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Abstract
To improve the scalability, several many-core architectures use message passing

instead of shared memory accesses for communication. Unfortunately, Direct

Memory Access (DMA) transfers in a shared address space are usually used to

emulate message passing, which entails a lot of overhead and thwarts the advan-

tages of message passing. Recently proposed register-level message passing alter-

natives use special instructions to send the contents of a single register to another

core. The reduced communication overhead and architectural simplicity lead to

good many-core scalability. After investigating several other approaches in terms of

hardware complexity and throughput overhead, we recommend a small instruction

set extension to enable register-level message passing at minimal hardware costs

and describe its integration into a classical five stage RISC-V pipeline.

Keywords NoC � Message passing � ISA extension

1 Introduction

Message passing is a promising technique to achieve better scalability of multi- and

many-cores [10]. Although there are several approaches to use message passing in

many-core architectures [2, 8, 13, 21], none of them endangered the dominance of

shared memory multi-cores. We believe that message passing is not integrated with

sufficient rigour into the microarchitecture for its advantages to come to light.
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In fact, there are many architectures where a Network on Chip (NoC) is used to

connect the cores, but mostly it is only used to connect the processing cores with a

shared memory controller [18]. If message passing is supported by hardware,

memory accesses to a shared address space are usually used to transmit messages.

For example, one of the first message passing many-cores, the Intel Single-chip

Cloud Computer (SCC) [13], provides so-called Message Passing Buffers (MPBs),

small scratchpad memories tightly coupled to each core, that can be accessed by all

other cores via the NoC. To send a message, the sender writes the message to the

MPB of the receiver and notifies the receiver via a separate mechanism that a

message has arrived. Subsequently, the receiver reads the message from its MPB.

The distant read and write accesses to the MPB are translated to messages for the

NoC, thus the original messages are actually transmitted via the NoC. However, the

intermediate translation to memory accesses creates overhead and finally the MPBs

form a kind of shared memory, which – depending on the implementation – may

cause a bottleneck.

To reduce the vast overhead of shared buffer based message passing, customized

instructions to send and receive messages at register-level can be used. Such a

technique is used by the Sunway SW26010 processor [25], building block of the

Sunway TaihuLight, as of November 2019 the third fastest supercomputer in the

world [20]. We adopt this idea but use different instructions for minimal hardware

costs. Our contributions are:

– A set of instructions to enable message passing at register-level, called Pipeline
Integrated Message Passing (PIMP).

– Cheap integration of these instructions into a classical processor pipeline.

– An FPGA prototype and cycle-accurate simulator.

– An implementation of a subset of the MPI library to port applications to the

prototype.

– A comparison with other message passing many-cores.

This paper is an extension of [16] with broader related work, evaluation and details

on the MPI implementation. The rest of the paper is organized as follows: the next

section discusses related work, Sect. 3 explains the design decisions and details of

the microarchitecture. After a comparison with other approaches in Sect. 4, Sect. 5

concludes the paper.

2 Architectural Support for Message Passing

2.1 Shared Memory Interface

Any multi-core with shared memory can support message passing when the sender

writes the message to a shared memory location and the receiver reads it.

However, two memory accesses require two expensive transmissions over the

interconnect that connects the cores with the shared memory. Therefore, current

many-cores with message passing support have tightly coupled scratchpad

memories for every core that are designated to store messages. They are called
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Message Passing Buffers (MPBs) and since the sender can directly write to its MPB,

a transmission via the interconnect is only necessary when the receiver reads the

message from the MPB of the sender (see Fig. 1). This pull policy enables cheap

broadcast messages, because the sender has to write the message only once.

Alternatively, the sender writes the message to the MPB of the receiver, when the

push policy is applied (illustrated in Fig. 1). This has the advantage that only one

message (store address and data from sender to receiver) has to be sent via the NoC,

while the pull policy requires two messages (address from receiver to sender, data

from sender to receiver).

Three factors complicate message passing via MPBs:

1. Every potential communication channel requires its distinct fraction of the MPB

memory, no matter if the MPB is used for distant writing (push) or distant

reading (pull). If the messages are too long or there are too many communi-

cation partners, messages must be split into multiple shorter messages to not

exceed the maximum size of the MPB.

