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ARTICLE OPEN

Inferring clonal composition from multiple tumor biopsies
Matteo Manica 1,2, Hyunjae Ryan Kim3, Roland Mathis1, Philippe Chouvarine3, Dorothea Rutishauser4, Laura De Vargas Roditi4,

Bence Szalai5, Ulrich Wagner4, Kathrin Oehl4, Karim Saba 4, Arati Pati3, Julio Saez-Rodriguez 5,6, Angshumoy Roy3,

Donald W. Parsons3, Peter J. Wild7✉, María Rodríguez Martínez 1✉ and Pavel Sumazin 3✉

Knowledge about the clonal evolution of a tumor can help to interpret the function of its genetic alterations by identifying initiating

events and events that contribute to the selective advantage of proliferative, metastatic, and drug-resistant subclones. Clonal

evolution can be reconstructed from estimates of the relative abundance (frequency) of subclone-specific alterations in tumor

biopsies, which, in turn, inform on its composition. However, estimating these frequencies is complicated by the high genetic

instability that characterizes many cancers. Models for genetic instability suggest that copy number alterations (CNAs) can influence

mutation-frequency estimates and thus impede efforts to reconstruct tumor phylogenies. Our analysis suggested that accurate

mutation frequency estimates require accounting for CNAs—a challenging endeavour using the genetic profile of a single tumor

biopsy. Instead, we propose an optimization algorithm, Chimæra, to account for the effects of CNAs using profiles of multiple

biopsies per tumor. Analyses of simulated data and tumor profiles suggested that Chimæra estimates are consistently more

accurate than those of previously proposed methods and resulted in improved phylogeny reconstructions and subclone

characterizations. Our analyses inferred recurrent initiating mutations in hepatocellular carcinomas, resolved the clonal composition

of Wilms’ tumors, and characterized the acquisition of mutations in drug-resistant prostate cancers.
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INTRODUCTION

Pan-cancer tumor profiling has identified recurrent alterations that
are associated with tumor etiology at the loci of thousands of
genes but the interpretation of genetic alterations remains a
major challenge1–3. Knowledge about the clonal evolution of
tumors can point to genetic alterations that both contribute to
tumorigenesis, indicate prognostically relevant intratumoral varia-
bility, and point to refractory tumor subclones4,5. Specifically,
clonal evolution—depicted as a phylogenetic tree in Fig. 1a—can
help to identify alterations that play a role in tumor initiation as
well as those that confer a selective advantage to altered tumor
cells. Moreover, information about its subclone composition is
important for predicting cancer’s potential for drug resistance and
metastasis, which vary across tumor subclones6 and are the key
determinants of patient outcome. Consequently, tumor-subclone
characterization is essential for designing personalized therapies
that target all tumor subclones and may hold the key to predicting
tumor progression, metastases, drug sensitivity, and patient
outcome.
Current methods that rely on DNA-profiling to reconstruct

clonal evolution of tumors can be classified into two categories:
methods that primarily rely on single-cell profiles7–10 and those
that computationally resolve mixtures of subclones from mole-
cular profiles of bulk tumor cells, i.e., profiles of pools of cells that
originate from a common malignant lesion11–14. Single-cell DNA
sequencing can produce more definitive estimates of the
proportion (frequencies) of tumor cells that contain each genetic
alteration and more complete profiles of tumor subclones,
including information about the co-occurrence of alterations
within each subclone. Its primary disadvantage is operational: the
availability of high-quality tumor samples that permit single-cell

isolation and profiling as well as the accuracy and cost associated
with parallel sequencing DNA from a multitude of cells per tumor.
Moreover, improving the accuracy of single-cell mutation profiling
remains challenging due to limited material availability in single
cells15; this is not likely to improve as future sequencing
technologies focus on profiling formalin-fixed paraffin-embedded
(FFPE) tumor samples16,17. Alternatively, single-cell RNA or protein
profiling can help indicate tumor subclones, but these assays may
not directly point to key driving genetic alterations.
Focusing on single-nucleotide somatic variants (SNVs; or simply

mutations), we sought to reconstruct clonal evolution from DNA
profiles of genetically unstable cancers. This entails deconvolving
mutation frequencies, mutation-subclone associations, and CNAs
from DNA profiles—including both whole-exome sequencing
(WES) and panel-based (targeted) sequencing assays—that
produce average estimates across cellular ensembles (Fig. 1b–d).
One approach to improve the accuracy of these deconvolutions is
to profile multiple biopsies from the same tumor across time
points18 or across regions6,19. This approach relies on two key
assertions: (1) that genetic alterations that are specific to the same
tumor subclone will co-occur with the same frequency across
biopsies, and (2) that the clonal composition of heterogeneous
regions varies, i.e., multiple sampling will allow for the aggregation
and deconvolution of the frequencies of most mutations with
improved power. It is important to note that mutations that
underwent convergent evolution20 do not violate these assertions
and will not be aggregated with other mutations from the same
tumor subclone because of differing frequency estimates across
biopsies. It is also important to note that accurate deconvolution
must account for tumor purity, and our efforts—including
production of simulated data to compare leading methods and
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analyses of tumor profiles—account for differences tumor purity
across samples.
A central challenge for estimating mutation frequencies in

tumors with unstable genomes is accounting for the effects of
CNAs that can alter mutated-read fractions. These are observed in
profiles of tumor biopsies that are composed of tumor cells with
wild-type and mutated alleles as well as tumor-adjacent cells (Fig.
1e, f). In turn, inaccurate mutation-frequency estimates can

contribute to erroneous associations between mutations and
tumor subclones as well as errors in phylogeny reconstructions
(Fig. 1g, h). We describe the mutation-frequency inference
problem as that of inferring tumor subclone frequencies and
associating mutations with subclones. Consequently, we describe
the tumor-phylogeny reconstruction problem as that of inferring
ancestral relations between tumor subclones. The main challenges
for addressing the mutation-frequency inference problem are to

Fig. 1 A simulated footprint of the clonal evolution of a tumor, as observed in genetic profiles of multiple biopsies. a Tumor phylogeny
composed of six dominant tumor subclones that make up the b cellular composition of six tumor biopsies. c Read fractions in a DNA profiling
assay that are associated with these subclones and d corrected fractions after accounting for CNAs. e Frequencies of the variant allele, for each
mutation defining a clone in each biopsy, are higher for ancestral clones. f Variant allele frequencies are linked to the cellular composition of
the tumor and depend on its associated phylogeny. g Ancestral relations can be inferred by comparing subclone frequency vectors; e.g.,
Subclone 3 frequencies are greater or equal to those of Subclone 4 across all biopsies, suggesting that Subclone 3 may be ancestral to
Subclone 4. h However, errors in frequency estimates (red) can complicate efforts to infer ancestry and tumor-phylogeny reconstruction.

M. Manica et al.

2

npj Systems Biology and Applications (2020)    27 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



aggregate co-occurring mutations across biopsies, estimate the
frequency of each aggregate in every biopsy, and identify partial
orders across aggregates that are consistent across biopsies. When
viewed this way, each tumor subclone could be associated with a
frequency vector that describes the proportion of cells containing
its mutations in each biopsy. Ancestral order between two
subclones could then be established based on (probabilistic)
comparisons between their corresponding mutation frequencies.
Ancestral order inference requires confident frequency assign-
ment to the majority of mutations based on observed mutated-
read fractions, and inference methods can be compared based on
the number of mutations with frequency estimates, the accuracy
of these estimates, and their accuracy at aggregating sister
mutations that initiate the same clones.
We studied the mutation-frequency inference problem as a

function of genetic instability and proposed the inference method
Chimæra to improve these estimates and subsequent phylogeny
reconstruction. Chimæra uses an optimization process to resolve
the parameters of a natural model for the effects of CNAs on
mutated-read fractions and is unique in its emphasis on the
simultaneous inference of mutation frequencies and CNAs. We
report on a comparison of Chimæra’s accuracy to that of other
mutation-frequency and heterogeneity inference methods on
simulated DNA-profiling data of genetically unstable tumors and
on biopsy subsets of thirteen tumors, including liver, kidney, and
prostate cancers21–23. Each of these tumors was profiled in 4–10
regions, and three of the prostate cancers profiled were surveyed
across multiple time points. We showed that Chimæra’s inferences
can be used to identify the key mutations that are associated with
increased subclone proliferation, drug response, and tumor grade,
as well as to infer the ancestral relations between tumor subclones
that harbor these mutations.

