 

the transition between normal science and revolutionary science. Carey postulated that 

children strive for internal consistency and a coherent basis of facts. When their 

predictions fail and they detect inconsistency, they undergo a conceptual change within 

that domain (Carey, 2009). Carey’s most recent work in “The Origin of Concepts” (2009) 

proposes a method she calls “Quinian bootstrapping” for how students are able to bridge 

the gap between their incommensurable naive theories and advanced scientific theories 

(p. 20). In Quinian bootstrapping students use symbols and model phenomena for which 

they initially have partial meaning; then, through the process of modeling and exploration 

they develop more meaning and new symbols. Carey writes that metaconceptual 
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awareness is the ability to monitor one’s conceptual change, including the ability to 

recognize multiple conceptual representations, and is important for the conceptual change 

process. Exploration and hypothesis testing are needed for Quinian bootstrapping and the 

conceptual change process (p. 479).  Carey’s early work in 1986 explained the parallel 

between Kuhn’s  “Structure of Scientific Revolutions” and students making conceptual 

changes in the classroom. Her later work, “The Origin of Concepts”, explains the 

mechanism for conceptual change (Carey, 2009).  

Theory-Theory 

 Closely linked to Kuhn’s “Structure of Scientific Revolutions” is theory-theory 

(Vosniadou, 2014). It is named theory-theory because it is the theory that children and 

adults hold intact theories of science phenomena explanations before receiving formal 

instruction in that scientific domain, similar to how scientists have theories to explain 

scientific phenomena (diSessa, 2016). Carey (2009) stated that she endorses theory-

theory although she does not think its current form explains the conceptual change 

process in its entirety. Theory-theory follows Kuhn's model with a "normal science 

period" when students operate within their initial theory and conceptual change occurs 

when their previous conceptions are challenged, thus they must acquire a new theory 

(Posner et al., 1982). Posner et al. (1982) utilized Toulmin's conceptual ecology in their 

model and described it as a collection of previous conceptions used by the learner to 

organize questioning of the new phenomenon (p. 211). Theory-theory states that first the 

learner "assimilates" new knowledge, then when the learner is unable to maintain their 

current conceptual knowledge, they replace and accommodate new knowledge (p. 212). 
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Posner et al.( 1982) described four conditions needed for a learner to undergo 

accommodation and achieve conceptual change: 

1. Dissatisfaction with prior conception, similar to Kuhn’s anomalies  

2. A new concept must be intelligible 

3. A new concept must seem plausible  

4. A new concept must be fruitful for future pursuits and can be extended into 

other areas  

   Instructionally, Posner et al. (1982) wrote that students must have a “Kuhnian 

state of crisis” so that they can accommodate this new knowledge (p. 224). In this way, 

Posner and other conceptual change theorists who subscribe to theory-theory utilize both 

Kuhn’s Structure of Scientific Revolutions and Toulmin’s conceptual ecology. Theory-

theory emphasizes the need for more time during instruction for assimilation and 

accommodation of concepts by students with less emphasis on the quantity of science 

material content coverage (p. 225). Theory-theory supports the need for cognitive conflict 

in demonstrations, lectures, and labs that produce anomalies for students (p. 226). 

Although Posner said that his four conditions for rational conceptual change were 

theoretical and did not provide a model for instruction, many teachers have organized 

teaching units around these and some have explicitly taught them to students as steps to 

follow (diSessa, 2016). 

Framework Theory 

 The modern framework theory of conceptual change has roots from classical 

change theory and Kuhn’s Structure of Scientific Revolutions. As such, there are many 

similarities between modern framework theory and classical conceptual change theory 
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(Vosniadou & Skopeliti, 2014). Most notably, the framework theory is based on the 

notion that students’ scientific knowledge is coherent and makes up a framework to 

explain how the world operates (Vosniadou, 2014). Framework theory postulates that all 

children develop naïve theories for how the world operates. Vosniadou (2007) writes that 

children’s naïve theories are different from scientific theories in that they are neither 

shared by a community nor a tested theory but rather an explanation based on individual 

experiences.  

Differing from classical conception theory, framework theory states that the initial 

preconceptions (naïve theories) children have are different from synthetic conceptions 

that children develop after they are taught new knowledge in school. Formal schooling 

creates misconceptions and fragmentation when the new scientific knowledge learned in 

school does not fit into students’ naive theory framework. Vosniadou and Skopeliti 

(2014) wrote that "misconceptions can form when students distort the scientific 

information given to them.” This new formal science information is incompatible with 

their existing knowledge base and does not lead to an instantaneous conceptual change 

(Vosniadou & Skopeliti, 2014).  Instead, conceptual change is a slow process that 

requires students to have increased metaconceptual awareness so that they better 

understand their naïve beliefs and where the formal science knowledge they are learning 

fits in. Framework theory is constructivist in nature in that new scientific information is 

building on student's existing knowledge structure. Framework theory does not posit that 

their initial naïve theory should be replaced but rather students should be taught 

metaconceptual awareness so that they can positively integrate scientific information 

from formal schooling. Framework theory is very different from classical conceptual 
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theory which states that the preconception is replaced. In framework theory, cognitive 

dissonance and later conceptual change do not lead to a complete replacement but rather 

an integration of the new knowledge (Vosniadou, 2014). 

Framework theory has many instructional implications, including the importance 

of a teacher’s awareness of the student’s naïve theories to better facilitate conceptual 

change and the difficulties students experience when encountering new scientific 

information that does not fit these naïve theories. The introduction of formal knowledge 

may lead to a fracturing of student’s previous conception of how a phenomenon works 

and lead to misconceptions as they attempt to fit this new knowledge into their previous 

framework (Vosniadou & Skopeliti, 2014). Students must be taught to identify areas of 

their naïve theory that can be built on and areas needing revision. This is a gradual 

building of knowledge that requires long-term planning by the teacher to utilize a 

student-centered curriculum with student-generated modeling, questioning, and 

experimentation (Vosniadou, 2017). Within a framework theory view, students should 

not be told their naïve theories are wrong; rather that they are from one perspective and 

there are other perspectives that can explain more. For example, in 2001, Vosniadou et al. 

conducted an experiment with different methods of science instruction to teach the 

evidence that the Earth was round and not flat. When students were shown a globe and 

told the Earth is round, they did not have long-term conceptual change. However, when 

they learned that their perspective caused them to think the Earth was flat and they played 

with models and watched pictures taken by astronauts in space, they understood why they 

had that perspective but there were other perspectives that could explain more. Many 
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researchers have explored the instructional implications of framework theory since it was 

first proposed by Vosniadou (Kirbulut et al., 2016; Ozdemir & Clark, 2007. 

Recent Neuroscience Connections to Conceptual Change  

Within the past several years there have been many neuroscience studies that 

provide evidence that students do not replace their original conception when they 

undergo conceptual change but rather hold onto both conceptual understandings, the 

original and the scientifically accurate understanding (Dawson, 2014). When students are 

presented with information that is consistent and inconsistent with their previous 

understandings, different portions of their brain activate according to functional MRI 

(fMRI). When consistent data is shown to students, caudate and parahippocampal gyrus 

show increased activation. However, when data that is inconsistent with student’s initial 

conceptions is introduced, the anterior cingulate, precuneus, and dorsolateral prefrontal 

cortex (DLPC) are activated. These areas activated by inconsistent data exposure are 

areas associated with error detection and conflict monitoring. Functional MRI studies 

were done on physics and non-physics students. Both groups of students were exposed to 

computer simulation of unequal balls falling at the same rate. Non-physics students who 

had incorrectly answered that the balls would fall at different rates had the anterior 

cingulate preferentially activate when they saw the balls of uneven size falling at the 

same rate. However, physics students who had correctly answered that the balls of 

uneven size would fall at the same rate, had the same area, the anterior cingulate activate 

when they viewed the same computer simulation. Even though the physics students had 

the scientifically accurate conceptual knowledge that the balls would drop at the same 

rate, they had held on to their prior concept and had them both simultaneously.  
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Similar studies have been done with reaction time and learners classifying items 

as living or nonliving; teenagers took longer to classify moving nonliving items such as 

cars and celestial bodies (Mareschal, 2016). These studies suggest that when students 

learn conceptual change, they do not replace their prior naive theory but rather hold onto 

both. These neuroscience studies support Vosniaudou’s framework theory that student’s 

naive theory is held onto rather than replaced, such as in classical change and theory-

theory. Framework theory informs this study on conceptual change. The metaconceptual 

scaffolding questions used in the intervention acknowledge that students hold onto their 

initial naive theory. Rather than the questions focusing on replacement of theory, students 

analyze the differences in theories both initial naive and learned theories and their 

explanation of the natural world.  

Metaconceptual Awareness and Regulation Scale  

Recently, Kirbulut et al. (2016) developed a Metaconceptual Awareness and 

Regulation Scale (MARS) to assess student’s metaconceptual awareness and regulation. 

This is the first instrument of its kind designed to assess student’s metaconceptual 

awareness and regulation. Previously, researchers had used videotaped interviews and 

coding in an effort to measure student’s metaconceptual awareness and regulation. 