2. MPB memory can only be reused after the message was completely copied by

the receiver.

3. The receiver must be notified when a message has arrived.

Consequently, MPB memory must be managed and reading and writing the MPB

must be synchronized by additional signaling: the sender must not write to the MPB

before the receiver has read the previous message and the receiver must not read the

MPB before the sender has written the message to it (see Fig. 1).

Notifying the receiver when a message has arrived is a big problem, when only

shared memory is available for inter-core communication. The receiver has to poll a

memory location. Either separate flags [13] or a flag that is appended to the message

[21] can be used to monitor if the message transmission is completed. Either way,
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Fig. 1 Communication for passing one message via shared memory

123

International Journal of Parallel Programming



the notification costs at least one additional transmission and a lot of unnecessary

memory reads at the receiver.

To further speed up the message passing, Direct Memory Access (DMA)

controllers can be used to perform the memory transfer in the background, while the

core pipeline can continue with useful computations. The majority of current

message passing many-cores use this technique (e.g. Kalray MPPA [3], T-CREST

[21], CompSoC [8]).

Although message-passing architectures based on shared memory are the most

common choice, they suffer from limited MPB and message size, additional

signaling and complicated notification. PIMP addresses these problems by

providing an unlimited sequence of small messages, no additional signaling and a

tightly integrated notification mechanism.

2.2 Register Level Interface for Long Messages

Alternatively, the message passing interface can be directly integrated into the

instruction set. The Raw microprocessor [22] uses a register mapped interface that is

tailored to the underlying packet switching network protocol. Each core has 4

registers that are dedicated to the 4 independent NoCs of the Raw chip. To send a

message, the length and destination of the message are written at once into the

register (cf. the head flit of a network packet). By subsequent writes to the register

the message payload (cf. body flits) is transferred to the network controller. The

target core receives the message payload by reading the dedicated register. One

drawback of this interface is that the receiver cannot determine the sender of a

message. Therefore the communication channels must be clearly specified and

distinct, or the message body must contain an additional sender id. Another

drawback is the overhead for the message header. For longer messages it is not a

problem, but short messages of only one word require two writes to the network

interface.

The Tilera architecture [2] is the commercial successor of the Raw architecture

and provides the same message passing interface, but there are multiple registers for

receiving a message in order to receive up to 4 messages concurrently. Additionally,

two of the Tilera NoCs are used for a cache-coherent shared memory protocol,

hence shared memory based message passing is also possible.

Using register mapping as network interface is elegant, but reduces the number of

available registers and increases the pressure on the remaining register set.

Therefore, specialized instructions to send and receive messages are common. Such

instructions are provided by the Transputer [9]. The out instruction sends a message

and has 3 operands: the length of the message, the destination node and the local

memory address where the message is stored. The in instruction has the same

operands, but receives the specified number of bytes from the network and stores it

at the specified address in the local memory. This technique is similar to DMA

memory transfers for message passing, but it is blocking both participating nodes

until the transfer is complete. Additionally there are two instructions to send a single

byte or a single word, but none for receiving short messages. A Transputer node is
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able to determine the sender of a message, but the overhead for word-size messages

is very high.

In Table 1 the multi-word register level interfaces are summarized. They are

optimized to operate with packet based network routers, but for short messages the

overhead in terms of network bandwidth and communication latency is high. With

PIMP long messages are simply split into a sequence of short messages.

2.3 Interface for Short Messages

In the picoArray architecture [4] the channels between cores are defined at compile

time, but there are blocking instructions to send a single data word (32 bits) over a

specified channel (put) and to receive a single data word from a specified channel

(get). Blocked communication is bad for overlapping of computation and

communication, therefore picoArray offers the additional tstport instruction that

checks if a message can be sent (for an outgoing channel) or a message has arrived

(for an incoming channel). By executing tstport and a branch before put or get,
blocking can be avoided and the waiting time can be used for computations.

