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Abstract. Over the past decades, average global wheat yields

have increased by about 250 %, mainly due to the cultiva-

tion of high-yielding wheat cultivars. This selection process

not only affected aboveground parts of plants, but in some

cases also reduced root biomass, with potentially large con-

sequences for the amount of organic carbon (OC) transferred

to the soil. To study the effect of wheat breeding for high-

yielding cultivars on subsoil OC dynamics, two old and two

new wheat cultivars from the Swiss wheat breeding program

were grown for one growing season in 1.5 m deep lysime-

ters and pulse labeled with 13CO2 to quantify the amount

of assimilated carbon that was transferred belowground and

can potentially be stabilized in the soil. The results show that

although the old wheat cultivars with higher root biomass

transferred more assimilated carbon belowground compared

to more recent cultivars, no significant differences in net rhi-

zodeposition were found between the different cultivars. As

a consequence, the long-term effect of wheat cultivar selec-

tion on soil organic carbon (SOC) stocks will depend on the

amount of root biomass that is stabilized in the soil. Our re-

sults suggest that the process of wheat selection for high-

yielding cultivars resulted in lower amounts of belowground

carbon translocation, with potentially important effects on

SOC stocks. Further research is necessary to quantify the

long-term importance of this effect.

1 Introduction

Soil management has a large influence on the size of the soil

organic carbon (SOC) stock in managed arable soils. This

is evident from the large decrease in SOC that is generally

observed after soils under natural vegetation are converted

to arable land (Don et al., 2011; Guo and Gifford, 2002;

Poeplau et al., 2011). As a consequence, the mineralization

of SOC and the loss of forest caused by land use change

has contributed about 30 % to the increase in atmospheric

CO2 concentration since the onset of the industrial revolu-

tion (Le Quéré et al., 2018). Current contributions of the agri-

cultural sector to global warming have been estimated to be

about 11 % but are mostly in the form of N2O and CH4 and

not anymore as CO2 (Tubiello et al., 2015).

The rising awareness that there is potentially an opportu-

nity to increase subsoil organic carbon (OC) stocks (Chen et

al., 2018) has led to the proposal that agricultural soils can be

a sink of atmospheric CO2 by applying appropriate climate-
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smart agricultural practices (Chenu et al., 2018; Minasny et

al., 2017; Paustian et al., 2016). Multiple management prac-

tices have been shown to increase the OC content of cul-

tivated soils, including the application of organic amend-

ments to soils (Sandén et al., 2018), increasing the amount

of crop residues returned to the field (Lehtinen et al., 2014)

and planting of cover crops (Kong and Six, 2010; Poeplau

and Don, 2015).

In addition, growing crops with deeper roots and/or higher

root biomass has been put forward as a strategy to increase

OC sequestration in arable soils (Kell, 2011), while deep

rooting can also decrease the effect of drought in climates

where deep soil water is available during the main cropping

season (Wasson et al., 2012). However, a direct or marker-

assisted selection for root traits is very rare in conven-

tional breeding programs. Accordingly, we have very limited

knowledge on if and how breeders alter the root system and

potentially affect belowground carbon cycling. One way to

evaluate the effect of breeder’s selection on root character-

istics and subsoil carbon cycling is to compare old and new

varieties of the same breeding program. For the Swiss wheat

breeding programs, the selection process reduced the mass

and depth of roots under well-watered conditions (Friedli et

al., 2019), as has been found for other breeding programs

(Aziz et al., 2017), but modern genotypes enhanced root al-

location to deep soil layers under drought. However, this pat-

tern has not been observed consistently (Cholick et al., 1977;

Feil, 1992; Lupton et al., 1974). To the best of our knowl-

edge, there is no information about the effect of breeding on

changes in subsoil OC dynamics and root respiration.

One reason for the lack of quantitative data about the ef-

fects of rooting depth on SOC sequestration is related to

difficulties in measuring the amount of carbon transferred

from roots to the soil (gross rhizodeposition) and the pro-

portion of carbon that is eventually stabilized there (net rhi-

zodeposition), after a portion of gross rhizodeposits are lost

from the soil through microbial mineralization or leaching.

The fact that rhizodeposition occurs below the soil surface

greatly prevents direct observations of this “hidden half of

the hidden half” of the SOC cycle (Pausch and Kuzyakov,

2018). First of all, direct measurements of root exudation

rates are hampered by the fact that rhizodeposits are used

by rhizosphere microorganisms within a couple of hours af-

ter they are released, resulting in very low concentrations of

root carbon exudates in the soil (Kuzyakov, 2006). Second,

the release of carbon exudates by agricultural crops is not

equally divided throughout the growing season but mainly

occurs in the first 1–2 months of the growing period and de-

creases sharply thereafter (Gregory and Atwell, 1991; Keith

et al., 1986; Kuzyakov and Domanski, 2000; Pausch and

Kuzyakov, 2018; Swinnen et al., 1994). Third, measurements

of the effects of rhizodeposits on changes in SOC stocks are

further complicated by the priming effect, i.e., their positive

effect on the mineralization of native SOC (Fontaine et al.,

2007; de Graaff et al., 2009).

To overcome these difficulties, rates of C rhizodeposition

can be measured by labeling plants with 13CO2 or 14CO2

(Jones et al., 2009; Kuzyakov and Domanski, 2000) and sub-

sequently tracing the amount of photosynthetically assimi-

lated 13C or 14C label in the soil at the end of the growing

season (Kong and Six, 2010, 2012). However, the continuous

application of 13CO2 or 14CO2 during the course of an entire

growing season to plants is often not feasible, as this requires

the setup of open-top chambers while continuously supply-

ing the crops with the isotopic label, which comes at a high fi-

nancial cost. Therefore, plants are commonly labeled at fixed

time intervals during the growing season (repeated pulse la-

beling). This results in reliable estimates of the partition-

ing of assimilated carbon to different plant compartments,

as well as into the soil (Kong and Six, 2010; Kuzyakov and

Domanski, 2000; Sun et al., 2018).

In addition, assessing the magnitude of the carbon transfer

from roots to the soil is not straightforward, particularly un-

der field conditions. While carbon inputs from crops to the

soil are often derived from yield measurements (Keel et al.,

2017; Kong et al., 2005; Taghizadeh-Toosi et al., 2016), these

quantities are often poorly related to root biomass or the mag-

nitude of root exudates (Hirte et al., 2018; Hu et al., 2018).

A better understanding of the factors controlling the rates of

carbon rhizodeposition by different agricultural crops is thus

necessary to assess how different crops affect SOC cycling

and to provide SOC models with reliable rates of carbon in-

puts to the soil.

The present study addresses the following research ques-

tion: do wheat cultivars with shallow roots and lower root

biomass lead to less net carbon rhizodeposition compared to

wheat cultivars with deeper roots and higher root biomass?