RESULTS

We describe the results of our efforts to evaluate inference
method accuracy on simulated data and to reconstruct phylo-
genies based on WES and targeted sequencing assays of tumor
biopsies. Our analyses highlighted the challenges in inferring
cancer mutation frequencies from these assays and the benefits of
methods that rely on profiles of multiple biopsies per tumor to
characterize tumor subclones and tumor evolution by tracking
mutation aggregates.

Simulation of DNA profiling data

We used phylogeny models—with sizes ranging from three to
twelve tumor subclones, twenty to fifty somatic mutations per
subclone, and varying degrees of genetic instability—to generate
simulated DNA profiles. ABSOLUTE24, AncesTree12, EXPANDS25,
PhyloWGS14,26, SCHISM13, and Chimæra were then used to
reconstruct phylogenies based on simulated data. Each method
inferred ancestral relations between mutation pairs, and errors
were estimated as the combined frequencies of false-positive and
false-negative predictions. ABSOLUTE infers tumor purity and
malignant cell ploidy directly from the analysis of somatic DNA
alterations by fitting estimates of copy-ratio of both homologous
chromosomes with a Gaussian mixture model, where components
were centered at the discrete concentration-ratios implied by an
initial frequentist estimation. AncesTree characterizes the clonal
evolution of tumors based on the probabilistic model for errors in
observed read fractions and infers phylogeny matrices using
integer linear programming. EXPANDS clusters mutations based
on their cell-frequency probability distributions; clusters are next
extended by members with similar distributions and pruned
based on statistical confidence by comparing the cluster maxima
and peaks observed outside the core region. PhyloWGS recon-
structs phylogenies based on a model for simple somatic

mutations in addition to a correction for CNAs, all based on a
single biopsy per tumor. SCHISM takes as input mutation
cellularity estimations and mutation clustering inferred by other
methods and uses a generalized likelihood ratio to infer lineage
precedence and lineage divergence. A genetic algorithm is then
used to build phylogenetic trees.

Accuracy of mutation-frequency estimation based on simulated
data

Our initial efforts to compare accuracy between methods based
on analyses of phylogenies of size three revealed variable success
rates, with some methods showing consistently poor accuracy.
EXPANDS and PhyloWGS, which were designed to reconstruct
phylogenies using profiles of one biopsy per tumor, and
ABSOLUTE, which is best known and most effective for estimating
tumor purity, had consistently poor accuracy in our simulations—
with results statistically indistinguishable from random inferences.
SCHISM and AncesTree had better or comparable performance
than these three methods in every simulated instance. For
example, the magnitude of frequency inference errors by
ABSOLUTE, which processed profiles of multiple biopsies per
tumor, were more than double those of SCHISM and analyses
required manual parameter optimization. However, ABSOLUTE
had good accuracy for inferring tumor purity in our synthetic data.
SCHISM and AncesTree do not explicitly account for the full range
of observed CNAs in tumors, but they were accurate in 100% of
our tested instances with three tumor subclones. Consequently,
we focused on accuracy comparisons between inferences by
SCHISM, AncesTree, and Chimæra on phylogenies composed of
6–12 tumor subclones. Moreover, our analysis suggested that
more than one biopsy per tumor was required to accurately
approximate mutation frequencies and CNAs at these
mutation loci.
We compared the accuracy of SCHISM, AncesTree, and Chimæra

on phylogenies that were adapted from a precompiled library that
was generated both manually and using CITUP27; see Fig. 2b and
Table S1 for representative phylogenies. Each somatic mutation
was associated with a trio of copy numbers—δs, δsw, and δsm (Fig.
2a)—that were taken from truncated normal distributions with
means μ∈ {1, 2, 3}, where μ= 1 corresponds to no copy number
changes and standard deviation σ∈ {0, 1, 2, 3}; σ= 0. was used
only when μ= 1. The resulting copy numbers modeled a range of
genetic instability conditions that were in line with observed CNAs
in TCGA-profiled prostate, hepatocellular, breast carcinomas (HCC
and BRCA in Fig. 2d, e); we assumed no linkage between
simulated CNAs of any mutations, and we omitted prostate
adenocarcinoma (PRAD) curves from Fig. 2 for readability. In
addition, we added up to 10% of wildtype reads for all simulated
mutations to account for the potential inclusion of nontumor cells
in biopsied samples (WT subclone in Fig. 1a). Total coverage for
each allele—i.e., the number of reads covering both the wildtype
and mutated variants of a specific nucleotide—was taken by
sampling mutation coverage values from prostate and Wilms’
tumor biopsies profiled here. Finally, once idealized counts were
available for both mutated and wildtype alleles, we simulated
duplication or loss of up to 5% of the observations according to a
uniform distribution. To simulate multiple regions per tumor, we
repeated each biopsy simulation using the same simulation
parameters but with distinct cellular composition vectors to
produce simulated profiles of 6–12 biopsies per tumor, as
depicted in Fig. 2c. The availability of six biopsies per tumor
increases the likelihood that mutations can be aggregated and
subclone mutation frequencies can be compared to infer ancestral
relations and are in line with pre-existing datasets, including those
reported here. The selection of six biopsies is a compromise
between clinical feasibility and the power needed to infer
mutation frequencies and phylogenies.
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AncesTree accepts no external input when estimating mutation
frequencies, but SCHISM can be guided by externally inferred
mutation frequencies and clusters. SCHISM’s implementation
includes its own selected clustering methods, and these were
also used to compare accuracy. Chimæra can also be guided by
externally inferred mutation frequencies and clusters, but by
default, it uses a clustering approach modeled after hdbscan28.
When comparing SCHISM and Chimæra performance on synthetic
data, we clustered mutations using their native clustering
approaches and with tclust29 optimization subroutines including
ElbowSSE, Entropy, GMD, Mclust, and SDIndex30,31. We compared
the accuracy of methods and pipelines on 2000 simulated assays,
including both with and without modeled genetic instability by
varying mutation copy numbers. The accuracy of SCHISM
estimates was better, on average, than that of AncesTree, but it
was relatively sensitive to clustering optimization methods, with
SDIndex outperforming other methods, including SCHISM’s native
implementation. Comparatively, Chimæra estimates were less
dependent on clustering methods and significantly outperformed
estimates by SCHISM with SDIndex (p < 1E−16 by U-test).
When using its native clustering approach Chimæra exhibited

lower accuracy than implementations using tclust (Fig. 3a), but it
estimated frequencies for a significantly larger number of
mutations (Fig. 3b). The number of mutations with no frequency
estimates by Chimæra was 2-fold less than that of the next best
method, which allowed for dramatically improved phylogeny
reconstruction in both simulated data and profiled cancers.
Inference accuracy, for both SCHISM and Chimæra, was antic-
orrelated with copy number variability across biopsies. We used
CNA variability as a surrogate for genetic instability and quantified
it using the coefficient of variation of mutation copy numbers
across biopsies, which followed truncated normal distributions
(Fig. 3c). However, while Chimæra inferences were affected by
copy number variability, they were independent of the actual
magnitude of CNAs (Fig. 3d). This, in turn, suggested that
instability across biopsies is a key challenge for estimating
mutation frequencies. We note that both the SCHISM and tclust-
based Chimæra pipelines failed to cluster 40% of mutations in our
synthetic data. Moreover, while Chimæra assigned frequencies to

all clustered mutations and made predictions for each simulate
cancer, SCHISM did not successfully estimate mutation frequen-
cies for some simulated genomes and cancer profiles. To account
for this, accuracy comparisons in Fig. 3 relied on only those
mutations that had assigned frequencies by all methods. In total,
our analysis suggests that mutation frequency estimation is more
challenging for genomes with high CNA variability (Fig. 3c, d). All
data—including supplementary tables and analyses—are avail-
able at Chimæra’s GitHub repository.

