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Many processes in chemistry, physics, and biology involve rare events in which the system escapes from
a metastable state by surmounting an activation barrier. Examples range from chemical reactions, protein
folding, and nucleation events to the catastrophic failure of bridges. A challenge in understanding the
underlying mechanisms is that the most interesting information is contained within the rare transition paths,
the exceedingly short periods when the barrier is crossed. To establish a model process that enables access
to all relevant timescales, although highly disparate, we probe the dynamics of single dielectric particles in
a bistable optical trap in solution. Precise localization by high-speed tracking enables us to resolve the
transition paths and relate them to the detailed properties of the 3D potential within which the particle
diffuses. By varying the barrier height and shape, the experiments provide a stringent benchmark of current
theories of transition path dynamics.
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Rate processes in which a system escapes from meta-
stable states via an activation barrier take place on time-
scales that are long compared to the relaxation dynamics
within the states. This separation of timescales allows for
the interconversion between states to be approximated in
terms of phenomenological chemical kinetics by employ-
ing a set of rate coefficients and effectively assuming that
the actual interconversion between states is instantaneous
[1]. For microscopic systems, a Kramers-type description
of the underlying dynamics is more realistic, where the
rate coefficients are related to the diffusive motion on an
energy surface [2]. This concept has been successfully
applied to complex processes such as protein folding and
binding [3–5] and provides a conceptual link between the
phenomenological kinetics and the underlying molecular
dynamics, including the actual process of barrier crossing.
These transition paths (TPs) across the barrier contain the
most interesting information about the mechanism of the
reaction [6], and their investigation has made great progress
in the past ten years owing to advances in single-molecule
experiments and the concomitant development of theoreti-
cal concepts [3,6–15].
Experimental limitations and the complexity of biomo-

lecular systems, however, pose considerable challenges.
For instance, the microsecond timescale of typical bio-
molecular TPs seriously limits the amount of information
accessible with experimental time resolution; the choice of
reaction coordinates is constrained by the experimentally
accessible observables; the actual underlying potentials are
often unknown; and data analysis thus requires simplifying
assumptions regarding the shape of the energy surface and

the nature of the dynamics. To complement the ongoing
efforts to overcome such difficulties, our goal here is to
provide a simple experimental system that enables all
relevant parameters to be extracted directly from the
measurements; that covers a broad range of timescales to
enable both extensive sampling of the rare transitions and
the necessary time resolution to fully resolve TPs; and that
allows the shape of the potential to be tuned systematically.
Such a system would enable a stringent comparison to
simulations and a rigorous test of theoretical concepts at a
level of detail that has previously been inaccessible.
To achieve this goal, we employ a spherical dielectric

Brownian particle trapped in an optical double-well poten-
tial [Fig. 1(a), Supplemental Material [16], Fig. 1]. This
configuration has previously been used to test Kramers’
theory, e.g., the calculation of rate coefficients based on the
shape of the potential [21], the dependence of rates on the
damping regime [22], and the transition between ballistic
and diffusive motion [23]. The approach is also ideally
suited for investigating TPs between the two traps. High-
speed camera-based tracking [24–26] enables 3D locali-
zation with microsecond time resolution combined with
hour-long recording times (Fig. 1, Supplemental Material
[16], Fig. 2). The data thus provide both the requisite
statistics for obtaining precise transition rates from indi-
vidual trajectories and the ability to resolve the millisecond
TPs [Fig. 1(e)]. Particle position trajectories show the
expected bistability of the system in time [Fig. 1(b)];
position autocorrelation functions [Fig. 1(c)] illustrate
the eight orders of magnitude accessible in time and reveal
both the diffusive dynamics within the traps and the
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kinetics of transitions between them. From the distribution
P3DðrÞ of the particle’s position r ¼ ðx; y; zÞ based on 106

to 108 images per trajectory, the three-dimensional free-
energy landscape is readily reconstructed as G3DðrÞ ¼
−kBT lnP3DðrÞ, where kB is Boltzmann’s constant and T
is temperature [Fig. 1(d)]. The diffusion coefficient D of
each particle was determined from its mean-squared dis-
placement at short times [21] (Supplemental Material [16],
Fig. 3). Notably, variations in particle shape and size lead to
variations by ∼10% in D; similarly, such particle-to-
particle variations and the possible influence of Mie
resonances [27] at a given shape and radiant flux of the
laser beams lead to clearly detectable differences in the
shapes of the potentials (Supplemental Material [16],
Figs. 3 and 4). However, since the potentials are obtained
by Boltzmann inversion for each particle and laser power
individually, all these contributions are accounted for and
do not need to be modeled explicitly. By adjusting the

