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Abstract. This paper presents Centre-based hard clustering approaches for clustering Y-STR data.  Two 

classical partitioning techniques: Centroid-based partitioning technique and Representative object-based 

partitioning technique are evaluated.  The k-Means and the k-Modes algorithms are the fundamental 

algorithms for the centroid-based partitioning technique, whereas the k-Medoids is a representative object-

based partitioning technique.  The three algorithms above are experimented and evaluated in partitioning 

Y-STR haplogroups and Y-STR Surname data.  The overall results show that the centroid-based 

partitioning technique is better than the representative object-based partitioning technique in clustering Y-

STR data.   
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1. Introduction 

Centre-based clustering algorithms are very efficient especially for clustering large databases 

and high-dimensional databases (Gan et al. 2007).  The pillar of the Centre-based clustering 

algorithm is k-Means clustering algorithm introduced at almost three decade ago by Macqueen 

(1967).  The k-Means paradigm depends an initial k, in which known as a priori, utilizes means as 

a mechanism to update centroids and normally opts Euclidean distance as the dissimilarity 

measure.  As consequent, the k-Means paradigm has been extended significantly regardless the 

types of data.  For examples, k-Modes algorithm proposed by Huang (1998) that handled 

specifically categorical data used also k-Means paradigm. Huang (1998) also introduced k-

Prototypes algorithm that combined k-Means and k-Modes algorithms for mixed data types.  The 

paradigm is also extended by Kaufman & Rousseeuw (1987) when they introduced the idea of k-

Mediods algorithm or Partitioning Around Medioids (PAM).  

 

Further, a lot of extended k-Means paradigm have been introduced such as Continuous k-

Means algorithm (Faber, 1994), Compare-means algorithm (Philips, 2002), fuzzy covariance 

clustering (Gustafson and Kessel, 1979) and Fuzzy c-Elliptotypes algorithm (Bezdek, 1981).  This 

includes also the variation of k-Modes algorithms such as k-Modes with new dissimilarity 

measures by He et al. (2007) and Ng et al. (2007), k-Population (Kim et al. 2007), a new fuzzy k-

Modes proposed by Ng & Jing (2009).  For k-Medoids, the main extended versions are Clustering 

LARGE Applications (CLARA) by Kaufman & Rousseeuw (1990) and Clustering Large 

Applications based upon Randomized Search (CLARANS) by Ng & Han (1994). 
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However, in clustering approaches, there is no effort has been observed clustering Y-STR 

data except recently there is one in Centre-based clustering (Ali et al. 2010).  The results show that 

the clustering methods can be used in Y-STR data, in fact the data can be treated in both data 

types: numerical and categorical data.  Thus, the aim of this paper is to investigate the clustering 

performance based on: (1) Centroid-based partitioning technique and (2) Representative Object-

based partitioning technique.  For the centroid-based partitioning technique, the focus is to 

investigate the classical hard k-Means by Macqueen (1967) for numerical Y-STR data and hard k-

Modes by Huang (1998) algorithms for Y-STR categorical data only.  Consequently, the k-

Medoids by Kaufman and Rousseeuw (1987) is chosen for the second technique. The objective of 

the investigation is to fundamentally evaluate the partitioning techniques applied for Y-STR data 

and its performances. 

 

2. Y-STR data and Its Applications 

Y-STR is Short Tandem Repeats on Y-Chromosome. The Y-STR data represents the number 

of times an STR repeats, called allele value for each marker.   If a Y-STR marker, say DYS391, 

the tandem repeats are: [TCTA] [TCTA] [TCTA] [TCTA] [TCTA] [TCTA] [TCTA] [TCTA], thus 

the allele value is counted as eight. This DNA method is now actively used in Anthropological 

Genetics as well as in Genetic Genealogy.  Further, this method is a very promising method to 

support a traditional approach especially in studying human migration patterns and proving 

genealogical relationships.  For further information, the Y-STR used in Anthropology can be 

found in a book called Anthropological Genetics: Theory, Methods and Apllications (2007) and 

for Genetic Genealogy can be found in Fitzpatrick (2005), and Fitzpatrick & Yeiser(2005). 