The number of regions profiled per tumor dictates algorithm
convergence

Chimæra requires at least two profiled regions per tumor for
making tumor subclone predictions, and while SCHISM can predict
tumor subclones based on a single region, its accuracy improves
with the number of profiled regions per tumor. To test the benefit
of profile-multiplicity per tumor, we compared Chimæra and
SCHISM analyses of multiregion WES profiles of 13 tumors using
only subsets of the available tumor profiles for each analysis.
Tumor profiles included profiles of nine hepatocellular carcinomas
(HCCs)32, three high-risk Wilms’ tumors, and a castrate-resistant
prostate cancer (CRPC). Each tumor was profiled in 5–10 distinct
regions, and we compared the number of subclones detected by
each method in each multiregion subset as a function of the
number of regions, with a minimum of two WES profiles
per tumor.
All HCCs were profiled in five regions, which permitted testing

predictions in 2-size, 3-size, and 4-size subsets of the assays for
each tumor; Wilms’ tumors were profiled in six and eight regions;
and the CRPC in ten regions. Our results (Fig. 4) suggested that, for
most HCCs and Wilms’ tumors, Chimæra-analysis of four tumor
regions resulted in a similar number of subclones as profiling five
tumor areas, however, profiling two tumor areas was insufficient
for predicting tumor subclones accurately with Chimæra. Predic-
tions for our CRPC, which had the highest genomic instability and
mutation burden of the 13 tumors, largely converged with seven
profiled regions. Interestingly, because mutations that were
clustered together by Chimæra were associated with sufficiently
different frequencies by SCHISM, the number of subclones

Fig. 2 Our model for the effects of copy number alterations on mutated-read fractions in DNA profiles. a For each mutation in each biopsy
s, the mutated-read fraction is a function of the true proportion of profiled cells with the mutation (mutation frequency) φs, the copy number
of the reference allele in cells without the mutation δs, and the copy numbers of the reference and the mutated allele in tumor cells with the

mutation, δ0s and δas , respectively. The frequency of tumor and WT cells without the mutation is (1− φs) and the two reference alleles can be
assumed to have a combined copy number of 2δs. c–e To compare inference methods we synthetically generated profiling data based on
parametrized simulated copy number distributions. b Shown are representative phylogenies and c a representative cellular composition
matrix, as well as d density plots of average copy numbers across profiles of TCGA-profiled hepatocellular (HCC) and breast (BRCA) carcinomas.
These include the distribution of copy numbers in two individual HCCs (HCC1 and HCC2) and across all HCCs (black) and all BRCAs (blue); copy
numbers ranged from 0 to >260×. e Simulated copy numbers, including simulations of more-stable and less-stable cancers, ranged from 0× to
15× copies.
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predicted by SCHISM were often dramatically greater, and SCHISM
analyses did not produce subclone predictions for some tumors
and often required more regions to converge (Fig. 4b). A detailed
description of tumor subclone predictions in each tumor context
follows. All data and analyses are given in Table S2.

Phylogeny inference in HCC

HCCs are high-risk liver tumors that are known to have high
genetic instability23. We used Chimæra to infer mutation
frequencies and ancestral relations between HCC subclones based
on WES profiles of nine HBV-positive HCCs32. In total, we obtained
mutated-read fractions and CNA estimates for 1424 mutation
candidates in 9 tumors and 43 tumor samples. Table S3 lists the
data input to Chimæra, including mutation-frequency and CNA
estimates for each mutation; it also details the outcome of the
analyses described below.
Chimæra inferred frequencies estimates for 60% (858/1424) of

all mutations, reconstructing phylogenetic trees for each tumor
and predicting initiating clones and proliferative subclones; see
representative trees in Fig. 5a–c. In contrast, SCHISM inferred
mutations frequency for 18% of the identified mutations.

Interestingly, 100% (9/9) of the HBV-positive HCCs had predicted
initiating mutations in WNT-signaling pathway genes (Fig. 5d). An
examination of 102 TCGA-profiled HBV-positive HCCs23 suggested
that 74% (75/102) of samples carried mutations in WNT-signaling
pathway genes, and that the majority of these samples (76%) had
WNT-signaling pathway mutations with mutated-read fractions
above 25%—corresponding to mutations that are potentially
present in the majority of cells.
To test whether WNT-signaling pathway genes were enriched

for mutations—and particularly high-frequency mutations with
mutated-read fractions above 25%—we calculated the proportion
of tumors with such mutations in each of 186 KEGG pathways in
MSigDB32. The most enriched pathways by p-value and mutated-
sample fraction are shown in Fig. 5e. p-values were estimated
using permutation testing, where for each pathway, random
same-size gene sets were generated using KEGG pathway genes
and the mutated-sample fraction taken to generate a null
distribution. WNT-signaling was the most enriched pathway, and
most of the remaining enriched pathways significantly overlapped
it (p < 0.01, FET). To correct for this overlap33—where pathways
that overlap another pathway that is mutated in many samples are
identified as significant—we recalculated enrichment significance

Fig. 3 Performance of mutation frequency estimates on simulated data. a Performance—measured by mean error across simulated WES
datasets from genomes with varying mutation copy numbers—of mutation-frequency estimates by AncesTree (purple), SCHISM (red), and
Chimæra (green and blue); SCHISM and Chimæra were evaluated using multiple clustering methods in an effort to improve their accuracy,
with SDIndex (SCHISM) and ElbowSSE (Chimæra) producing top accuracy, respectively. In blue, are reported estimates for the published
Chimæra, which uses hdbscan. b No method is able to estimate mutation frequencies for every mutation; however, Chimæra assigns
frequencies for over 80% of simulated mutations, compared to an average of 60% or fewer for other methods. c Errors in frequency estimates
were correlated with genetic instability, which was measured here as the coefficient of variation within copy number distributions used in
simulated WES profiles. Inferences by some methods were consistently better than others; e.g., SCHISM with SDIndex clustering outperformed
AncesTree inferences. Chimæra clearly outperformed all the other methods regardless of the clustering strategy. d While copy-number
variability in the same sample was correlated with inference errors, the absolute magnitude of copy numbers had no significant effect on
Chimæra’s performance. We report results for Chimera (hdbscan) and SCHISM with SDIndex (a representative that resembles results with other
clustering methods). Standard errors are reported. Mean error is the mean of L1 distances between true and estimated mutation frequencies
after normalizing for the number of biopsies tested.
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for each pathway using the same test but after excluding WNT-
signaling pathway genes. We note that MAPK-signaling and two
other top-10 pathways were still enriched (Fig. 5e). Analyses
products and input data are given in Table S3.

Phylogeny inference in Wilms’ tumors

To test SCHISM’s and Chimæra’s predictive ability in tumors with a
range of genomic instability, we selected three Wilms’ tumors with
low-genomic (CG118), intermediate-genomic (CG565), and high-
genomic instability (CG163). Multiple regions of these tumors
were profiled by WES, including six regions from each of CG118
and CG163 and eight regions from CG565 (Fig. 6a). SCHISM
produced stable tumor subclone predictions that agreed with

predictions by Chimaera for CG118, but it did not converge on a
set of subclones even when profiling was available for seven
regions from CG565; it also was not able to predict any subclones

for CG163 (Fig. 4b). Chimæra tumor subclone predictions
converged with fewer profiled regions, and Chimæra predicted
phylogenies for all three profiled tumors.
Chimæra analysis of CG118 profiles (Fig. 6b) suggested that the

tumor was composed of primarily two types of cells: tumor
subclones with a CTNNB1 (S45F) mutation and those with a

mutation in WT1 (R445W) mutation; a predicted daughter clone of
the CTNNB1 mutation had no previously studied mutations. Both
CTNNB1 and WT1 mutations have been previously implicated with