To address this question, four different bread wheat cultivars

from a century of Swiss wheat breeding (Fossati and Bra-

bant, 2003; Friedli et al., 2019) were grown in large meso-

cosms, which allowed us to study the plant–soil system under

controlled conditions that closely resemble a field situation.

We hypothesized that wheat cultivars with shallow roots and

lower root biomass would result in less net carbon rhizode-

position over the course of a growing season, compared to

cultivars with deeper roots and higher root biomass.

2 Materials and methods

2.1 Experimental setup

2.1.1 ETH mesocosm platform

To assess the effect of wheat root characteristics on net

rhizodeposition in a realistic soil environment under con-

trolled conditions, an experiment was set up at the meso-

cosm platform of the Sustainable Agroecosystems Group at

the Research Station for Plant Sciences Lindau (ETH Zürich,

Switzerland). The platform was located inside a greenhouse

Biogeosciences, 17, 2971–2986, 2020 https://doi.org/10.5194/bg-17-2971-2020
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and consisted of 12 cylindrical lysimeters with a diameter

of 0.5 m and a height of 1.5 m, constructed using 10 mm

wide polyethylene (Fig. S1 in the Supplement). The lysime-

ters were equipped with probes installed at five different

depths (0.075, 0.30, 0.60, 0.90 and 1.20 m below the surface)

to measure the volumetric moisture content at a temporal

resolution of 30 min (ECH2O EC-5, Decagon Devices, US)

and to sample soil pore water (Prenart, Frederiksberg, Den-

mark) and soil pore air (Membrana, Wuppertal, Germany).

The lysimeters were filled with mechanically homogenized

soil, collected from an agricultural field in Estavayer-le-Lac,

Switzerland. The upper 0.15 m of the lysimeters was filled

with topsoil, collected from the A horizon, while the remain-

der (0.15–1.35 m depth) was filled with subsoil. The bottom

0.15 m of the lysimeters (1.35–1.50 m depth) consisted of

a layer of gravel (Blähton, Erik Schweizer, Switzerland) to

facilitate drainage of soil water through the bottom of the

lysimeters. The top and subsoil had a sandy clay loam tex-

ture with 21 % silt, 21 % clay, and 58 % sand, and top- and

subsoil pH values were 7.8 and 7.5, respectively. The OC

concentration of the top- and subsoil was 0.77 ± 0.01 % and

0.40±0.01 %, respectively, with a C : N ratio of 6.9 and 5.0,

respectively. No carbonates were detected in the soil.

At the top of each lysimeter, pneumatically activated

chambers were placed, which were automatically closed

when applying the 13CO2 label (see Sect. 2.1.3). These

chambers were made of stainless steel with fitted plexiglass

panes and covered a rectangular area of 0.5m×0.5m with an

initial height of 0.1 m. Chamber heights were extended with

increasing plant height, using one or two height extensions

of 0.5 m each (Fig. S1).

2.1.2 Wheat cultivars and growth conditions

Four wheat (Triticum aestivum L.) cultivars from the Swiss

wheat breeding program (Fossati and Brabant, 2003; Friedli

et al., 2019) with different breeding ages were selected:

Mont-Calme 268 (introduced in 1926), Probus (1948), Zi-

nal (2003) and CH Claro (2007). Generally, more recent cul-

tivars of this program on average have more shallow roots

and lower root biomass under well-watered conditions com-

pared to the older cultivars (Friedli et al., 2019). CH Claro

was selected as a modern variety with relatively deep root-

ing.

Before the wheat plants were transplanted to the lysime-

ters, wheat seeds were germinated in a greenhouse for 2–

3 d on perforated antialgae foil laid over 2 mm moistened

fleece at a warm temperature (20 ◦C during day and 18 ◦C

during night) and good light conditions. Next, the seedlings

were planted in containers filled with the same topsoil used

to fill the lysimeters and transferred to a climate chamber

for vernalization for 52 d (Baloch et al., 2003). First, the

seedlings were kept 45 d at 4 ◦C, with 8 h of light per day and

a light intensity of 10 klx. During the 3 subsequent days, day-

light intensity was increased to 36 klx, daytime temperature

was increased to 12 ◦C and night temperature was increased

to 10 ◦C. During the last 4 d, daytime temperature was in-

creased to 16 ◦C and night temperature to 12 ◦C. The rela-

tive humidity was maintained at 60 ± 10 % during the entire

vernalization period. After vernalization, 70 seedlings were

transplanted to every lysimeter, corresponding to a plant den-

sity of 387 plants m−2. At the timing of transplanting, the

plants were at the onset of tillering.

The experimental setup consisted of a randomized com-

plete block design. Each of the four wheat cultivars was

planted in three lysimeters, i.e., three replicates per cultivar,

resulting in a total of 12 lysimeters. These were placed in

three blocks of four rows, where each wheat cultivar was

planted in one lysimeter in each block. The plants were

grown in the greenhouse for about 5 months, between 24 Au-

gust 2015 and 1 February 2016. Despite uneven maturing

of plants within and between the lysimeters, all plants had

reached flowering stage at the time of harvest. Fertilizer was

applied to the soil lysimeters a first time on 5 October 2015,

at a rate of 84 kg N ha−1, 36 kg P2O5 ha−1, 48 kg K2O ha−1

and 9 kg Mg ha−1, and a second time on 4 December 2015, at

a rate of 56 kg N ha−1, 24 kg P2O5 ha−1, 32 kg K2O ha−1 and

6 kg Mg ha−1. The lysimeters were watered manually twice

per week with a similar amount of water to keep soil moisture

close to field capacity. Differences in the amount of water

used by the different cultivars resulted in differences in the

soil water content between the cultivars (Fig. S2). The tem-

perature in the greenhouse was set to 20 ◦C during the day

and 15 ◦C during the night. During the experiment, the aver-

age temperature in the greenhouse was 16.9 ◦C, with a mini-

mum and maximum of 9.3 and 29.8 ◦C respectively. The av-

erage humidity was 63.7 %, with a minimum and maximum

of 35.3 % and 86.4 % respectively.

2.1.3 Repeated 13C pulse labeling

In order to study carbon allocation within the atmosphere–

plant–soil system, a 13C-pulse-labeling approach was used.

99 at. % 13CO2 (Euriso-top, Saint-Aubin, France) was ap-

plied once per week (14:00 local time on Thursdays) by in-

jecting 15, 56 or 98 mL CO2 into each chamber depending on

the chamber extension used, in order to yield a target 13CO2

content of 58 at. %. A weekly labeling frequency has been

shown to ensure a sufficient abundance of root-derived 13C

in the soil at the end of the experiment (Bromand et al., 2001;

Kong and Six, 2010). After chamber closure, CO2 concen-

tration in one chamber was monitored using a CO2 analyzer

(Li-820, LICOR, Lincoln, US). Throughout the experiment,

CO2 concentrations were measured in the same chamber. Af-

ter the CO2 concentration dropped below 200 ppm, another
13CO2 pulse was injected to yield a postlabel CO2 concen-

tration of 570 ppm in the chamber headspace. The chamber

lids were kept closed for 2 h after label injection to achieve

sufficient uptake and then reopened to avoid condensation.

