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Abstract 

Purpose: The purpose of this study was to examine the local tissue reactions associated with 3 different 

poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with 

commercially available resorbable membranes in rats. 

 

Methods: Seven different membranes—3 synthetic PLGA prototypes (T1, T2, and T3) and 4 commercially 

available membranes (a PLGA membrane, a poly[lactic acid] membrane, a native collagen membrane, and a cross-

linked collagen membrane)—were randomly inserted into 6 unconnected subcutaneous pouches in the backs of 42 

rats. The animals were sacrificed at 4, 13, and 26 weeks. Descriptive histologic and histomorphometric 

assessments were performed to evaluate membrane degradation, visibility, tissue integration, tissue ingrowth, 

neovascularization, encapsulation, and inflammation. Means and standard deviations were calculated.  

 

Results: The histological analysis revealed complete integration and tissue ingrowth of PLGA prototype T1 at 26 

weeks. In contrast, the T2 and T3 prototypes displayed slight to moderate integration and tissue ingrowth 

regardless of time point. The degradation patterns of the 3 synthetic prototypes were similar at 4 and 13 weeks, 

but differed at 26 weeks. T1 showed marked degradation at 26 weeks, whereas T2 and T3 displayed moderate 

degradation. Inflammatory cells were present in all 3 prototype membranes at all time points, and these membranes 

did not meaningfully differ from commercially available membranes with regard to the extent of inflammatory 

cell infiltration. 

 

Conclusions: The 3 PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar 

degradation rate to native collagen membranes, and elicited a similar inflammatory response to commercially 

available non–cross-linked resorbable membranes. The intensity of inflammation associated with degradable 

dental membranes appears to relate to their degradation kinetics, irrespective of their material composition. 

 

Key words: guided tissue regeneration, bone regeneration, materials testing, PLGA 
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INTRODUCTION 

As the number of dental implants that can be placed in a prosthetically ideal position has increased, simultaneous 

hard tissue augmentation has become a common procedure in dental practice. According to the dental literature, 

approximately 40% of implant treatments require hard tissue augmentation [1]. Various methods have been 

proposed, of which guided bone regeneration (GBR) is the treatment modality applied most often [2, 3, 4].  

 

GBR involves the selective repopulation of a defect site with osteoprogenitor cells, which is conducted by 

positioning a physical barrier membrane between the hard tissue defect and the adjacent soft tissues [5, 6]. 

Various types of membranes, including non-resorbable and resorbable membranes, have been utilized. In the 

early days of GBR research, non-resorbable barrier membranes were considered to be the gold standard. This 

type of membrane, however, requires a second surgical procedure for its removal. Moreover, several studies 

have found that non-resorbable membranes are associated with a relatively high risk of membrane exposure and 

high subsequent infection rates [7, 8, 9]. To overcome these drawbacks, resorbable membranes have become 

more frequently used than non-resorbable membranes. Resorbable membranes do not require a second procedure 

and, if exposed, are still able to support wound healing without premature removal of the membrane [10]. 

Despite these clinical advantages, resorbable membranes have some limitations, such as low space-maintenance 

capability and variable resorption [11]. Consequently, extensive research has been conducted to investigate ways 

to improve or modify the physicochemical properties of these membranes using different compositions of 

materials. 

 

Resorbable membranes can be composed of natural polymers, synthetic polymers, or inorganic compounds [12]. 

Among the natural polymers, collagen-based membranes are the most commonly used for GBR procedures. 

These are mainly derived from animal tissues, and their degradation largely depends on the animal source [11] 

and thus cannot be controlled. This is of particular importance, since membranes that exhibit early degradation 

may not persist for the duration needed for optimal tissue regeneration. To slow the process of degradation, 

physicochemical methods such as cross-linking have been utilized to enhance collagen membrane stability [13].  

 

In addition to collagen membranes, resorbable membranes based on synthetic polymers have been introduced. 