A very similar instruction based interface is used by the Sunway SW26010

processor [25], but its topology is a real NoC where any node can communicate with

any other node. The send instruction has two operands: the destination and a data

word. Consequently, only short messages of the size of one data word (64 bit) are

transmitted. When a message has arrived, the receive instruction fetches it from the

network controller and writes the data word to one register and the sender’s node

number to another register. Non-blocking receive is provided by the receive_test
instruction that is similar to the receive instruction, but writes a special value into

the sender node register instead of blocking the pipeline. Non-blocking sending is

not possible. From a user perspective, the interface of Sunway is easy-to-use and

cleaner than PIMP. But its implementation is costly (stall mechanism, double

register write) and not as flexible (only blocking send) as PIMP.

Writing two registers by one instruction is uncommon in RISC architectures and

requires additional data paths in the pipeline. Therefore the RC/MC architecture

Table 1 Sample code snippets to compare the message passing interfaces for multi-word messages

Raw Tilera Transputer

Send ihdr $cgno, Node, Length move udn0,NodeAndLength ldc Addr

lw $cgno, 0(Addr) move udn0, Word0 ldc Channel

lw $cgno, 4(Addr) move udn0, Word1 ldc Length

... ... out

Receive sw $cgni, 0(Addr) move r1, udn0 ldc Addr

sw $cgni, 4(Addr) move r2, udn0 ldc Channel

... ... ldc Length

in
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[15] uses a different recv instruction: the register of the sender operand is not

written, but read. Thus, a data word from a specific sender is read. If there is none

available yet, it blocks. To receive a message from an arbitrary node, the any
instruction must be executed in advance to determine the sender of the oldest

received message.

The send instruction is in fact identical to the Sunway instruction and there are

two further instructions for non-blocking communication, because send, any and

recv are blocking. probe checks if a message from a specific node has arrived and

cong tests if a message can be sent.

The RC/MC interface is the most general one. Long messages can be formed by

serial short messages, because they are delivered in order; sending and receiving can

be blocking or non-blocking; and messages need not be received in order of the

arrival but can be picked individually by sender id. However, in particular the last

feature is very costly in terms of hardware. The receive buffer is no longer a simple

FIFO buffer, additional circuitry is needed to find a sender id in the middle of the

buffer and remove it there. Consequently, the receive buffer is larger than the in-

order processor pipeline [15]. PIMP uses a relatively cheap FIFO receive buffer

instead.

Only recently, a minimal network interface for S4NOC [17] was published that is

very similar to PIMP. It also uses a send and receive FIFO and polling to avoid

overflows. Unlike PIMP it uses a memory mapped interface, no specialised

instructions. Therefore the latency for transferring a message from the pipeline to

the router is some cycles longer. Nevertheless, the findings of this paper also apply

to the S4NOC interface.

PIMP can be seen as a combination of the low latency interface of RC/MC and

the low hardware costs of S4NOC’s minimal interface. An overview of the

similarities and differences between the word-size message passing interfaces is

given in Table 2.

3 Pipeline Integrated Message Passing

The PIMP interface was created to allow very fast message passing of short

messages. Non-blocking primitives allow overlapping of waiting times with

computation and the hardware costs are very low.

3.1 Instruction Set Extension

The Message Passing Interface (MPI) [14] is the de-facto standard for writing

message passing applications. Therefore, we studied implementations of several

MPI library functions to find an optimal register level message passing interface. In

the MPI programming model, a function typically waits for messages from specific

nodes in a specific order. The messages do not arrive in this order but have to be

buffered until the sequential operation of a function requires it.

At first glance, the RC/MC specific receive instruction seems ideal for

implementing MPI. The library programmer does not need to care about the
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message order, he just fetches messages from the network interface controller (NIC)

in the order that is best for processing them. The NIC buffers messages that arrived

too early and stalls the processor pipeline, when the required message has not yet

arrived. However, in our experiments we observed that the actual message sequence

differs significantly from the expected sequence. Thus, many messages have to be

buffered, in particular when the number of participating cores increases.

Unfortunately, the costs of the special receive buffer are high and grow

quadratically. An alternative would be to have a separate FIFO for every sender, but

for 64 or more cores the hardware costs are also much too high. Dynamically

assigning a small number of FIFOs is also not possible, because if there are not

enough FIFOs, what should be done with messages from further cores? Dropping

them is not possible. Either way, there is no alternative to buffering the messages by

software. Maybe, some hardware extensions could speed up the buffering, but they

will not make a software solution redundant.