Metaconceptual awareness is required for conceptual change to occur (Saçkes & Trundle, 

2017; Vosniadou & Skopeliti, 2014). However, researchers have not been able to 

measure metaconceptual awareness quantitatively. Instead, those researching 

metaconceptual interventions have provided interventions to facilitate metaconceptual 

processes and only measured the resulting conceptual change using science conceptual 
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assessments. This MARS instrument is an important development in learning more about 

facilitating metaconceptual processes and ultimately increasing conceptual change.  

 The MARS instrument was designed within the chemistry context with a sample 

of 349 tenth-grade chemistry students for the pilot study and 338 students for the 

validation study. The study was conducted within public high schools in Turkey. The 

preliminary instrument had 17 items which were reduced to 12 after careful analysis and 

feedback from panels of science, statistics, and education experts. Further refinement was 

done by interviewing 10th graders and seeing how they responded to the questions and if 

they understood what the questions were asking. For the pilot study, the 12-item MARS 

was administered to 349 high school chemistry students. Following the administration, an 

Exploratory Factor Analysis utilizing principal components and direct oblimin rotation 

was conducted. The Kaiser-Meyer-Olkin measure for sampling adequacy was .84, which 

indicated the sample size was large enough for factor analysis (Field, 2013). Bartlett’s 

test for sphericity was significant at (c2(66) = 961.02, p <.001) indicating that the 

correlation matrix is significantly different from the identity matrix (Field, 2013). The 

scree plot and parallel analysis indicated two primary factors. The metaconceptual 

regulation factor accounted for 33% of the total variance and the metaconceptual 

awareness factor accounted for 11.9% of total variance, combined the two factors 

accounted for 44.9% of total variance in MARS scores. All factor loading coefficients 

were greater than .3. Two items expected to load to metaconceptual awareness factor 

instead loaded to metaconceptual regulation factor. These items were thus eliminated 

resulting in a 10-item instrument. 



 

 

20 
 
 

The MARS is a 10-item instrument using a six-point Likert scale from “never” (1) 

to “always” (6) to assess metaconceptual awareness and metaconceptual regulation. 

Metaconceptual awareness was assessed with four items and included sample statements 

such as “I know what I did not understand about this chemistry topic” and “I know what I 

have learned about this chemistry topic.” The Cronbach’s alpha for these four items was 

.71 (95% CI [.65, .75]) which is satisfactory (Field, 2013). Metaconceptual regulation 

was assessed with six items including statements such as “While learning the chemistry 

topic, I monitored the changes in my ideas related to the topic” and “I questioned whether 

my prior knowledge related to the chemistry topic is plausible.” The Cronbach’s alpha 

coefficient was calculated to be .75 (95% CI [.70, .78]) which again was satisfactory 

(Field, 2013).  

A validation study was then conducted using the MARS with 338 high school 

chemistry students. A confirmatory factor analysis, CFA was used to assess the two-

factor structure of the instrument. Skewness and kurtosis were assessed for each of the 

ten items indicating univariate normality. Multivariate  normality was also indicated by 

data analysis. To evaluate how well the data fit the prior model Comparative Fit Index 

(CFI), Root Mean Square Error of Approximation (RMSEA), Normed Fit Index (NFI), 

and Non-Normed Fit Index (NNFI) were used. The results for the fit analysis (RMSEA = 

.07; CFI = .97; NFI = .96; NNFI =.96; 90% CI [.05, .08]) demonstrated that there was a 

satisfactory fit (Kirbulut et al., 2016). The Cronbach’s alpha reliability coefficients for 

the metaconceptual regulation and metaconceptual awareness factor scores were 

calculated as .80 (95% CI [.67, .77]) and .72 (95% CI [.67, .77]) respectively which are 

above the .7 satisfactory threshold (Field, 2013).  
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The MARS instrument was used in the current study to assess students’ 

metaconceptual awareness and regulation in addition to the chemistry conception as a 

pretest and a posttest. This instrument piloted and validated with high school chemistry 

students was a good fit in this current study with a sample of high school chemistry 

students. One limitation of this instrument is like any self-report instrument, relying on 

participants to give an accurate assessment of their metaconceptual level. The MARS 

provides a way of assessing metaconceptual awareness and metaconceptual regulation of 

students learning chemistry. Further research is needed to analyze if and how this 

instrument can be adapted for different science disciplines and student ages. However, for 

this current study, the instrument was applied to a similar participant population of high 

school chemistry students.  

Empirical Studies on Metaconceptual Awareness and Conceptual Change 

Explicit Metaconceptual Prompting During a Computer Simulation.  

One quasi-experimental study investigated the effect of providing metaconceptual 

scaffolding questions to 8th graders during a computer-based inquiry simulation (N = 

138) on conceptual change. More science classrooms are using computer simulations for 

inquiry learning, particularly in physical sciences. Rather than allowing students to 

explore computer simulations unguided, structure and guidance provided by the 

instructors to the students during computer simulation inquiry increase learning outcomes 

(Huang et al., 2016).  

In this research design, all students were provided with structure and guidance 

consistent with the predict, observe, and explain (POE) framework. The experimental 

group was presented with additional elaboration and prediction question prompts. The 
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lesson focused on force and motion: position, velocity, acceleration, balanced, and 

unbalanced forces. This experiment utilized Phet simulations, online HTML computer 

simulations from the University of Colorado. Two Phet simulations were used: Moving 

Man and Forces. Phet simulations allow students to make predictions and pause and 

replay the motion. Both groups, experimental and control, were given the POE 

scaffolding guide in electronic form and had to answer the POE prompts in a text box to 

move on to the next part of the simulation ensuring students interacted with it rather than 

merely play with the simulation. The experimental group received the additional 

elaboration and prediction prompts in their electronic form, including: 

● What is the reason for your answer? Please explain. 

●  If your prediction is different from what you found from the simulation, are 

you ready to give up your prediction and accept what you found from the 

simulation? 

● Based on what you found from the simulation, what is your theory about the 

velocity graph for at rest objects? (Huang et al., 2016, p. 83). 

  Effects from the additional elaboration and prediction prompts were measured 

both with multiple-choice pretest and posttest (15 questions) and conceptual mapping of 

forces and speed. (Huang et al., 2016). Both the multiple-choice posttest and the 

conceptual mapping assessment were given immediately, at ten days, and 30 days after 

the intervention. The treatment group which received metaconceptual scaffolding 

performed significantly better both at 10-day and 30-day posttest, F(1, 111) = 15.96, p < 

.01, η2= .13 with differences in pretests accounted for (p. 90). On the conceptual mapping 

assessment done at 10-day and 30-day posttest, there was no significant difference 
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between the students who received the metaconceptual treatment and the control group 

(Huang et al., 2016, p. 93). 

  The metaconceptual scaffolding had a significant positive effect on students' 

conceptual knowledge as assessed by the multiple-choice test at the end of the 

instructional period. However, conceptual mapping did not demonstrate a significant 

difference. Authors Huang et al. (2016) speculate that conceptual mapping is an indicator 

of broader knowledge and that the metaconceptual scaffolding questions focused too 

narrowly on a few concepts rather than a broader, more holistic overview (p. 93).  

Metaconceptual scaffolding is an exciting new addition to computer-based inquiry 

simulations and in order to increase effectiveness, more research is needed. One 

limitation of this study was how narrowly focused the content was in this study and the 

brief length of the intervention. The study lasted seven 45-minute periods. Longer term 

studies and on different content areas are needed on metaconceptual scaffolding.  

Contribution of Metaconceptual Awareness in Learning Science Concepts.  

This longitudinal study examined how metaconceptual awareness affected 

preservice teachers’ conceptual understanding and the durability of science concepts 

(Saçkes & Trundle, 2017). Sixteen preservice teachers were interviewed to assess their 

understanding of lunar phases as a pretest, posttest, and a delayed 15-week posttest. 

Students’ metaconceptual awareness was also assessed immediately following six hours 

of total lunar phases instruction during the four class periods. Students’ conceptual 

understanding and metaconceptual awareness were both assessed through videotaped 

interviews. The Conceptual Understanding Interview Protocol (CUIP) was used to 

measure students’ understanding of lunar phases. Students were asked what caused the 
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lunar phases; models of the sun, moon, and earth were provided to aid their verbal 

explanations. Students were also asked to put eight primary lunar phase pictures in the 

proper order.  

Participants’ metaconceptual awareness was assessed using a Metaconceptual 

Awareness Interview Protocol (MAIP) designed for the study (Saçkes & Trundle, 2017). 

Participants’ use of metacognitive strategies was used to validate this interview protocol. 

The MAIP utilized six questions to assess their metaconceptual awareness, two in each of 

the following categories: metaconceptual awareness of changing understanding, 

metaconceptual awareness of contradiction between new and past understanding, and 

metaconceptual awareness of strategies used and experience. Interviews were videotaped 

and responses coded, disagreements in coding were discussed until consensus was 

reached.  

