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Abstract—Sentinel-2 satellites provide systematic global cover-
age of land surfaces, measuring physical properties within 13 spec-
tral intervals at a temporal resolution of five days. Computer-based
data analysis is highly required to extract similarity by processing
and to assist human understanding and semantic annotation in
support of mapping Earth’s surface. This article proposes a data
mining concept that uses advanced data visualization and explain-
able features to enhance relevant aspects in the Sentinel-2 data
and enable semantic analysis. There is a two-stage process. At first,
spectral, texture, and physical parameters related features are ex-
tracted from the data and included in a learning process that models
the data content according to statistical similarities. In parallel, the
second processing stage maximizes the data impact on the human
visual system to help image understanding and interpretation.
Target classes are subject to exploratory visual analysis, such that
both visual and latent characteristics are revealed to the user. The
concept is further implemented as Sentinel-2 dedicated data anal-
ysis (DAS-Tool) plugin for the Sentinel Application Platform and
deployed as an open-source tool empowering the Earth observation
community with fast and reliable results. Accommodating multiple
solutions for each processing phase, the plugin enables flexibility
in information extraction and knowledge discovery that will bring
the best accuracy in mapping applications. For demonstration pur-
poses, the authors focus on a detailed benchmark against reference
data (ground truth) for the Southern region of Romania, then
use the selected algorithms in a forest fires scenario analysis for
the Sydney region in Australia. The processing involves full-size
Sentinel-2 images.
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I. INTRODUCTION

EARTH observation (EO) plays a pivotal role in understand-
ing the environment with all the land cover transforma-

tions. Expanding and innovating remote sensing technologies
are of utmost importance in monitoring the surrounding pro-
cesses and activities. Imaging sensors have been designed and
developed such that they record specific aspects of Earth land
cover based on the spatial, spectral, or radiometric resolutions,
which can help estimate geophysical parameters and land pro-
cesses.

Copernicus, the flagship program of the European Union
for EO, is expanding fast, doubling its footprint on Earth’s
surface coverage through the Sentinel satellite constellation and
supplying approximately a fifth of the world’s EO data. In 2017
alone, the volume of downloaded EO products integrated into
daily activities to improve decision making grew by over 133%.
The percentage of companies using Copernicus data increased
with 11% in Europe and 6% globally [1]. In this frame, over 9
million Sentinel products have been acquired and 160.000 users
have been registered. The growing interest in EO products turns
into a Big Data basis, raising huge challenges for information
extraction, and value-adding.

Part of the Copernicus Program, the twin satellites of the
Sentinel-2 (S2) mission (Sentinel-2A and Sentinel-2B) target
terrestrial observations in support of services like vegetation, soil
and water cover, inland waterways and coastal areas assessment,
land use and change detection mapping, disaster relief support or
climate change monitoring. Sentinel-2 ensures the continuity for
Landsat and Spot observations and improves the data availabil-
ity. With a systematic global coverage and a five-days temporal
resolution, this mission raises great interest due to the augmented
volume of medium resolution imagery it provides and its ability
to measure the radiation reflected by the Earth surface in 13
different intervals of the electromagnetic spectrum.

Sentinel-2 data are expected to strengthen the routine gen-
eration of generic land-cover and land-use maps, but also to
ease monitoring processes of hotspots—areas of interest that are
prone to specific environmental challenges and problems. They
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Fig. 1. Example of EO derived products: Regional/global thematic maps,
charts and analytics (Eurostat: Agri-environmental indicator-soil erosion).

can contribute to the mapping of geophysical variables like leaf
coverage, leaf chlorophyll content, moisture, or burnt matter.
To this aim, raw data needs to be transformed into actionable
intelligence and become measurable. Based on the intended type
of application, the extracted information must be wrapped into
value-added products integrating accurate land use, land cover,
thematic maps, and derived analytics on the scene content (see
Fig. 1).

Effective EO data exploitation lies from data mining for
information extraction to machine learning for automatic knowl-
edge discovery and data analytics for the final examination
and semantic interpretation. In terms of multispectral data ex-
ploitation, the literature shows significant progress on theoretical
algorithms (as presented in Section II.A), but not many of them
were developed or accustomed to the particularities of Sentinel-2
data, despite their promising accuracy of results and they act in
an isolated manner.

