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Abstract We investigate the possibility of indirectly con-

straining the B+ → K +τ+τ− decay rate using precise data

on the B+ → K +μ+μ− dimuon spectrum. To this end,

we estimate the distortion of the spectrum induced by the

B+ → K +τ+τ− → K +μ+μ− re-scattering process, and

propose a method to simultaneously constrain this (non-

standard) contribution and the long-distance effects asso-

ciated to hadronic intermediate states. The latter are con-

strained using the analytic properties of the amplitude com-

bined with data and perturbative calculations. Finally, we

estimate the sensitivity expected at the LHCb experiment

with present and future datasets. We find that constraints on

the branching fraction of O(10−3), competitive with cur-

rent direct bounds, can be achieved with the current dataset,

while bounds of O(10−4) could be obtained with the LHCb

upgrade-II luminosity.

1 Introduction

In recent years, discrepancies between the observed values

and the Standard Model (SM) predictions of the lepton-

flavour universality (LFU) ratios RD(∗) [1–5] and RK (∗) [6–

9], characterizing the semileptonic transitions b → clν and

b → sll, have sparked great interest. The pattern of anoma-

lies seems to point to intriguing new-physics (NP) scenarios,

with possible connections to the SM flavour puzzle. A large

class of NP models proposed to explain these hints of physics

beyond the SM, and in particular those aiming for a combined

explanation of the RK (∗) and RD(∗) anomalies, imply dom-

inant couplings to third-generation fermions, which should

also enter other semileptonic b-quark decays.

A general expectation, confirmed by many explicit NP

constructions, is that of a large enhancement of b →
sτ+τ− transitions (see e.g. [10–17]). While flavour-changing

neutral-current (FCNC) decays with muon and electron pairs

a e-mail: matthias.koenig@tum.de (corresponding author)

have been observed both at the exclusive and at the inclusive

level, probing rare decays with a τ+τ− pair in the final state

is experimentally very challenging. The current experimen-

tal limits for all processes mediated by the b → sτ+τ−

amplitude are still very far from the corresponding SM pre-

dictions [18,19], leaving the NP expectation of possible large

enhancements unchallenged.

In this work we investigate the possibility of indirectly

constraining the b → sτ+τ− amplitude via its imprint on

the B+ → K +μ+μ− dimuon spectrum. In presence of a

large NP enhancement, the b → sτ+τ− amplitude would

induce a distinctive distortion of the B+ → K +μ+μ− spec-

trum via the (QED-induced) re-scattering process B+ →
K +τ+τ− → K +μ+μ− [10]. The latter has a discontinuity

at q2 = 4m2
τ (q2 ≡ m2

μμ), namely at the threshold where

the tau leptons can be produced on-shell. This gives rise to a

“cusp” in the dimuon-invariant mass spectrum, which could

in principle be detected with sufficient experimental preci-

sion. More generally, the lightness of the τ -leptons implies

a well-defined deformation of the B+ → K +μ+μ− spec-

trum, which is determined only by the analytic properties of

the re-scattering amplitude.

It should be stressed that the phenomenon we are con-

sidering here is different from the QED mixing between

dimension-six FCNC operators with different lepton species

analysed in Ref. [20]. If NP is heavy and the b → sτ+τ−

amplitude is strongly enhanced, the operator mixing can give

rise to sizable modifications of the Wilson coefficients of the

dimension-six effective Hamiltonian relevant to b → sl+l−

decays (l = e, μ). However, this phenomenon cannot be dis-

tinguished in a model-independent way from other NP effects

of short-distance origin (at least using low-energy data only).

On the contrary, the non-local effect we are interested in

can be unambiguously attributed to the re-scattering of light

intermediate states characterised by the tau mass, hence it

can be translated into a model-independent constraint on the

B+ → K +τ+τ− amplitude.
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The main difficulty in extracting such bound is obtain-

ing a reliable description of the B+ → K +μ+μ− dimuon

spectrum within the SM, or better in the limit where the

τ+τ− → μ+μ− re-scattering is negligible. This is non triv-

ial, given that the B+ → K +l+l− spectrum is plagued by

theoretical uncertainties originating from B → K form fac-

tors and hadronic long-distance contributions. While the for-

mer are smooth functions in the q2 region of interest and can

be well described using lattice QCD [21,22] and/or light-

cone sum rules [23], long-distance effects induced by inter-

mediate hadronic states, such as the charmonium resonances,

are more problematic. They are genuine non-perturbative

effects and introduce physical discontinuities below and

above the q2 = 4m2
τ threshold. Far from the resonance

region, these effects can be estimated using perturbative con-

straints derived at q2 < 0, with |q2| ≫ �2
QCD, combined

with a �2
QCD/q2 or �2

QCD/m2
c expansion to incorporate the

leading non-perturbative corrections [24,25]. However, this

approach is not suitable for our purpose, which requires a

reliable description of the whole spectrum, and in particular

of the resonance region. To achieve this goal, we adopt a data-

driven approach which takes full advantage of the known ana-

lytic properties of the amplitude: knowing the precise loca-

tion of all one- and two-particle hadronic thresholds, we use

subtracted dispersion relations to describe the q2-dependence

of the whole spectrum in terms of a series of (q2-independent)