With the limited sample size (N = 16), the scores deviated from normality. The 

Kruskal-Wallis test was used as a nonparametric equivalent of an analysis of variance, 

ANOVA (Saçkes & Trundle, 2017). The Kruskal-Wallis test was followed by the Mann-

Whitney U procedure. Seven of the 16 participants were categorized as having high 

metaconceptual awareness, six with moderate conceptual awareness, and three with low 

metaconceptual awareness. Students with high metaconceptual awareness were able to 

explain how their understanding had transitioned from their initial model to a more 

scientifically accurate model. They were able to describe the metacognitive strategies 

they used to process the knowledge from instruction. Additionally, they could explain 

how their learning experiences influenced their conceptual understanding. Conversely, 

students categorized as having low metaconceptual awareness were not able to describe 
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their initial model of lunar phases or how it has changed. They were not able to 

communicate awareness of the differences between their initial lunar phase model and the 

scientific lunar phases model. Students with low metaconceptual awareness were not able 

to describe how learning experiences influenced their conceptual understanding.  

Students’ understanding of lunar phases was grouped into three categories: “decay 

or stability”, “continuous growth”, or “stability and growth.” The students in the “decay 

or stability” group either kept their initial inaccurate understandings or their scientific 

understanding declined over the course of the study. There was a statistically significant 

difference in metaconceptual awareness between “decay or stability” and the “growth and 

stability” groups (Z = 2.62, p = 0.009) with an effect size of r = .77. There was not a 

statistically significant difference in metaconceptual awareness between the “growth and 

stability” and the “continues growth” groups. Metaconceptual awareness was a predictor 

of both the student’s conceptual change and the durability of the conceptual change.  

While the data from this study strongly supports the link between metaconceptual 

awareness and conceptual understanding and durability, there are some important 

limitations on this study. This study only had 16 participants, all female and all preservice 

elementary teachers. This limits the generalizability of the study to other populations. 

Additionally, the independent variable was not manipulated in this study, rather the 

association between metaconceptual awareness and conceptual understanding was 

examined. The results from this study suggest further research is warranted in 

metaconceptual awareness and conceptual change. 

Refutation Text to Elicit Metaconceptual Change. 
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 Mason et al. (2017) examined whether including a refutation graphic with 

refutation text had a positive effect on long-term conceptual change and metaconceptual 

awareness for students. The refutation graphic used displayed a common misconception 

visually and an explanation of why it was inaccurate. In this study, the team included a 

refutation graphic showing the tilted Earth closer to the Sun during the Italian summer in 

the Northern Hemisphere and highlighted the Southern Hemisphere experiencing winter 

at the same time. The refutation graphic was labeled "No," and the correct standard 

graphic was labeled "Yes." The research team also examined whether including 

refutation text increased the metaconceptual awareness of the student, a necessity of 

long-term conceptual change as indicated by Carey (2009) in “The Origin of Concepts.” 

Science textbooks often contain graphics and the authors were curious if adding a 

refutation graphic to the standard graphic would demonstrate the same effect that 

refutation text has (Mason et al., 2017, p. 277). Two experimental studies were 

conducted, both with 80 Italian 12th graders. Both studies had four randomly assigned 

groups, n = 20 (p. 276). Treatments of the four groups were: standard text & standard 

graphic, standard text & refutation graphic, refutation text and standard graphic, and 

refutation text and refutation graphic (p. 276). Student group composition did not differ 

in reading comprehension, spatial ability, or prior science achievement. The students 

were assessed on the reasons for seasonal change with a pretest, immediate posttest, and a 

posttest delayed by fifteen days. In addition, all students were asked questions to assess 

their metaconceptual awareness, such as: 

         Did the text contain information that contradicted what you knew about seasonal 

 change? 
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 Yes or No? If you responded yes, please indicate what information contradicted 

 what you knew about seasonal change.   

Do you think you have changed your conception about season change after 

reading the text and observing the illustration? If you have responded Yes, please 

indicate why you changed your understanding about seasonal change. (Mason et 

al., 2017, p. 279). 

 For the second part of the study, everything remained the same as the first study, 

the same number of students and conditions, except all participants were given the 

instructions "the illustration is important to understand the topic. Read the text and 

carefully observe the illustration" (Mason et al., 2017, p. 283). 

 The results from both the first and second part of the study indicated that the 

refutation text significantly increased student conceptual learning both for the immediate 

posttest and delayed posttest, p < .001. The refutation graphic did not have a significant 

effect on conceptual learning when paired with standard text or with refutation text. The 

second study, where all participants were instructed to look at the illustration, 

demonstrated a higher effect on conceptual learning for the refutation graphic during the 

immediate posttest but not for the delayed posttest. Both the first and second study 

showed that refutation text had a significant effect increasing students' metaconceptual 

awareness, p = .005, whereas standard text and refutation graphic did not, p = .502. Both 

of these studies were congruent with prior research showing that refutation text increased 

conceptual change and slightly increased metaconceptual awareness. However, the 

authors’ hypothesis that the inclusion of refutation graphics would aid conceptual 

learning was not supported by their two studies. 
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Further research needs to be done in refutation graphics to determine if the age of 

the participants impacts the effect of refutation graphics on conceptual learning and 

metaconceptual awareness. For example, Tippet found that students in grades 3-10 

benefitted the most from refutation text, while students in K-2 showed no benefit from 

refutation text over traditional expository text (Tippet, 2010). Perhaps students in 

younger grades would benefit more from a refutation graphic; recall that Mason's 

refutation graphic study only had 12th-grade participants. Besides, this study utilized 

only one graphic as the refutation graphic, a somewhat unclear diagram showing the 

Earth slightly closer during the summer. Perhaps a different graphic, one that is more 

clear, would show a similar effect to refutation text. Additionally, perhaps a different 

scientific concept, such as genetics or photosynthesis, would lend itself more to a 

refutation graphic than placement of the Earth during seasons.  

Conceptual Change Texts Enriched with Metaconceptual Processes.  

Yürük and Eroglu (2016) examined the effects of conceptual change texts 

enriched with metaconceptual scaffolding questions on the conceptual change of 105 pre-

service science teachers. This study had an experimental design, with random assignment 

into three treatment groups: control group, experimental group with refutation text, and 

experimental group with conceptual change text including metaconceptual prompts (p. 3). 

This study utilized a heat and temperature concept test as the pre-test administered one 

week prior, post-test one week after reading, and delayed post-test nine weeks after 

intervention.  

Three types of texts were used in this study, including expository for the control 

group, refutation text for experimental group one, and conceptual change text enriched 
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with metaconceptual questions for experimental group two (Yürük & Eroglu, 2016). The 

conceptual change text enriched with metaconceptual questions (CCTMP) was written by 

the researchers and read and reviewed by both professors and university students the 

same age as those in the study. The CCTMP included opportunities for students to reflect 

on their existing conceptual knowledge and past experiences with it, monitor how their 

conceptual understanding was changing including inconsistencies between their new 

understanding and prior understanding, and evaluate both competing conceptions (prior 

and new) in how they explain physical phenomenon (p. 4). In addition to the 

metaconceptual prompts, CCTMP included conceptual change text which included both 

common alternative conceptions and scientifically accepted conception regarding heat 

and temperature. Part of the CCTMP included reminding students that their prior 

conceptual understanding of natural phenomena may sometimes be different than 

scientifically accepted conceptions (p. 4). Elicitation prompts were designed for students 

to identify gaps and weaknesses in their conceptual understanding. Students were asked if 

they fully understood the science concept and if not were directed to reread the text.  

The experimental group assigned to the refutation text (RT) had texts that 

contained both scientifically accurate conceptual knowledge as well as widely held 

alternative science conceptions regarding heat and temperature (Yürük & Eroglu, 2017). 

The refutation text covered the same concepts and utilized the same examples that were 

in the CCTMP but did not facilitate metaconceptual processes (Yürük & Eroglu, 2017). 

No questions in the refutation text were directed at the reader. The control group received 

expository text that covered the same concepts, heat, and temperature, that were in the 

CCTMP and the RT. The expository text (ET) contained the same examples that were in 
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both the CCTMP and the RT but did not contain any comparisons to widely held 

alternative inaccurate science conceptions. All participants read their assigned texts in the 

same large lecture hall. They were instructed to take as much time as they needed and not 

to interact with each other or the researchers (p. 6). 

The pretest did not show any significant difference in understanding heat and 

temperature concepts between the three groups. All groups increased their average scores 

from pretest to posttest. The experimental group which read the CCTMP had the highest 

posttest mean of 23,342, compared to the ET mean of 16,942 and the RT mean of 19,828 

(p. 6). An analysis of variance, ANOVA was performed to analyze differences between 

groups post-test scores resulting in (F(2,202) = 28.238, p < .05). A post-hoc Scheffe test 

was used to analyze differences between all groups and found significant differences 

between the performance of all groups. Eta squared was calculated at .356 indicating a 

large effect size (p. 7). The delayed, by eight weeks, post-test was given the same 

statistical analysis. This time the Scheffe test showed the statistical mean difference 

between the scores of the CCTMP (MCCTMP = 19,457) and RT (MRT = 15,857) and 

CCTMP and ET (MET=14,485), but no significant difference between RT and ET. This 

shows that the positive effects of RT diminished over time but the positive effects of 

CCTMP endured.  