Since the specific receive feature of RC/MC cannot replace software-sided

message buffering, we discarded this idea and instead use a receive mechanism

similar to the Sunway receive instruction: a simple FIFO buffer and a recv
instruction that dequeues sender and payload at once. But to avoid writing two

registers with one instruction, the recv instruction only returns the payload data

Table 2 Comparison of single word register-level message passing interfaces

blocking non-blocking blocking non-blocking

send send receive receive

Transputer outw Port, Word n/a n/a n/a

outb Port, Byte

picoArray put Word, Port n/a get Port, W n/a

Sunway send Word, Node n/a receive W, N recv_test W, N

beq W, NotReady

RC/MC send Word, Node cong t0 any N any N

bnez t0,NotReady bltz N, Loop bltz N, NotReady

send Node, Word recv W, N recv W, N

S4NOC1 la a0, S4NOC_BASEADDR la a0, S4NOC_BASEADDR

Loop: lb t0,TX_FREE(a0) Loop: lb t0,RX_READY(a0)

beqz Loop / NotReady beqz Loop / NotReady

add t0,a0, Node lw Node,IN_SLOT(t0)

sw Word,(t0) lw Word,IN_DATA(t0)

PIMP bns self bns NotReady bnr self bnr NotReady

send Node, Word send Node, Word src Node src Node

recv Word recv Word

Instead of the unusual PATMOS assembly language, RISC-V assembly is used. Blocking and non-

blocking implementations only differ in the target label Loop or NotReady

Italic operands are registers that are written
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word. If the sender of a message should be determined, the src instruction must be

executed before the recv instruction. The src instruction reads the sender’s id from

the head of the FIFO, but does not dequeue this element. Dequeuing is restricted to

the recv instruction.

The send instruction is identical to implementations in Sunway and RC/MC: two

operands, one for the target and one for the payload data. But in contrast to the other

implementations, all three instructions (src, recv and send) are non-blocking. If the

receive buffer is empty or the send buffer is full, the instruction’s behaviour is

undefined. This simplifies the hardware, but to avoid the undefined behaviour, the

buffer state must be checked in advance.

Instead of transferring the buffer state to a register and then checking the value of

the register, we provide branch instructions for checking the buffers. The brs
(branch if ready to send) instruction branches, if the send buffer is not full and bar
(branch if any message received) instruction branches, if the receive buffer is not

empty. Integrating these instructions into the processor pipeline is very cheap,

because the multiplexer in the branch unit is only extended by two signals from the

send (buffer full) and the receive buffer (buffer empty) and the decode stage must

set the select signal for the multiplexer accordingly.

The inverse branches bns (branch if not ready to send) and bnr (branch if nothing

received) can be used to emulate blocking send and receive instructions. Table 3

summarizes the PIMP instructions. As shown in last column of Table 2, self-

referential branches are put directly before the non-blocking instructions. In an

energy-optimized implementation, the self-referential bnr branch can be detected

and used to suspend the core as long as no message arrives.

3.2 Pipeline Integration

Both the Sunway and the RC/MC processor have customized NoCs, optimized for

fast single-word transfers. Nevertheless, any NoC that is able to send word-size

messages and that guarantees that messages arrive in the same order as they were

injected, can be used with PIMP. Preserving the message sequence is required to be

able to send data packages that are longer than one word.

Table 3 PIMP instruction set extension

Instruction Operands Description

src reg Get sender of next message

recv reg Get payload of next message and remove it from FIFO

send node, msg Send msg to node

brs label Branch if ready to send

bns label Branch if not ready to send

bar label Branch if any message received

bnr label Branch if nothing received
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Two ordinary FIFOs connect the core pipeline with the NoC router. The send

FIFO buffers messages from the pipeline to the router while the receive FIFO

buffers messages from the router to the pipeline. Thus, NoC and core are decoupled

and can be driven with different clock rates to save energy or cores can be

completely power gated.