hadronic parameters, which are fitted from data. This method

can be considered a generalisation of the approaches pro-

posed in Ref. [26] and, to some extent, in Refs. [27–29], with

a few key differences, the most notable ones being the use

of subtracted dispersion relations and the explicit inclusion

of two-particle thresholds. To reduce the number of indepen-

dent free parameters, perturbative constraints derived from

the low-q2 region are also implemented. Proceeding this way

we obtain a description of the spectrum that is flexible enough

to extract the non-perturbative parameters characterising the

various hadronic thresholds from data, but retains a signifi-

cant predictive power in the smooth region within and below

the two narrow charmonium states, allowing us to set use-

ful constraints on the B+ → K +τ+τ− → Kμ+μ− re-

scattering.

The method we propose is particularly well suited for the

LHCb experiment, which has already collected a large sam-

ple of B+ → K +μ+μ− events and has an excellent reso-

lution in the dimuon spectrum [30]. In order to estimate the

sensitivity of LHCb in view of the full run II dataset, we gen-

erate pseudo-experiments based on the yields and amplitudes

obtained in Ref. [30], and calculate the expected limit under

the background-only hypothesis using the CLs method [34].

The paper is organised as follows: in Sect. 2 we introduce

the theoretical framework necessary to describe the B+ →
K +μ+μ− dimuon spectrum within and beyond the SM, sep-

arating short-distance contributions (Sect. 2.1), long-distance

contributions due to intermediate hadronic states (Sect. 2.3),

and long-distance contributions due to the τ+τ− → μ+μ−

re-scattering (Sect. 2.4). The analysis of the LHCb sensitiv-

ity is presented in Sect. 3. The results are summarised in the

Conclusions.

2 Theoretical framework

2.1 Effective Hamiltonian and differential decay rate

The dimension-six effective Langrangian describing b → sll

transitions, renormalized at low energies [μ = O(mb)], can

be decomposed as

Leff = 4G F√
2

VtbV ∗
ts

∑

i

Ci (μ)Oi , (1)

where the leading FCNC effective operators are defined as

O7 = e

16π2

(

s̄σμν(mb PR + ms PL)b
)

Fμν ,

O
l
9 = e2

16π2
(s̄γμ PL b)(l̄γ μl) ,

O
l
10 = e2

16π2
(s̄γμ PL b)(l̄γ μγ5l) ,

(2)

and the most relevant four-quark operators (q = u, c) as

O
q
1 = (s̄γμ PLq)(q̄γ μ PLb) ,

O
q
2 = (s̄αγμ PLqβ)(q̄βγ μ PLbα).

(3)

Within the class of models we are considering, all relevant

NP effects are encoded in the values of the Wilson coef-

ficients C
l
7,9,10. Given the normalisation in Eq. (1), C

l
7,9,10

and C
c
1,2 are real and O(1) within the SM, whereas C

u
1,2 =

(VubV ∗
us/VtbV ∗

ts)× O(1) (see Ref. [26] for the precise values

of the Wilson coefficients and the complete basis of opera-

tors).

The matrix elements 〈K +μ+μ−|Oi |B+〉 are non-vanishing

at the tree level only in the case of the FCNC operators (with

l = μ). Considering only the contribution of the FCNC oper-

ators, which can be expressed in terms of the B → K form

factors, the B+ → K +μ+μ− decay rate can be written as:

dŴ

dq2

∣

∣

∣

∣

C7,9,10

=
α2

emG2
F |VtbV ∗

ts |2
128 π5

κ(q2)β(q2)

{

2

3
κ2(q2)β2(q2)

∣

∣

∣
C

μ
10 f+(q2)

∣

∣

∣

2
+

m2
μ(m2

B − m2
K )2

q2 m2
B

∣

∣

∣
C

μ
10 f0(q

2)

∣

∣

∣

2

+κ2(q2)

[

1 − 1

3
β2(q2)

]

∣

∣

∣
C

μ
9 f+(q2)

+2C7
mb + ms

m B + mK

fT (q2)

∣

∣

∣

∣

2
}

, (4)
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where κ(q2) = λ1/2(m2
B, m2

K , q2)/2m B is the kaon momen-

tum in the B-meson rest frame, β(q2) =
√

1 − 4m2
μ/q2, and

fi (q
2) with i = +, 0, T are the vector, scalar and tensor

B → K form factors.