Wilms’ tumor genesis34,35, and both clone types were present in

Fig. 4 The number of predicted subclones depends on the number of profiled regions per tumor. a, b Lin et al. profiled five regions of each
of nine HBV-positive HCCs. We profiled 6–8 regions of each of three Wilms’ tumors and ten regions of a castrate-resistant prostate cancer
(CRPC). For each tumor, we exhaustively selected all region subsets size-2 and up, and compared the number of predicted tumor subclones
across subsets to those obtained using all available region profiles using a Chimæra and b SCHISM. Chimæra analysis of any 4-tumor regions
resulted in a similar number of subclones as analysis of five regions, however, profiling two regions produced fewer predicted subclones.
SCHISM performed better on stable genomes (CG118) than on unstable genomes (CG163 and CRPC). c Chimæra analyses (top) of HCC6046
profiles suggested convergence of subclone predictions using three profiled regions, while SCHISM analyses (bottom) produced a higher
prediction variability across profiling subsets. d Similarly, Chimæra analyses of four regions of CG565 produced a similar number of clones as
profiles of eight regions. e Chimæra analyses of seven regions of our CRPC tumor produced a similar number of clones as analysis of ten
regions; however, analyses based on five or fewer tumor areas produced significantly more predicted tumor subclones due to reduced
aggregating power. SCHISM analyses based on six or more regions produced consistent counts of predicted subclones, but this number was
considerably greater than the number of subclones predicted by Chimæra.
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every profiled region. However, the majority of cells—in all
regions—were predicted to have CTNNB1 mutations. To compare
the effects of these mutations, we compared RNA-expression
profiles in regions with the lowest and highest frequencies ofWT1-
mutated cells (Fig. 6c), 7% and 3%, respectively. Analysis of the
CTNNB1-pathways and WT1-pathways36,37 suggested that they
are differentially regulated across these tumor regions (Fig. 6c).
These data suggested that S45F activates CTNNB1 and that R445W
inhibits WT1, as previously described38,39.
Chimæra analysis of CG163 profiles suggested that the

acquisition of missense mutation in LIN28A (p.R132H) was a key
event early in the formation of this tumor. Chimæra identified a
second event that produced a less frequent tumor clone with
many coding mutations with unknown significance. RNA-
expression profiles of regions with the lowest and highest
concentration of LIN28A mutations suggested that genes down-
stream of LIN28 are significantly altered in mutated cells. Analysis
of CG565 did not reveal any mutations with known significance in
Wilms’ tumors. Data and analyses are provided in Table S4.

Phylogeny inference in prostate tumors

To further test Chimæra’s predictive ability, we studied ultra-deep
profiles of multiple regions of a select set of prostate cancers at
multiple time points. Ultra-deep targeted profiling allows for
improved mutation identification and read-fraction estimation. A
single region from each of these cancers was previously profiled
and helped identify multiple predicted driver mutations40,41.
However, because mutations detection by WES are not always
reliable and often includes both false-positive and false-negative
predictions42, we selected three cancers and designed a mutation
panel that targets mutated genes in these cancers, as well as other

known driver genes in prostate cancers43 for ultra-deep sequen-
cing. The identity of targeted genes is given in “Methods” section.
This approach helped test Chimæra’s performance in more
restrictive assays, which are quickly becoming standard in
oncology clinics. Controls and five areas of each cancer were
profiled at 2, 3, and 5 time points per cancer using both our
targeted sequencing panel and OncoScan arrays to estimate CNAs
on genome scales; areas profiled from tumor PC1 at each of three
time points are shown in Fig. 7a and given in Supplementary
Table S5.
We recorded changes in treatment, identified mutations that

may have been acquired following treatment, and predicted
phylogenies for each tumor based on these mutations. We only
considered mutations that were observed in multiple regions at
the same time point, thus eliminating two-thirds of the
candidates. Our results demonstrate the feasibility of phylogeny
inference from targeted-panel profiling of multiple tumor regions
and support phylogeny prediction efforts by suggesting that
predicted subclones that are supported by multiple genetic
variants may persist and accumulate additional genetic variants
across time. We describe the results of Chimæra analysis below.
The tumor PC1 was diagnosed as Gleason 3+ 4 and treated

with an LHRH analog. It was profiled at 3-time points during
follow-ups after treatment was started. Timepoint 1 in Fig. 7a was
taken over a year after diagnosis and treatment, and Time points 2
and 3 followed 1.17 and 1.4 years after Time Point 1. These
suggested increased risk, with Gleason 5+ 5 and the discovery of
a mutation in AR that has been associated with increased cancer
cell proliferation and poor outcome. Chimæra analysis of profiles
of PC1 suggested two predominant tumor subclones that are
represented in Fig. 7b by predicted deleterious mutations in EP300

Fig. 5 Inferred tumor phylogenies for HBV-positive HCCs suggest that WNT-signaling pathway mutations play a key role in tumor
initiation. a–c Mutations in TP53 were inferred to initiate tumorigenesis in three of the nine tumors we studied; labels correspond to labeling
by Lin et al. d All nine tumors had mutations in WNT-signaling pathway genes that were predicted in the initiating tumor subclone. e The
majority of the 102 TCGA-profiled HBV-positive HCCs had mutations in WNT-signaling pathway genes, which was the most significantly
mutated KEGG pathway in these patients. Most other significantly mutated pathways were no longer enriched for mutations after the
exclusion of WNT-signaling pathway genes from the analysis.
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(p.I997V) and AR (p.T878A); Fig. 7b. Tumor subclones with the
EP300 mutation were present in all regions profiled at Time Point
1. AR mutations were identified at high frequencies at Time Points
2 and 3 but only in regions that lacked the EP300 mutation and
had high Gleason scores. Together, these findings suggest that
either the most aggressive tumor sections were not profiled in
Time Point 1, or that subclones with the AR mutation have a
proliferative advantage and have overtaken subclones with the
EP300 mutation. Protein profiling by Hyper Reaction Monitoring of
regions with low-frequencies and high-frequencies for the
subclones with the AR mutation confirmed that genes that have
been shown to be downregulated by AR44 are significantly
upregulated in AR-mutated regions.
PC2 was diagnosed as Gleason 5+ 4 and biopsied before

treatment. The patient was treated for 9 months with LHRH-
Analogon, during which the cancer was biopsied two additional
times and registered an increase in severity to Gleason 5+ 5 at
Time Point 3. Following treatment, the tumor was biopsied a 4th
time and showed no change in severity (Gleason 5+ 5). The
patient was then treated with combined androgen blockage—
LHRH and Casodex—for 2 months, followed by a Gleason 4+ 5
diagnosis at Time Point 5. Time Point 1 profiles revealed the loss of
RB1 and a commonly observed stop-gain mutation in PTEN (p.

R303X). Mutations in BRCA2 and EP300 were observed in Time
Points 4 and 5. Chimæra analysis suggested that the RB1 locus
deletion predates the PTEN mutation and that the BRCA2 and
EP300 mutations were acquired in tumor subclones that following
RB1 loss, lacked the PTEN mutation (Fig. 7d).
The tumor PC3 was diagnosed as Gleason 5+ 4 using post-

treatment profiles, which included androgen blockers and
orchiectomy 9 years prior to Time Point 1 profiling. A second
biopsy, taken 6 months after the first suggested increased severity
and Gleason 5+ 5. Tumor profiles identified known deleterious
mutations in PTEN (p.Q245) and BRCA1 (p.E1038G), as well as a
stop-gain mutation in BRIP1, and nonsynonymous mutations in
BRCA2 and PALB2. All mutations were identified at both time
points and nearly all regions. Chimæra’s analysis suggested that
RB1 loss was followed by the BRCA1 mutation. This was followed
by the acquisition of a mutation in TP53 (p.V173G) or PALB2 and
BRIP1. These sister clones subsequently acquired mutations in
PTEN and BRCA2, respectively (Fig. 7e). Comparing the expression
of genes downstream from PTEN and TP53 by Hyper Reaction
Monitoring in regions with the lowest-consternation and highest-
consternation of subclones with PTEN and TP53 mutations
suggested that these mutations disrupt the associated pathway
(Fig. 7f). Genes known to be downregulated by PTEN45 were

Fig. 6 Inferred tumor phylogenies for high-risk Wilms’ tumors identified driving initiating mutations. a The location of eight CG565
regions selected for profiling. b The inferred phylogeny for CG118 suggested that it is composed of two major subclones driven by previously
observed mutations in CTNNB1 and WT1, with the CTNNB1-mutated clone accounting for a larger proportion of the tumor. CG565 was
predicted to acquire mutations in ITGA3 and MACF1 that coincided with clonal expansion. The initiation of CG163 was predicted to include a
mutation in LIN28A, which is sufficient to drive Wilms’ tumor genesis. c, d RNA-expression profiles in c regions that were more abundant with
each of the CG118 subclones—90% vs. 70%, and 30% vs. 7%, for the CTNNB1-mutated and WT1-mutated subclones, respectively—and
d LIN28A-mutated subclones of CG163 (100% vs. 74%) suggested differential expression of the gene programs downstream from these
predicted drivers.
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upregulated in regions rich with PTEN-mutated subclones as did

targets of TP5346. All input data—including protein expression
profiles—and analyses products are given in Table S5.