As shown in Fig. 2, the FIFOs are connected by four signals each. The full and
empty signals are multiplexed with the output of the branch unit, while the node and
data outputs of the receive FIFO are multiplexed with the ALU result. The node and
data inputs of the send FIFO are hardwired to the operand outputs of the register set.

If the multiplexers are really inserted after the ALU and after the branch unit, this

might prolong the critical path and decrease the clock rate. However, the signals

from the FIFOs are stable very early within the cycle and therefore the multiplexers

can be integrated into the ALU and the branch unit without affecting the critical

path.

All remaining modifications only affect the decode stage, which must be

extended to demultiplex the additional instructions. For the branch instructions,

additional select signals to the multiplexer after the branch unit are necessary. The

send instruction asserts an exception if the full signal is high, otherwise it asserts the
enqueue signal to write to the send FIFO. An exception is also raised when empty is
high and a src or recv instruction is recognized. Otherwise src selects node and recv

selects data in the multiplexer after the ALU. Only recv asserts the dequeue signal

to remove the last entry in the receive FIFO.

enqueue

dequeue

src1

src2

send
FIFO

•

no
de

•

da
ta

full receive
FIFO

no
de

da
ta

em
pt
y

ALU

result

selResult

branch unit

branch

selBranch

Fig. 2 Integration of the send and receive FIFOs into the execute stage of a RISC pipeline
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3.3 MPI Implementation

As mentioned earlier, the MPI programming model assumes that messages arrive in

a specific order, given by the sequential order of the MPI program. However, in

parallel systems the execution time of single processes can vary a lot and there is a

lot of interference between processes and messages. Consequently, there is no

guarantee that messages arrive in the desired order. Contemporary MPI implemen-

tations therefore use large buffers for messages that arrive too early [7]. Although

that is a good solution for multi-processor and multi-core systems where memory is

barely limited, in many-core architectures with only small local memories this is not

an option.

Synchronization by a simple handshake is used instead. Each process of an MPI

program consists of a sequence of MPI operations and at every point of time it is

clearly defined with which other processes it communicates and if it is sender or

receiver. Given this condition, the receiving node sends a message to the sender to

notify that it is ready for receiving. The sending node waits for this ready

notification and then starts the data transfer. A detailed discussion of this

synchronization mechanism can be found in [5, 6].

This handshake avoids that data transfers interfere, however ready notifications

from other nodes still may interrupt the receiving of a data stream. This has to be

taken into account when implementing MPI functions. Figure 3 shows the assembly

code for sending and receiving messages. The two subroutines are not full

implementations of MPI_Send and MP_Receive. The parameters communicator,

tag and status were omitted to focus on the transfer algorithm.

The only required data structure is an array that holds a flag for every other node

if it is ready for receiving or not. The receive routine starts with sending a notify

message to the sender. To send the message, the node has to wait until the network

interface is ready. This is done by a self-referential bns instruction. Then the

message (with arbitrary payload) is transferred to the network interface (NI) with

send. In the main receive loop, the node waits for the next incoming message with a

self-referential bnr. Afterwards, it reads the source node with src and the payload

with recv. If the source of the message is from the expected sender of the ongoing

long message transfer, the payload is written to memory. If the message is from

another node, the source node is marked in the ready array and its payload is

ignored. The loop continues until all data words are received.

The send routine first checks, if the ready message from the target node has

already been received by reading the ready state from the array. If it is ready, the

handshake step is skipped. If not, messages are received until the sender is the target

node. For all incoming messages, the payload is ignored but the sender is marked as

ready in the array. After the handshake, the ready mark of the receiver is cleared and

the transmission begins. The transmission is a loop over all data words, the message

consists of. For every word, bns is used to wait until the network interface is ready.

Then the data word is loaded from memory and written to the network interface by

send.
The handshake mechanism can also be used to implement collective MPI

operations like gather, scatter, broadcast or reduce. The root node that scatters the
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data to the other nodes has a counter for every receiving node. Initialized to - 1 the

counter indicates that the node is not yet ready for receiving. When the notify

message of the specific node arrives, the counter is set to 0 and from then on

indicates which word has to be sent next. Thus, the communications are independent

from each other and can be overlapped. For gathering data, the root node sends

ready notifications to all other nodes. Similar counters are used to keep track of how

many flits have arrived from which node.