 

The genetic distance for a person may differ from other by referring the allele values for each 

marker.  If a person shares the same allele value for each marker is considered coming from the 

same ancestor from genealogical perspective. In a broader perspective, for instance in studying 

human migration patterns, it can be under the same haplogroups which includes different 

geographical area throughout the world. The Y-STR data can be grouped into meaningful groups 

based on the distance for each STR marker. For genealogical data such as Y-Surname project, the 

distances are based on 0 or 1 or 2 or 3 mismatches, whereas the haplogroups are determined by a 

method known as Single Nucleotide Polymorphism (SNP) analysis. There are set of very broad 

haplogroups and all males in the world can be placed into a system of defining Y-DNA 

haplogroups by letters A through to T, with further subdivisions using numbers and lower case 

letters.  See International Society of Genetic Genealogy (www.isogg.org).  The haplogroups have 

been established by the Y Chromosome Consortium (YCC).  For further details, see University of 

Arizona (http://ycc.biosci.arizona.edu/).  
 

3. Notation 

Let X ={X1, X2,…, Xn} be set of n Y-STR data and A ={A1,A2,…, Am} be set of 

markers/attributes of Y-STR. We define Aj is the jth attribute values as associated jth marker with 

the actual STR allele value.  We define X is a numerical data if it is treated only as numerical 

values as it is. Note that the Y-STR data are originally a numeric domain as associated with the 

allele values and it is discrete values. We define X is a categorical data if it is treated only as 

categorical values. Note that for each attribute Aj describes a domain values, denoted by DOM(Aj).  

A domain DOM(Aj) is defined as categorical data if it is finite and unordered, e.g., for any a,b є 

DOM(Aj), either a=b or a ≠ b.  Consider the jth  attribute values are: Aj ={10, 10, 11, 11, 12, 13, 

14}, thus the DOM(Aj)={10,11,12,13,14}. We consider every individual has exactly attribute STR 

http://www.isogg.org/
http://ycc.biosci.arizona.edu/
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allele values. If the value of an attribute Aj is missing, then we denote the attribute value of Aj by a 

category є which means empty. Let Xi be individual, represented as [xi,1, xi,2,...,xi,m]. We define Xi 

= Xk , if xi,j = xk,j for 1≤ j ≤ m, where the relation Xi = Xk does not mean that Xi and Xk are the 

same individual because there exist the two individuals have equal STR allele values in attributes 

A1,A2,...,Am. In Y-STR, there exist a lot of cases; individuals share the same STR allele values 

throughout markers but different individuals. 

 

4. Classical Hard Partitioning methods  

Let us suppose that the objective is to partition a Y-STR data set, D consists of n Y-STR 

objects.  A classical hard partitioning method constructs partitions, k that is known as a priori.  

Let X ={X1, X2,… Xn} be set of Y-STR data with set of numeric or categorical attributes A 

={A1,A2,…, Am}. Thus, to partition the Y-STR data, X into k is to minimize the cost function as 

Equation (1).    

 

(1) 

Subject to: 

 

 (2) 

 

 (3) 

and: 

 

 (4) 

where  is a known number of clusters, W is a (k x n) partition matrix, Z = , is the centroids and  is 

a dissimilarity measure between  and . Thus, in the case of hard clustering, the object x can be 

assigned into if and only if one cluster based on the nearest objects belong to the k partitions as 

described in Equation (5).   

 

(5) 

Finally, to achieve global optimality in partition-based clustering, the updating centroids will 

iteratively be enumerated until the objects stop from moving to the other clusters.  Most clustering 

applications utilize one of two popular heuristic methods (Han & Kamber, 2001): (1)  Centroid-

based partitioning techniques (CPT) and; (2) Representative Object-based partitioning technique 
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(ROPT).  Thus, the k-Means algorithm uses the CPT by calculating the mean values of the objects 

in the cluster, whereas the k-Modes algorithm takes the mode values of the objects in the cluster.  

However, the k-Medoids is a ROPT uses one of the objects located near the centre of the cluster as 

the medoid. 

 

 

 
 

4.1 The k-Means Clustering Algorithm 

The k-Means algorithm initializes cluster k and uses means to calculate the distance between 

objects and the k clusters. The distance measure is normally based on Euclidian distance as in 

Equation (6). The algorithm allows recalculation of the means of each cluster of the objects 

belong to it and minimizes the intra cluster dissimilarity.  The updating centroid by the means is 

calculated as in Equation (7).   

 

(6) 

for l =1, 2,…k and j = 1, 2,…,d. 

(7) 

Figure 1.1 describes the k-Means clustering algorithm. 