DISCUSSION

Bulk tissue DNA profiling by whole-genome and targeted
sequencing can identify key DNA alterations that provide insight

into the biology of tumors and indicate effective treatment
options. Increasingly, these assays are used to help elucidate the
clonal composition of heterogeneous tumors and even predict
ancestral relationships between tumor subclones. The key to such

efforts is the accurate estimation of mutation frequencies from
both high-coverage and low-coverage DNA profiles. Our study
suggested that such estimation efforts must explicitly account for

the copy numbers of both the reference and alternative alleles
and that only accurate mutation-frequency estimates can yield
accurate tumor phylogenies.

Accordingly, we reported on methodology to improve the
accuracy of tumor phylogeny reconstruction by improving
mutation-frequency estimates from DNA profiles of multiple
same-tumor biopsies. Our analysis suggested that mutation-
frequency estimates are particularly challenging in the face of
high genetic instability, which is characteristic of high-risk cancers,
and that the accuracy of methods that rely on DNA profiles of a
single biopsy of such cancers is poor. We also showed that even
when profiles of multiple biopsies are available, methods that do
not explicitly account for the full range of copy number variability
produce inconsistent results and have poor accuracy.
We briefly outlined current methods to reconstruct tumor clonal

evolution using DNA-profiling. These include methods that rely on
single-cell profiles and methods that resolve subclone mixtures
from profiles of bulk tissues. We note that single-cell DNA
sequencing is expected to help produce more accurate mutation-
frequency estimates, but this technology is yet to mature and
does not produce accurate single-cell estimates for FFPE tumor
samples. The greatest challenge in cancer genomics—and this is

Fig. 7 Inferred phylogenies of tumors from three prostate cancer patients. a Five regions of Prostate Cancer 1 (PC1) were profiled at each of
three time points, identifying potentially deleterious mutations at each time point. b PC1’s inferred phylogeny suggested that EP300 p.I997V
mutation was present at Time Point 1, and that the tumor subclone with EP300 p.I997V (Subclone 1) is distinct from the subclone with AR p.
T878A (Subclone 2), which was observed only in the later time point and whose clonal frequency increased with time. c Differential protein
expression analysis suggested that regions that were predicted to have high clonal composition of Subclone 2 (82% vs. 0%) had higher AR-
target expression than regions without Subclone 2. d Inferred phylogeny for Prostate Cancer 2 (PC2) suggested that RB1 loss was an initiating
event, and that that majority of tumor cells are the results of divergent evolution following the acquisition of PTEN and BRCA2 mutations,
Subclones 2 and 3, respectively. In total, 5 regions of PC2 were profiled in each of the five Time Points; Subclone 1 was observed in all time
points, and Subclones 3 and 4 in Time Points 4 and 5. e PC3’s inferred phylogeny included RB1 loss as an initiating event, followed by the
acquisition of a BRCA1 mutation. These tumor cells then either acquired TP53 and PTEN mutations, or PALB2, BRIP1, and BRCA2 mutations. All
mutations and subclones were observed in each of the two time points profiled. The PTEN, BRCA1, and BRCA2 mutations were previously
observed in cancers. f A comparison of PC3 regions with low and high composition for Subclones 3 and 4, 90% vs. 0% and 88% vs. 0%,
respectively, suggested significant differential protein expression for targets of TP53 and PTEN.
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not expected to change—is sample availability for patients with
rich or specific clinical annotation, and FFPE is and will remain the
primary preservation method for solid tumor resections. Moreover,
frozen samples that could be used to generate cell suspensions
that may be profiled using single-cell DNA sequencing cannot be
easily used to evaluate the heterogeneity of tumors. We expect
that whole-genome, whole-exome, and targeted-panel sequen-
cing will produce the vast majority of tumor DNA profiles in the
near future.
We expect that in the cases that single-cell DNA and RNA

profiling is possible and pursued, whole-genome and whole-
exome sequencing will be used to inform on the biology of clones.
In these cases—where analyses of single-cell RNA, DNA, or protein
expression will be integrated with analyses of bulk tumor profiles
—methods that impute mutation frequencies and even tumor
phylogeny from bulk tumor DNA profiles will play a key role in this
integrated analysis. Most importantly, we argue that given the
heterogeneity of solid tumors and the often observable and
documented differences in the composition of regions on the
same tumor, profiling multiple tumor regions will be required for
both research and clinical efforts in the future.
Our analyses also suggested that Chimæra improves on

mutation-frequency estimates by harnessing added information
from multiple profiles and by directly accounting for the influence
of CNAs on observations from DNA profiles. Chimæra’s advantage
was clearly observed in simulated data, where its performance
was the most consistent and its accuracy the greatest. Interest-
ingly, while Chimæra was able to estimate mutation frequencies
with relatively high accuracy even at very high and very low copy
numbers, its performance declined for the most unstable
genomes where copy numbers for the same mutation varied
widely across samples.
Using three tumor types—including Wilm’s tumors, which is

expected to have relatively low genetic instability and few
mutations—and prostate cancers, where longitudinal biopsies
from the same patients were available, we showed that when
given a sufficient number of biopsies per tumor, Chimæra is able
to address mutation-frequency estimate challenges arising from
genetic instability. Our results suggested that Chimæra’s mutation
aggregation approach can help resolve issues arising from
convergent evolution20 and false-positive mutation calls42. We
also showed how Chimæra could be used in conjunction with
ultra-deep sequencing to improve on mutation calling accuracy. In
conclusion, our results suggest that accurate mutation-frequency
and cellularity inference are possible using profiles of multiple
biopsies per tumor when coupled with analyses that account for
the effects of CNAs on observed mutation read fractions.

METHODS

We formulated the phylogeny reconstruction problem in set-theoretic
terms, which lead to a natural model for the effects of CNAs on mutated-
read fractions in sequencing profiles. We describe our methodology for
simulating WES tumor profiles, as well as our efforts to deconvolve
mutation frequencies from simulated data using ABSOLUTE, AncesTree,
EXPANDS, SCHISM, and Chimæra. Note that, to reduce analysis complexity,
CNAs and mutation frequency simulations did not include alterations in
sex chromosomes. Finally, to demonstrate that Chimæra can be effectively
applied to clinical data, we described reconstructed phylogenies from WES
profiles of ten same-tumor CRPC biopsies; a set of five same-tumor HCC
biopsies from nine patients; two six same-tumor biopsies and an eight
same-tumor biopsy of three Wilms’ tumors; and three same-tumor
prostate-cancer biopsies from three patients profiled at multiple time
points.

Phylogeny reconstruction problem

Let M ¼ m : m 2 N; 1 � m � nf g denote the set of n mutations identified
across a set of profiled biopsies S. The mutation burden in any given cell is
given as a subset of M, γ � M, or as an element of the power set over M,

PðMÞ; i.e., γ ∈ PðMÞ is a specific mutation ensemble that characterizes a
tumor subclone. We denote the cellularity of γ and its corresponding
subclone in biopsy s ∈ S as ρsγ , and the frequency of mutation m ∈ γ in
biopsy s as φs

m ¼
P

γ:γ2PðMÞ;m2γf g ρ
s
γ . Consequently,

P
γ2PðMÞ ρ

s
γ ¼ 1 and the

assignment A ¼ fρsγ : γ 2 P Mð Þ; s 2 Sg produces a solution to our clonality
reconstruction formulation.

Mutation frequencies

As defined above, for a mutation m in biopsy s∈ S, φs
m denotes the

frequency of cells in s with mutation m. The total copy number Cs of the
allele targeted by the mutation can be estimated from WES data. Cs is
composed by: the copy numbers of the allele in cells that lack mutation m,
δs, the copy number of the wildtype allele in m-mutated cells, δsw and the
copy number of the mutated allele in m-mutated cells, δsm (Fig. 2). Notice
that if no copy number event has occurred at the locus:δs= 2, δsw ¼ 1 and
δsm ¼ 1. Adopting the infinite-sites assumption, we denote the mutated-
read fraction—the fraction of reads reflecting the mutated versus wild-
type allele in a WES profile—in sample s as f sm . Then, we can formulate the
following equations (Eqs. 1, 2).