The traditional approach considers that the data content must
be first described through its main characteristics, wrapped up as
feature vectors with a low level of understanding. Discovering
similarities between these features are ultimately leading toward
extracting structures and contextual meaning from the data. The
goal is to define those rules hiding within unstructured data
warehouses and extract knowledge. Human inference has been
for a long time the key factor to bridge the semantic gap between
the real meaning and numerical analysis provided through com-
putation [2]. Even if traditional approaches are rather fast and
easy to apply, they are data-driven and applicable at a limited
scale.

The deep learning (DL) paradigm is making the scientific
community gradually shift toward self-learning methods. Once
defined, they can adapt their rules to each scenario, deal with big
data collections, and provide extremely high accuracy given a
sufficient training dataset. The setup comes with specific know-
how and significant computational resources as a tradeoff [3].

As the EO data volume is growing, the need for computer-
based analysis is highly required to assist human understanding
and allow users to harness the data potential. The trend is to
develop exploitation tools that encourage communication and
the dissemination of results among end-users, scientific com-
munities, and developers. Current solutions in the field provide
basic statistics, processing, and graphical interfaces for data

visualization. They also include a collection of routines that can
be linked and embedded in a workflow to extract knowledge
and accelerate the implementation of envisaged applications. A
very well-known open-source system is QGIS. Its toolbox, Orfeo
[4], integrates a set of algorithms that process multispectral
and radar images, being available through the command line.
Google Engine [5] is an alternative solution for data analysis
as it includes a large image database and predefined methods,
but also the possibility to add new algorithms for data process-
ing. A community platform was created to increase Sentinel
data exploitation and accelerate further scientific development.
Named the Sentinel Application Platform (SNAP), it reunites
dedicated Toolboxes to offer the most complex platform for all
Sentinel missions, including Sentinel-2 [6]. Despite being EO
data processing tools, they have limited capability in dealing
with the semantic exploitation of Sentinel-2 data, and specific
know-how is needed to complete a data analysis workflow.

Considering SNAP and the Sentinel-2 Toolbox as the support
system infrastructure, this article introduces a knowledge dis-
covery paradigm based on explainable features for the semantic
annotation of Sentinel-2 data. A preliminary assessment and
benchmark of the most relevant state-of-the-art algorithms for
data content representation allowed the authors to select a set of
complementary features to describe the data. The focus was on
spectral and texture characteristics of structures, invariant and
reliable properties, and physical parameters. The added value
chain aims for simplicity in the calculation (a key aspect in
the context of big EO data) and continues with traditional data
mining and machine learning algorithms. The goal is to discover
similarities and classify the extracted features of objects and re-
veal high-level semantics. To increase precision up to the values
obtainable with DL methods, the proposed concept integrates
an exploratory visual analysis approach to bridge the semantic
gap and help the user select relevant training dataset. This can be
performed in two ways: by feature selection (FS)—which will
result in the selection of the most relevant three bands, and by
feature transformation (FT)—which will generate a new set of 3
bands by combining all 13 bands of Sentinel-2 image. The best
data visualization will be automatically computed, making the
user acknowledge relevant features outside the visible range.
As a result, further user-based data representation, especially
the classification process, will consider both visual and latent
characteristics, ensuring high accuracy with minimum human
interaction.

Ultimately, the proposed concept is implemented as an exten-
sion for SNAP—a multispectral data analysis tool that benefits
of intuitive graphical tools and full data processing capabil-
ity. Named DAS-Tool, it follows an open-source approach to
spread across the EO community and serves in land cover
applications as well as support in further scientific development
through knowledge discovery, machine learning, and semantic
annotation.

The rest of this article is structured as follows. The proposed
concept is detailed in Section II, described from both conceptual
and architectural outlook. A review of existing methods and
algorithms concluding with the integrated solutions are also
presented in this section. Section III encompasses the results
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obtained during a benchmark analysis for a Sentinel-2 image
acquired over the south region of Romania and a damage
assessment use case scenario for the Australian fires in early
2020. Further potential and drawbacks of the DL perspective is
resumed in Section IV, leading toward conclusions in Section V.
Part of a technological project funded by the European Space
Agency, the outcome of this article defines a best practice for
Sentinel-2 data analysis that is openly accessible through the
SNAP platform.