The PIMP interface allows even more asynchronous messages, for example

signals from a managing core that interrupts the current data transfer. The receive

loop can check the sending node of each flit and branch to an exception handler if it

recognizes the management core. However, such highly asynchronous communi-

cation patterns are beyond the scope of this paper.

4 Evaluation

The source code of the FPGA models, simulators and benchmarks is available at

https://github.com/unia-sik/rcmc/.

# recv_long()
# a0 = sender node
# a1 = length in bytes
# a2 = pointer to content

recv_long:
bns recv_long
li t2, 1
send a0, t2

recv_loop:
bnr recv_loop
src t0
recv t1
bne t0, a0, other_node

sd t1, 0(a2)
add a1, a1, -8
add a2, a2, 8
bgt a1, zero, recv_loop
ret

other_node:
sb t2, ready(t0)
j recv_loop

ready: .space MAX_NODES

# send_long()
# a0 = target node
# a1 = length in bytes
# a2 = pointer to content

send_long:
lb t0, ready(a0)
bnez t0, begin_send

handshake:
bnr handshake
src t0
recv t1
li t2, 1
sb t2, ready(t0)
bne t0, a0, handshake

begin_send:
sb zero, ready(a0)

send_loop:
bns send_loop
ld t0, 0(a2)
send a0, t0
add a1, a1, -8
add a2, a2, 8
bgt a1, zero, send_loop
ret

Fig. 3 RISC-V assembly code for receiving and sending long messages of arbitrary length
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4.1 FPGA Hardware Costs

We implemented a many-core with PIMP interface in VHDL and synthesized an

FPGA prototype. The VHDL code is based on the freely available VHDL model of

RC/MC [15]. The cores are similar to the RISC-V Rocket core [11]: a classical five

stage in-order RISC pipeline that implements the RISC-V RV64I [24] instruction

set (only integer arithmetic, no floating point support). Each core has its own private

scratchpad memory. The lightweight NoC of RC/MC connects the cores. It is called

PaterNoster and supports word-size messages, as well as longer messages consisting

of multiple shorter messages that are delivered in order [15].

To compare the hardware costs, two prototypes with 4x4 cores and 64 KiByte

scratchpad memory per core were built: one with RC/MC interface and one with

PIMP interface. The send buffer has 8 entries and the receive buffer 16. For

comparison, we also synthesized an additional RC/MC prototype (RC/MC32) with a

larger receive buffer of 32 entries and a single RC/MC core without a network

interface. All prototypes were synthesized for an Altera Stratix IV E FPGA and the

resource usage of a core was determined by averaging over all 16 cores.

Table 4 shows the logic utilization in terms of ALMs,1 single bit flip-flops (FF)

and on-chip block RAM bits (BR). The memory bits for the scratchpad (512 KiBit)

are always the same and not included in the table.

The logic utilization of the pipeline is roughly 10% higher for RC/MC and PIMP,

compared to the single core without network interface. The difference between RC/

MC and PIMP is so low that typical fluctuations between different synthesis runs

may be higher. But the receive buffer makes a big difference: due to the complex

organization in RC/MC, it cannot be mapped to block memory and therefore utilizes

many ALMs and flip-flops. Even worse, the ALM and flip-flop utilization grows

rapidly when increasing the receive buffer size, which can be seen when RC/MC

and RC/MC32 are compared. By contrast, the PIMP receive FIFO can be mapped to

block memory and only utilizes a few ALMs to manage the head and tail of the

FIFO buffer. Increasing its size only requires more block memory and a few

additional ALMs due to the wider index to address the entries.