These membranes are made from aliphatic polyesters such as poly(lactic acid) (PLA) and poly(lactic-co-glycolic 
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acid) (PLGA) [12]. The main advantages of these membranes are their manageability, the potential of 

influencing their biodegradation, and the lack of associated cross-infections [14, 15]. However, they may impair 

bone healing at the augmented site due to adverse inflammatory tissue reactions [16]. Consequently, various 

modifications of synthetic polymers have been made to attempt to prevent this issue. These modifications may 

alter the degradation time, tissue integration, extent of inflammation, and, eventually, the clinical outcomes. 

 

Considering that a newly developed membrane should pass a series of evaluations before its clinical application, 

the aim of the present study was to investigate local tissue reactions to 3 PLGA prototype membranes in 

comparison with commercially available resorbable membranes in a rat subcutaneous implantation model. 

 

MATERIALS AND METHODS 

Study design 

The present study was designed as a randomized controlled experimental preclinical trial in compliance with the 

International Organization for Standardization (ISO) 10993-6 standards for investigating local tissue effects after 

subcutaneous implantation. The study was conducted according to Organization for Economic Cooperation and 

Development and US Food and Drug Administration Good Laboratory Practice regulations in an accredited and 

registered animal facility. The approval of the local NAMSA Ethical Committee was obtained prior to the 

beginning of the study. The animals were kept under standard conditions in a purpose-designed room for 

experimental animals. All animals were treated according to the Animals in Research: Reporting In Vivo 

Experiments guidelines for animal care, with free access to water and a standard diet.  

 

Animals  

Forty-two rats (mass, 272–333 g) of the Sprague-Dawley strain (Charles River Laboratories, Écully, France) 

were used in this study. Fourteen rats were randomly allocated to each of 3 observation time points (4, 13, and 

26 weeks) using a computer-generated randomization list. 

 

Study materials 

Seven different barrier membranes were applied: 

• T1: synthetic PLGA prototype T1 (Sunstar Suisse SA, Etoy, Switzerland) 
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• T2: synthetic PLGA prototype T2 (Sunstar Suisse SA) 

• T3: synthetic PLGA prototype T3 (Sunstar Suisse SA) 

• PLGA-C1: commercially available PLGA membrane (Tisseos®; Biomedical Tissues, La Chapelle-sur-

Erdre, France) 

• PLA-C2: synthetic PLA membrane (GUIDOR®; Guidor AB, Huddinge, Sweden) 

• NCM-C3: native collagen membrane (Bio-Gide®; Geistlich Pharma AG, Wolhusen, Switzerland) 

• CLCM-C4: cross-linked collagen membrane (Ossix Plus®; Regedent AG, Zurich, Switzerland) 

• Negative control (NC): high-density polyethylene membrane 

 

Surgical procedure  

The surgical procedure was performed as previously described with some minor modifications [17]. In brief, the 

animals were anesthetized via inhalation of 1.5% isoflurane (Forane®; Baxter Healthcare Corp., Deerfield, IL, 

USA). An area approximately 8 cm in length and 4 cm in width was depilated on the back of each rat. A skin 

incision was made, and 6 unconnected subcutaneous pouches were prepared. Each membrane was cut to a 

diameter of 10 mm with a biopsy punch and marked with a single knot suture to allow for later re-discovery of 

the membrane. The membranes were then randomly placed in the pouches according to a computer-generated 

randomization list. The incisions were closed using stainless steel wound clips. For pain relief, buprenorphine 

(Buprecare®; Axience, Pantin, France) was administered at the end of the procedure and then twice a day 

following surgery. The stainless-steel wound clips were removed 2 weeks after surgery. The rats were housed in 

cages under standard conditions during the time of the investigation.  