On the same day of pulse labeling, all chambers were closed

https://doi.org/10.5194/bg-17-2971-2020 Biogeosciences, 17, 2971–2986, 2020
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overnight to recuperate 13C lost through night respiration and

allowed to be taken up by the plants in the morning before re-

opening the chambers.

2.2 Measurements

2.2.1 Belowground CO2 concentration and δ
13CO2

Soil gas sampling was performed once per week (Wednes-

days) by attaching a pre-evacuated 110 mL crimp serum vial

to a sampling port at each depth, leaving it equilibrating

overnight. For each sample, a 20 mL subsample was trans-

ferred to a pre-evacuated Labco exetainer (12 mL) and used

to determine the CO2 concentration. The CO2 concentra-

tion of each sample was determined using a gas chromato-

graph equipped with a thermal conductivity detector (Bruker

456-GC, Germany). In addition, the δ13C value of CO2 was

measured for CO2 samples collected along the depth pro-

files on the last sampling date, using a GasBench II modified

as described by Zeeman et al. (2008) coupled to a Deltaplus

XP isotope ratio mass spectrometer (IRMS, ThermoFisher,

Germany). The standard deviation of the measurements was

< 0.15 ‰.

2.2.2 Sampling and general soil analyses

At the end of the experiment, the aboveground biomass of the

wheat plants was harvested separately for each lysimeter and

separated into leaves, ears and stems. Soil from the lysime-

ters was collected by destructive sampling to analyze bulk

density, root biomass and other soil properties. The sampling

was done layer by layer. After a soil layer had been sam-

pled, it was removed completely from the lysimeter and the

next layer was sampled. From each depth increment (0–0.15,

0.15–0.45, 0.45–0.75, 0.75–1.05, 1.05–1.35 m depth), five

soil cores were collected per lysimeter using a soil core sam-

pler (5.08 cm diameter, Giddings Machine Company Inc.,

Windsor, CO, US). Three of the five cores per lysimeter

and depth increment were used for the determination of root

biomass based on a combination of buoyancy and sieving

through a 530 µm sieve, using a custom-built root washing

station. The remaining two soil cores were sieved at 8 mm,

air-dried and stored for further analysis. Prior to air-drying,

the fresh weight and volume for each core was determined,

and a subsample was taken for the determination of gravimet-

ric soil moisture content. Bulk density was calculated based

on fresh weight, gravimetric moisture content and core vol-

ume. Soil texture was measured using a particle size analyzer

(LS 13 320, Beckman Coulter, Indianapolis, USA). Prior to

analysis 0.1 g of soil was shaken for 4 h with 4 mL of 10 %

sodium hexametaphosphate and sonicated for 1 min.

2.2.3 Soil microbial biomass

Soil microbial biomass was extracted from soil samples that

had been frozen at −20 ◦C for 6 months immediately after

sampling. Two subsamples of 40 g were taken from each

sieved soil sample. One set was fumigated for 24 h using

chloroform. Next, total dissolved OC was extracted from

each fumigated and nonfumigated subsample by shaking it

in 200 mL 0.05 M K2SO4 for 1 h, prior to filtering through a

Whatman 42 filter paper. Total OC concentrations in K2SO4

extracts were determined using a CN analyzer (multi N/C

2100S analyzer, Analytik Jena, Germany). To determine mi-

crobial biomass carbon per unit of dry soil, the gravimetric

soil water content was determined by drying about 10 g of

each soil sample at 105 ◦C and subtracting the weights be-

fore and after drying. The carbon content of the soil micro-

bial biomass was calculated according to Vance et al. (1987)

as

TOCMB =
TOCF − TOCNF

0.45
, (1)

where TOCF and TOCNF are the total OC in fumigated and

nonfumigated samples, respectively. The remainder of the fil-

tered samples was freeze-dried in order to analyze the δ13C

value. The δ13C value of soil microbial biomass was calcu-

lated using mass balance according to Ruehr et al. (2009):

δ13CMB =

(

δ13CF · CF − δ13CNF · CNF

)

CF − CNF
, (2)

where CF and CNF represent total organic carbon content of

the fumigated and nonfumigated samples, respectively.

2.2.4 Organic carbon concentration and isotopic

composition of plant material, soil organic carbon

and microbes

The OC concentration and isotopic composition (δ13C) of

above- and belowground plant material; extracts from fumi-

gated and nonfumigated soil; and bulk soil were measured

by weighing 2, 4, 50, 50 and 100 mg, respectively, of each

sample into Sn capsules (9mm × 5mm Säntis, CH) for anal-

ysis with a Flash EA 1112 series elemental analyzer (Ther-

moFisher, Germany) coupled to a Deltaplus XP IRMS via a

ConFlo III (Brooks et al., 2003; Werner et al., 1999; Werner

and Brand, 2001). The measurement precision (SD) of the

quality control standards, tyrosine Tyr-Z1 and caffeine Caf-

Z1, was 0.37 (‰) and 0.08 (‰), respectively, for above- and

belowground plant material, microbes, and the soil samples.

2.3 Data processing

2.3.1 Excess 13C calculations

The mass of 13C label that was recovered in (i) the above-

ground vegetation, (ii) roots of wheat plants and (iii) the soil

was calculated following Studer et al. (2014):

mE
(

13C
)

=
χE

(

13C
)

· m(C) · M
(

13C
)

χ
(

12C
)

· M
(

12C
)

+ χ
(

13C
)

· M
(

13C
) , (3)
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where mE
(

13C
)

is the mass of recovered 13C label (g m−2),

χE
(

13C
)

is the excess atom fraction (unitless, calculated fol-

lowing Coplen, 2011), m(C) is the total mass (g m−2) of C,

M
(

12C
)

and M
(

13C
)

are the molar weight of 12C and 13C

(g mol−1), respectively, and χ
(

12C
)

and χ
(

13C
)

are the 12C

and 13C atom fraction (unitless), respectively.

To calculate the excess atom fraction (χE(13C)) of the

soil compartment, the isotopic composition of the soil at

the start of the experiment was used as the reference value

(−26.45 ± 0.04 ‰ for the topsoil, −25.01 ± 0.13 ‰ for the

subsoil). As all lysimeters were labeled with 13CO2, no con-

trol treatment for the wheat plants was present. Therefore, a

δ13C reference value of −28 ‰ was assumed for the above-

ground parts and roots of all wheat plants. The calculation of

excess 13C is very sensitive to variability in input parameter

values, including the δ13C value of plant biomass and soil.