 

Input: Dataset, D, the number of cluster, k and the number of dimensional, d 
Output: A set of clusters, k 

 
1: Select k initial centroids such that Z={z1, z2…, zk} and zl for cluster l; 
2: repeat 
3:       for i = 1 to n do 
4:             Find a l such that deuc(xi,zl) = min 1≤ t ≤k deuc(xi,zt); 
5:             Allocate xi to cluster l; 
6:             Recompute the cluster means as in Equation (7) if the clusters changed; 
7:       end for 
8: until No objects move 
9: Output results 

 
Figure 1.1: THE k-MEANS CLUSTERING ALGORITHM 

 

4.2 The k-Modes Clustering Algorithm 

 

The k-Modes algorithm is an extension to the k-Means paradigm by focusing on the 

categorical data, maintaining the initial k, replacing the updating centroids by the mode values.  
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Further, the k-Modes algorithm uses a simple matching dissimilarity measure as in Equation (8) 

and (9).  

 

(8) 

where: 

 

(9) 

The k-Modes clustering algorithm utilizes frequency-based method to update modes as in 

Equation (10) and (11).  The algorithm is described in Figure 1.2. 

 

 

(10) 

where  is the mode of attribute values of Aj in cluster Cl  such that 

 

 

(11) 

Figure 1.2 describes the k-modes clustering algorithm. 

 

Input: Dataset, D, the number of cluster, k and the number of dimensional, d 
Output: A set of clusters, k 

 
  1: Select k initial centroids such that Z={z1, z2…, zk} and zl for cluster l; 
  2: for i = 1 to n do 
  3:       Find a l such that dsim(xi,zl) = min 1≤ t ≤k dsim(xi,zt); 
  4:       Allocate xi to cluster l; 
  5:       Update the cluster modes as in Equation (10) and (11); 
  6: end for 
  7: repeat       
  8: for i = 1 to n do 
  9:     Let l0 be the index of the cluster of xi 
10:     Find an l1 such that dsim(xi,zl1) =mindsim(xi,zt); 
11:     if(dsim(xi,zl1) < (dsim(xi,zl0) then 
12:         Reallocate xi to cluster l1; 
13:         Update zl0 and zl1 as in Equation (10) and (11); 
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14:     end if 
15: end for 
16: until No objects move 
17: Output results 

 
Figure 1.2: THE k-MODES CLUSTERING ALGORITHM 

 

4.3 The k-Medoids Clustering Algorithm 

The k-Medoids focuses on the objects in which the most centrally located object in a cluster.  

The basic idea of this algorithm is to find k cluster in n objects by first arbitrarily finding a 

representative object, called the medoids for each cluster.  The next step is to iteratively replace 

one of the mediods by one of the non-medoids as long as the process can improve the clustering 

accuracy.  The swapping technique allows exchange the current medoids, ti and the non-medoids, 

th.  The replacement of new medoids must satisfy the total cost, TCih < 0 as in Equation (12). 

 

(12) 

where  is the cost change for an item tj while swapping medoid, ti with non-medoid, th 

This algorithm normally uses Euclidean distance as described in Equation (6).  The algorithm is 

described in Figure 1.3. 

 

Input: Dataset, D, the number of cluster, k and the number of dimensional, d 
Output: A set of clusters, k 

 
  1: Select k initial objects as the initial clusters; 
  2: repeat 
  3:      for each th not a medoid do 
  4:              for each medoid ti do; 
  5:                   calculate TCih as Equation (12); 
  6:              end for 
  7:       Find i,h where TCih is the smallest; 
  8:        if TCih < 0, then 
  9:           replace medoid ti with th; 
10:        end if 
11:      end for    
12: until TCih > 0; 
13: for each ti ∊ D do 
14:      assign ti to Kj, where dist(ti,tj) is the smallest over all mediods; 
15: Output results 

 
Figure 1.3: THE k-MEDOIDS CLUSTERING ALGORITHM 
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5. Experimental Results 

This section discusses on the experimental results for the three algorithms above. Thus, this 

section explains: (1) Experimental setup and; (3) Clustering performances. 