2.2 Non-local contributions: general considerations

The non-local contributions generated by the non-leptonic

operators in Leff and by the operator Oτ
9 can be encoded in

Eq. (4) by replacing C
μ
9 with a q2-dependent function:

C
μ
9 → C

μ,eff
9 (q2) = C

μ
9 + Ycc̄(q

2) + Ylight(q
2)

+Yτ τ̄ (q
2) , (5)

where YI(q2) denotes the non-local contributions corre-

sponding to the intermediate state I, which can annihilate

into a dimuon pair via a single-photon exchange.

The functions Ycc̄(q
2) and Ylight(q

2) encode non-

perturbative hadronic contributions, which cannot be esti-

mated reliably in perturbation theory, at least in a large frac-

tion of the accessible q2 spectrum. Adopting a notation sim-

ilar to that of Ref. [26], we can express Ycc̄(q
2) as

Ycc̄(q
2) = 16π2

f+(q2)
H

(BK )
cc̄ (q2), (6)

where H
(BK )
cc̄ (q2) is defined by the gauge-invariant decom-

position of the following non-local hadronic matrix element

i

∫

d4xeiq·x
〈

K (p)|T

⎧

⎨

⎩

jem
μ (x),

∑

i=1,2

C
c
i O

c
i

⎫

⎬

⎭

|B(p + q)

〉

= [(p · q)qμ − q2 pμ]H(BK )
cc̄ (q2) , (7)

with jem
μ =

∑

q Qq q̄γ μq. The function Ylight(q
2), contain-

ing the contribution of the subleading non-leptonic operators

in Leff , is defined in a similar way via the replacement

∑

i=1,2

C
c
i O

c
i →

∑

i=3−6,8

CiOi +
∑

i=1,2

C
u
i O

u
i . (8)

Our main strategy is to write the non-perturbative func-

tions Ycc̄(q
2) and Ylight(q

2) using hadronic dispersion rela-

tions. More precisely, for the leading charm contribution we

consider one- (1P) and two-particle (2P) intermediate states

(see Fig. 1), using dispersion relations subtracted at q2 = 0,

while for the subleading Ylight(q
2) function we consider only

one-particle intermediate states and use unsubtracted dis-

persion relations. We stress that these dispersion relations,

and the corresponding decomposition of H
(BK )
cc̄ (q2), are not

exhaustive of all the discontinuities of the four-point func-

tion in (7). However, our goal is not to determine completely

H
(BK )
cc̄ (q2) via dispersion relations, but only to describe its

functional dependence with respect to the variable q2.

B
+

K
+

l
−

l
+

V

B
+

K
+

M
′

l
−

l
+

M

Fig. 1 Diagrammatic representations of the long-distance contribu-

tions to C
μ,eff
9 . The left-hand side depicts the exchange of a single

vector resonance. The graph on the right-hand side shows the contribu-

tion from two-particle intermediate states

Given these considerations, C
μ,eff
9 (q2) in Eq. (5) is finally

decomposed according to

C
μ,eff
9 (q2) = C

μ
9 + Y

(0)
cc̄ + 
Y 1P

cc̄ (q2) + 
Y 2P
cc̄ (q2)

+Y 1P
light(q

2) + Yτ τ̄ (q
2) , (9)

with 
Y 1P
cc̄ (0) = 
Y 2P

cc̄ (0) = 0. In the next section we anal-

yse the structure of 
Y 1P
cc̄ (q2), 
Y 2P

cc̄ (q2), and Y 1P
light(q

2) in

detail. The expression of Yτ τ̄ (q
2), which is the only term in

Eq. (9) that can be fully evaluated in perturbation theory, is

given in Sect. 2.4.

2.3 Long-distance hadronic contributions

The general structure of the subtracted dispersion relation

used to determine 
Ycc̄(q
2) is


Ycc̄(q
2) = 16πq2

f+(q2)

∫ ∞

m2
J/�

ds
1

s(s − q2)

1

2i
Disc

[

H
(B K )
cc̄ (s)

]

≡ q2

π

∫ ∞

m2
J/�

ds
ρcc̄(s)

s(s − q2)
. (10)

The function ρcc̄(s) is the spectral-density function describ-

ing the hadronic states Icc̄, characterized by valence charm-

quarks and invariant mass s, contributing as real intermediate

states in the re-scattering B → KIcc̄ → Kμ+μ−. As noted

before, we decompose ρcc̄(s) into one- and two-particle inter-

mediates states, ρcc̄(s) = ρ1P
cc̄ (s) + ρ2P

cc̄ (s),

ρ1P
cc̄ (s) ∝

∑

j

A(B → K V 0
j )A(V 0

j → μ+μ−)δ(s − m j ) , (11)

ρ2P
cc̄ (s) ∝

∑

j

∫

dp2
j δ(s − p2

j )

∫

d3p j1 d3p j2

16π2 E j1 E j2

A(B → K M+
j1

M−
j2
)

×A(M+
j1

M−
j2

→ μ+μ−)δ(4)(p j − p j1 − p j2 ) , (12)

neglecting the phase-space suppressed contribution with

three or more particles.