Cs ¼ δs 1� φs
m

� �
þ ðδsw þ δsmÞφ

s
m: (1)

f sm ¼
φs
mδ

s
m

Cs
: (2)

Equation (1) provides a weighted sum of the copy number contribution
from each allele type, and Eq. (2) gives the ratio of the number of reads
from the mutated allele and the total number of reads.

Chimæra

Chimæra proceeds in three steps. First, mutation frequencies are
approximated from sequencing and CNA data in each biopsy; then,
mutations with similar frequency vectors (where each vector component
gives the mutation frequency in each biopsy) are clustered together to
form subclones; and finally, mutation frequencies and CNAs for these
alleles are refined using an optimization process. The optimization
assumes that clustered mutations that are associated with the same
subclone have the same frequencies in each tumor biopsy and that δsm—
the average copy number of m (the mutated allele)—is unchanged across
biopsies from the same tumor. This assumption can be relaxed in post-
processing.
We first approximate the true frequency of the mutation φs

m by
accounting for tumor purity, i.e., the fraction of tumor cells in biopsies that
include non-tumor cells, and assuming that the allele’s average copy
number in tumor cells—whether mutated or not—is fixed. Let ps be the
purity of biopsy s, then Eq. (2) can be rewritten as follows:

f sm ¼
φs
mδ

s
mp

s

2 1� psð Þ þ Csps
: (3)

The experimentally observed copy number, Cs
obs , depends on the purity

of the sample and the copy number of the sample tumor cells, Cs, as
follows:

Cs
obs ¼ 2 1� psð Þ þ Csps; (4)

where Cs
obs can be estimated using additional biochemical assays, genetic

sequencing, or through computational analysis of WES data47, and the
normal cells are assumed to have been corrected for germline copy
number variants associated biases.
The simplifying assumption that the allele’s average copy number—

averaged across all profiled cells—of the mutated allele in tumor cells is
constant across biopsies, i.e,: δsm ¼ Cs

2
. Under this approximation, we can

use Eqs. (3) and (4) to eliminate Cs and obtain a first approximation of the
mutation frequency fφs

m:

fφs
m ¼ min

2f smC
s
obs

Cs
obs � 2 1� psð Þ

; 1

� �
: (5)

This constraint will be later removed in the optimization process that
follows but is necessary at this stage to obtain a first approximation that
mutation frequencies that take into account the copy number influence
from WES measurements. The minimization is necessary because of the
interplay between the copy numbers at these alleles that may produce a
first approximation above 1.
The approximate mutation frequency vectors (Eq. 5) are next clustered

to identify candidate groups of mutations that form subclones. We
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considered clustering algorithms with the robust treatment of outliers in
order to ensure good clustering stability and quality. Specifically, we used a
method modeled after hdbscan, a density-based hierarchical clustering
method that aims at maximizing the stability of the obtained clustered
against noise and requires minimal parameter selection. The number of
clusters is determined automatically based on the minimal number of
mutations that have to be considered to constitute a cluster. We also use
tclust29, a nonhierarchical robust clustering that trims outliers based on a
probabilistic model. The number of clusters is selected by optimizing
intracluster entropy or the sum of squared errors (SSE) and using a variety
of optimization methods including the Elbow method, Gaussian mixture
decomposition (GMD), and SD index48–50. The clustering based on hdbscan
showed better performance on the generated synthetic data compared to
others, especially when considering the number of mutations that could
be assigned frequency estimates. Furthermore, it has the advantage of
avoiding imposing a prior distribution on the mutations frequencies. Once
the clusters are found, Chimæra assumes that each cluster represents a
subclone and uses the mutation assignment to infer subclone frequencies
and copy number estimates for each mutated allele in the final
optimization step.
Focusing on subclone ∈ PðMÞ, Eq. (3) describes a relationship between

the frequencies and copy numbers of mutations in γ:

φs
mδ

s
m ¼ f sm

Cs
obs

ps
� Bms;8m 2 γ; s 2 S; (6)

where Bms is the entry of a matrix B 2 R
Sj j; γj j corresponding to mutationm

and biopsy s. B is fully determined from analysis of sequencing assays,
including purity, observed copy numbers, and observed mutated-read
fractions of each mutation.
Unfortunately, the right-hand side of Eq. (6)—a multiplication of

frequencies and copy numbers—can not be analytically decoupled.
However, from our problem formulation, mutations from the same
subclone are expected to have the same mutation frequencies, i.e.,
φs
mi

¼ φs
mj

� φs 8mi;mj 2 γ. Further, we assume that the copy number of
each mutation m is constant across biopsies, i.e.,
δsim ¼ δsjm � δm 2 0; CN½ �8 si ; sj 2 S, where CN is a fixed upper bound for
the copy number; CN= 15 in our simulations. While we expect that this
assumption will introduce some errors to the approximation of δsm , it will
have limited effects on the selection of optimal mutation frequencies
because the variability of copy number averages for the mutated allele
across biopsy is expected to be low for most mutated loci. We also note
that we have not assumed stable genomes in our simulated data, i.e., the
generated data displays variable copy numbers for the same mutated
allele across biopsies in order to have an accurate estimate of the
committed error.
After these assumptions, the optimization problem for each subclone 2

PðMÞ, based on Eq. (6), can be formulated as:

minkφs
*

� δm
*

� Bk2; 0 � δm � CN; 0 � φs � 1;8m 2 γ;8s 2 S; (7)

where φs
*

is the mutation frequency vector across biopsies for all mutations
in γ; δm

*

is the copy-number vector for each mutation in γ; B is as defined in
Eq. (6); and φs

*

� δm
*

denotes the outer product of vectors φs
*

2 R
Sj j and

δm
*

2 R
γj j . We used the sequential least-squares programming (SLSQP)

optimization51 to find an optimal solution of Eq. (7). To avoid being
trapped in local optima, multiple runs with different random initializations
for the mutations frequencies and unitary variant allele copy numbers are
performed.

Profiling and analysis of Wilms’ tumors

DNA libraries were constructed and sequenced as previously described52.
Briefly, after QC, high molecular weight double-strand genomic DNA
samples are constructed into Illumina PairEnd pre-capture libraries
according to the manufacturer’s protocol (Illumina Inc.) with modifications.
300 base-pair fragments were checked using a 2.2% Flash Gel DNA
Cassette 5 (Lonza, Cat. No.57023). The Fragmented DNA were End-
Repaired, incubated, A-tailed, and ligated. Agencourt® XP® Beads (Beck-
man Coulter Genomics, Inc.; Cat. No. A63882) were used to purify DNA
after each enzymatic reaction. After Beads purification, PCR product
quantification and size distributions were determined using the Caliper GX
1K/12K/High Sensitivity Assay Labchip (Hopkinton, MA, Cat. No. 760517).
Pre-capture libraries (1 µg) were hybridized in solution to VCRome 2.1
(NimbleGen) targeting 43 Mb of sequence from ~30 K genes, according to
the manufacturer’s protocol. Sequencing was performed in paired-end
mode with Illumina HiSeq 2000. Cluster formation and primer hybridization

were performed on the flow cell with Illumina’s cBot cluster generation
system. On average, about 80–100 million successful reads, consisting of
2 × 100 bp, were generated on each lane of a flow cell. CNAs and mutation
frequencies in sex chromosomes were estimated using Genome Analysis
Toolkit pipelines.
RNA-seq profiles of Wilms’ tumors were aligned using STAR v2.3.0e32 to

an index of GRCh37 that included GENCODE v16 gene annotation.
Alignment files were processed using Picard tools v1.54, and the final BAM
files indexed using SAMtools index v0.1.1133. RNA-seq run quality was
assessed using the RNA-SeQC package34 using the same GENCODE 16.gtf
file. Transcript quantification was performed using Cufflinks18 v2.02
running in quantification mode against the GENCODE v16.gtf file. FPKM
values were used for relative abundance estimation.