 

5.1 Experimental Setup 

The experiments were conducted on 2 datasets of Y-STR data that were obtained from a 

database, called worldfamilies.net (www.worldfamilies.net ).  The first data set is Y-STR data for 

haplogroup applications.  The second data set is Y-STR data for Y-Surname applications.  Both 

data sets are based on 25 markers (attributes). The data sets are as follows: 

a) The first data set of Y-STR haplogroup consists of 535 records. The original data were 

3419 that consisted of 29 groups. See the complete data in Family Tree DNA 

(www.familytreedna.com). However, the data had been filtered to chose only 8 groups, 

called haplogroups, which  consist of B(47), D(32), E(12), F(162), H(63), I(123), J(35) 

and N(61) respectively.  The values in the parenthesis indicate the number of records 

belong to the particular group. 

b) The second data set of Y-STR Surname consists of 112 data that belong to Donald 

Surname.  See the details in Donald Surname Project (http://dna-project.clan-donald-

usa.org ).  However, the original of 896 data of Donald Surname had been filtered to 

obtain only 112 individual based on its modal haplotypes. The modal haplotype for this 

surname is: 13, 25, 15, 11, 11, 14, 12, 12, 10, 14, 11, 31, 16, 8, 10, 11, 11, 23, 14, 20, 31, 

12, 15, 15, 16. Thus, there are 6 classes based on the genetic distance described as 

mismatches 0 – 5.  The mismatches are determined and compared between the individual 

and its modal haplotypes.   

For better results, each dataset and algorithm is runs about 100 times.  For each run, the dataset 

is randomly reordered from the original order. Further, for hard k-Means, the distinct initial 

centroids is chosen to avoid empty clustering, whereas, for hard k-Modes, the diverse method is 

used for initial k because the methods had been proved better than the distinct method (see Huang, 

1998).   

 

5.2 Clustering Performances 

This section discusses on the clustering performances of partitioning Y-STR data regarding the 

CPT of k-Means and k-Modes and the ROPT of k-Medoids algorithms.   Hence, this section 

presents the experimental results of: (1) clustering accuracy; (2) precision and recall and; (3) time 

efficiency.  Further, for each clustering accuracy, precision and recall, the detail values of average, 

minimum, maximum and standard deviation are given. 

  

In order to evaluate the clustering accuracy, the misclassification matrix proposed by Huang 

(1998), is used to analyze the correspondence between clusters and the haplogroups or surname of 

the instances. Clustering accuracy is defined in Equation (13). 

http://www.worldfamilies.net/
http://www.familytreedna.com/
http://dna-project.clan-donald-usa.org/
http://dna-project.clan-donald-usa.org/
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(13) 

 

where k, is the number of clusters, ai is the number of instances occurring in both cluster i and its 

corresponding haplogroup or surname and n is the number of instances in the data sets.   

 

For precision and recall, the calculation is based on Equation (14) and (15) respectively. 

 
 

(14) 

 

 

(15) 

 

where  is the number of correctly classified objects;  is the number of incorrectly classified objects; 

is the number of objects in a given class but not in a cluster; n is the number of classes/clusters. 

 

Table 1.1 gives overview clustering results of the evaluated algorithms.  The bold faced 

numbers refer to the best clustering result obtained by that particular algorithm. For Y-STR 535 

dataset, the highest average clustering accuracy belongs to k-Modes algorithm.  The algorithm 

obtained the average of clustering accuracy, 80.38% as compared to the other algorithms: k-Means 

(77.78%) and k-Medoids (78.19%).  However, in contrast the k-Medoids algorithm produces a 

value that closes to zero for standard deviation. The algorithm also obtained the highest value of 

minimum accuracy of 100 runs, whereas the k-Modes algorithm recorded the highest value of 

94.77% for maximum value of 100 runs.   

 

For Y-STR 112 data set, the average clustering accuracy obtained by all algorithms is in 

between 38%-44% only.  This is because all algorithms cannot work well with the objects having 

very strong similarity among the classes. In fact, some of the Y-STR objects are absolutely similar 

throughout 25 attributes (markers).  However, the representative object-based technique produced 

the highest value of 43.63% but for the maximum value, the k-Means obtained about 47.32%. 