 

Sacrifice  

At 4, 13, and 26 weeks (n=14 per time point), the animals were anesthetized with an intramuscular injection of 

tiletamine zolazepam (Zoletil®; Virbac, Carros, France) and were then euthanized with an intravenous injection 

of pentobarbital (Dolethal; Vetoquinol, Lure, France). Collagen membrane residues were removed along with 

the surrounding connective tissue and fixed in 10% buffered formalin. 

 

Histological and histomorphometric analyses  
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A total of 252 samples were obtained (84 samples per time point), and at least 10 samples per membrane and 

time point were further processed. After fixation, each of the 252 samples was dehydrated in a series of alcohol 

solutions of increasing concentration and was subsequently embedded in paraffin. Samples were cut to 4.5 µm 

using a microtome. Two central sections per block were prepared. One section was stained with modified 

Masson’s trichrome stain and the other with safranin-hematoxylin-eosin. All samples were prepared in a 

standard manner according to the ISO 10993-6 guidelines. The local tissue effects and the inflammatory 

response at the implantation sites were then scored semi-quantitatively and descriptively by a single pathologist 

who was not involved in the sample preparation and was thus blinded to the different groups. The following 

parameters were evaluated descriptively at each time point: visibility of the membrane, material degradation, 

neovascularization, tissue integration, tissue ingrowth, and inflammation. The measurements were scored 

according to the ISO 10993-6 guidelines: 0, none; 1, slight; 2, moderate; 3, marked; and 4, complete/severe. 

Neovascularization was scored according to the capillaries present: 0, none; 1, minimal capillary proliferation; 2, 

groups of 4–7 capillary structures; 3, a broad band of capillaries; and 4, an extensive band of capillaries. 

Inflammation was descriptively assessed according to the number of macrophages, polymorphonuclear cells, 

lymphocytes, and giant cells present. In addition, encapsulation was descriptively evaluated according to the 

concentric organization of mature collagen around the membranes, with the following scoring system: 0, none; 

1, a narrow band; 2, a moderate band; 3, a thick band; and 4, an extensive band. 

 

Statistical analysis  

Descriptive statistics for all variables are shown in Tables 1 and 2 as mean ± standard deviation. The visibility 

and degradation score of each membrane are presented graphically using line charts. The sample size adhered to 

the ISO 10993-6 standards for assessment of local tissue effects after implantation.  
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RESULTS 

All 42 rats remained healthy during the entire study period. In general, all membranes became integrated into the 

surrounding soft tissues except for CLCM-C4 and the NC. The density of the newly formed connective tissue 

gradually increased over the observational period. In contrast, the collagen and synthetic networks decreased in 

density to varying degrees over time. Inflammatory cells were present in all membranes at all time points to 

varying extents. 

 

Histopathologic evaluation 

Visibility  

At 4 weeks, the histological analysis revealed that the majority of membranes were consistently visible (Figure 

1). At 13 weeks, the visibility levels of some of the membranes were reduced, particularly NCM-C3. At 26 

weeks, NC, CLCM-C4, PLA-C2, T3, and T2 were still frequently detectable; however, T1, PLGA-C1, and 

NCM-C3 were barely visible. 

  

Degradation 

At 4 weeks, 2 membranes—PLGA-C1 and NCM-C3—displayed slight degradation (Figure 2). At 13 weeks, all 

membranes showed slight to moderate degradation except the CLCM-C4 membrane and the NC. After a healing 

period of 26 weeks, most of the membranes exhibited greater degradation than before, particularly T1 and NCM-

C3, which showed marked degradation. Nonetheless, CLCM-C4 and NC still did not display clear signs of 

degradation.  

 

Tissue integration 

At 4 weeks, all membranes displayed slight to moderate tissue integration except for CLCM-C4 and NC (Figure 

3A and Table 1). At 13 weeks, tissue integration was more distinct in all membranes than it was at the earlier 

time point, particularly for PLGA-C1, which demonstrated complete tissue integration. At 26 weeks, T1, NCM-

C3, and PLGA-C1 exhibited complete tissue integration, while T2, T3, and PLA-C2 showed moderate to marked 

tissue integration. CLCM-C4 still exhibited slight tissue integration at this time point. As expected, NC did not 

present any signs of tissue integration at any time point. 