Therefore, a sensitivity analysis was used to show that vary-

ing the initial δ13C value of the wheat plants with ±3 ‰, a

typical range over which δ13C values can vary in the field be-

cause of, e.g., precipitation (Kohn, 2010), led to changes in

calculated mE(13C) on the order of ±1 % for aboveground

biomass and ± 1 %–5 % for belowground biomass. The ef-

fect of the initial δ13C value of the biomass on the calculated

amount of recovered 13C label in the wheat plants was thus

limited. Calculations of the effect of wheat cultivar on below-

ground excess 13C were only performed for the upper 0.45 m

of the lysimeters, as missing data for deeper soil layers pre-

vented including these layers in the statistical analyses and

the majority of root biomass was present in the upper 0.45 m

(Fig. 1).

2.3.2 Net carbon rhizodeposition

The absolute amount of carbon rhizodeposition for the dif-

ferent depth segments in the lysimeters was calculated fol-

lowing Janzen and Bruinsma (1989):

Rhizodeposition C =
χE

(

13C
)

soil

χE
(

13C
)

root

· Csoil, (4)

where rhizodeposition C is expressed in grams per kilo-

gram (g kg−1) for the considered layer; χE
(

13C
)

soil
and

χE
(

13C
)

root
are the excess 13C atom fraction in the soil and

roots respectively, calculated as described in Sect. 2.3.1; and

Csoil is the OC concentration of the considered soil layer

(g kg−1). This approach assumes that the isotopic enrichment

of rhizodeposits and roots is equal. The absolute amount of

carbon rhizodeposition for each soil layer was calculated by

multiplying rhizodeposition C (g kg−1) with the carbon con-

tent (kg) present in each of the respective layers. We note that

data on the C concentration and δ13C value of root biomass

could not be obtained from a number of soil layer below

0.45 m depth for certain cultivars, due to the limited root

biomass that could be retrieved. Therefore, net C rhizodepo-

sition was only calculated for the two uppermost soil layers

(0–0.45 m depth), as only for these layers all necessary data

to calculate net C rhizodeposition were available for the three

replicates of every cultivar.

2.3.3 Subsoil CO2 production

Depth profiles of subsoil CO2 production in the lysimeters

were calculated using the weekly measured depth profiles

of CO2 concentration throughout the experiment. To assess

the variability among the different lysimeters, these calcu-

lations were performed separately for every lysimeter and

average CO2 production depth profiles were calculated for

each cultivar. Measurements of CO2 concentration, soil tem-

perature and soil moisture content were performed at discrete

depths (0.075, 0.30, 0.60, 0.90 and 1.20 m depth). Continu-

ous depth profiles of these variables at a vertical resolution of

0.05 m were obtained using linear interpolation. Depth pro-

files of CO2 production were calculated using the discretized

form of the mass balance equation of CO2 in a diffusive one-

dimensional medium, following Goffin et al. (2014):

P(z)i =
1(εi[CO2]i)

1t
+

Ftopi
− Fboti

1z
, (5)

where P (z) is the CO2 production in layer i

(µmol CO2 m−3 s−1) over time span 1t , t is the time

(s), εi is the air-filled porosity in layer i (m3 m−3), [CO2]i is

the CO2 concentration of layer i (µmol CO2 m−3), Ftopi
and

Fboti are the CO2 fluxes transported through the upper and

lower boundaries of layer i (µmol CO2 m−2 s−1) during time

span 1t , respectively, and z is the depth (m). The vertical

CO2 fluxes are calculated as (Goffin et al., 2014):

Ftopi
= −Ds;i−1,i

[CO2]i−1 − [CO2]i

1z
, (6)

Fboti = −Ds;i,i+1
[CO2]i − [CO2]i+1

1z
, (7)

where Ds;i,j is the harmonic average of the effective diffu-

sivity coefficient (Ds) between layers i and j , and 1z is the

layer thickness. The effective diffusivity coefficient is calcu-

lated using a formula appropriate for repacked soils (Mol-

drup et al., 2000):

Ds;i = D0,t

ε2.5
i,t

8i

, (8)

where D0 is the gas diffusion coefficient of CO2 in free

air over time span 1t (m2 s−1), εi is the air-filled porosity

of layer i over time span 1t (m3 m−3) and 8i is the to-

tal soil porosity of layer i (m3 m−3). The total soil porosity

was calculated as 8i = 1 − ρi/ρp, where ρi is the soil bulk

density (t m−3) and ρp is the particle density (2.65 t m−3).

Due to the large vertical variability in measured bulk density

depth profiles, a constant bulk density profile was assumed

for the subsoil (below 0.15 m depth), calculated as the av-

erage of the measured bulk density values for these layers.
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The air-filled porosity over time span 1t was calculated as

the difference between the total porosity (m3 m−3) and the

average measured water-filled pore space over time span 1t

(m3 m−3). The latter was measured throughout the experi-

ment (see Sect. 2.1.1) and corrected based on differences be-

tween these measurements at the end of the experiment and

the measured volumetric water content of the sampled soil at

the end of the experiment. For this purpose, different correc-

tion equations were used for (i) the upper soil layer (0–15 cm)

and (ii) all deeper layers combined.

The gas diffusion coefficient in free air was corrected for

the individual lysimeters for variations in temperature and

soil moisture throughout the experiment (Massman, 1998),

as

D0 = D0,stp
p0

p

(

T

T0

)α

, (9)

where D0,stp is the gas diffusion coefficient for CO2 in free

air under standard temperature (0 ◦C) and pressure (1 atm)

(1.385 × 10−5 m2 s−1; Massman, 1998) and α is a coeffi-

cient (1.81; Massman, 1998). Semicontinuous measurements

of soil temperature in every lysimeter were used to calculate

D0 values throughout the experiment, while a constant at-

mospheric pressure of 1 atm throughout the experiment was

assumed.

To obtain depth profiles of the total amount of CO2 pro-

duced by the different wheat cultivars during the experiment

(expressed as g CO2 m−2), the calculated CO2 production

rates between all measurement days (P(z)) were summed

for the time span of the experiment and converted to grams

of CO2 per square meter (g CO2 m−2) using the molecular

mass of CO2 (44.01 g mol−1). We applied the boundary con-

dition of the absence of a flux of CO2 at the bottom of the

lysimeters. It is noted that these calculations do not make a

distinction between the source of CO2 production, thereby

combining both autotrophic and heterotrophic CO2 produc-

tion (total soil respiration). For more information about these

methods, reference is made to Goffin et al. (2014).

2.4 Statistics

To account for the three blocks in the randomized com-

plete block design, statistically significant differences be-

tween aboveground characteristics of different cultivars were

checked using a two-way analysis of variance (ANOVA)

without interactions (Dean et al., 2015), followed by a Tukey

test, based on the values obtained for the individual repli-

cates (n = 3 for every cultivar) using a significance level

of 0.05. This was done after checking for homogeneity of

variance (Levene’s test) and normality (Shapiro–Wilk test)

using a confidence level of 0.05. These analyses were per-

formed in MATLAB®. The effects of cultivar and depth on

soil bulk density, belowground biomass, belowground C al-

location and net C rhizodeposition were assessed using a lin-

ear mixed-effects model, with cultivar and depth being fixed

effects and blocks being treated as a random effect (lmer

function in R; R Core Team, 2019). Next, a pair-wise com-

parison was used to check for statistically significant differ-

ences between the cultivars (emmeans package in R). Below-

ground biomass was log-transformed to increase normality

and homogeneity of variances for the latter analysis. Uncer-

tainties on reported variables are expressed as standard errors

(n = 3).