2.3.1 Charmonium resonances

For the sake of simplicity, in Eq. (11) we have treated the

single-particle states as infinitely narrow resonances. The

123
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effect of finite widths can be incorporated via Breit–Wigner

functions, yielding


Y 1P
cc̄ (q2) =

∑

j=�(1S),...,�(4415)

η j eiδ j
q2

m2
j

Ares
j (q2) ,

Ares
j (s) = m jŴ j

(m2
j − s) − im jŴ j

, (13)

where the sum runs over all the charmonium vector reso-

nances in the accessible kinematical range. Here η j and δ j

are real parameters which must be determined from data, sim-

ilarly to what has been performed by the LHCb collaboration

in [30].

We stress that our scope is not to compute the η j employ-

ing a facotrization hypothesis for the hadronic matrix element

in (7), combined with experimental data on cc̄ → e+e−,

as originally proposed in [31]. As clearly shown in [27],

this approach leads to rather inconsistent results. We refrain

from any attempt to compute the η j , which are genuine non-

perturbative hadronic matrix elements: we treat them as free

parameter which need to be determined by data.

In principle, both η j and δ j are q2-dependent functions.

However, if this dependence is smooth around the resonance

poles (or the two-particle thresholds, for the analog param-

eters that we define in Sect. 2.3.2), we can treat them as

constant terms for the purpose of our analysis. On general

grounds, we expect the characteristic scale determining the

q2-variation of the {η j , δ j } appearing in 
Y 1P
cc̄ to be twice

the charm mass. This q2-dependence is indeed related to the

invariant mass of the hadronic intermediate states that can

mix into the charmonia via re-scattering processes. Inciden-

tally, we note that this is also what one would infer from

a perturbative estimated of the η j using the factorization

hypothesis. In view of this argument, we believe that it is

a good approximation to treat the {η j , δ j } as constant terms

in our analysis. As stated above, our goal is not to compute

these parameters but only to fit them from data in order to

have a sufficiently general description of the long-distance

part the amplitude, able to reproduce all the known disconti-

nuities related to hadronic intermediate states.

The fitted η j ’s can be put in one-to-one correspondence

with the product of the B+ → K +V 0
j and V 0

j → μ+μ−

branching fractions via

B(B+ → K +V 0
j ) × B(V 0

j → μ+μ−)

= τB+
G2

Fα2|VtbV ∗
ts |2

128π5

(m B−mK )2
∫

4m2
μ

dq2κ(q2)3

×
[

β(q2) − 1

3
β(q2)3

]

∣

∣ f+(q2)
∣

∣

2 ∣
∣η j

∣

∣

2

∣

∣

∣

∣

∣

q2

m2
j

Ares
j (q2)

∣

∣

∣

∣

∣

2

.

(14)

The expression (13) differs from the decomposition

adopted in Ref. [30] by the q2/m2
j term, which arises from

the subtraction procedure in the dispersion relation. On the

one hand, the use of subtracted dispersion relations for the

charm contribution is necessary to ensure the convergence

of the integral in the two-particle intermediate states (see

Sect. 2.3.2). On the other hand, choosing the subtraction

point at q2 = 0 allows us to decouple the determination

of the resonance parameters of the spectrum from the overall

normalisation of the rate, and hence from the determination

of C
μ
9 from data. The price to pay is the appearance of the

undetermined constant term Y
(0)
cc̄ = Ycc̄(0) in Eq. (9). This

term plays no role in the description of the dimuon spectrum,

but is relevant for the extraction of the value of C
μ
9 . To this

purpose, we note that the estimate presented in Ref. [26],

which is based on a �2/m2
c expansion and also takes next-

to-leading O(αs) corrections on the pure partonic result into

account (see Sect. 2.3.4), yields

Y
(0)
cc̄ ≈ −0.10 ± 0.05 , (15)

which is about −(2 ± 1)% of C
μ,SM
9 ≈ 4.23.

2.3.2 Two-particle intermediate states

Proceeding in a similar way, we can decompose the two-

particle contributions as


Y 2P
cc̄ (q2) =

∑

j

η j e
iδ j A2P

j (q2) ,

A2P
j (q2) = q2

π

∫ ∞

s
j
0

ds

s

ρ̂ j (s)

(s − q2)
, (16)

where ρ̂ j (s) are normalised spectral densities for the two-

body intermediate states characterised by the threshold s
j
0 =

(m j1 + m j2)
2.