 



- 9 - 

Tissue ingrowth  

At 4 weeks, all membranes showed a certain degree of tissue ingrowth except for CLCM-C4 and NC (Figure 3B 

and Table 1). While T1 showed marked tissue ingrowth, T2, T3, NCM-C3, PLGA-C1, and PLA-C2 displayed 

slight to moderate tissue ingrowth. At 13 weeks, the tissue ingrowth was higher than at 4 weeks, particularly in 

PLGA-C1 and PLA-C2, in which complete tissue ingrowth could be detected. In contrast, no meaningful 

changes in tissue ingrowth were observed in groups T1, T2, and NCM-C3. At 26 weeks, tissue ingrowth was 

completed in T1, NCM-C3, PLGA-C1, and PLA-C2, while T2, T3, and CLCM-C4 showed only slight signs of 

tissue integration. As expected, NC did not reveal any signs of tissue ingrowth, regardless of time point.  

 

Neovascularization  

At 4 weeks, all but the CLCM-C4 membrane showed signs of vascularization (Figure 3C and Table 1). While 

PLGA-C1, PLA-C2, NCM-C3, T1, and NC generally displayed groups of 4–7 capillaries with supporting 

fibroblastic structures, T2, T3, and particularly CLCM-C4 displayed no to minimal capillary proliferation. At 13 

weeks, the extent of vascularization was similar to that observed at 4 weeks in all membranes except CLCM-C4, 

which displayed only slight signs of vascularization. After a healing period of 26 weeks, T2 and T3 displayed 

higher vascularization than before, while the other membranes showed no clear changes compared to 13 weeks. 

 

Encapsulation 

At 4 weeks, all membranes displayed a slight degree of encapsulation except CLCM-C4 and NC, which showed 

moderate encapsulation (Figure 3D and Table 1). At 13 weeks, relative to 4 weeks, the degree of encapsulation 

was lower in T1, NCM-C3, and in PLGA-C1, while it was higher in T2 and PLA-C2. At 26 weeks, no signs of 

encapsulation were detectable in T1, NCM-C3, and PLGA-C1. In contrast, T2, T3, PLA-C2, and NC displayed 

slight to moderate signs of encapsulation. CLCM-C4 did not show any changes compared to previous time 

points, exhibiting moderate encapsulation throughout. 

 

Inflammation 

At 4 weeks, the local inflammatory response was characterized by a small to moderate number of macrophages 

and giant cells admixed with a small number of polymorphonuclear cells (PMNs) and a few lymphocytes (Table 

2). While NC, PLA-C2, and CLCM-C4 displayed only slight infiltration of macrophages, T1, T2, T3, and 
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PLGA-C1 showed a moderate to marked macrophage presence. Moderate infiltration of giant cells was observed 

in all groups except NC and NCM-C3. A small number of PMNs were consistently found in all but 2 groups 

(CLCM-C4 and T1). The presence of lymphocytes did not substantially differ between the groups except for 

NCM-C3, which exhibited moderate lymphocyte infiltration. Notably, CLCM-C4 elicited the least robust 

inflammatory reaction of the groups (Figure 4). 

 

At 13 weeks, histological analysis was used to demonstrate that the local inflammatory response was still 

characterized by a small to moderate number of macrophages (Table 2). The appearance of giant cells and 

lymphocytes in all groups was similar to that at 4 weeks. However, PMNs had almost disappeared at this time 

point and could not be detected in the NCM-C3, T1, and CLCM-C4 groups. Overall, these observations suggest 

a less robust inflammatory response than that observed at 4 weeks (Figure 4). 