3 Results

3.1 Aboveground biomass

The aboveground biomass produced at the end of the experi-

ment was significantly different between Zinal and Probus,

while the aboveground biomass of CH Claro and Mont-

Calme 268 was not significantly different from any other

cultivar (Fig. 1, Table 1). The biomass of the ears was sig-

nificantly higher for Zinal, compared to CH Claro, Probus

and Mont-Calme (Fig. 1, Table S1 in the Supplement). It is

noted that these data should be interpreted with care, since

not all plants reached maturity at the time of harvest and are

potentially not representative for the biomass of the ears of

full-grown plants. No significant differences were found be-

tween the δ13C values of aboveground biomass of the dif-

ferent cultivars (Fig. 2). The high δ13C values of the above-

ground biomass of all wheat cultivars (266 ‰ on average)

showed that a substantial amount of the 13CO2 tracer was

incorporated by all wheat plants (Fig. 2).

3.2 Belowground biomass

The average root biomass was highest in the topsoil and sig-

nificantly lower in the subsoil layers of all four wheat culti-

vars (Fig. 1b). Root biomass of Zinal was significantly lower

compared to the root biomass of Probus and Mont-Calme

268, while the root biomass of CH Claro was not signif-

icantly different from any of the other cultivars (Fig. 1b).

These differences were mostly present in the two uppermost

soil layers, while root biomass was not significantly differ-

ent between different cultivars at any depth, except for Zi-

nal and Mont-Calme 268 between 0.45 and 0.75 m depth

(Fig. 1). The root : shoot ratio varied between 0.10±0.02 and

0.19 ± 0.08 and was not significantly different between the

different cultivars (Table 1).

The depth profiles of the δ13C of root biomass were differ-

ent between the old and more recent wheat cultivars (Fig. 2).

In the two uppermost soil layers, no significant differences

were detected between the δ13C values of root biomass of the

different cultivars. These differences could not be checked

for statistical significance in deeper soil layers due to a lack

of sufficient recovered root biomass in each lysimeter. The

δ13C values of the roots of the old wheat cultivars showed

only limited variation with depth, with values between ca.

150 ‰ and 200 ‰. In contrast, the δ13C values of the roots
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Table 1. Characteristics (± standard error, n = 3) of the biomass of the different wheat cultivars at the end of the experiment. Values that

share a letter in the same column are not significantly different.

Cultivar Aboveground biomass Root biomass Root : shoot ratio

(year of release) Biomass (g m−2) OC % Biomass (g m−2) OC %

CH Claro (2007) 1064 ± 207ab 40.5 ± 0.3ab 107 ± 28ab 38.7 ± 1.9a 0.10 ± 0.02a

Zinal (2003) 710 ± 114b 40.0 ± 0.14a 97 ± 20b 39.1 ± 1.1∗ 0.14 ± 0.01a

Probus (1948) 1154 ± 220a 41.9 ± 0.2b 161 ± 54a 38.1 ± 0.5a 0.13 ± 0.03a

Mont-Calme 268 (1926) 1119 ± 174ab 40.8 ± 0.4ab 205 ± 67a 36.8 ± 1.3a 0.19 ± 0.08a

∗ Was excluded from statistical analysis due to missing data.

Figure 1. Aboveground (a) and root (b) biomass of the different

wheat cultivars at the end of the experiment. Bars represent the av-

erage per wheat cultivar, error bars show the standard error (n = 3)

and circles show the individual data points. The inset in (b) shows

a detail of the subsoil root biomass. If statistically significant differ-

ences were present, these are indicated with letters, with variables

sharing a letter not being significantly different.

of the more recent wheat cultivars were highest in the two up-

permost soil layers (0–45 cm) and showed an abrupt decrease

with depth in deeper soil layers.

3.3 Soil and soil organic carbon characteristics

The SOC concentration in the lysimeters was similar to the

OC concentration of the initial soil (Fig. 3a). A direct com-

parison between the SOC concentration before and after the

experiment could not be made, as no measurements of the

OC concentration of the soil in the lysimeters before the start

of the experiment could be made. However, the SOC concen-

tration measured at the different depths in the lysimeters was

similar to the OC concentration measured on the soil that was

used to fill the lysimeters (Fig. 3a). No statistically signifi-

cant differences in SOC concentration were found between

the different cultivars at any depth.

The SOC in the two uppermost soil layers (0–45 cm) of

all wheat cultivars was enriched in 13C compared to the soil

that was used to fill the lysimeters (Fig. 3b). Although the

δ13C value of SOC was not significantly different at any

depth between any of the cultivars, the largest increase in

the δ13C value of topsoil OC was observed for Probus and

Mont-Calme 268 (Fig. 3b), indicating that the soil under the

old cultivars incorporated more of the 13C label compared

to the more recent cultivars. The limited difference between

(i) the δ13C values of the soil used to fill the lysimeters

and (ii) the measurements at the end of the experiment be-

low a depth of 0.45 m indicates a lower amount of incor-

porated 13C label in the subsoil. Similarly, the δ13C value

of topsoil microbial biomass was more positive compared to

deeper soil layers for all cultivars, indicating that microbes

utilized more substrate enriched in 13C in the two upper-

most soil layers, compared to deeper soil layers (Fig. 3c).

Statistically significant differences were only detected in the

layer between 0.15 and 0.45 m depth, where the δ13C value

of microbial biomass under Zinal was significantly lower

compared to Mont-Calme 268. However, as the microbial

biomass under Zinal was substantially higher compared to

under Mont-Calme 268 in this layer (Fig. S3), this does not

necessarily imply that microbes under Mont-Calme 268 in-

corporated more excess 13C compared to under Zinal. Depth
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Figure 2. δ13C values of aboveground (a) and belowground (b)

biomass for the different wheat cultivars at the end of the exper-

iment. Bars (a) and symbols (b) represent the average per wheat

cultivar, error bars show the standard error (n = 3), and symbols

without error bars indicate samples for which no three replicates

were available. Circles show the individual data points. If statisti-

cally significant differences were present for root biomass at the

same depth, these are indicated with letters, with variables sharing

a letter not being significantly different and data points without error

bars being left out of the analyses.

profiles of microbial biomass carbon were relatively constant

(200–500 µg C g soil−1), with no consistent differences be-

tween different cultivars (Fig. S3). The δ13C values of soil

CO2 (δ13CO2) at the end of the experiment were similar for

all wheat cultivars for the two uppermost layers (0–0.45 m)

(Fig. 3d). Deeper down the profile, the CO2 under the old

wheat cultivars was more enriched in 13C compared to the

more recent cultivars, by an average of ca. 30 ‰. The only

statistically significant differences were detected in the low-

ermost layer, where the δ13C values of CO2 of Zinal and

CH Claro were significantly lower compared to Mont-Calme

268.