While we do not have a precise estimate of these spectral

densities at generic kinematical points, an excellent descrip-

tion of their behaviour around the respective thresholds is

obtained by approximating them with powers of the Källén

function, with an exponent determined by the lowest par-

tial wave allowed in the B+ → K +M1 M2 → K +μ+μ−

re-scattering. This is because higher-order partial waves,

characterised by higher powers of the Källén function, are

both phase-space suppressed and, most importantly, give rise

to a less singular behaviour at the threshold. From angular

momentum conservation we can then determine the leading

partial wave and obtain the following estimates for the nor-

malised spectral densities of the two-particle intermediate

states of lowest mass:

ρ̂DD(s) =
(

1 −
4m2

D

s

)3/2

,

123
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Fig. 2 Real (solid) and imaginary (dashed) parts of the normalised

hadronic two-particle contributions to Ycc̄(q
2), as defined in Eq. (16)

ρ̂D∗ D∗(s) =
(

1 −
4m2

D∗

s

)3/2

,

ρ̂DD∗(s) =
(

1 −
4m2

D̄

s

)1/2

. (17)

In the case of the DD∗ intermediate state we have replaced

the complete expression depending on both masses with a

simplified one depending only on m D̄ = (m D + m D∗)/2,

which provides an excellent approximation. With these esti-

mates in place we find:


Y 2P
cc̄ (q2) = ηD̄eiδD̄ hS

(

m D̄, q2
)

+
∑

j=D,D∗
η j e

iδ j h P

(

m j , q2
)

, (18)

with

h P

(

m, q2
)

= 2

3
+
(

1 − 4m2

q2

)

hS

(

m, q2
)

,

hS

(

m, q2
)

= 2 − G

(

1 − 4m2

q2

)

,

(19)

and

G(y) =
√

|y|
{

�(y)

[

ln

(

1 + √
y

1 − √
y

)

− iπ

]

+2 �(−y) arctan

(

1√−y

)}

. (20)

It is worth noting that, while the lowest threshold is at q2 =
4m2

D , the contribution from the DD∗ intermediate state is the

only one which can occur in the S-wave, corresponding to a

singular (square-root) behaviour at the threshold (see Fig. 2).

2.3.3 Light resonances

The remaining hadronic contribution we need to estimate

is Ylight(q
2), defined by Eqs. (6) and (7) via the replacement

(8). The Wilson coefficients of the effective operators appear-

ing in H
(BK )
light (q2) are either loop- or CKM-suppressed. As a

result, we can limit ourselves to include only one-particle

hadronic intermediate states. In principle, such operators

describe transitions also to states with valence charm quarks;

however, since we fit the hadronic coefficients η j from data,

these terms are naturally absorbed in the η j appearing in


Ycc̄(q
2). We are thus left only with vector resonances con-

taining light valence quarks. Among them, we can further

restrict the attention to the ρ, ω, and φ resonances, since the

leptonic decay rates of the heavier states are very small.

There is no clear advantage in using subtracted vs. unsub-

tracted dispersion relations in describing the contributions of

the light vector resonances. The convergence of the disper-

sive integrals does not pose a problem, and the subtraction

at q2 = 0 is not particularly useful since the light-quark

contributions are in a non-perturbative regime at q2 = 0.

However, when fitting data, the subtraction at q2 = 0 retains

the advantage of decoupling the determination of the spec-

trum from that of the Wilson coefficient. As default option,

we adopt unsubtracted dispersion relations. As discussed in

Sect. 2.3.5, checking the stability of the result using sub-

tracted vs. unsubtracted dispersion relations for the light vec-

tor resonances provides an estimate of the “model error” of

the proposed approach.

Given these considerations, we decompose Y 1P
light(q

2) as

Y 1P
light(q

2) =
∑

j=ρ,ω,φ

η j eiδ j Ares
j (q2) , (21)

in perfect analogy with the decomposition adopted in Ref.

[30] for these light states.

2.3.4 Theoretical constraints on the hadronic parameters

The hadronic decompositions in Eqs. (13), (18) and (21)

contain 12 free complex parameters: 6 in 
Y 1P
cc̄ (q2), 3 in


Y 2P
cc̄ (q2), and 3 in Y 1P

light(q
2). In principle, since they corre-

spond to different functional forms, they could all be fitted

from data. In practice however, an unconstrained fit would

leave significant degeneracies in the parameter space. It is

therefore useful to restrict the variability of such parame-

ters using theoretical constraints. In the following we discuss

three conservative conditions which can be imposed using

perturbative arguments.

I. Constraint on the slope of 
Ycc̄(q
2) at q2 = 0.

The lowest-order perturbative estimate of
Ycc̄(q
2) is obtained

by factorising the matrix element 〈K (p)|s̄γ μb|B(p + q)〉 in

Eq. (7) and computing the charm-loop at O(α0
s ):
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Y
pert
cc̄ (q2) = 2

(

C2 + 1

3
C1

)

×Qc × q2

∫ ∞

4m2
c

ds

√

1 − 4m2
c

s

(

1 + 2m2
c

s

)

s(s − q2)

= 2

(

C2 + 1

3
C1

)[

hS(mc, q2)

−1

3
h P (mc, q2)

]

. (22)

This expression is certainly not a good approximation of


Ycc̄(q
2) close to the resonance region; however, it is

expected to provide a reasonable approximation at q2 ≈ 0,

up to O(�QCD/m2
c) corrections. We can thus use it to set

bounds on the slope of 
Ycc̄(q
2) in the vicinity of q2 = 0.