Overall results can be seen; the three clustering algorithms seem to be no significant difference as 

it merely differs about 2% -5% only. 
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Dataset Evaluation 

(accuracy) 
Hard Clustering Algorithms 

k-Mean k-Modes k-Medoids 

535 Y-STR 

Average 0.7778 0.8038 0.7819 

Standard Deviation 0.0819 0.0922 0.0262 

Max 0.9402 0.9477 0.8336 

Min 0.6000 0.5925 0.7514 

112 Y-STR 

Average 0.3860 0.4212 0.4363 

Standard Deviation 0.0286 0.0265 0.0149 

Max 0.4732 0.4643 0.4554 

Min 0.3214 0.3393 0.3482 
Table 1.1: THE SUMMARY RESULT FOR 100 RUNS OF FOUR ALGORITHMS 

 

 Table 1.2 and 1.3 give some insight values of precision and recall respectively for each 

algorithm.  The precision and recall that are very close to 1 indicate the best matching for each pair 

of cluster and the corresponding class. Generally, most of the highest values for precision and 

recall are obtained by the k-Modes and the k-Medoids algorithms. The k-Modes algorithm initially 

dominates precision values, whereas the k-Medoids algorithm dictates the recall values.  

 
 

Dataset Evaluation 

(Precision) 

Hard Clustering Algorithms 

k-Means k-Modes k-
Medoids 

535 Y-STR 

Average 0.6971 0.7338 0.6989 

Standard Deviation 0.0905 0.0890 0.0575 

Max 0.8838 0.9000 0.7839 

Min 0.4886 0.5387 0.5444 

112 Y-STR 

Average 0.3306 0.3857 0.4196 

Standard Deviation 0.0617 0.1064 0.0351 

Max 0.4662 0.6641 0.4889 

Min 0.1932 0.1934 0.2010 

Table 1.2: THE SUMMARY RESULT FOR PRECISION 

 

 

Dataset Evaluation  

(Recall) 

Hard Clustering Algorithms 

k-Mean k-Modes k-

Medoids 

535 Y-STR 

Average 0.7081 0.7445 0.6949 

Standard Deviation 0.0833 0.0905 0.0480 

Max 0.8745 0.8827 0.8569 

Min 0.5363 0.5202 0.9988 

112 Y-STR 

Average 0.3381 0.3332 0.4826 

Standard Deviation 0.0882 0.0792 0.0484 

Max 0.5075 0.4889 0.6032 

Min 0.1325 0.2027 0.1764 

Table 1.3: THE SUMMARY RESULT FOR RECALL 
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From time efficiency point of view, it is obviously shown that the k-Medoids algorithm 

takes more time to handle partitioning Y-STR data set.  The k-Medoids algorithm requires 10 – 

13 minutes to partition Y-STR data set of 535 objects.  Figure 2 shows the time taken in seconds 

for each algorithm, based on Y-STR 535 data set.  Take note that the time is based on personal 

computers with AMD Athlon™ 64 X2 Dual Core Processor 6000+ with 3.00 GHz and 2.00 Gb 

memory.  The lowest time recorded by the k-Means clustering algorithm, where the maximum 

time taken by the algorithm is only 11 seconds.  However, the k-Modes algorithm recorded time 

between 15 – 37 seconds to complete a clustering process.  

 

Figure 2: COMPARISON TIME TAKEN BY k-MEANS, k-MODES AND k-MEDOIDS  

 

6. Conclusion 

Overall results can be concluded that the centroid-based partitioning technique is the most 

reliable method in partitioning Y-STR data; even the results show that the average clustering 

accuracy is merely about 2%- 5% different among the three algorithms.  In addition, the 

representative object-based partitioning technique causes high time consuming and its average 

clustering accuracy is also less than the k-Modes algorithm.  If the overall results of the 

representative object-based partitioning technique showed that the average clustering accuracy was 

obviously better than the others, it could be tested for the other extended k-Medoids algorithms 

such as CLARA and CLARANS.  These two algorithms are used for large data set and improved 

the time efficiency.   

 

In the centroid-based partitioning technique, both algorithms seem to be an equal chance to be 

modified in order to improve the clustering accuracy of Y-STR data.  However, from the results, it 

shows the k-Modes algorithm should be chosen first for further improvement.  Furthermore, from 

the observation of Y-STR data, the patterns are made up of many occurrences, in which they can 

be treated as modes. In addition, the modal haplotypes that are used to measure the genetic 

distance is also based on the modes.  However, the modal haplotypes are not necessarily modes for 

all cases in any given data set because the modal haplotypes are the established references by SNP 

methods for a group that shares a common ancestor.    
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In conclusion, the ideal case if the modal haplotypes can be used as the centroids, then the k-

Modes algorithm could be improved in partitioning Y-STR data.  However, given an arbitrary Y-

STR dataset, there is no way to impose the modal haplotypes as its centroids because there is no 

specific formula to establish it from a given data set. 
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