There was no significant effect of cultivar on the bulk den-

sity of the soil at the end of the experiment (F3,59 = 1.9,

p = 0.23), while there was a significant effect of depth on

bulk density (F4,59 = 19.4, p < 0.0005). The average bulk

density of all lysimeters was highest in the topsoil (1.67 ±

0.12 Mg m−3) and varied with depth (Fig. S4a). The gravi-

metric moisture content in the lysimeters at the end of the

experiment increased with depth for all cultivars, from ca

0.1 g g−1 in the top layer to ca. 0.15 g g−1 in the bottom

layer (Fig. S4b), and was only significantly different between

Mont-Calme 268 and Zinal in the uppermost soil layer. The

soil moisture content changed relatively little throughout the

experiment for all lysimeters, after an initial phase of de-

creasing soil moisture content at the onset of the experiment

(Fig. S2).

3.4 Excess 13C and carbon rhizodeposition

The total amount of 13C label that was present in the plant–

soil system at the end of the experiment, expressed as ex-

cess 13C, differed significantly between different wheat cul-

tivars (Fig. 4a). When accounting for excess 13C in above-

ground biomass and in the soil and roots down to a depth of

0.45 m, the lowest amount of 13C label was found in the Zinal

lysimeters (1.19±0.11 g m−2), followed by CH Claro (1.64±

0.06 g m−2) and the older wheat cultivars (2.05±0.09 g m−2

for Mont-Calme 268 and 2.01 ± 0.19 g m−2 for Probus),

with the majority of 13C tracer in the aboveground biomass

(Fig. 4a). Despite these differences, the relative distribu-

tion of the assimilated 13C between aboveground biomass,

roots and soil was similar between the different wheat cul-

tivars (Fig. 4b). On average, 80.7 ± 1.7 % of the assimilated

tracer ended up in aboveground biomass, 8.4 ± 1.5 % in root

biomass and 10.9 ± 1.4 % in the soil. It is noted that root-

respired 13C label is not included in this analysis, which may

lead to an underestimation of the fraction of 13C label that

was allocated belowground.

The total amount of net carbon rhizodeposition measured

at the end of the experiment down to 0.45 m decreased

with depth for all wheat cultivars (Fig. 4c), with this dif-

ference only being statistically significant for CH Claro.

The highest amount of net carbon rhizodeposition was ob-

served for Probus (108±34 g C m−2), followed by CH Claro

(97±24 g C m−2), Mont-Calme (83±29 g C m−2) and Zinal

(62 ± 11 g C m−2). There was thus no clear relationship be-

tween the amount of net carbon rhizodeposition and year of

release of the wheat cultivars.

3.5 CO2 concentration and production

Throughout the experiment, the change in the CO2 concen-

tration of the two uppermost soil layers was limited, with

average values for the topsoil between 470 and 761 ppm

for all cultivars (Fig. 5). Deeper down the lysimeters, rela-

tively constant CO2 concentrations were observed during the
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Figure 3. Depth profiles of organic carbon concentration (a), the δ13C value of organic carbon (b), the δ13C value of microbial biomass (c)

and the δ13C value of soil CO2 (d), averaged per wheat cultivar at the end of the experiment. Error bars represent the standard error (n = 3).
∗ The initial soil indicates measurements performed on the soil that was used to fill the lysimeters prior to the experiments in (a) and (b) and

measurements of the δ13CO2 depth profile at the beginning of the experiment in (d).

Figure 4. Absolute (a) and relative (b) distribution of excess 13C between aboveground biomass, root biomass and soil for the different

wheat cultivars. Soil compartments are calculated down to 0.45 m depth. Panel (c) shows the total carbon rhizodeposition and root carbon

for the upper two soil layers for the different wheat cultivars (0–0.45 m depth). Error bars represent the standard error (n = 3). In (a), letters

indicate significant differences between the total amount of excess 13C of the different cultivars. No significant differences in the amount of

excess 13C in aboveground biomass, root biomass or soil between the different cultivars were found. In (c), letters are provided when the

total belowground C allocation differed between the different depth layers, which was only the case for CH Claro.
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Figure 5. Changes in the CO2 concentration (ppm) in the lysimeters

throughout the experiment for the four wheat cultivars. The average

CO2 concentration of three replicates are shown (n = 3). Dots indi-

cate the measured data points.

first 3 weeks of the experiment, ca. 5000–10 000 ppm. After

3 weeks, subsoil CO2 concentrations abruptly increased and

remained high throughout the experiment. These were sub-

stantially larger for the older cultivars (with maximum values

of ca. 30 000 ppm) compared to the younger cultivars (with

maximum values ca. 24 000 ppm).

Despite these high CO2 concentrations in the subsoil, CO2

production was mainly taking place in the topsoil, with the

highest rates of CO2 production between 0.10 and 0.20 m

depth for all cultivars (Fig. 6). For the young cultivars (Zinal

and CH Claro), 95 % of CO2 was produced above a depth

of 0.3 m. In contrast, in older cultivars (Probus and Mont-

Calme 268) 95 % of CO2 was produced above a depth of

0.55 and 0.6 m, respectively. Despite these observations, nei-

ther the calculated total amount of subsoil CO2 production

nor the depth above which 95 % of CO2 was produced was

significantly different between any of the cultivars.

Figure 6. Depth profiles of calculated cumulative CO2 production

(g CO2 m−2 per 0.05 m depth layer). Dots show the calculated pro-

duction rates, thin lines show the calculated CO2 production for the

individual lysimeters and the thick lines show the average based on

three replicates (two for CH Claro).

4 Discussion

The aim of the present study was to assess differences in be-

lowground carbon transfer and net rhizodeposition by wheat

cultivars with different root biomass and rooting depth. Our

results show that although there are marked differences in

both the amount of carbon transferred belowground and the

timing of belowground carbon transfer, there is no clear re-

lationship between root characteristics and the amount of net

rhizodeposition. Therefore, the fate of root biomass might

determine the total amount of subsoil carbon stabilization in

the long term.

4.1 Plant biomass carbon dynamics and CO2

production

No consistent differences in total aboveground biomass be-

tween old and new wheat cultivars were observed. The

aboveground biomass values were at the high end of reported

values for wheat plants in the field (Mathew et al., 2017),

while the lack of consistent differences in the biomass of

wheat cultivars released over a time span of multiple decades

has generally been observed (Brancourt-Hulmel et al., 2003;

Feil, 1992; Lupton et al., 1974; Wacker et al., 2002).
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The fraction of biomass in the grain-bearing ears was,

however, much larger for the modern wheat cultivars (on av-

erage 9 % and 47 % of total aboveground biomass for CH

Claro and Zinal respectively) compared to the old wheat cul-

tivars (on average 1 % and 2 % for Mont-Calme 268 and

Probus respectively). While an increase in the fraction of

biomass allocated to grains is generally observed in old ver-

sus modern wheat cultivars (Brancourt-Hulmel et al., 2003;

Feil, 1992; Shearman et al., 2005), mostly as a consequence

of the introduction of reduced height genes (Tester and Lan-

gridge, 2010), the harvest index reported here for the old cul-

tivars might have been underestimated because older culti-

vars were not yet fully mature at plant harvest.