The perturbative result implies

d

dq2

Y

pert
cc̄ (q2)

∣

∣

∣

∣

q2=0

= 4

15

(

C2 + 1

3
C1

)

1

m2
c

≈ (1.7 ± 1.7) × 10−2 GeV−2 , (23)

where the numerical value has been obtained setting mb/2 <

μ < 2mb and mc = 1.3 GeV. According to the analysis

of Ref. [26], the inclusion of O(�QCD/m2
c, αs) corrections

(which involve new hadronic matrix elements) modifies the

above prediction to −(0.5±0.2)×10−2 GeV−2. Given these

considerations, in the numerical analysis we employ the fol-

lowing constraints

Re

⎡

⎣

∑

j=�(1S),...

η j e
iδ j

Ŵ j

m3
j

+ ηD̄eiδ j
1

6m2
D̄

+
∑

j=D,D∗
η j e

iδ j
1

10m2
j

⎤

⎦ = (1.7 ± 2.2) × 10−2 GeV−2 ,

∣

∣

∣

∣

∣

∣

∑

j=�(1S),...

η j e
iδ j

Ŵ j

m3
j

+ ηD̄eiδ j
1

6m2
D̄

+
∑

j=D,D∗
η j e

iδ j
1

10m2
j

∣

∣

∣

∣

∣

∣

≤ 5 × 10−2 GeV−2 , (24)

where we slightly enlarged the error from (23), such that

the 1σ range covers the difference between the central value

in (23) and the one including O(�QCD/m2
c, αs) corrections

estimated in Ref. [26].

II. Upper bound on the |η j | in 
Y 2P
cc̄ (q2).

The comparison of the perturbative result with 
Y 2P
cc̄ (q2)

also allows us to define the natural range for the ηD̄,D,D∗

parameters, which are poorly constrained by data. Focus-

ing the attention on the leading S-wave contribution, it

turns out that the perturbative quark loop can be saturated

by the DD∗ meson loop, in the limit mc → m D̄ , setting

ηD̄ = 2(C2 +C1/3) ≈ (0.2 ± 0.2). On general grounds, each

of the exclusive meson contributions should be significantly

smaller than the inclusive quark contribution. As a result, in

the following we set the upper limit

∣

∣ηD̄,D,D∗
∣

∣ ≤ 0.2 . (25)

III. Upper bound on |Y 1P
light(q

2 = 0)|.
Using an unsubtracted dispersion relation and taking into

account only one-particle intermediate states for the light-

quark contributions implies Y 1P
light(q

2) → 0 for large q2,

while Y 1P
light(0) 
= 0. More precisely, one finds a power-like

suppression of the type Y 1P
light(q

2) ∼ �2
QCD/q2 at large q2,

whereas Y 1P
light(0) is not parametrically suppressed by any

scale ratio. However, since the Wilson coefficients entering

Y 1P
light are strongly suppressed, either by loop factors or by

subleading CKM factors, |Y 1P
light(0)| cannot be too large. Para-

metrically we expect

|Y 1P
light(0)| < O(1) × max{|C3...6|, |Cu

1,2|} . (26)

Taking the size of the Ci into account, we set the conservative

bound1

∣

∣

∣
Y 1P

light(0)

∣

∣

∣
≈

∣

∣

∣

∣

∣

∣

∑

j=ρ,ω,φ

η j

Ŵ j

m j

∣

∣

∣

∣

∣

∣

≤ 0.1 , (27)

which should be interpreted as a constraint on the relative

phases of the light resonances.

2.3.5 Estimate of the “model error”

Despite not being entirely dictated by first principles, the

parameterisation of long-distance hadronic contributions dis-

cussed so far contains all the relevant one- and two-particle

discontinuities of the amplitude, with free coefficients to be

fixed by data. It should therefore provide a sufficiently gen-

eral (and unbiased) description of the impact of hadronic

contributions on the B+ → K +μ+μ− spectrum. Still, it

may be worthwhile to assess whether the proposed parame-

terisation influences the extraction of information on Yτ τ̄ (q
2)

and, correspondingly, the extraction of a bound on B(B+ →
K +τ+τ−). An estimate of this “model error” can be obtained

by examining the stability of the obtained bound on B(B+ →
K +τ+τ−) under small variations of the model assumptions.

The latter include: (i) the use of subtracted vs. unsubtracted

dispersion relations for the light resonances; (ii) the use of

q2-dependent widths for both charmonium and/or light res-

onances; (iii) strengthening or relaxing the theoretical con-

straints in Eqs. (24), (25), and (27).