 

At 26 weeks, most groups displayed slight to moderate infiltration of macrophages, while PLA-C2 showed a 

marked macrophage presence (Table 2). In general, the extent of infiltration of giant cells was slight to moderate, 

except for NC, NCM-C3, and CLCM-C4, in which giant cells were barely visible or could not be detected. 

Regarding lymphocytes, their appearance did not differ substantially between the membranes and did not 

meaningfully change from 13 weeks of healing onward. PMNs were hardly present and could not be detected in 

the PLGA-C2, CLCM-C4, T1, or T3 groups. Although the inflammatory response at this time point was similar 

to that at 13 weeks of healing, it seemed to be lower than that at 4 weeks (Figure 4).
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DISCUSSION 

The present in vivo study investigating local tissue reactions and degradation of 3 PLGA membrane prototypes 

compared to commercially available resorbable membranes predominantly demonstrated the following: full 

integration of the barrier membranes into the host tissues within 13 weeks (PLGA-C1) and 26 weeks (T1 and 

NCM-C3) accompanied by fast tissue ingrowth; a minimal to low degradation rate of NCM-C3 and T1 at early 

time points, followed by a steeply increased degradation rate at 26 weeks; and a comparable inflammatory 

response across all non–cross-linked membranes. 

 

The membranes indicated for GBR must fulfill a certain set of requirements. Apart from the basic barrier 

function, these requirements include biocompatibility, biodegradability, and integration with the host tissues [5, 

7]. In the present study, the prototype membrane T1, along with PLGA-C1 and NCM-C3, displayed the fastest 

tissue integration, with full integration at 26 weeks. The rapid tissue integration of the aforementioned 

membranes can be attributed to the materials used. T1 and PLGA-C1 are made of synthetic polymers that are 

biodegradable and highly biocompatible [18]. In a recent preclinical study, PLGA membranes already exhibited 

invasion by different cell types at 4 weeks [19], which is consistent with the fast tissue integration found with T1 

and PLGA-C1 in the present study. The difference between T1 and PLGA-C1 and the other 2 PLGA prototypes 

(T2 and T3) may be explained by the different PLGA polymers used for their manufacture. Considering that T1 

and T2 are both hydrophilic and that no considerable variation between T2 and T3 was observed, one might 

assume that the hydrophilic properties have no influence on the results. In contrast, NCM-C3 is made of 

collagen, a principal component of connective tissue, thereby explaining the excellent tissue integration. The 

good tissue integration observed with NCM-C3 in the present study aligns with the results of other studies [13, 

20]. In a preclinical in vivo study in rats, the biodegradation of different resorbable collagen membranes was 

investigated [13]. In that study, which had a similar design to the present study, NCM-C3 displayed more rapid 

tissue integration than did cross-linked membranes [13]. In contrast, a cross-linked collagen membrane (CLCM-

C4, the same as in the present study) exhibited minimal tissue integration even at 26 weeks [13].  

  

Adequate barrier integrity over time is a key quality of GBR membranes. In order to obtain predictable clinical 

outcomes, membranes must retain their function for a certain period of time [7]. T1 and NCM-C3 exhibited 

minimal to slight degradation at the earliest time point (4 weeks) and marked to complete degradation at 26 
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weeks. These results are consistent with previous findings indicating that collagen membranes degrade rapidly 

[20]. This degradation varies depending on the membrane tissue origin, the chemical cross-linking, and the 

implantation site [11]. Membrane degradation is based on numerous enzymes that are capable of breaking down 

collagen. For example, collagenases produced by Porphyromonas gingivalis have been shown to be capable of 

degrading collagen membranes [21]. This is of clinical relevance, since in case of premature membrane exposure 

and subsequent rapid degradation, clinical outcomes may be impaired [22]. As an option to counteract rapid 

degradation and to enhance the stability of collagen membranes, physiochemical cross-linking has been 

introduced. In the present study, cross-linked membranes displayed only minimal signs of degradation. 