The total root biomass of the older wheat cultivars was

substantially larger compared to the more recent cultivars,

although these differences were not consistently significant

between all modern and old varieties (Table 1). These differ-

ences were mostly apparent in the top 0.45 m of the lysime-

ters (Fig. 1). It is not clear if the lack of statistically sig-

nificant differences in the root biomass within the deeper

soil layers was due to (i) inability to collect all fine roots

from the soil or (ii) actual differences in root biomass. These

results are in line with a recent study on the biomass of

roots of different wheat cultivars of the Swiss wheat breed-

ing program, including the cultivars used in our experiment

(Friedli et al., 2019). This study showed that, under well-

watered conditions, older wheat cultivars had a substantially

higher root biomass compared to the more recently released

wheat cultivars. Similar results have been obtained for wheat

cultivars released in, e.g., Australia (Aziz et al., 2017) and

other countries around the world (Waines and Ehdaie, 2007).

The root : shoot ratios of the wheat cultivars in our study

(0.10 ± 0.2–0.19 ± 0.08, Table 1) were at the low end of re-

ported values for wheat plants globally (Mathew et al., 2017)

but in line with reported values for wheat cultivars of the

Swiss wheat breeding program, including the cultivars used

in our study (an average value of 0.14 for all cultivars studied

by Friedli et al., 2019).

The maximum rooting depth was similar between the old

and recent wheat cultivars (Fig. 1b). This is in contrast with

the results from Friedli et al. (2019), who found that the older

wheat cultivars had deeper roots (the depth above which 95 %

of roots were found (D95) was on average 101 cm) compared

to the more recent cultivars included in the present study (av-

erage D95 of 85 cm). These differences might partly arise

from the different setup used in both studies. Both experi-

ments were carried out in a controlled greenhouse environ-

ment, but Friedli et al. (2019) used soil columns with a diam-

eter of 0.11 m, while in our study lysimeters with a diame-

ter of 0.5 m were used. Additional information about subsoil

root dynamics could be obtained from the measured depth

profiles of the CO2 concentration and 13CO2, with the lat-

ter only being measured in the last phase of the experiment.

The calculated depth profiles of CO2 production showed that

CO2 was being produced down to greater depths under the

old wheat cultivars (Fig. 6). Combined with the higher δ13C

values of subsoil CO2 of the lysimeters under the old wheat

cultivars at the end of the experiment (Fig. 3d), this sug-

gests that the roots of the old wheat cultivars respired CO2

at greater depths compared to the recent wheat cultivars.

The δ13C values of root biomass suggest that the temporal

root carbon dynamics of the old and recent wheat cultivars

differed substantially (Fig. 2b). The root biomass of the old

wheat cultivars had a high δ13C value at all measured depths,

indicating that the 13CO2 label was allocated to the roots at

all depths throughout the experiment. In contrast, the root

biomass of the recent wheat cultivars was greatly enriched

in 13C in the top 0.45 m, while deeper roots were much less

enriched in 13C. This suggests that both old and more re-

cent wheat cultivars grew roots down to depths of > 1 m in

the beginning of the experiment (when the total amount of
13C assimilated by the plants was limited), while only the

old cultivars kept on allocating carbon down to deep roots

(> 0.45 m) throughout the experiment (thus having assim-

ilated more 13C over the period of root growth compared

to the more recent cultivars). The similar δ13C value of the

aboveground biomass of all wheat cultivars (Fig. 2a) suggests

that the differences in δ13C values of the root biomass are

unlikely to be caused by differences in the relative amount of
13CO2 assimilated by the plants, relative to unlabeled CO2.

Thus, these results suggest that old wheat cultivars allocate

photosynthates down to their roots throughout a substantial

part of the plant growth phase, while this is not the case for

more recent cultivars.

4.2 Carbon allocation by wheat plants

The partitioning of the 13C label was very similar between

the different wheat cultivars (Fig. 4b). It is noted that the

amount of rhizosphere-respired 13CO2 could not be included

in these calculations, although this typically accounts for

ca. 7 %–14 % of assimilated carbon in crops, or 40 % of

total belowground C allocation (Kuzyakov and Domanski,

2000; Pausch and Kuzyakov, 2018). The fraction of assim-

ilated carbon that is transferred belowground reported here

is therefore underestimated. The belowground transfer of ca.

20 % of assimilated C for all cultivars is in line with previ-

ous studies, which have reported fractions of similar magni-

tude for wheat plants, when not accounting for rhizosphere

CO2 respiration: 18 %–25 % (Hirte et al., 2018), 18 % (as re-

viewed by Kuzyakov and Domanski, 2000), 15 % (Keith et

al., 1986), 17 % (Gregory and Atwell, 1991) and 31 % (Sun

et al., 2018). In contrast, reported values of the partitioning of

belowground translocated carbon by wheat plants to (i) roots

and/or (ii) net rhizodeposition are much more variable, with

reported net rhizodeposition carbon as a percentage of to-

tal belowground carbon (root carbon and net rhizodeposition

carbon combined) for wheat plants between 23 % (as sum-

marized by Kuzyakov and Domanski, 2000) and 72 % (Sun

et al., 2018). The results obtained here (68 %) are thus at
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Table 2. Average belowground carbon allocation (net rhizodeposi-

tion and root biomass combined) and net carbon rhizodeposition by

the different wheat cultivars, calculated down to a depth of 0.45 m

(variation is reported as the standard error, n = 3). No statistically

significant differences in belowground C allocation or net C rhi-

zodeposition between any of the cultivars were detected.

Belowground Net C

C allocation rhizodeposition

(g m−2) (g m−2)

CH Claro 131 ± 26 97 ± 24

Zinal 97 ± 14 62 ± 11

Probus 164 ± 38 108 ± 34

Mont-Calme 268 154 ± 39 83 ± 29

the high end of reported values. However, they were similar

to results from a field study in Switzerland which used two

modern Swiss wheat cultivars, among which was CH Claro

(58 %; Hirte et al., 2018).

4.3 Rates of net carbon rhizodeposition

The total amount of carbon assimilated by the wheat cultivars

that was transferred to roots and soil in the top 0.45 m at the

end of the experiment ranged between 97±14 g m−2 (Zinal)

and 164±38 g m−2 (Probus) (Table 2). It is noted that the to-

tal amount of belowground carbon translocation by the wheat

plants is underestimated, as rhizosphere respiration could not

be included in our calculations. These numbers are in the

range of reported values for wheat plants of 94–295 g m−2

(as summarized by Keith et al., 1986) and the value reported

by Kuzyakov and Domanski (2000) (150 g m−2), as well as

the reported amount for two recent wheat cultivars of the

Swiss wheat breeding program (including CH Claro) of 110–

134 g m−2 (Hirte et al., 2018).