1 The largest perturbative contribution is the one induced by strange-

quark loops, yielding 
Y
pert
ss̄ (q2) = Cs [hS(ms , q2) − 1

3
h P (ms , q2)],

with |Cs | = (2/3)|4C3 + 4C4 + 3C5 + C6| ≈ 0.05 ± 0.02.
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2.4 Tau-lepton contribution

The contribution from the intermediate τ -leptons can be com-

puted in perturbation theory, yielding

Yτ τ̄ (q
2) = −αem

2π
C

τ
9

[

hS(mτ , q2) − 1

3
h P (mτ , q2)

]

, (28)

with the functions hL(m, s) defined in Eq. (19). The func-

tional form is identical to the one of the perturbative charm

contribution and, to a large extent, to the one of the DD∗ con-

tribution, illustrated in Fig. 2. However, the cusp is located

at q2 = 4m2
τ , sufficiently well separated from the various

hadronic thresholds.

In principle, the short-distance b → sτ+τ− amplitude

does not need to be controlled by the CKM matrix in a generic

NP model. However, in most realistic scenarios the weak

phases of all b → sl+l− amplitudes are aligned to the SM

one, implying Im(Cτ
9 ) = Im(C

μ
9 ) = 0. In the following, we

adopt this (motivated) simplifying assumption.

An estimate of the maximal allowed size of |Cτ
9 | can be

derived from the experimental upper bound on B(B+ →
K +τ+τ−) < 2.25 × 10−3 at 90% CL by Babar [19],

which is more than four orders of magnitude larger than

B(B+ → K +τ+τ−)SM ≈ 1.5 × 10−7 [32]. Neglecting

the contributions from operators other than Oτ
9 and Oτ

10,

we find

B(B+ → K +τ+τ−)≈
{

8.7×10−9×|Cτ
9 |2; Cτ

10 = −Cτ
9 ,

2.7×10−9×|Cτ
9 |2; Cτ

10 = 0 .

(29)

In the case Cτ
9 = Cτ

10 (Cτ
10 = 0) the Babar result then

implies |Cτ
9 | ≤ 5.1 × 102 (9.1 × 102), to be compared to

C
τ,SM
9 ≈ 4.2. As we discuss below, saturating this bound

leads to a pronounced ditau cusp in the spectrum (see Fig. 3),

opening the possibility of extracting a more stringent bound

on B(B+ → K +τ+τ−) from a precise measurement of the

B+ → K +μ+μ− dimuon spectrum.

3 Analysis of the expected sensitivity at LHCb

In order to assess the sensitivity to the branching ratio

B(B+ → K +τ+τ−) at the LHCb experiment, we gener-

ate pseudo-experiments corresponding to the signal yields

obtained in Ref. [30] and scaled to the full run II dataset,

taking into account the collected luminosity and b-hadron

cross-section increase at 13 TeV [33]. This leads to around

40,000 B+ → K +μ+μ− candidates (cutting the two narrow

resonances). As the efficiency is reasonably flat as a function

of dimuon mass and the background level is very low, we

Fig. 3 Example pseudodata expected from the full run II dataset col-

lected by the LHCb experiment assuming the SM. The distribution

expected if the B+ → K +τ+τ− branching fraction were present at the

current experimental limit of 2.25 × 10−3 is overlaid

neglect these effects. Figure 3 shows the fit model with a

dataset generated at the expected yield. This illustrates the

visible sensitivity to a hypothetical signal component gener-

ated according to the current experimental limit [19].

The size and phase of the one-particle resonant contribu-

tions are determined from the branching fractions reported

in Ref. [33], which are used to determine the initial values

of η j and δ j for the data to be generated. Due to the com-

plicated experimental resolution effects near the J/ψ and

ψ(2S) resonances, the regions 9.2 < q2 < 10.0 GeV2/c4

and 13.2 < q2 < 13.95 GeV2/c4 are excluded from the

fit and the phase differences associated with these reso-

nances are constrained to the uncertainties in Ref. [30].

Outside of this region, finite-resolution effects in q2 are

ignored as all the components are broad. In order to mimic

the sensitivity one would have when fitting the data, Gaus-

sian constraints are applied to the J/ψ and ψ(2S) resonant

parameters according to the uncertainties reported in Ref.

[33].

For the two-particle hadronic contribution, we conserva-

tively allow the magnitude and phase of them to vary in the

fit. As the shape of the ρ̂DD and ρ̂D∗D∗ spectral densities are

very similar, we combine them with an equal contribution to

avoid large correlations in the fit.

The form factor uncertainties are taken from Ref. [22]

and are implemented in the fit as a multivariate Gaussian

constraint. The data slightly helps constrain the form factor

parameters, but this affects the sensitivity on Cτ
9 only in a

mild way.