This study utilizing metaconceptual prompting in combination with conceptual 

change text is significant. Prior studies had utilized refutation text and had shown an 

increase in conceptual change. However, this study not only used refutation text similar 

to prior studies but additionally included an experimental group that had refutation text 

with prompts to facilitate metaconceptual processes. This study was well-designed with 
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random assignment of students to control and experimental groups with the same 

conditions for reading and assessments utilized for each group. Additionally, by 

performing a delayed post-test, long term effects on durability of conceptual change 

could be analyzed. While this study has many advantages, there are limitations including 

the generalizability to K-12 classrooms due to the participant sample used of university 

students who were studying to be preservice teachers. Secondly, the study did not permit 

the students to interact with one another or an instructor while reading or after reading 

which does not represent a typical K-12 science classroom situation. 

Empirical Studies Influence on Current Study 

Students need to engage in metaconceptual processes to gain new conceptual 

knowledge. The current study relies on Framework theory developed by Vosniadou 

which posits that conceptual change is a process that relies on metaconceptual processes 

(Vosniadou & Skopeliti, 2014). Conceptual change is not an instantaneous switch as 

discussed by earlier researchers but a slow process as learners incorporate new 

information into their existing frameworks and create new structures for understanding 

(Vosniadou, 2017). Students utilize required metaconceptual processes to create this new 

understanding, their naive theories still exist but they have recognized the limitations of 

these theories in explaining natural phenomena (Vosniadou & Skopeliti, 2014).  

Empirical studies on conceptual change and metaconceptual awareness have 

demonstrated that students with a higher metaconceptual awareness were more likely to 

have higher rates of conceptual change and longer lasting accurate conceptual knowledge 

(Saçkes & Trundle, 2017). In both the computer simulation study and the textbook 

reading study, metaconceptual prompting was provided to the student via text and had a 
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significant effect on conceptual change (Huang et al., 2016; Yürük & Eroglu, 2016. 

However, both studies did not utilize direct instruction of a classroom teacher, unlike the 

proposed study, instead relied solely on text passages or computer simulations. This study 

utilizing a standard high school chemistry unit including direct instruction, Process 

Oriented Guided Instructional Learning (POGIL), group work, and laboratory 

experiences will be more similar to a typical classroom environment than those previous 

studies. The intervention in this study aims to increase the metaconceptual awareness of 

the students in the experimental group through metaconceptual prompting and will 

similarly follow with a science concept post-test and a delayed post-test. Different from 

previous studies, this study will also administer the Metaconceptual Awareness 

Regulation Scale (MARS) in addition to the science concept tests. This study builds on 

previous studies demonstrating the positive effects of metaconceptual awareness on 

conceptual change while also directly measuring metaconceptual awareness through 

metaconceptual prompting utilizing the MARS.  
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Chapter 3  

Methodology 

The primary purpose of this study was to analyze the effect of using 

metaconceptual scaffolding questions during instruction on chemistry students’ 

conceptual knowledge as measured on a posttest and delayed retention test. Secondly, 

this study analyzed the effects of using metaconceptual scaffolding questions on students’ 

metaconceptual awareness as measured by the Metaconceptual Awareness and 

Regulation Scale. Prior research has demonstrated a significant correlation between 

metaconceptual awareness and science conceptual change. However, there are a lack of 

studies using metaconceptual scaffolding questions as an intervention to increase 

conceptual change in a high school science classroom. Prior studies, as noted in chapter 

two, have included using metaconceptual prompts with computer simulations in a middle 

school science classroom and using metaconceptual prompts with preservice educators in 

a college environment.  

 This chapter describes the methods and statistical methods that were used in this 

study. The metaconceptual questions were adapted from prior studies (Huang et al., 2016; 

Yuruk et al., 2008. The research questions and hypotheses are stated followed by a 

description of the participants. The research design for this study including experimental 

groups and testing procedures are explained. Instruments including the Metaconceptual 

Awareness and Regulation Scale and the AAAS Science assessment are described. 

Finally, descriptive and inferential analysis statistical procedures are reported.  

Methodology 

The following research questions and hypotheses were explored in this study: 
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Research Question 1: Is there a statistically significant difference in chemistry 

conceptual knowledge for students who receive metaconceptual scaffolding questions 

when compared to students who receive the same chemistry instruction for three weeks 

without metaconceptual scaffolding questions? 

H0 = There is a statistically non-significant difference between groups 

(metaconceptual treatment and nontreatment) on chemistry conceptual knowledge as 

measured by the American Association for the Advancement of Science (AAAS) 

conceptual chemistry assessment. 

H1 = There is a statistically significant difference between groups (metaconceptual 

treatment and nontreatment) on chemistry conceptual knowledge as measured by the 

AAAS conceptual chemistry assessment. 

Research Question 2: Does the use of metaconceptual scaffolding increase 

students’ retention of chemistry concepts over time? 

H0 = There is a statistically non-significant difference between groups 

(metaconceptual treatment and nontreatment) on delayed posttest on chemistry 

conceptual knowledge as measured by the AAAS conceptual chemistry assessment four 

weeks after the study. 

H1 = There is a statistically significant difference between groups on posttest and 

delayed posttest on chemistry conceptual knowledge as measured by the AAAS 

conceptual chemistry assessment four weeks after the study. 

Research Question 3: Is there a statistically significant difference in 

metaconceptual awareness for students who receive metaconceptual scaffolding questions 
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when compared to students who receive the same chemistry instruction for three weeks 

without metaconceptual scaffolding? 

H0 = There is a statistically non-significant difference between groups 

(metaconceptual treatment and nontreatment) on metaconceptual awareness as measured 

by the Metaconceptual Awareness and Regulation Scale (MARS). 

H1 = There is a statistically significant difference between groups (metaconceptual 

treatment and nontreatment) on metaconceptual awareness as measured by the MARS. 

Design of Study 

A nonequivalent control-group design with repeated measures was used in this 

study. This quasi-experimental study utilized four intact college prep chemistry classes 

taught by the investigator. For all three investigative questions the independent variable 

was the use of metaconceptual questions in the classroom. Paper and pencil 

metaconceptual questions were administered nine times during the three-week study. The 

metaconceptual scaffolding questions used in this study were adapted from previous 

metaconceptual experimental studies (Huang et al., 2016; Yuruk, et al., 2008. The 

dependent variable for research questions one and two were scores from a conceptual 

chemistry test designed by the American Association for the Advancement of Science to 

elicit students' understanding of conservation of matter during chemical reactions. The 

dependent variable for research question three was scores from the Metaconceptual 

Awareness and Regulation Scale (AAAS, 2018). The AAAS instrument was 

administered before treatment (pretest), directly following treatment (posttest) and again 

four weeks later (retention test). Additionally, the Metaconceptual Awareness and 

Regulation Scale (MARS) was administered as a pretest and as a posttest to measure 
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metaconceptual awareness and metaconceptual regulation (Appendix A). Refer to Table 

1 for an overview of the study.  

Table 1 

Quasi-Experimental Design 

Group Pretest 
 
(AAAS & MARS) 

Intervention Posttest 
 
(AAAS & 
MARS) 

Retention Test 
 
(AAAS) 

N1 O X O O 
N2 O  O O 

 

Participants and Context 

The research participants consisted of 112 tenth- and eleventh-grade students 

from four college prep chemistry classes. The high school’s prerequisites for enrolling in 

college prep chemistry include passing biology and algebra with a C or better. The school 

offers an honors chemistry class which is composed of 30% of students taking chemistry. 

This study focuses on the college prep chemistry classes which is composed of the 

remaining 70% of students taking chemistry. This college prep chemistry class fulfills the 

“d” laboratory credit for the University of California a-g admission requirements.  

The research participants in this study attended a public high school that has 

approximately 1,500 students with 54% qualifying for free and/or reduced-price lunch 

(California Department of Education, 2014). The school location is described as “town, 

remote” by the National Center for Educational Statistics (NCES, 2019). The town only 

has one public high school and is located more than two hours from the nearest large city, 

Los Angeles. The town does not have any other significant high school options, public or 

private. The town has a total population of 36,370 with a median income of $59,720 
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(NCES, 2019). Of the total high school students enrolled, 5.5% self-report as Black or 

African American, 6.3% as Asian, 25.7% as Hispanic or Latino, 1.7% as Native 

Hawaiian or Pacific Islander, and 58.6% as White. About 12.5% of students in the school 

receive special education services and 4.2% of students currently receive English 

Language Learner services.  

For this convenience sample, 112 students from four different intact chemistry 

classes participated. The sample was composed of 62 students self-identified as female 

(55.3%) and 50 students self-identified as male (44.6%). Four students (3.5%) are 

currently designated as an English Learner level one (emerging) or two (expanding). 