In contrast to the total amount of carbon translocated be-

lowground, the amount of net carbon rhizodeposition was not

consistently different between the old and more recent wheat

cultivars (62 ± 11–108 ± 34 g m−2) (Fig. 4, Table 2). These

values are higher compared to values calculated by Pausch

and Kuzyakov (2018) (18–34 g m−2, depth unknown) and

Hirte et al. (2018) (63–73 g m−2; down to 0.75 m depth).

A large uncertainty associated with calculated values

of subsoil carbon sequestration using isotopic labeling ap-

proaches is related to the assumption that the isotopic en-

richment of roots and rhizodeposits is similar (Eq. 4). This

simplification is made because of the difficulties in mea-

suring quantitative characteristics of rhizodeposits in a soil

medium (Oburger and Jones, 2018) but leads to erroneous

calculations of the amount of carbon rhizodeposition when

this assumption is violated (Stevenel et al., 2019). To as-

sess the uncertainty of calculated values of subsoil carbon

sequestration, we calculated how these values differ when

the value of root δ13C is varied with ±25 % (Fig. S5). This

results in calculated values of total carbon rhizodeposition,

down to a depth of 0.45 m, of 69–105 g m−2 for Mont-Calme

268, 88–138 g m−2 for Probus, 51–78 g m−2 for Zinal and

81–121 g m−2 for CH Claro, or uncertainties in the amount

of carbon rhizodeposits between −18 % and +28 %. Further

research on the effect of the assumption of using root δ13C

values as a proxy for carbon rhizodeposits is thus necessary

to better quantify the effect on estimates of carbon sequestra-

tion.

4.4 The effect of old and recent wheat cultivars on net

carbon rhizodeposition

Our results indicate that the old wheat cultivars, with deeper

active roots throughout the experiment and larger root

biomass, allocated more assimilated carbon belowground,

although the differences were not statistically significant

(Fig. 4c, Table 2). However, we found no evidence that wheat

cultivars with larger root biomass lead to higher net carbon

rhizodeposition (Table 2). Our hypothesis, which stated that

wheat cultivars with larger root biomass and deeper roots

would lead to larger amounts of net carbon rhizodeposition,

could therefore not be confirmed.

The total amount of OC that will be stabilized in the soil

by the studied wheat cultivars will therefore depend on the

long-term fate of the root biomass. The root biomass was

higher for the old wheat cultivars, although these differences

were mainly limited to the upper 0.45 m of the soil. Due to

the destructive sampling of vegetation and soil at the end of

the experiment, the fate of root biomass after harvest could

not be assessed. Based on the results, one could therefore

hypothesize that the higher root biomass of old wheat cul-

tivars would lead to larger rates of carbon sequestration in

the long term. Similarly, Mathew et al. (2017) suggested that

growing grasses and maize plants would lead to larger SOC

stocks because these plants have the highest total and root

biomass compared to growing crops with a lower biomass.

However, it is not straightforward to make predictions about

the amount of root biomass that will be stabilized in the soil

in the long term, as this depends on the efficiency with which

plant-derived biomass is incorporated in microbial biomass

(Cotrufo et al., 2013) and interactions between soil depth,

the microbial community composition and its substrate pref-

erence (e.g., Kramer and Gleixner, 2008), among other fac-

tors. During the past century, there has been a continuing

increase in the importance of wheat cultivars with smaller

root biomass (Fossati and Brabant, 2003; Friedli et al., 2019;

Waines and Ehdaie, 2007). This can have profound implica-

tions for OC stocks of soils under wheat cultivation, as rhi-

zodeposition and root-derived carbon are the most important

inputs of OC to the soil (Kong and Six, 2010). Testing the

long-term effect of the gradual change in wheat cultivars on

OC inputs to the soil would thus require experiments that run

over multiple growing seasons and allow the quantification

Biogeosciences, 17, 2971–2986, 2020 https://doi.org/10.5194/bg-17-2971-2020



M. Van de Broek et al.: The soil organic carbon stabilization potential of old and new wheat cultivars 2983

of the amount of root carbon that is eventually stabilized in

the soil.

Correct knowledge on the amount of OC that is transferred

belowground by plants is necessary to reliably model SOC

dynamics. However, this knowledge is currently limited and

changes in belowground carbon allocation due to the culti-

vation of different cultivars are generally not considered in

SOC models. Moreover, it has recently been shown that ac-

counting for changes in belowground carbon allocation by

relating this to changes in aboveground biomass does not im-

prove model results (Taghizadeh-Toosi et al., 2016). Rather,

it has been suggested that more reliable model results are ob-

tained when crop-specific amounts of belowground carbon

allocation are used, independent of aboveground biomass

production (Taghizadeh-Toosi et al., 2016). Since model re-

sults are very sensitive to the amount of carbon inputs (Keel

et al., 2017), and cereal crops are grown on ca. 20 % of crop-

lands globally (Leff et al., 2004) (covering ca. 12 % of global

land mass and storing ca. 10 % of global SOC in the upper

meter of soil; Govers et al., 2013), a correct assessment of

a potential decrease in belowground carbon inputs by wheat

plants over the past century through the cultivation of differ-

ent cultivars will have important implications for the simula-

tion of changes in SOC on the global scale.

Assessing the overall impact of the past evolution of wheat

cultivars on SOC stocks also requires taking into account the

amount of land needed to produce sufficient food. For exam-

ple, if future research would show that more recent wheat

cultivars lead to less SOC stabilization compared to older

cultivars, this does not necessarily imply a net loss of SOC as

a consequence of the historical shift to planting recently de-

veloped wheat cultivars. If the aim is to increase overall SOC

stocks, it might be more favorable to grow high-yield wheat

cultivars that sequester less OC per unit area compared to a

low-yielding cultivar, if this results in a larger area of arable

land that can be taken out of cultivation. This land can be put

under native vegetation, such as forest or grassland, which

stores substantially more SOC compared to arable land (Job-

bágy and Jackson, 2000).

5 Conclusion

In this study, four different wheat cultivars were grown in

lysimeters and labeled with 13CO2 using repeated pulse

labeling to quantify the effect of rooting depth and root

biomass on net carbon rhizodeposition. Our results show that

there is no clear trend between the time of cultivar devel-

opment and the amount of net carbon rhizodeposition, with

large variabilities being observed between replicates of the

same cultivars. Based on these results, the hypothesis that

wheat cultivars with a larger root biomass and deeper roots

would promote net carbon rhizodeposition was rejected. An

important remaining uncertainty is related to the fate of root

biomass after harvest, which might contribute to the stabi-

lized SOC pool over the long term.
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