laser power, we can tune the barrier height systematically
between ∼2 and 8 kBT, corresponding to a hundredfold
change in transition rate coefficients (Fig. 2). The acces-
sible range of rates is limited at low laser power by the loss
of persistent trapping, and at high laser power by insuffi-
cient sampling of the potential in the transition region.
As the friction force on the particle obeys Stokes’

law and is proportional to its velocity, we expect the
particle dynamics to be described by a three-dimensional
Langevin equation in the potential G3DðrÞ. Since the
particle’s motion is overdamped [21,22], inertial contribu-
tions can be neglected [2]. The kinetics of transitions
between the wells can then be described using Langer’s
rate theory of multidimensional diffusive barrier crossing
[28]. The symmetry of the potential suggests that the
reaction coordinate of this process coincides with the x
axis along the interfocus distance (Fig. 1); moreover,
because of the symmetry of the potential at stationary
points, the dynamics along x are decoupled from those
along y and z near the barrier saddle. As a result, Kramers
model [29] of one-dimensional diffusive barrier crossing in
the 1D free-energy landscape G1DðxÞ ¼ −kBT lnP1DðxÞ is
sufficient, where P1DðxÞ ¼ ∬P3DðrÞdydz is the probability
distribution of the position along x. The Kramers rate for
crossing a barrier of height ΔG‡ is

kKramers ¼ ðD ffiffiffiffiffiffiffiffiffiffi

κbκw
p

=2πÞe−ΔG‡=kBT ; ð1Þ

FIG. 1. Transition paths in the bistable optical trap. (a) Sche-
matic of a microsphere (fused silica, radius ∼270 nm) in a
bistable trap formed by two laser foci (wavelength 485 nm)
separated by ∼450 nm. The z coordinate is deduced from the ring
pattern of the diffraction-limited image of the bead with a
precision of ∼50 nm; its symmetry center yields the x and y
coordinates with a precision of ∼25 nm. See the Supplemental
Material [16] for technical details. (b) A trajectory along x, the
interfocus axis, with enlargements at increasing time resolutions.
(c) The position autocorrelation function Cxx reveals diffusive
dynamics within the traps (correlation time 2.2� 0.1 ms) and
kinetics of transitions between them (k−1 ¼ 4.4� 0.1 s). The red
line is a fit with CxxðtÞ ¼ hxi2e−kt þ ðkBT=κÞe−ðDκ=kBTÞt þ 1,
where hxi is the trap separation, k the transition rate between
the wells, κ the average curvature of the free energy at the bottom
of the two wells, and D the diffusion constant. (d) The 3D
potential, G3D, extracted from the distribution of the particle
positions (color projection). (e) Illustration of a TP (red) between
boundaries x1 and x2 along the one-dimensional free-energy
profile, G1DðxÞ (duration in this example 8.8 ms).

FIG. 2. Transition rates and Kramers’ theory. (a) Examples of
particle trajectories projected on the interfocus axis x [cf. Fig. 1
(a)] with different barrier heights and transition frequencies.
(b) Survival probability distributions in the traps fitted with
exponential decays (lines) yield the interwell transition rate
coefficients. Since the potentials are never perfectly symmetric,
transitions in the two directions are analyzed separately (black: x
increasing; red: x decreasing, identical symbols: same particle).
(c) Comparison of the transition rate coefficients according to
Kramers’ theory, kKramers, with measured values, kexp (black: x
increasing; red: x decreasing; identity line: dashed). Error bars for
kKramers result from uncertainties in the barrier and well curvatures
and barrier heights, error bars in kexp from uncertainties in the fits
of the survival probability distributions (b).
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where κb and κw are the curvatures of the potential G1DðxÞ
at the top of its barrier and at the bottom of the initial
potential well, respectively. Note that D is independent of
position in our experimental system. To test the applicabil-
ity of the Kramers’ theory, we extracted transition rate
coefficients from the measured particle trajectories pro-
jected on x, assuming first-order kinetics between the two
states, and compared them to the values from a Kramers
model (Fig. 2), using G1DðxÞ (Supplemental Material [16],
Fig. 5) and D obtained for the respective individual
particles from their mean-square displacements after short
times (see the Supplemental Material [16]). The agreement
[Fig. 2(c)] confirms the applicability of Kramers’ theory
[21] and illustrates the high data quality available from
individual particle trajectories.
Examples of transitions from one trap to the other are

shown in Fig. 3(a), projected on the xy and xz planes, and
along x. TPs are the segments of the trajectory where the
particle continuously dwells in the transition region between
the two potential wells, having entered it from one well
and exiting to the other [red segments in Fig. 3(a)]. For
trajectories in 3D, we defined the boundaries of the
transition regions as isoenergetic surfaces enclosing the
potentialminima,G3DðrÞ ¼ E1 andG3DðrÞ ¼ E2, whereE1