Proficiency level descriptors for level one emerging include “limited receptive English 

skills” and for level two expanding “producing basic academic language” (California 

Department of Education, 2014). Twenty-three students (20.5%) have previously 

received English Learner services in elementary or middle school but are now designated 

as Reclassified Fluent English Proficient (RFEP). Five students (4.5%) in the sample 

receive special education services for disabilities ranging from autism to an auditory 

processing disorder. The sample was a mix of 10th and 11th graders with 88 of the 

students (78.6%) in 10th grade and 24 of the students (21.4%) in 11th grade. Table 2 

provides information regarding gender, grade, and ethnicity in the sample.  
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Table 2 

Demographic Information of Sample 

  Frequency Percentage 

Grade    

 10 88 78.6% 

 11 24 21.4% 

Gender    

 Male 50 55.3% 

 Female 62 44.6% 

Ethnicity    

 White 53 47.3% 

 Hispanic or Latino 36 32.1% 

 Black or African American 11 9.8% 

 Native Hawaiian or Pacific 

Islander 

4 3.6% 

 Asian 8 7.1% 

 

Assignment to Groups 

 The experimenter flipped a coin to designate classes as part of the experimental 

group receiving intervention or the control group. The experimental group consists of 58 

students and the comparison group consists of 54 students. Table 3 displays the 

characteristics of both groups by gender. Both of the periods assigned to the control 

group meet before lunch. Of the two periods assigned to the experimental group, one 
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meets before lunch and one meets after lunch. Although this represents a threat to internal 

validity, it is unavoidable due to school scheduling.  

Table 3 

Gender of Sample Groups 

Group Male Female Total 

Comparison 21 33 54 

Experimental 29 29 58 

Total 50 62 112 

 

Protection of Participants 

 There are no risks to participants beyond normal chemistry class and laboratory 

activities. The intervention introduced slight variation in instructional practices between 

the two groups with the inclusion of metaconceptual scaffolding questions for the 

experimental group. All other teaching practices were the same between the comparison 

and the experimental groups. The multiple-choice instrument administered as a pretest, 

posttest, and retention test from the American Association for the Advancement of 

Science (AAAS) is commonly used by science teachers in the classroom. Therefore, this 

AAAS instrument did not present additional adverse impact. The second instrument 

utilized is the Metaconceptual Awareness Regulation Scale (MARS). This instrument is a 

10-question Likert scale instrument that asks questions to assess their metaconceptual 

awareness and regulation. Although this instrument has not been routinely used in 

chemistry classrooms, the risk of adverse effects is minimal. The questions ask about 
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how students learn the subject chemistry and students will answer using a Likert scale, 

limiting the amount of personal data collected.  

 Although the risks to students are minimal, the researcher asked students and 

guardians to consent to participate in the study. Student data was coded with a random 

number by a colleague of the researcher so that the students’ identifying information is 

not on the pretests, posttests, retention tests, or MARS.  

Instrumentation 

 This study utilized two different instruments, the AAAS conceptual chemistry test 

and the MARS. The AAAS conceptual chemistry test was from the Project 2061 AAAS 

Science Assessment database. The questions were developed to include common science 

misconceptions as possible answer choices along with the correct answer choice. 

Development of the AAAS assessment included both national field and pilot testing 

between 2006-2010. During field testing, students answered the multiple-choice 

assessment and explained why they chose their answers. They were also asked if they 

understood the question or if there was any confusion. Based on the feedback from the 

field testing, questions were modified for a national pilot testing with 1000 students. 

Based on statistical analysis of the field test data, the test developers eliminated 

problematic questions. The researcher obtained permission from Dr. George DeBoer, 

principal investigator, to use the assessment in this study.  

 The second instrument used is the Metaconceptual Awareness and Regulation 

Scale (MARS). The MARS was developed in Turkey to assess the metaconceptual 

awareness and regulation of high school chemistry students. The MARS is a 10-item 

Likert scale that measures two factors: metaconceptual awareness and metaconceptual 
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regulation. The pilot study consisted of 349 public high school 10th graders (158 females, 

188 males, 3 did not indicate) and the validation study consisted of 338 eleventh graders 

(157 females, 169 males, and 12 did not indicate)( (Kirbulut et al., 2016). Following the 

pilot study, an Exploratory Factor Analysis was conducted. The Kaiser-Maeyer-Olkin 

measure for sampling adequacy was .84 indicating a large enough sample size (Field, 

2013). Scree plot and parallel analysis indicated two primary factors. After the validation 

study the Cronbach’s alpha reliability coefficients were calculated as .72 (95% CI [.68, 

.77]) for metaconceptual awareness and .80 (95% CI [.77, .83]) for metaconceptual 

regulation. A more detailed account for this instrument’s development is in the chapter 

two literature review. The researcher for this study obtained permission from the lead 

author Dr. Zubeyde Demet Kirbulut to utilize the MARS in this study.  

Procedure 

 The intervention discussed in this paper lasted for three weeks, is composed of 15 

instructional periods, with twelve periods lasting 56 minutes and three periods lasting 51 

minutes due to the late start Wednesday schedule. The three-week instructional unit 

focused on the conservation of matter and energy during chemical reactions and is 

centered around the NGSS HS-PS1-4 and HS-PS1-7 performance expectations (NGSS 

Lead States, 2013). All participants took the AAAS conceptual chemistry assessment and 

MARS as a pretest on the first day of the intervention. The students took the AAAS 

assessment on Chromebooks and MARS on paper. The resulting data was exported to 

google sheets where the student names were removed and replaced with numbers by 

another teacher. The classroom teacher continued to teach the unit on conservation of 

matter and energy for the next three weeks. During these three weeks both groups, 
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experimental and comparison, participated in normal high school chemistry classroom 

activities such as two labs, POGIL, lecture, small group problem sets, and individual 

work time. At the end of the three weeks, both groups took the AAAS chemistry 

conceptual assessment and the MARS. Four weeks following the intervention both 

groups retook AAAS chemistry conceptual assessment as a retention test. By having 

students take the same conceptual chemistry assessment three times, pretest, posttest, 

retention test, there was an increased threat of test sensitization (Gall et al., 2007). Both 

the experimental and comparison groups took the AAAS measurement three times to 

minimize the threat to validity.  

Intervention 

 The experimental group received metaconceptual questions included in their 

assignments three times a week for a total of nine times. The comparison group had 

received a few additional practice problems instead. The teacher did not provide feedback 

on the metaconceptual questions but did provide feedback on other parts of the 

assignments. The rationale for not providing teacher feedback for the students’ answers 

to the metaconceptual awareness questions include that the questions are reflective in 

nature and are intended for the student to self-reflect and not write to an outside audience. 

Furthermore, in prior research using metaconceptual questions, teacher feedback was not 

provided (Huang et al., 2016). The included metaconceptual questions were adapted from 

the metaconceptual prompt work of Yürük et al. (2008) and Huang et al. (2016) 

referenced in chapter two. The metaconceptual questions were designed to increase 

metaconceptual awareness, monitoring, and evaluation. Examples of the metaconceptual 

questions are in Table 4.   
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Table 4  

Metaconceptual Questions 

Metaconceptual 

Awareness 

• In your opinion, what does it mean to conserve mass? 

Can you explain it in your own words? 

• In your opinion, what does it mean to conserve 

energy? Can you explain it in your own words? 

• Based on what you did in the lab, what is your current 

theory of what happens to the mass during the 

reaction? 

• Based on what you did in the lab, what is your current 

theory of what happens to the energy during the 

reaction? 

• What is the reason for your prediction? 

• Can you give an example of mass being conserved in 

a reaction? 

• In your mind, is energy and temperature the same 

thing, or are they different? Explain your idea. 

• Are you sure about your predictions? 

• Are you very sure about your current idea? 

Metaconceptual 

Monitoring 

• Students will be asked to judge whether an idea from 

others was right or wrong. They were asked to explain 

and justify their reason. 

• Was there something new presented that is different 

from your original prediction? 

• Does the lab data support your prediction? 

• Write down the difference between your original idea 

regarding what happens to the energy and what your 

found in lab.  

• Is the scientists’ difference between energy and 
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temperature the same as your written explanation from 

earlier? 

• Think back to your initial understanding of energy. 

Overall were there any changes to your initial 

understanding? If so, explain the biggest change. 

Metaconceptual 

Evaluation 

• At the end of the unit,  

• If your prediction is different than the data gathered 

from the labs, which prediction do you think best 

explains the flow of energy? why? 

 

Descriptive Data Analysis 

The researcher utilized SPSS to analyze the data. Because intact classes were used 

without random assignment, a preliminary t-test was conducted to ensure no significant 

difference on the pretest between the experimental group and the comparison group 

(Field, 2013). The data was checked to make sure normal parametric assumptions are met 

(including normality, skewness, and kurtosis) before inferential analysis (Field, 2013).  