The expected sensitivity on the Cτ
9 contribution is deter-

mined using the CLs method [34]. The sensitivity with

the current dataset is reported in Table 1, along with two

other potential future scenarios corresponding to the LHCb

upgrade-II luminosity and a hypothetical improvement of

the form factor uncertainties by a factor of three. The esti-
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Table 1 Sensitivity to Cτ
9

according to various LHCb

scenarios [C
τ,SM
9 ≈ 4.2]

Scenario C
τ
9 (90% CL) B (Cτ

10 = −Cτ
9 ) B (Cτ

10 = 0)

Run I–II dataset 533 2.7 × 10−3 0.8 × 10−3

Run I–V dataset 139 1.8 × 10−4 0.5 × 10−4

Run I–II dataset, improved form factors 533 2.7 × 10−3 0.8 × 10−3

Run I–V dataset, improved form factors 127 1.5 × 10−4 0.5 × 10−4

mated sensitivity utilising the run I–II datset corresponds to

a limit on the B+ → K +τ+τ− branching ratio which is

slightly more stringent than the current constraints placed by

the BaBar collaboration and is expected to compete with the

projected sensitivity of the Belle-II experiment when more

data is collected.

3.1 Interplay with the hadronic contributions

The B+ → K +τ+τ− → Kμ+μ− re-scattering leads to two

main features in the B+ → K +μ+μ− dimuon spectrum:

(i) the cusp in-between the J/ψ and ψ(2S) resonances, and

(ii) a distortion in the shape of the spectrum before the two

resonances. The effect after the ψ(2S) peak is less relevant

since in that region the spectrum is rather discontinuous due

to the various one- and two-particle thresholds. In order to

investigate the sensitivity to the cusp feature, we have per-

formed a fit limited to the region between the J/ψ and ψ(2S)

resonances: this leads to a sensitivity to Cτ
9 diluted by a factor

of four. We thus conclude that is the deformation of the spec-

trum, in particular before the J/ψ , that generates the largest

sensitivity to Cτ
9 . This implies that neglecting the resolution

is justified.

Since the deformation of the spectrum at low q2 plays a

relevant role, we deduce that the assumed shape of the char-

monium contribution is an important ingredient in constrain-

ing the B+ → K +τ+τ− signal. The component which most

closely resembles the signal is the contribution from two-

particle hadronic intermediate states. This is reflected in a

correlation coefficient between this amplitude and the sig-

nal of about 0.6. However, the two are clearly distinct given

the different location of the thresholds. We also explicitly

checked that the theoretical constraints described in Eqs. (24)

and (25) do not affect our sensitivity estimate: the best fit

value of the two-particle hadronic contribution lies far from

these bounds. This leaves open the possibility of a further

increase of sensitivity with more stringent constraints on the

two-particle hadronic contribution, which could be derived

using B → DD∗K data. We finally note that the correla-

tion between the hadronic contribution and the signal is fully

taken into account in the sensitivity estimates using the CLs

method.

4 Conclusions

If the branching ratio B(B+ → K +τ+τ−) were signifi-

cantly enhanced over its SM value, it would induce a pecu-

liar distortion of the B+ → K +μ+μ− spectrum, char-

acterised by a cusp at q2 = 4m2
τ and by a distortion of

the dimuon distribution. In this work we have proposed a

method that uses this effect as a tool to extract a bound on

B(B+ → K +τ+τ−) from future precise measurements of

dŴ(B+ → K +μ+μ−)/dq2.

A necessary ingredient to achieve this goal is a reliable

description of the B+ → K +μ+μ− dimuon spectrum,

within the SM, in the full kinematical range, especially in

the region before and within the narrow charmonium states.

As we have shown, this can be obtained by means of a data-

driven approach which takes full advantage of the known

analytic properties of the decay amplitude, supplemented

by robust theoretical constraints. Our approach differs from

previous attempts of including non-local hadronic contribu-

tions to the B+ → K +μ+μ− decay amplitude by three

main points: (i) the use of dispersion relations subtracted

at q2 = 0 for the charmonium states; (ii) the inclusion of

two-particle thresholds; (iii) the use of short-distance con-

straints at low q2 to reduce the number of free parameters.

In this way one separates the problem of the normalisation

of the B+ → K +μ+μ− rate, and the corresponding extrac-

tion of short-distance Wilson coefficients, from the problem

of obtaining a reliable description of the dimuon spectrum.

While within our approach there is no significant progress

on the first problem, there is a tangible advantage on the

second one. The parameterisation of the amplitude we pro-

pose is flexible enough to allow the extraction of all the rel-

evant parameters characterising hadronic thresholds in the

dimuon spectrum from data, while retaining significant pre-

dictive power in the smooth region within and below the

two narrow charmonium resonances. This fact is the key

property which allows us to set useful constraints on the

B+ → K +τ+τ− → K +μ+μ− re-scattering from future

precise measurements of dŴ(B+ → K +μ+μ−)/dq2.

The method we have proposed is particularly well suited

for the LHCb experiment, which has already collected a large

sample of B+ → K +μ+μ− events and has an excellent

resolution in the dimuon spectrum [30]. As we have shown,

the data already collected in run II should allow to set a bound
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on B(B → K τ+τ−) of O(10−3), competitive with current

direct bounds (see Table 1). Bounds of O(10−4) could be

obtained with the LHCb upgrade-II luminosity.
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