Profiling and analysis of WES of prostate cancer biopsies

To test our ability to infer mutation frequencies and ancestral relations
between subclones based on clinical profiles of four prostate cancers. The
Specimen were collected at the Department of Pathology and Molecular
Pathology, University Hospital Zurich, Switzerland as previously
described53 with the approval of Cantonal scientific ethics committee
Zurich, approval number KEK-ZH-No. 2014-0007, and with informed
consent by the patient. Tumor regions were selected for heterogeneous
histological presentation by an experienced uropathologist (PJW). DNA
from peripheral blood and FFPE punches was isolated with the Maxwell 16
LEV Blood DNA kit (Promega, AS1290) and Maxwell 16 FFPE Tissue LEV
DNA Purification Kit (Promega AS1130), respectively, according to
manufacturer’s recommendations; 300 μl of blood collected in a BD
Vacutainer K2 (EDTA 18.0 mg) tube was added to 30 μl of Proteinase K
solution (final concentration 2 mg/ml) and subsequently mixed with 300 μl
lysis buffer, vortexed, and incubated for 20min at 56 °C. FFPE cylinders
were deparaffinised with xylene, washed twice with ethanol, dried 10min
at 37 °C and re-suspended in 200 μl incubation buffer containing 2mg/ml
Proteinase K. Samples were incubated overnight at 70 °C and mixed with
400 μl lysis buffer. Lysates from both, blood and FFPE tissues, were
transferred to well 1 of the supplied cartridge of the corresponding kit and
DNA was automatically purified and eluted in 30 μl Tris-buffer, pH 8.0 by
the Maxwell instrument.
WES samples were profiled using Agilent SureSelect Whole Exome

Enrichment, v6 (58 Mbp) and 2 × 75 bp paired-end reads were used for
optimal performance on a HiSeq 4000 (Illumina). Mutation calling was
followed by protocols established by TCGA and ExAC21,54. Reads were
aligned to hg19 using BWA55, and variants were called with GenomeA-
nalysisTK, MuTect56, Picard MarkDuplicates, and additional post-processing
utilities from GATK including BaseRecalibrator. FastQ files were deposited
in EBI’s ENA project PRJEB19193. Predicted mutations are given in Table S5;
mutations were annotated with estimated read fractions and estimated
CNAs by VarScan using default parameters and after setting the maximum
amplification to 15×47.

Profiling and analysis of targeted-panel sequencing of prostate
cancer biopsies

We selected a total of 36 genes whose mutations are enriched in prostate
cancers for ultra-deep sequencing40,41. ImmQuant was used to capture their
coding regions and the completeness of the capture was verified against
the human reference genome GRCh38. Target genes are given below.

AKT1 CDH1 MED12 PMS2

AR CDKN1B MRE11A PTEN

ATM CHEK2 MSH2 RAD51C

ATR EP300 MSH6 RAD52D

AURKA ERG MYC RB1

BARD1 EZH2 MYCN SPOP

BRACA1 FOXA1 NBN TMPRSS

BRACA2 GEN1 PALB2 TP53

BRIP1 HOBX13 PIK3CA ZNF595

The samples were taken from the Prostate Cancer Outcomes Cohort
Study from UZH (ProCOC) and Metastatic Prostate Cancer Biobank from
UZH (metaProC). Patients and target genes were selected for ultra-deep
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sequencing based on WES profiling and using our predictive panel. Their
profiles were implemented in three batches and sequenced using Illumina
HiSeq using 150 bp pair-end reads by Sophia Genetics. Analysis of DNA
profiles mirrored the steps described for WES analysis. BAM files are freely
available on ENA project PRJEB19193.
Copy numbers were estimated using Affymetrix OncoScan arrays and

the OncoScan FFPE Assay Kit for detection of genome-wide copy number
changes and loss of heterozygosity in FFPE samples. Oncoscan uses
molecular inversion probe technology to query over 220,000 SNPs at
carefully selected genomic locations, evenly distributed across the genome
and with increased density within approximately 900 cancer or cancer-
related genes. All samples underwent array hybridization and analysis and
passed gel QC, as established during validation of the assay for clinical
genetic analysis. Data were analyzed using Nexus Express.

Protein-expression profiling and analysis of prostate cancer
biopsies

For the comprehensive quantitation of proteins in high throughput
manner, we employed a data-independent acquisition (DIA) workflow
compiled of the commercially available and standardized iST sample
preparation kit (PreOmics GmbH), a Q Exactive HF (Thermo Fisher
Scientific Inc.) and Spectronaut Pulsar data analysis software57. We have
applied a combination of published and specifically generated spectral
libraries. We have prepared and analyzed a selected five tissue samples
from human prostate adenocarcinomas from the retrospective FFPE PC
cohort from the University Hospital Zurich as described above41. Each
specimen was analysed once.
First, the FFPE fixed material was deparaffinised and peptides were

generated by using the iST 96× kit from PreOmics following the optimized
protocol for FFPE punches. This was followed with DIA-MS analysis of 1 µg
of total peptide mixture for each patient sample including iRT standard
peptides for non-linear calibration, batch correction and large-scale data
set merge. Then, we generated and applied spectral libraries through the
merge of an in house generated library (Spectronaut Pulsar) and a
commercial organ-specific library 311 FFPE prostate library (311_FFPE_-
prostate). The resulting library contained 8200 protein groups with a size of
65.5 mb. For quality control, the peptide yield was determined after
protein extraction, digestion, and peptide clean up. MS signal intensity was
monitored (TIC) during entire MS run as well as the performance and
stability of the liquid chromatography according to a reference peptide set.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

BAM files are freely available without restrictions on ENA project PRJEB19193. All

supplementary tables, including synthetic data, processed data, and analyses used to

produce Fig. 3 are also given in the GitHub repository https://github.com/

drugilsberg/chimaera.

CODE AVAILABILITY

The Chimæra web server is available at https://ibm.biz/chimaera-aas and source code

is available at https://github.com/drugilsberg/chimaera.

Received: 17 January 2020; Accepted: 15 July 2020;

REFERENCES

1. Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183

(2004).

2. Higgins, M. E., Claremont, M., Major, J. E., Sander, C. & Lash, A. E. CancerGenes: a

gene selection resource for cancer genome projects. Nucleic Acids Res. 35,

D721–D726 (2007).

3. Ding, L. et al. Perspective on oncogenic processes at the end of the beginning of

cancer genomics. Cell 173, 305–320. e310 (2018).

4. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28

(1976).

5. Fidler, I. J. & Hart, I. R. Biological diversity in metastatic neoplasms: origins and

implications. Science 217, 998–1003 (1982).

6. Boutros, P. C. et al. Spatial genomic heterogeneity within localized, multifocal

prostate cancer. Nat. Genet. 47, 736–745 (2015).

7. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus

genome sequencing. Nature 512, 155–160 (2014).

8. Suzuki, H. et al. Mutational landscape and clonal architecture in grade II and III

gliomas. Nat. Genet. 47, 458–468 (2015).

9. Mann, K. M. et al. Analyzing tumor heterogeneity and driver genes in single

myeloid leukemia cells with SBCapSeq. Nat. Biotechnol. 34, 962–972 (2016).

10. Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-

negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).

11. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor

heterogeneity. Nat. Med. 22, 105–113 (2016).

12. El-Kebir, M., Oesper, L., Acheson-Field, H. & Raphael, B. J. Reconstruction of clonal

trees and tumor composition from multi-sample sequencing data. Bioinformatics

31, i62–i70 (2015).

13. Niknafs, N., Beleva-Guthrie, V., Naiman, D. Q. & Karchin, R. SubClonal hierarchy

inference from somatic mutations: automatic reconstruction of cancer evolu-

tionary trees from multi-region next generation sequencing. PLoS Comput. Biol.

11, e1004416 (2015).

14. Espiritu, S. M. G. et al. The evolutionary landscape of localized prostate cancers

drives clinical aggression. Cell 173, 1003–1013 (2018).

15. Chu, W. K. et al. Ultraaccurate genome sequencing and haplotyping of single

human cells. Proc. Natl Acad. Sci. 114, 201707609 (2017).

16. Getz, G. & Ardlie, K. in TCGA Second Annual Scientific Symposium (eds Meyerson,

M. & Shmulevich, I.) (National Institutes of Health, Crystal City, Virgina, 2012).

17. Cieslik, M. et al. The use of exome capture RNA-seq for highly degraded RNA with

application to clinical cancer sequencing. Genome Res. 25, 1372–1381 (2015).