Interestingly, the few observed signs of degradation were associated with the least robust inflammatory reaction 

of all investigated membranes, even when compared to the NC. These findings are in agreement with previous 

data showing a low degradation rate for cross-linked membranes [20]. Such enhanced stability is commonly 

associated with low tissue integration levels. The latter may account for the higher rate of adverse events 

reported to be associated with cross-linked membranes [23]. Membrane exposure due to wound dehiscence can 

lead to insufficient bone regeneration [22]. PLGA copolymers, in contrast, degrade via hydrolysis [19]. The 

degradation times of PLGA copolymers vary depending on their glycolic acid content, molecular weight, and 

porosity [24]. These aspects may explain the differences in terms of degradation between the PLGA membranes 

used in the present study. 

 

Although degradation time may influence clinical outcomes, an ideal membrane degradation time has not yet 

been established [7]. In fact, the evolution of membranes has been mainly driven by optimizing the barrier 

function and the ease of handling of different clinical scenarios, rather than by focusing on biology. It is 

therefore important to examine the inflammatory response to different membranes. In the present study, nearly 

all of the membranes elicited a similar inflammatory response, with peaks coinciding with degradation onset. 

The exception was the cross-linked membrane, which displayed no degradation during the entire study and a 

minimal inflammatory response at all time points, consistent with the slight cellular ingrowth observed in the 

present and previous studies [13]. One must bear in mind, however, that the inflammatory response was semi-

quantitatively assessed using a grading system and without utilizing absolute values. 

The present study does have limitations. The pouch model does not fully reflect the conditions of the oral cavity 

with the oral microbiome, which is expected to influence the reactions of the host tissue to the different 
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membranes. Moreover, in a clinical scenario, resorbable membranes are stabilized with membrane-supporting 

material underneath, which may also modify the overall tissue response. This phenomenon could not be 

evaluated in the present model. Therefore, future studies in large animal models should be performed in order to 

examine whether the present findings have an impact in GBR procedures. In addition, and considering the 

emerging evidence that membranes are not just passive barriers, future studies should also evaluate the 

biological activity of the membranes. Finally, it is important to remark that only a descriptive statistical analysis 

was performed, which calls for caution when interpreting these findings. 

 

CONCLUSION 

Three PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar degradation 

rate as native collagen membranes, and elicited a similar inflammatory response to commercially available non–

cross-linked resorbable membranes. This inflammatory response seems to be associated with the degradation 

kinetics of the membrane, irrespective of their material composition. 
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FIGURE LEGENDS  

Figure 1. Visibility of the membranes over time. NC: negative control, T1: poly(lactic-co-glycolic acid) (PLGA) 

prototype test 1, T2: PLGA prototype test 2, T3: PLGA prototype test 3, PLGA-C1: commercially available 

PLGA, PLA-C2: synthetic poly(lactic acid) membrane, NCM-C3: native collagen membrane, CLCM-C4: cross-

linked collagen membrane. Data represent the means.  

 

Figure 2. Degradation of the membranes over time. (A) Degradation scores of the different membranes. NC: 

negative control, T1: poly(lactic-co-glycolic acid) (PLGA) prototype test 1, T2: PLGA prototype test 2, T3: 

PLGA prototype test 3, PLGA-C1: commercially available PLGA, PLA-C2: synthetic poly(lactic acid) 

membrane, NCM-C3: native collagen membrane, CLCM-C4: cross-linked collagen membrane. Data represent 

the means ± standard deviations. (B) Histological overview of the region of interest illustrating degradation at 

different time points. Modified Masson’s trichrome staining. D: dermis, M: muscle layer, SC: subcutaneous. 

Scale bar, 1 mm. 