Table 4 FPGA utilization of synthesized cores

Pipeline Send buffer Receive buffer Router

ALM FF BR ALM FF BR ALM FF BR ALM FF BR

RC/MC32 2035 1551 4096 8 6 544 2810 2284 0 1029 1326 0

RC/MC 2041 1551 4096 8 6 544 1940 1193 0 1094 1333 0

PIMP 1984 1551 4096 8 6 544 8 8 1088 1120 1324 0

Without NI 1825 1549 4096 0 0 0 0 0 0 0 0 0

1 Altera uses the term Adaptive Logic Module (ALM) for their elementary logic block, basically a lookup

table with 6 inputs and 2 outputs (6-LUT). One ALM is equivalent to approximately 2.5 lookup

tables with 4 inputs and 1 output (4-LUT) [12].
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4.2 Experimental Setup

The FPGA prototype is very limited in the number of cores, available memory per

core and lacks floating point support. Therefore we used the simulator of RC/MC

[15] to compare the performance of PIMP. Since we are only interested in the

message passing communication throughput, we did not model the cache hierarchy

but instead assumed that all memory can be accessed within one cycle, just like in

the FPGA prototype.

The modifications for PIMP compared to RC/MC are small and so are the

differences in the execution time of applications. For blocking send and receive,

PIMP requires one more instruction and thus one more cycle even when there is no

stall.

In cases where RC/MC stalls, PIMP waits via a self-referencing branch. This

leads to waiting times of multiples of three cycles. On average, PIMP waits one

cycle longer than RC/MC. But when the non-blocking capabilities are used, PIMP

requires only one branch and no comparison to detect a blocking situation.

Altogether, these differences are so small that they vanish in the noise of the

network communication. At the scale of the diagrams presented here, the PIMP and

RC/MC results are identical, therefore the performance numbers for RC/MC are not

presented separately. Due to similar performance but significantly lower hardware

costs of PIMP compared to the RC/MC interface, PIMP will replace the previous

interface for future research on the RC/MC platform.

To model MPB based message passing, we recreated an architecture similar to

the Intel SCC [13], but with RISC-V ISA. We choose the SCC architecture for

comparison, because its architecture is very similar to many recently presented

message passing many-cores [3, 8, 21] and its architectural details are well

documented. Furthermore, since our MPB architecture is so close to the SCC

architecture, only small adaptions were necessary to use RCCE [23], the lightweight

message passing library of SCC. It is a subset of MPI optimized for on-chip

networks. By using a third-party library, we avoid biased results due to less effort on

optimizing the competing architecture.

The SCC consists of 24 tiles that are connected by a packet switching NoC with a

flit size of 128 bits. Each tile has two cores and 16 KiB of MPB, 8 KiB for each

core. Accessing the MPB takes 15 cycles, but it is cached by the L1 data cache with

a cache line size of 32 bytes. The cores are dual issue in-order P54C cores. Our

MPB many-core is built on single issue in-order RISC-V cores with 8 KiB MPB

each. However, each core has its own connection to the NoC to avoid an artificial

bottleneck and the MPB access latency is one cycle.

Remote MPBs are accessed via the NoC at cache line granularity, hence a

response message has a payload of 32 bytes or two flits in the SCC architecture. Our

MPB many-core also uses 128 bit flits, while the PIMP implementation uses only 64

bit flits. But the same PaterNoster NoC of RC/MC is used for both MPB and PIMP.

It is optimized for word-size messages, but this is not a bias towards PIMP, because

longer message are split into word-size messages without overhead. Multiple back-

to-back flits have the same latency as a wormhole switched packet of the same size.
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4.3 Microbenchmarks

In the first experiment we measured the time it takes to send a message to another

node and back to the original sender. Figure 4 shows this round trip time depending

on the length of the message. Although transportation times in the NoC are

subtracted, the MPB messages need much more time for a round trip. If the message

size is 8 bytes or shorter, PIMP requires 139 cycles, while MPB needs 1218 cycles.

Each additional 64-bit word takes 18 cycles for PIMP and 33 cycles with MPB.

Furthermore, it takes an extra 1000 cycles with MPB if the message is not a multiple

of the cache line size (32 bytes).

The same effect can also be seen when a message is broadcasted to all nodes

(Fig. 5). Additionally, the number of participating threads has an important

influence. The duration of a broadcast operation is directly proportional to the

number of nodes, if the number of nodes is doubled, the time for a broadcast

doubles, too.