Inferential Statistics 

The hypotheses in this study were written non-directionally in the two-tailed form 

as recommended by Field (2013). A repeated-measures analysis of variance (ANOVA) 

was used in this study to minimize Type 1 error (Field, 2013). The ANOVA with 

repeated-measures examined the main effects of the independent variable over time 

between the two groups. There was one within-subjects factor: sequence of test: pretest, 

posttest, and retention test. There was one between-subjects factor: group with two levels: 

experimental and comparison group. The resulting F ratio indicated the amount of 

variation due to treatment and from other sources. A Bonferroni adjustment for post-hoc 

tests was used to reduce possible Type 1 error (Field, 2013).  
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The third research question and resulting hypothesis examined if there was a 

significant difference between those students who received and did not receive 

metaconceptual questions on their metaconceptual awareness level as measured by the 

MARS. A repeated-measures ANOVA was performed to analyze the effect of the 

metaconceptual questions intervention. Both the comparison and the experimental group 

took a 10-item MARS as a pretest and posttest to ensure any differences in 

metaconceptual awareness and regulation are due to the intervention and not preexisting 

levels.  
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Chapter 4  

Results 

This chapter reports the results from this experiment in order of each research 

question posed by the investigator. The first two research questions will be grouped 

together since the same instrumentation, the American Association for the Advancement 

of Science (AAAS) conceptual chemistry assessment, was used for both. The data from 

the third question which used the Metaconceptual Awareness and Regulation Scale 

(MARS) will be reported next. Data analysis will include both descriptive and inferential 

analysis. Finally, a research summary will be presented at the end of this chapter.  

Research Questions One and Two 

First Research Question: Is there a statistically significant difference in chemistry 

conceptual knowledge for students who receive metaconceptual scaffolding questions 

when compared to students who receive the same chemistry instruction for three weeks 

without metaconceptual scaffolding questions? 

Second Research Question: Does the use of metaconceptual scaffolding increase 

students’ retention of chemistry concepts over time? 

Descriptive Statistics.  

The AAAS Conceptual Chemistry assessment was given as a pretest, immediate 

posttest, and a retention test four weeks after the conclusion of the unit. The resulting test 

scores were analyzed for normal parametric assumptions including outliers, kurtosis, 

skewness, and normality. Table 5 includes the descriptive statistics for the pretest, 

posttest, and retention test. Ten students’ data was excluded from the final data due to 

missing an excessive number of instructional periods, three or more absences, during the 
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15-day instructional period. In reviewing the pretest scores, one score was found to be an 

extreme outlier with a score of 50. Upon further investigation, the student had taken 

chemistry the year prior and was repeating chemistry due to earning a D in the last year. 

The student’s data was eliminated from the dataset. All other students’ transcripts were 

examined to ensure this was their first year taking high school chemistry. Three other 

outliers were identified, one score in the pretest (score of 45) and two outlier scores in the 

retention test data, (95 and 100). The researcher was concerned that the outlier retention 

scores biased the data in the direction of confirming the second hypothesis (Field, 2013). 

The researcher performed an Analysis of Variance (ANOVA) with repeated-measures 

with and without the outliers. There was a significant difference with and without the 

outliers, therefore the outliers were removed.  

The sample size of N = 100 was large enough to assess the hypotheses without 

those outlier data. A power analysis was performed utilizing G*Power with power set to 

.8, effect size .2, and p < .05 (Field, 2013). The sample size needed for the AAAS 

dependent variable with three measurements and two groups was 42. The sample size 

needed for the MARS dependent variable with two repeated measures and two groups 

was 52. See Appendix B for G*Power outputs. 

The kurtosis and skewness values fell within the accepted range of normality of 

plus or minus one (Field, 2013). The Kolmogorov-Smirnov and Shapiro-Wilk tests for 

normality were utilized on all three sets of data. The normality tests were non-significant 

indicating normal data (Field, 2013). Furthermore, Analysis of Variance (ANOVA) is a 

robust test that can withstand slight differences from normality (Field, 2013).  
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Table 5 

Descriptive Statistics for AAAS Assessment 

 N Mean SD Range Kurtosis Skewness 

Pretest 100 19.55 7.69 30 -.18 .73 

Posttest 100 51.60 13.98 55 -.86 -.03 

Retention Test 100 38.40 15.92 70 -.72 .35 

 

The AAAS conceptual chemistry pretest administered prior to instruction had a 

mean of 20.00 out of a possible 100. Table 6 summarizes the data by group. Both groups, 

comparison and experimental, scored similarly on the pretest (M = 19.90 and M = 20.10) 

respectively. A t-test was performed to ensure there was not a significant difference 

between the conceptual chemistry AAAS scores of the two groups. Those in the 

comparison group had an average slightly higher pretest score (M = 19.90, SE = .99) than 

the experimental group (M = 19.17, SE = 1.20). However, the difference of .73 is not 

significant, t(98) = .48, p = .634. 
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Table 6 

Descriptive Statistics for AAAS Assessments by Group 

Time Group Mean SD N 

Pretest Comparison 19.90 7.11 52 

 Experimental 19.17 8.34 48 

Posttest Comparison 47.88 12.30 52 

 Experimental 55.63 14.68 48 

Retention Test Comparison 32.79 13.81 52 

 Experimental 44.48 15.95 48 

 

Inferential Statistics.  

A repeated Analysis of Variance (ANOVA) with repeated-measures was used to 

analyze the three test scores for the two groups. The researcher utilized IBM SPSS 

version 26 to first assess that ANOVA assumptions were met. The within-subjects factor 

was time as both the comparison and experimental groups were tested with the AAAS 

instrument three times. The between-subjects factor was the treatment of metaconceptual 

questions that were asked of the experimental group on nine different occasions. 

Levene’s test of Equality of Error Variances was conducted resulting in no violations of 

the assumption of homogeneity of variance (Table 7). In addition, the Mauchly’s Test of 

Sphericity was not significant, p > .05, indicating that the data did not significantly 

violate the sphericity assumption.   
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Table 7 

Levene’s Test of Equality of Error Variances 

 F df 1 df 2 p 

Pretest 3.00 1 100 .086 

Posttest 3.26 1 100 .074 

Retention Test 3.52 1 100 .063 

 

 The ANOVA with repeated-measures analysis indicated a significant between-

subjects effect, F(1,98) = 10.17, p = .002, ηp2 = .10. The intervention of asking the 

students metaconceptual questions had a significant effect on their posttest and retention 

test scores. The first research question asked if there was a significant difference in 

posttest scores for the two groups, comparison and experimental. The mean posttest 

scores from the experimental group were 7.74 higher than the comparison group. The 

difference was significant, p = .005 with an effect size of d = .63. The Cohen’s d value of 

.63 indicates a medium effect size (Thompson, 2013). In Figure 1, the experimental 

group and the comparison group estimated marginal means are shown over time.  
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Figure 1. Estimated Marginal Means of AAAS Scores Over Time  

The second research question focused on the retention of conceptual chemistry 

knowledge over time. The retention test was administered one month after the posttest. 

As shown in Figure 1 both groups mean scores decreased over time. The mean difference 

for the comparison group was -15.10 and for the experimental group was -11.15. Also, 

overall the mean scores on the retention test were higher for the experimental group (M = 

44.48, SE = 2.30) and the control group (M = 32.79, SE = 1.92). The difference of 11.69 

is significant p < .001 with an effect size of d = .85. This effect size is large in magnitude 

(Thompson, 2013).  

Research Question Three 

Is there a statistically significant difference in metaconceptual awareness for 

students who receive metaconceptual scaffolding questions when compared to students 

who receive the same chemistry instruction for three weeks without metaconceptual 

scaffolding? 

Descriptive Statistics.  
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The Metaconceptual Awareness Regulation Scale (MARS) was administered two 

times as a pretest and posttest to both groups: experimental and comparison. The range of 

scores was between 1-60. The scores were assessed for normality, skewness, outliers, and 

kurtosis. Table 8 includes the descriptive statistics for the MARS pretest and posttest. 

The skewness and kurtosis values fell within the recommendation of an absolute value of 

1. (Field, 2013). The Kolmogorov-Smirnov and Shapiro-Wilk tests for normality were 

both nonsignificant indicating that the assumptions for normality were met (Field, 2013). 

Descriptive statistics are displayed in Table 9. An independent t-test confirms that there 

was no significant difference between groups on MARS pretest. Those in the comparison 

group had, on average, a slightly higher score (M = 37.33, SE = 8.37) than the 

experimental group (M = 36.10, SE = 6.917). However, the difference of 1.23 is not 

significant (t(100) = .792, p = .430).  

Table 8 

Descriptive Statistics for MARS Pretest and Posttest Data 

Time N Mean Range SD Kurtosis  Skewness 

Pretest 102 36.79 35 7.11 -.21 -.43 

Posttest 102 40.84 34 7.53 -.12 .09 
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Table 9 

Descriptive Statistics for MARS by Group 

Time Group Mean SD N 

Pretest Comparison 37.33 8.37 52 

 Experimental 36.10 6.92 50 

Posttest Comparison 39.98 7.85 52 

 Experimental 57.40 7.18 50 

 
Inferential Statistics.  