 

Figure 3. Local tissue reaction to the different membranes over time. (A) Tissue integration. (B) Tissue 

ingrowth. (C) Neovascularization. (D) Encapsulation. NC: negative control, T1: poly(lactic-co-glycolic acid) 

(PLGA) prototype test 1, T2: PLGA prototype test 2, T3: PLGA prototype test 3, PLGA-C1: commercially 

available PLGA, PLA-C2: synthetic poly(lactic acid) membrane, NCM-C3: native collagen membrane, CLCM-

C4: cross-linked collagen membrane. Data represent the means ± standard deviations. 

 

Figure 4. Inflammatory tissue reaction over time at the implantation sites. Representative histological images of 

2 different membranes illustrating distinct inflammation at 4 (A, D), 13 (B, E) and 26 weeks (C, F) of healing. 

T1: poly(lactic-co-glycolic acid) (PLGA) prototype test 1, CLCM-C4: cross-linked collagen membrane, IR: 

inflammatory reaction, FC: fibrous capsule. Scale bar, 50 µm.



 

Table 1. Histopathologic evaluation 

 

 

 

 

 

 

 

 

 

Table 1. (continued) 

 

 Scoring grade 

 

Time point (weeks) 

PLGA-C1 PLA-C2 CLCM-C4 NC 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

Neovascularization Mean±SD  2.8±0.4 2.1±0.3 1.8±0.4 2.0±0.0 2.0±0.0 1.9±0.3 0.0±0.0 0.2±0.6 0.0±0.0 2.0±0.0 2.1±0.3 0.1±0.3 

Tissue integration  Mean±SD 2.8±0.6 4.0±0.0 4.0±0.0 2.0±0.4 3.0±0.0 2.9±0.3 0.0±0.0 1.0±0.0 0.9±0.3 0.0±0.0 0.0±0.0 0.0±0.0 

Encapsulation Mean±SD 1.1±0.5 0.0±0.0 0.0±0.0 0.8±0.4 1.9±0.3 1.9±0.3 2.0±0.0 2.0±0.0 2.0±0.0 2.0±0.0 2.0±0.0 1.1±0.3 

Tissue ingrowth Mean±SD 2.8±0.6 4.0±0.0 4.0±0.0 2.1±0.3 4.0±0.0 4.0±0.0 0.0±0.0 0.3±0.7 0.2±0.4 0.0±0.0 0.0±0.0 0.0±0.0 

 

Numbers represent the mean ± SD of the parameters using the following scoring system: 0=none, 1=slight, 2=moderate, 3=marked, and 

4=complete/severe. 

 

T1: poly(lactic-co-glycolic acid) (PLGA) prototype test 1, T2: PLGA prototype test 2, T3: PLGA prototype test 3, NCM-C3: native collagen membrane, 
PLGA-C1: commercially available PLGA, PLA-C2: synthetic poly(lactic acid) membrane, CLCM-C4: cross-linked collagen membrane, NC: negative 

control, SD: standard deviation. 

 
a)Process whereby no reactive tissues create a barrier between host tissues and the membrane. b)Concentric organization of mature collagen deposits that 

tend to isolate the membrane from the host tissues. c)Growth of tissues inward or into the implanted membrane.  

 

 

 

 Scoring grade 

 

Time point (weeks) 

T1 T2 T3 NCM-C3 

4 

weeks  

13 

weeks  

26 

weeks  

4 

weeks  

13 

weeks  

26 

weeks  

4 

weeks  

13 

weeks  

26 

weeks  

4 

weeks  

13 

weeks  

26 

weeks  

Neovascularization  Mean±SD  1.7±0.4 2.0±0.0 1.4±0.5 0.4±0.5 0.5±0.5 1.4±0.5 0.6±0.5 0.8±0.4 1.0±0.0 1.6±0.5  1.0±0.0 1.0±0.0 

Tissue integrationa)  Mean±SD 2.0±0.0 3.0±0.4 4.0±0.0 1.0±0.0 1.0±0.0 1.5±0.5 1.0±0.0 1.6±0.5 2.1±0.5 1.9±0.3 2.9±0.3 4.0±0.0 