18. Wang, J. et al. Tumor evolutionary directed graphs and the history of chronic

lymphocytic leukemia. eLife 3, e02869 (2014).

19. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer.

Nature 520, 353–357 (2015).

20. Kuipers, J., Jahn, K., Raphael, B. J. & Beerenwinkel, N. Single-cell sequencing data

reveal widespread recurrence and loss of mutational hits in the life histories of

tumors. Genome Res. 27, 1885–1894 (2017).

21. The Cancer Genome Atlas. The molecular taxonomy of primary prostate cancer.

Cell 163, 1011–1025 (2015).

22. The Cancer Genome Atlas. Comprehensive molecular portraits of human breast

tumours. Nature 490, 61–70 (2012).

23. TCGA. Comprehensive and integrative genomic characterization of hepatocel-

lular carcinoma. Cell 169, 1327–1341 (2017).

24. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human

cancer. Nat. Biotechnol. 30, 413–421 (2012).

25. Andor, N., Harness, J. V., Muller, S., Mewes, H. W. & Petritsch, C. EXPANDS:

expanding ploidy and allele frequency on nested subpopulations. Bioinformatics

30, 50–60 (2014).

26. Deshwar, A. G. et al. PhyloWGS: reconstructing subclonal composition and evo-

lution from whole-genome sequencing of tumors. Genome Biol. 16, 35 (2015).

27. Malikic, S., McPherson, A. W., Donmez, N. & Sahinalp, C. S. Clonality inference in

multiple tumor samples using phylogeny. Bioinformatics 31, 1349–1356 (2015).

28. McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J.

Open Source Softw. 2, 205 (2017).

29. Fritz, H., Garcıa-Escudero, L. A. & Mayo-Iscar, A. tclust: an r package for a trimming

approach to cluster analysis. J. Stat. Softw. 47, 1–26 (2012).

30. Fraley, C. & Raftery, A. E. MCLUST Version 3: An R Package for Normal Mixture

Modeling and Model-based Clustering (DTIC Document, 2006).

31. Zhao, X. & Sandelin, A. GMD: measuring the distance between histograms with

applications on high-throughput sequencing reads. Bioinformatics 28, 1164–1165

(2012).

32. Lin, D.-C. et al. Genomic and epigenomic heterogeneity of hepatocellular carci-

noma. Cancer Res. 77, 2255–2265 (2017).

33. Roy, A. et al. Integration of whole transcriptome sequencing into the genomic

analysis of pediatric solid tumors: early experience and challenges. J. Mol. Diagn.

16, 754–755 (2014).

34. Li, C.-M. et al. CTNNB1 mutations and overexpression of Wnt/β-catenin target

genes in WT1-mutant Wilms’ tumors. Am. J. Pathol. 165, 1943–1953 (2004).

35. Pelletier, J. et al. WT1 mutations contribute to abnormal genital system devel-

opment and hereditary Wilms’ tumour. Nature 353, 431 (1991).

36. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase

mechanism. Cell 108, 837–847 (2002).

37. Kim, H.-S. et al. Identification of novel Wilms’ tumor suppressor gene target genes

implicated in kidney development. J. Biol. Chem. 282, 16278–16287 (2007).

38. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell

lines. Science 275, 1790–1792 (1997).

M. Manica et al.

12

npj Systems Biology and Applications (2020)    27 Published in partnership with the Systems Biology Institute

https://github.com/drugilsberg/chimaera
https://github.com/drugilsberg/chimaera
https://ibm.biz/chimaera-aas
https://github.com/drugilsberg/chimaera


39. Wang, Y. et al. Mutation spectrum of genes associated with steroid-resistant

nephrotic syndrome in Chinese children. Gene 625, 15–20 (2017).

40. Guo, T. et al. Multi-region proteome analysis quantifies spatial heterogeneity of

prostate tissue biomarkers. Life Sci. Alliance 1, e201800042 (2018).

41. Zhong, Q. et al. A curated collection of tissue microarray images and clinical

outcome data of prostate cancer patients. Sci. Data 4, 170014 (2017).

42. Shi, W. et al. Reliability of whole-exome sequencing for assessing intratumor

genetic heterogeneity. Cell Rep. 25, 1446–1457 (2018).

43. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell

161, 1215–1228 (2015).

44. Doane, A. et al. An estrogen receptor-negative breast cancer subset characterized

by a hormonally regulated transcriptional program and response to androgen.

Oncogene 25, 3994 (2006).

45. Iwanaga, K. et al. Pten inactivation accelerates oncogenic K-ras–initiated tumor-

igenesis in a mouse model of lung cancer. Cancer Res. 68, 1119–1127 (2008).

46. Bruins, W. et al. The absence of Ser389 phosphorylation in p53 affects the basal gene

expression level of many p53-dependent genes and alters the biphasic response to UV

exposure in mouse embryonic fibroblasts. Mol. Cell. Biol. 28, 1974–1987 (2008).

47. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration

discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

48. Krzanowski, W. J. & Lai, Y. A criterion for determining the number of groups in a

data set using sum-of-squares clustering. Biometrics 44, 23–34 (1988).

49. Kovács, F., Legány, C. & Babos, A. in 6th International symposium of hungarian

researchers on computational intelligence. (Citeseer, 2005).

50. Celeux, G. & Govaert, G. Gaussian parsimonious clustering models. Pattern

Recognit. 28, 781–793 (1995).

51. Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding

minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

52. Cancer Genome Atlas, N. Comprehensive molecular characterization of human

colon and rectal cancer. Nature 487, 330–337 (2012).

53. Mortezavi, A. et al. KPNA2 expression is an independent adverse predictor of

biochemical recurrence after radical prostatectomy. Clin. Cancer Res. 17,

1111–1121 (2011).

54. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.

Nature 536, 285–291 (2016).

55. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler

transform. Bioinformatics 26, 589–595 (2010).

56. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and

heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

57. Bruderer, R. et al. Extending the limits of quantitative proteome profiling with

data-independent acquisition and application to acetaminophen-treated three-

dimensional liver microtissues. Mol. Cell. Proteom. 14, 1400–1410 (2015).

ACKNOWLEDGEMENTS

This project was funded by the European Union’s Horizon 2020 research and

innovation programme under grant agreements 668858 and 826121 to P.J.W., M.R.M.,

and P.S.; by the Foundation for Research in Science and the Humanities at the

University of Zurich to P.J.W., and by NCI R21CA223140, Texas Children’s Cancer

Center, and Cookies for Kids’ Cancer Foundation to P.S. and D.W.P.

AUTHOR CONTRIBUTIONS

M.M., D.W.P., P.J.W., M.R.M., and P.S. concieved and designed the project. M.M., M.R.

M., and P.S. lead the project’s implementation. M.M., H.R.M., R.M., P.C., A.P., and P.S.

performed data analyses and designed methods. D.R., L.D.V.R., U.W., K.O., K.S., and P.J.

W. lead efforts of collecting, profiling, and analyzing prostate cancer samples. A.R.

and D.W.P. lead efforts of collecting, profiling and analyzing Wilms’ tumor samples,

and M.M., B.S., J.S.Z., and P.S. analyzed regulatory networks and altered pathways.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/

s41540-020-00147-5.

Correspondence and requests for materials should be addressed to P.J.W., M.R.M. or

P.S.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2020

M. Manica et al.

13

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)    27 

https://doi.org/10.1038/s41540-020-00147-5
https://doi.org/10.1038/s41540-020-00147-5
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Inferring clonal composition from multiple tumor biopsies
	Introduction
	Results
	Simulation of DNA profiling data
	Accuracy of mutation-frequency estimation based on simulated data
	The number of regions profiled per tumor dictates algorithm convergence
	Phylogeny inference in HCC
	Phylogeny inference in Wilms&#x02019; tumors
	Phylogeny inference in prostate tumors

	Discussion
	Methods
	Phylogeny reconstruction problem
	Mutation frequencies
	Chim&#x000E6;ra
	Profiling and analysis of Wilms&#x02019; tumors
	Profiling and analysis of WES of prostate cancer biopsies
	Profiling and analysis of targeted-panel sequencing of prostate cancer biopsies
	Protein-expression profiling and analysis of prostate cancer biopsies
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