II. EXPLORATORY SENTINEL-2 DATA ANALYSIS

A. Existing Methods and Algorithms for EO Data Analysis

1) Feature Extraction: Image information mining considers
the data content based on unique numerical patterns representing
dominant characteristics like coarseness, contrast, color distri-
bution, or directionality. In reality, these patterns can be asso-
ciated with physical parameters of the Earth’s surface. Taking
into account the complexity and informational diversity of the
multispectral images, different methods have been proposed
for feature extraction (FE) and content description for both
pixel and patch-based multispectral image analyses. There is
a proliferation of solutions in the literature, but the authors
will only pay attention to the most representative algorithms
that have already been proved successful for EO data content
representation in view of scene classification.

Spectral features. The most important advantages of the
features derived from the spectral values of the image are the
simplicity of extracting color information from images and
the power of representing visual content. An extension of the
color histogram, the spectral histogram uses the distribution of
the spectral values for image search and retrieval applications
with reasonable accuracy [21]. Further on, spectral indexes [22]
were derived as all the combinations of surface reflectance from
multiple spectral bands to highlight specific features that indicate
the presence of vegetation, water, mud, ice, geologic coverage,
etc. Their computation implies simple algebraic formulations,
like sums, differences, and ratios applied between different band
combinations. For features invariant to the scene illumination,
the authors of [23] suggest the use of a polar coordinates
transformation (a derivative of the MPEG7 standard) of the
spectral values instead of rectangular coordinates space. Applied
to multispectral EO images, it helps in the classification of
regions with powerful shadow and cloud coverages.

Texture features. A textural descriptor incorporates data con-
cerning the structural arrangement of surfaces and their rela-
tionship to the surrounding environment [24]. Since the texture
is given by the repetitive visual elements like color, shape, or
shadow it can be described by statistic measures. Among the
numerous descriptors proposed for texture analysis, the most
frequent are Tamura features, Wold features, Markov Random
Fields, Gabor Features, and Wavelet Features [25].

In the EO field, the texture descriptors are based on the
statistical properties or structure of the texture. The cooccurrence
matrix is the basis for the texture descriptor in [26], while in [27],
the Gabor features are obtained by filtering the first principal
component image with Gabor kernels at four different scales and

four different directions. In [28], the Wavelet features are used
for object-based retrieval in EO archives. A texture descriptor
with good results for both optical and SAR data is based on
the Gauss–random Markov field [29]. The texture structure
is exploited in [30] employing local binary patterns [31] and
local edge patterns. From the three texture descriptors proposed
by MPEG7 standard, homogenous texture descriptor, and edge
histogram are used for image retrieval [32], [33].

Contextual features. Currently evolving texture analysis and
local FE techniques have led the way to mixed feature meth-
ods that are joining texture and spectral features in the same
descriptor, and also to bag of words (BoW)-based methods,
which are relying on learning dictionaries of visual words. In
the remote sensing community, this technique has been recently
introduced for image annotation, object classification, target
detection, and land use classification, and it has already proven
its discrimination power in image classification [33]. In the
BoW framework, there are several ways to generate a visual
codebook, but k-means-based approaches are preferred. The
BoW framework computes local features for each patch, then a k-
words dictionary is formed collecting k randomly selected local
features. Finally, each patch is represented by a k-dimensional
descriptor with only one nonzero element, the one related to its
closest word. An assessment of several patch-based approaches
for FE is presented in [33]. The study in [35] tackles the problem
of choosing the optimum number of classes that can be extracted
and optimum patch size for Sentinel-2 data analysis.

2) Feature Classification: Feature vectors provide low-level
characteristics with very low capability in representing the se-
mantic content, but they provide the key properties assisting
further data modeling at a reduced computational burn. The next
stage of the data description is the identification of similarities
within the achieved feature space and class label assignment
to a set of measurements (feature vector) [36]. This will result
in the EO image classification, where a class label corresponds
to a land cover type like agriculture, forest, urban, water, etc.
To assign labels, a decision criterion must be designated to
discriminate the land cover types. The semantic gap between
the content description provided by low-level features and the
high-level semantic content of the image can be confined by a
series of learning techniques that are grouping features using
similarity. This is a feature classification process resulting in
classes of objects with semantic meaning. Depending on the
user’s involvement in the learning process, the algorithms can
be organized in supervised, semisupervised, and unsupervised
algorithms.