The duration of a barrier was measured by delaying a random thread for a

random number of cycles, while the other threads already reached the barrier. After

this first round, another thread waits a random time before it enters the barrier. After

1000 rounds the total delays are subtracted and the duration is divided by the

number of rounds. As presented in Fig. 6, the time a barrier takes grows linearly

with the number of participating threads. However, the initial overhead with two

threads is much higher for MPB (317 against 83 cycles) and it grows faster (120

against 9 cycles/thread).

The alltoall collective communication pattern is not supported by RCCE, but we

implemented it using basic send and receive functions of RCCE. Its communication

grows quadratically with the number of threads and so does the execution time of

the function (Fig. 7). Again, the overhead of MPB is much higher and grows faster

than for PIMP.

But PIMP is not always better. Although the reduce operation for single words is

faster with PIMP, if more than one word per node is involved, the MPB interface is

faster (Fig. 8). The reason for that is the asymmetry of the communication: all nodes

send data to one single node that computes the reduce operation. Since the MPB is

40 times larger than the PIMP receive buffer, the overlapping of communication and

computation is better and results in significantly faster execution with MPBs.

The allreduce operation can be seen as a combination of a reduce operation and a

subsequent broadcast of the result. It is implemented in this way in the RCCE

library and hence the good performance of the reduce is diminished by the bad

performance of the broadcast (Fig. 9). Nevertheless, MPB is still faster for messages

larger than 64 bytes, but the difference is not very large.

Having said that, there are more sophisticated implementations of allreduce

available [19]. For example, if the thread number is a power of two, recursive

doubling can be used. With recursive doubling, the bottleneck of one thread that

computes the reduction is avoided by spreading the computation over all threads and

exchanging messages in an logarithmic way. We implemented this variation with

basic RCCE send and receive operations and experienced that this implementation

is much faster than the naive RCCE implementation for both MPB and PIMP. As
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shown in Fig. 10, PIMP benefits from recursive doubling even more than MPB,

resulting in a lower execution time for PIMP.

4.4 Real Workloads

In addition, the performance of MPB and PIMP was compared using benchmarks

that allow a more realistic evaluation of the performance gain of PIMP. We used

some benchmarks from the NAS parallel benchmark suite [1] and problem size A.

The benchmarks BT and LU are also part of the RCCE source code distribution and

we could directly use these ports to RCCE. Figure 11 shows the execution time of

MPB relatively to the execution time with PIMP. The number appended to the
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benchmark name indicates the number of threads. The overhead of MPB increases

with growing thread number, but on average it is about 2%.

We ported two additional benchmarks from the NAS parallel benchmark suite.

CG had to be translated from FORTRAN to C and then the MPI primitives had to be

replaced by their RCCE counterparts. IS is already available in C, but it uses the

alltoall MPI primitives, which are not available in RCCE. Therefore we

implemented them with simple send and receive operations. In Fig. 12 the MPB

execution time is again divided by the PIMP execution time to show the relative

overhead.

The MPB overhead for CG is bigger than for BT or LU, up to 23%. A detailed

analysis of CG reveals that it consists of many single send and receive operations,

but they are used to implement allreduce in the recursive doubling variation. That is

the reason for the bigger overhead than in BT or LU, where only explicit send and

receive operations and reduce operations in the centralized implementation can be

found. IS is dominated by its alltoall communication, which results in a large MPB

overhead that grows with the number of threads at the same time.
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5 Conclusion

Pipeline Integrated Message Passing (PIMP) is an alternative message passing

interface for on-chip communication. In contrast to many other message passing

many-cores it does not use memory accesses to transfer messages, but offers

particular instructions to directly send and receive word-size messages. In doing so,

a lot of the overhead of memory access based message passing can be avoided.

Under most circumstances, PIMP is faster than memory based message passing,

especially if real workloads are considered and if the number of nodes is high.

PIMP was integrated into the FPGA model of a classical single issue RISC

pipeline to show the small hardware costs compared with other register-level

message passing architectures. Directly using branch instructions to check the send

and receive buffer allows very efficient non-blocking communication.

Due to its low hardware costs PIMP is suitable for embedded systems, but

beyond that its scalability may also be useful in massively parallel computing. An

impressive indication for such a high performance application is the very similar

architecture inside the Sunway TaihuLight, one of the fastest supercomputers on

earth.
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