An ANOVA with repeated-measures was used again to analyze the effect of the 

metaconceptual intervention. However, for hypothesis three, rather than using the AAAS 

conceptual chemistry test that was done for hypotheses one and two, the Metaconceptual 

Awareness and Regulation Sale (MARS) scores were utilized. The within-subjects factor 

was time as both the comparison and experimental groups were tested with the MARS 

two times. The between-subjects factor was the treatment of metaconceptual questions 

being asked. Levene’s Test of Equality of Error Variances was conducted resulting in no 

violations of variation, refer to Table 10.  

Table 10 

Levene’s Test of Equality of Error Variances 

 F df1 df2 p 

Pretest 1.65 1 100 .203 

Posttest 3.26 1 100 .353 
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 The ANOVA with repeated-measures analysis did not indicate a significant 

between-subjects effect, F(1,100) = .03, p = .874, ηp2 = .000). There was insufficient 

evidence that the intervention of asking the students’ metaconceptual questions had an 

effect on their MARS posttest scores. The Tests of Within-Subjects Contrasts showed a 

significant interaction between time and treatment F(1,100) = 5.34, p = .023, ηp2 = .05). 

In Figure 2, the experimental group and the comparison group estimated marginal means 

are shown over time, MARS pretest and MARS posttest four weeks later.  

 
 
Figure 2. Estimated Marginal Means of MARS 

Summary 

 This research study utilized two different instruments: AAAS conceptual 

chemistry assessment three times (pretest, posttest, and retention test) and the MARS two 

times (pretest and posttest). Two groups of students, experimental and comparison, took 

the same assessments for the same number of times. The resulting data from these 

assessments was reviewed to see if it met normal parametric assumptions (skewness, 

kurtosis, normality, and absence of outliers). The AAAS data contained four outliers in 
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the pretest, posttest, and retention test. Due to the large sample size, N = 103, the outliers 

were removed. The other parametric assumptions were met including skewness, kurtosis, 

and normality. The scores from the MARS assessment met all parametric assumptions.  

Three research questions guided this study and subsequent data analysis. The first 

research question asked whether using metaconceptual questions had an effect on 

students’ conceptual chemistry knowledge as measured by the AAAS assessment. An 

ANOVA with repeated-measures was used to analyze the data and indicated that the use 

of metaconceptual questions had a significant effect, F(1,98) = 10.17, p = .002, ηp2 = .10. 

Furthermore, Cohen’s d was .63, p = .005 indicating a medium sized effect. The second 

research question focused on the effect of using metaconceptual questions on the 

retention of chemistry conceptual knowledge. While both groups, experimental and 

comparison groups mean scores declined from the posttest to the retention test, the 

comparison group declined more. The significance of this difference was not determined. 

The difference in decline was 3.95, with the comparison group declining a mean of 15.10 

and for the experimental group a mean of 11.15. In addition, the retention test scores of 

the experimental group (M = 44.48, SE = 2.30) were significantly higher than those of the 

control group (M = 32.79, SE = 1.92), p < .001 with an effect size of d = .85. 

The third research question examined if using metaconceptual questions would 

have an effect on students’ metaconceptual awareness as measured by the MARS 

assessment. Again all scores were reviewed for normal parametric assumptions including 

kurtosis, skewness, normality, and absence of outliers. The data met all normal 

parametric assumptions. An ANOVA with repeated-measures was performed indicating 
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that using metaconceptual questions had no significant effect on student performance on 

the MARS posttest, F(1,100) = .03, p = .874, ηp2 = .00). 
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Chapter 5 

Discussion and Conclusion 

  This study focused on how using metaconceptual scaffolding questions in 

the science classroom affected students learning of chemistry concepts including their 

retention of chemistry concepts overtime. The treatment of metaconceptual scaffolding 

questions was designed to increase the metaconceptual awareness of the students thus 

increasing their conceptual chemistry knowledge and retention of the knowledge. 

Metaconceptual awareness is a prerequisite for conceptual change to occur for science 

learners (Carey, 2009; Vosniadou, 2014. Without metaconceptual awareness students 

often revert back to their scientific inaccurate preconceptions (Huang et al., 2016; 

Vosniadou & Skopeliti, 2014).  

Research Methodology 

 This quasi-experimental study utilized four intact high school chemistry classes, 

two were randomly assigned to the comparison group and two were assigned to the 

experimental group. The independent variable was providing the students with 

metaconceptual scaffolding questions. The dependent variables were conceptual 

chemistry knowledge and metaconceptual awareness and regulation. The experimental 

group was provided metaconceptual scaffolding questions for three weeks similar to 

those provided in previous conceptual change empirical studies (Huang et al., 2016; 

Yürük et al., 2008). Both groups took a pretest, posttest, and retention test on chemistry 

concepts. Both groups also took a pretest and posttest using the Metaconceptual 

Awareness Regulation Scale (MARS). An ANOVA with repeated-measures was utilized 

to analyze both the AAAS and MARS scores.  
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Discussion of Results 

Research Questions 1 and 2. 

Rather than discussing the findings from research questions one and two 

separately, they will be discussed together as they utilized the same assessment and are 

related to the same empirical studies. The first research question asked if there is a 

statistically significant difference in chemistry conceptual knowledge for students who 

receive metaconceptual scaffolding questions when compared to students who receive the 

same chemistry instruction for four weeks without metaconceptual scaffolding questions. 

The second research question asked if the use of metaconceptual scaffolding questions 

increase students’ retention of chemistry concepts over time.  

An ANOVA with repeated-measures indicated a positive significant effect from 

the metaconceptual treatment, F(1,98) = 10.17, p = .002, ηp2 = .09. Previous empirical 

studies have also indicated a positive significant effect of utilizing metaconceptual 

scaffolding questions to increase science conceptual knowledge. Huang et al. (2016) 

utilized metaconceptual scaffolding questions during an online simulation study for 8th 

grade science and found the treatment also had a significant effect, F(1, 111) = 15.96, p < 

.01, η2 = .13. While the current chemistry study was similar to that of Huang, Ge, and 

Estereyel there were a few differences. Most notably, the computer simulation study 

relied solely on an interactive computer simulation to teach the content. Students in the 

computer simulation study did not interact with each other during class time nor receive 

instruction from the instructor. However, the current chemistry study more closely 

replicates a typical science classroom environment. In this chemistry study, groups of 

students, experimental and comparison, engaged in typical chemistry high school 



 

 

59 
 
 
instruction including direct teaching, cooperative learning, laboratory experiments, and 

group POGIL exercises. During typical chemistry instruction students discuss work, 

discuss lab results with their partner, and write conclusions where they discuss results in 

the context of their hypothesis. Both the experimental and comparison groups performed 

these typical science classroom tasks. However, the experimental group had 

metaconceptual scaffolding questions instead of additional practice problems that the 

comparison group had. While the partial eta squared value was slightly smaller for the 

present chemistry study compared to the computer simulation study, only accounting for 

9.4% of variance, it still indicates a positive effect on learning for a typical science 

classroom.  

The second empirical study that also focuses on the effects of metaconceptual 

scaffolding questions was done in a university setting with science text (Yürük & Eroglu, 

2016). The university text study was similar to the current chemistry in that a pretest, 

posttest, and retention test for science conceptual knowledge were used. However, there 

were also three main differences between the two studies. The university text study had 

an additional experimental group that received refutation text. Refutation text is 

positioned within the theory-theory framework while metaconceptual scaffolding 

questions fits within the framework theory, which provides the theoretical background for 

this current study (Posner et al., 1982). The second main difference is the methodology. 

The university text study allowed random assignments of participants and did not rely on 

intact classes. The students in the university text study read the texts, sat apart from each 

other, and were encouraged not to interact with anyone else in the room. The third 

difference between the two studies is the participant sample. The university text study 
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was done with university preservice science teachers while the current chemistry study 

utilized high school students. The eta squared for metaconceptual treatment, .36, F(2,102) 

= 28.24; p < .05, from the university text study was much larger than .09 in the current 

high school chemistry study. The differences in methodology, including typical 

classroom activities as mentioned in the previous paragraph, may have minimized the 

amount of variance solely attributed to the metaconceptual treatment.  

 The average score of the experimental group (M = 55.63) was significantly higher 

than the comparison group (M = 47.88), p =.005 with medium effect size d = .63. The 

data from this study supports the hypothesis that there is a statistically significant 

difference between the two groups on the conceptual chemistry posttest. This study’s 

result of significant difference in posttest means is similar to the two previous studies 

mentioned, both the computer simulation study and the university text study had higher 

posttest means for the group who received metaconceptual scaffolding questions. The 

computer simulation study provided the means of 9.09 for the experimental group and 

6.15 for the comparison group on a 10-point scale; the significance is not provided 

(Huang et al., 2016). The university text study indicate a significant mean difference, p < 

.05, between the groups’ posttest scores (Yürük and Eroglu, 2016).   

 Research question two explored the retention of conceptual chemistry knowledge 

over time. In the current chemistry study, the group who received the metaconceptual 

questions on average scored significantly higher than the group who did not receive the 

treatment by 11.69, p < .001 with an effect size of d = .85. This difference in retention 

scores between groups is similar to those in the previous mentioned studies. Both the 
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computer simulation study and the university text study also showed higher average mean 

scores for those received metaconceptual questions.  