Encapsulationb) Mean±SD 1.8±0.4 1.0±0.6 0.0±0.0 1.0±0.0 2.0±2.0 1.4±0.5 1.0±0.0 1.1±0.6 1.2±0.6 0.8±0.6 0.1±0.3 0.0±0.0 

Tissue ingrowthc) Mean±SD 3.3±0.7 3.1±0.3 4.0±0.0 1.0±0.0 1.0±0.0 1.6±0.5 1.00.0 1.6±0.5 2.3±0.6 2.3±0.6 2.0±0.0 4.0±0.0 
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Table 2. Histopathologic evaluation of inflammation 

 

 

 

 

 

 

 

 

 

 

Table 2. (continued) 

 

 

 

 

 
 

 

 

 

 

 

Numbers represent the mean±SD of inflammatory cell infiltration using the following scoring system: 0=none, 1=slight, 2=moderate, 3=marked, and 

4=complete/severe. 

 

T1: poly(lactic-co-glycolic acid) (PLGA) prototype test 1, T2: PLGA prototype test 2, T3: PLGA prototype test 3, NCM-C3: native collagen membrane, PLGA-C1: 

commercially available PLGA, PLA-C2: synthetic poly(lactic acid) membrane, CLCM-C4: cross-linked collagen membrane, NC: negative control, SD: standard 

deviation. 

 Scoring grade 

 

Time point (weeks) 

T1 T2 T3 NCM-C3 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

Polymorphonuclear 

cells 

Mean±SD 0.1±0.3 0.0±0.0 0.0±0.0 1.0±0.0 0.2±0.4 0.2±0.4 0.9±0.3 0.0±0.0 0.0±0.0 0.9±0.3 0.0±0.0 0.1±0.3 

Lymphocytes  Mean±SD 0.5±0.5 0.9±0.5 0.8±0.5 0.3±0.5 0.9±0.3 0.9±0.5 0.3±0.4 0.7±0.5 0.8±0.4 1.9±0.9 0.5±0.5 0.5±0.7 

Macrophages Mean±SD 2.5±0.5 2.4±0.5 1.6±0.5 2.0±0.0 2.0±0.0 1.8±0.4 2.0±0.0 1.8±0.4 2.3±0.7 1.6±0.5 1.0±0.0 1.0±0.0 

Giant cells Mean±SD 2.7±0.6 2.9±0.3 1.3±0.5 2.0±0.0 1.9±0.3 1.3±0.4 2.0±0.0 2.1±0.3 1.8±0.7 1.8±0.9 0.0±0.0 0.2±0.4 

 Scoring grade 

 

Time point (weeks) 

PLGA-C1 PLA-C2 CCL-C4 NC 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

4 

weeks 

13 

weeks 

26 

weeks 

Polymorphonuclear 

cells 

Mean±SD 0.9±0.3 0.2±0.4 0.0±0.0 0.7±0.5 0.6±0.5 0.3±0.4 0.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.3±0.5 0.4±0.5 

Lymphocytes  Mean±SD 0.2±0.4 1.2±0.4 0.6±0.5 0.9±0.3 0.9±0.3 1.0±0.4 0.7±0.5 0.2±0.6 0.1±0.3 0.8±0.4 0.9±0.5 0.4±0.5 

Macrophages Mean±SD 2.7±0.6 2.0±0.4 2.0±0.0 1.3±0.5 1.8±0.4 3.0±0.0 1.0±0.0 1.1±0.3 1.0±0.0 1.3±0.5 1.3±0.5 1.1±0.3 

Giant cells Mean±SD 2.8±0.6 2.8±0.6 1.9±0.3 1.2±0.4 1.8±0.4 2.2±0.4 0.1±0.3 0.2±0.4 0.0±0.0 0.6±0.5 0.9±0.3 0.5±0.5 
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