and E2 were chosen as the energy values halfway between
the barrier top and the bottomof the respectiveminima of the
potential, G3Dðx; hyi; hziÞ. For 1D projections, xðtÞ, the
boundaries correspond to the values x1 and x2 defined by
G1DðxÞ ¼ E1 and G1DðxÞ ¼ E2, with E1 and E2 chosen
halfway between the barrier top and the respective minima
of G1DðxÞ. The transition region then coincides with the
interval ½x1; x2�. Although the TPs identified in 3D differ
from those identified in 1D or 2D, the mean TP times in 1D
are on average only ∼15% shorter than in 3D, indicating
robustness to the dimensionality of the analysis used
(Supplemental Material [16], Fig. 6).
The average TP times hτTPi are well reproduced by

Brownian dynamics simulations in the corresponding poten-
tials, over a wide range of barrier heights and for different
choices of TP boundaries [Fig. 3(b)]. The agreement is
similarly good for the numerical solution of the diffusion
problem using the detailed shapes of the potentials [31].
Remarkably, hτTPi for all but the lowest barriers are almost
as well reproduced by the Szabo approximation [3,6,30],
according to which hτTPi ¼ ðkBT=DκbÞ lnð2eγΔG�=kBTÞ,
where ΔG� is the barrier height measured relative to the
values of G1DðxÞ at the TP boundaries, and γ ≈ 0.577 is
Euler’s constant. This relation, derived for diffusive crossing
of a symmetric parabolic 1D barrier with ΔG�

≫ kBT [30],
is commonly used for the analysis of experimentally
measured biomolecular TP times [6,10], where information
about the shape of the potential is often unavailable.
Figure 3(c) illustrates an important observation: in contrast
to the transition rates, which depend exponentially on the
activation free energy [Eq. (1), Fig. 2(c)], TP times are much

less sensitive to the barrier height. The dependence of hτTPi
on ΔG� is also well described by the Szabo equation.
The time resolution of our experiment allows us to

quantify not only average TP times but also their distri-
butions and the dependence on the barrier height for each
particle (Fig. 4 and Supplemental Material [16], Fig. 7). As
expected for diffusive barrier crossing, we observe peaked
asymmetric distributions with exponential tails [31,32].
The distributions are compared with those predicted by
three theoretical models: Brownian dynamics simulations
using G3DðrÞ and D from the experiments; the numerical
solution for diffusive dynamics in G1DðxÞ [31]; and the
analytical approximation for the diffusive dynamics across
a high 1D parabolic barrier [32]. All three approaches are in
remarkably good agreement with experiment for barriers
with ΔG� > 3kbT [Fig. 4(a)]. For smaller barriers, the
analytical approximation deviates from the experimental

FIG. 3. Quantifying TP times and dependence on barrier height.
(a) Examples of TPs projected on the xy and xz planes (top), with
the free energy shown by the color scale as in Fig. 1. Dashed lines
indicate the TP boundary in the xy and xz planes; red trajectory
segments indicate the TPs identified in 3D. The bottom panels
show the TPs projected onto the x axis. Solid vertical lines indicate
trap centers, dashed lines TP boundaries along x. (b) Measured
average TP times for each particle compared to the results from
3D-Brownian dynamics simulations (red symbols), to the numeri-
cal solution of the 1D diffusion problem on the measured potential
of mean force (blue symbols), and to the results from theory using
the Szabo equation [3,6,30] (black symbols, averages of ΔG� in
both directions of the transition were used) with different TP
boundaries (see inset and legend). (c) Average TP times for each
particle using TP boundaries at 50% [see inset in (b)] compared
with the Szabo approximation (gray dashed line) and the numeri-
cal solution (solid gray line) using the curvatures of the exper-
imentally determined potentials and the diffusion coefficient
averaged over all measurements.
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data, whereas 3D simulations and the 1D numerical
solution agree to within error down to very low barriers.
The TP time is an important property, but much more

information can be gleaned from the observed barrier
crossing dynamics. For instance, most of the analyses of
TP times in single-molecule experiments have relied on the
a priori assumption of diffusive dynamics. However, this
assumption (which does not necessarily hold for molecular
reaction coordinates) can be tested directly here: first, we
applied the recently proposed Markovianity test [33],
which computes the conditional probability Pðx1→x2jxÞ
that the system at point x (with x1 < x < x2) is on a TP
from boundary x1 to boundary x2. For a Markov process,
this probability peaks at a value of 0.25, whereas memory
effects reduce its maximum value. In our experiments, the
observed barrier crossing dynamics indeed closely
approach Markovianity [Fig. 5(c)]. The residual deviation
from 0.25 is presumably caused by the rare misidentifica-
tion of fast TPs (Supplemental Material [16], Fig. 11).
Second, we applied a more general dynamic model to the

observed xðtÞ in which the friction force is not simply
proportional to the instantaneous velocity _xðtÞ but depends
on past velocities, Ffr ¼ −