Research Question 3. 

This study’s third research question asked if there was a statistically significant 

difference in metaconceptual awareness for students who receive metaconceptual 

scaffolding questions when compared to students who did not. Metaconceptual awareness 

was measured by the Metaconceptual Awareness and Regulation Scale (MARS). The 

ANOVA with repeated-measures did not indicate a significant effect F(1,100) = .03, p = 

.874, ηp2 = .00. The MARS instrument was developed in Turkey within the context of 

high school chemistry. The MARS instrument has not been utilized in studies in the 

United States.  

There are many possible reasons why the MARS results did not indicate a 

significant effect from the metaconceptual treatment. There is the possibility that 

although the metaconceptual scaffolding questions increased the chemistry conceptual 

posttest and retention test scores, the questions did not increase metaconceptual 

awareness. There is also the possibility that, although the MARS was a good fit for the 

Turkish chemistry high school students, it was not a good fit for the United States 

chemistry students and was not able to assess their metaconceptual awareness. The 

MARS included terms such as “plausible” are not commonly used words by the 10th and 

11th grade students in this class. Because the words used in the MARS were not 

commonly used by these high schoolers, there is a high possibility that did not accurately 

measure their metaconceptual awareness.   
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Thirdly, the format of the MARS is very different from the AAAS conceptual 

chemistry test. The MARS was administered as designed by the original authors and 

features all ten questions on one page. The AAAS conceptual chemistry test was 

administered via computer presenting one question per page, often with a graphic that 

must be answered before the student can move on. Although the same instructions were 

given during both assessments, “take your time and try your best,” the instructor noted 

that the students finished the MARS in a small amount of time, many circling quickly as 

they scanned the questions. Further research needed for metaconceptual awareness scales 

will be discussed in a later section.  

Limitations 

 There are several factors that could limit the internal validity and generalizability 

of this research including research method, participants, and methodology. Most of these 

limitations are inherent in studies that take place in natural school settings. Previous 

studies on utilizing metaconceptual scaffolding did not mimic a natural school setting. 

While this study may have more limitations due to this quasi-experimental design it is 

also more applicable to science classrooms.  

Research Method. 

This quasi-experimental study was done in a high school with intact classes. 

Although intact classes were randomly assigned to the experimental and control group, 

individuals were not. Therefore, there was not true randomization of the population. 

Although all four chemistry classes had the same prerequisites, sometimes due to 

placement of other advanced classes, high-achieving students can be clustered together. 

Because of this limitation, pretests were administered to both groups of students. A t-test 
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was conducted to ensure that there was no significant difference between the groups both 

on the AAAS pretest and the MARS pretest. No significant difference was found.  

Participants. 

A convenience sample of high school chemistry students was used in this study. 

The sample used in this study may not be representative of all science students. The 

prerequisites for entrance into high school chemistry at this school include passing high 

school algebra. Although both groups, comparison and experimental, had the same 

prerequisites this may limit generalizability. More demographic information regarding 

participant sample is located in chapter three. The data from ten participants were 

excluded from the sample due to excess absences, three or more absences during the 15-

day instructional period. There were a high number of absences due to confirmed cases of 

influenza. However, removing students’ data who missed school may have altered the 

population.  

Methodology. 

In this study, the AAAS was administered three times to both the comparison 

group and control group while the MARS was administered twice to both groups. By 

administering the same assessment more than once, this may possibly improve scores 

because the students become “test-wise” (Gall et al., 2007). Both groups were exposed to 

the same number of assessments so that test exposure would not benefit one group over 

the other. Another possible limitation is compensatory rivalry, when those in the 

experimental group outperform those in the control group because they perceive they are 

in the experimental group and thus need to outperform the control group (Gall et al., 

2007). 
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Although students were never told which group their class period belonged to and 

periods were randomly assigned, there is a chance student may have inferred which group 

they were in. The IRB process necessitated a brief description of the experiment for both 

the consent and assent forms. Students in the experimental group may have noticed that 

they were answering questions similar to those described in the IRB. Students in the 

experimental group could have possibly discussed their metaconceptual questions with 

other students outside of class including those in the comparison group thus exposing 

them to the treatment. However, the instructor did not witness any discussion of which 

study group the students belonged to or what the questions were. These high school 

chemistry students, like many high school students, tend to focus on social aspects 

outside of class time. Between classes and at lunch the instructor only witnessed social 

discussions that were of no relevance to high school chemistry.  

Prior to this study the instructor commonly used open-ended and reflective 

questions during classroom discussion and written work. However, the previously used 

questions were not used as routinely as in the intervention for this study or worded with a 

focus on metaconceptual awareness. During this study, the comparison group continued 

to take part in normal classroom activities including discussion and open-ended 

questions. They did not receive the intervention of metaconceptual questions. 

Nonetheless, the reflective nature of this classroom environment could have a ceiling 

effect on the effect size of the intervention. In classrooms or experimental studies that do 

not have reflection as part of the normal classroom activities, the intervention of asking 

students metaconceptual awareness questions may have more of an effect size. The 
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intervention in these environments would provide more of a difference and thus 

potentially a much larger effect size.  

Finally, this study did not provide feedback or extrinsic rewards such as points for 

completing the AAAS, MARS, or the metaconceptual scaffolding questions throughout 

the treatment. The previous metaconceptual scaffolding studies mentioned also did not 

provide feedback or extrinsic motivation for completing the assessments or 

metaconceptual questions. The metaconceptual questions are reflective in nature and are 

not intended to be written to an outside audience. The students in this study are 

accustomed to not receiving points for most of their practice work. Instead, the focus is 

on better understanding the content. However, this lack of feedback or points could limit 

the generalizability in a classroom that did assign points for all assignments.  

Suggestions for Further Research 

 Conceptual change research, specifically within the framework theory, provides 

many further avenues for research. Although conceptual change research has been 

ongoing for decades, framework theory and metaconceptual scaffolding are relatively 

new. Vosniadou (2001) began writing about framework theory as an alternative to the 

more classical conceptual theories within the past 20 years. Recent neuroscience studies 

have brought forth evidence supporting her framework theory (Dawson, 2014; 

Mareschal, 2016). Given the newness of framework theory there has not been many 

empirical studies that have used it.  

 More research is needed in the effectiveness of classroom interventions that 

utilized framework theory. There are very few quantitative studies that utilize 

metaconceptual scaffolding questions to increase conceptual knowledge and retention of 
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knowledge. This study was done within a high school chemistry classroom and the prior 

study, that utilized a computer simulation, was done in 8th grade science. The researcher 

could not find quantitative studies that utilized metaconceptual questions within 

elementary science though there are a few qualitative studies with small sample sizes. 

The current high school chemistry study utilized a shortened timeframe of one month for 

retention. Further studies that utilize six months to a year for retention testing are 

warranted. Lastly, this study was performed in a high school chemistry class. Other 

sciences, such as life sciences, should also be explored to see if there are similar effects.   

Implications for the Classroom 

 This intervention of utilizing metaconceptual scaffolding questions in the high 

school science classroom does not take an exceptional amount of time or resources. 

Students were able complete the metaconceptual scaffolding questions within 5-8 

minutes and answered them in lieu of additional practice problems. The classroom 

instructor did not have to spend additional time by providing feedback for the questions. 

This relatively easy intervention had a high effect size of d = .85 on retention of 

conceptual chemistry knowledge. Furthermore, it has been well researched that when 

students do not undergo conceptual change they revert back to their original 

preconception (Huang et al., 2016; Vosniadou & Skopeliti, 2014). This intervention of 

providing metaconceptual questions is an easy one that science instructors can use to 

facilitate their students’ retention of conceptual knowledge. 

 The purpose of this study was to analyze the effects of using metaconceptual 

questions on students’ conceptual change within the science classroom. Conceptual 

change has been a prominent science education research focus for many decades. 
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However, recent conceptual change research has shifted from classical conceptual change 

to the framework theory, which necessitates students having increased metaconceptual 

awareness. Without metaconceptual awareness students revert back, over time, to their 

original and often inaccurate preconceptions. Recent science education studies have 

demonstrated the positive effect of using metaconceptual questions to increase the 

retention of conceptual knowledge. However, this study is the first quantitative study to 

utilize a natural school setting, with an instructor teaching, to analyze the effect of the 

intervention. By asking students metaconceptual awareness questions in chemistry class, 

students in this study were better able to retain conceptual chemistry knowledge. The 

large effect size of d = .85 is noteworthy for this classroom intervention. More 

exploration of this intervention at the classroom level is needed.    
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Appendix A 

Metaconceptual Awareness and Regulation Scale (MARS) 

Used with permission from Dr. Kirbulut 
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Appendix B 

G*Power Output 

MARS 

 

AAAS 

 

  



 

 

75 
 
 

Appendix C 

Student Assent 

 



 

 

76 
 
 

 

 
 

 
 

  



 

 

77 
 
 

Appendix D 

Guardian Consent 
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