R

t
−∞

ξðt − t0Þ_xðt0Þdt0. The fric-
tionmemory kernel, ξðtÞ, can be reconstructed directly from
the observed trajectories [34]. TheLaplace transformof ξðtÞ,
ξ̂ðsÞ ¼

R

∞

0
ξðtÞe−stdt, is close to a constant, ξ̂ðsÞ ¼ ξ0, in the

experimentally accessible frequency range [Fig. 5(d)],
which means that ξðtÞ is well approximated by a delta
function, andFfr is simply proportional to the instantaneous
velocity,Ffr ¼ −ξ0 _x, providing direct evidence for diffusive
dynamics. Moreover, the resulting estimate of D based on

the Einstein relation, D ¼ kBT=ξ0, agrees with the values
from the mean square displacement and the position
correlation function (Supplemental Material [16], Fig. 3).
Finally, we quantified the average shape of the TPs

[35,36,38] [Fig. 5(e)] and the transition-path velocity
profile [33], vTPðxÞ [Fig. 5(f)], which characterizes the
dynamics of barrier crossing in terms of the time derivative
of the average shape. Consistent with the model of diffusive
crossing of a parabolic barrier, these profiles are monotonic
functions of the coordinate with a minimum at the barrier
top [35,38,39].
In summary, high-speed tracking of dielectric particles in

a bistable optical trap thus provides the opportunity to
resolve TPs of a diffusive barrier crossing process with
great precision and to quantify their properties in unprec-
edented detail. A key strength of the approach is that the
parameters determining the dynamics—the 3D shape of the

FIG. 4. Transition path time distributions for different barrier
heights. (a) Examples of TP time distributions from measure-
ments of individual particles (barrier heights given in each panel).
Experimentally determined distributions (gray) are compared to
3D Brownian dynamics simulations (red), the numerical solution
for 1D diffusion in the potential (blue) [31], and the analytical
approximation for a parabolic barrier (black) [32]. (b) Mean-
squared-distance (χ2) between experimental and theoretical TP
time distributions, divided into low (ΔG� < 2kbT), intermediate
(2kbT < ΔG� < 3kbT), and high (ΔG� > 3kbT) barrier heights
ΔG� (averaged in both directions). (Symbols: individual mea-
surements; solid line: average; rectangles: standard deviation of
mean-squared-distance; N: number of distributions, each from an
individual particle, contributing to each class.)

FIG. 5. Detailed information on transition paths. The dynamics
of dielectric particles in a bistable optical trap provides a wide
range of information and direct comparison to theory, including
(a) transition rates from dwell-time distributions, (b) distributions
of TP times, (c) the Markovianity of the process [33], (d) the
friction memory kernel [Eq. (10) in Ref. [34] ], (e) the average
shape of the TPs (circles: experiment, lines: theory; red and blue:
average first and last crossing times [35], gray: average TP shape
[Eq. (4) in Ref. [36] ]. Interestingly, the average TP is nearly
indistinguishable from the most probable TP [37] estimated using
the harmonic approximation [Eq. (6) in Ref. [38] ], dashed black
line. (f) The transition-path velocity as defined in Ref. [39]
[Eq. (5)] (black symbols) compared with the theoretical pre-
diction [red line, Eq. (17) in Ref. [39] ]. See main text and the
Supplemental Material [16] for details and equations.
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potential and the diffusion coefficient of the particle—can
be extracted directly from the experimental data, essentially
without simplifying assumptions. The results thus offer a
stringent experimental benchmark for the theoretical con-
cepts used in the investigation of TPs [3,6–14]. Given that
applying a broad range of analysis tools to our experimental
model system allowed us to correctly recover details of its
underlying dynamics without making any prior assump-
tions regarding, e.g., the validity of the Kramers picture, our
results are very encouraging for the field of single-molecule
biophysics, as we expect that the same approach can be
used to infer accurate models of barrier crossing dynamics
directly from biomolecular transition paths. Experiments of
this type and their analysis may help to address challenging
open questions regarding TPs, such as the discrepancy
between barrier heights using different types of analysis
[9], or the observation of TP velocity profiles with a
maximum instead of a minimum [40].
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