Supervised classification. The learning process is user-driven
and requires his knowledge to discover similarities within the
data. The information is passed by the user in the shape of
training samples, previously labeled by the user. Consequently,
each training example is represented by its feature vector related
to the label whose classes its content belongs to. It is important
that the training set to be as comprehensive as possible because
the prediction function, based on which the system will clas-
sify new data, depends on it. The most common approaches
are instance-based learning, decision trees, and support vec-
tor machines (SVMs). The representative solution for the first



4432 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

category, k-nearest neighbor classifier computes the distance
between the unclassified points to all the labeled training data
and performs class assignment based on the metric used to
measure the distance [37]. With a training set of feature vectors
and their corresponding class labels at hand, the decision trees
identify the hierarchy of the feature vectors attributes based
on which the classification is done. The attributes hierarchy
is decided with respect to the information gained by their se-
lection [38]. The category of SVMs relies on a kernel-based
technique aiming to identify the optimal separating hyperplane
that maximizes the distance between distinct classes’ margins
[39]. They require a small training dataset and present high
accuracy when applied for EO data analysis. A survey of these
algorithms is presented in [40] revealing a widespread use of
SVM-based algorithms as active SVMs, semisupervised SVMs,
and combined SVMs with other approaches. The kernel function
selection is determining the accuracy of the similarities between
dataset samples. SVMs have been experimentally shown to work
under certain constraints, such as linearity, balanced dataset, and
near Gaussian-distributed data.

Semi-supervised classification exploits the statistical models
of the data to relieve the knowledge transfer from the user. The
learning process will use both, labeled (input from the user) and
unlabeled (derived from the image) data, requiring less human
effort than supervised algorithms for comparable accuracy [41].
Among the state of the art such methods, the latent dirichlet
allocation (LDA) allows for the highest flexibility when it comes
to use case applications. It is a generative probabilistic model,
first introduced for text modeling, which provides very good
results for EO image analysis [42], [43].

Unsupervised classification is a self-organized learning pro-
cess that looks for similarities within the data with no prior
knowledge and minimum human interaction. Their main goal
is to identify hidden patterns in unlabeled data based on the
relationships between data points. The algorithm discovers cor-
relations within the set and groups its elements into clusters so
that the points in the same cluster are similar but dissimilar to
other clusters. Not being user-dependent, this type of process is
normally preferred for the analysis of unknown data. However,
the classification results are inferior to those achieved by su-
pervised algorithms. The prevailing algorithm in this category
is k-means [44], which assigns each data point to the cluster
whose center is closer. This algorithm is also used in this study
to find the optimal number of classes that can be distinguished
in the feature space.

3) Visual Data Analysis: Visual exploration of multidimen-
sional remote sensing images is very important for bridging the
semantic gap in data analysis. The images need to be reduced
to only three bands before displayed to the user. FS and FT
algorithms are usually applied to enable data visualization. Both
approaches decrease the input data dimensionality, sustaining
though different composition of the feature subset.

FS algorithms identify a data subset formed by the most
relevant features of the input data based on one of the following
three types of processes that measure scores of relevance for
each individual feature. Filtering relies on selection criteria like
battacharyya or Jeffries–Matusita distances to identify the subset

that best separates the dataset classes, but also on statistical
measures, like mutual information to define the dependency
between two variables selecting the ones most dissimilar to each
other and most relevant to the dataset. Wrapper methods focus on
maximizing the performance of classifiers defining the relevance
score. Sequential selection algorithms and heuristic search algo-
rithms [7], Sequential forward floating search [8], and backward
elimination correlated with a Gaussian process regression [9] are
the most common algorithms. Finally, the embedded methods
consider the classification error rate or criteria like mRMR to
evaluate the importance of the feature subset for the model.
The authors of [9] used mRMR as “spectral band selector that
automatically enhances visualization of target classes for image
analysis and photo-interpretation.” All the user needs to do is
to select the image patch labeled as target class and the system
will automatically measure the mutual information between the
target class and images spectral bands. Based on the mRMR
algorithm, the bands are ranked according to their capability to
visually separate the target class from other classes.

The FS methods preserve only a reduced set of features,
leading to the loss of information from the rest of the data. On
the other hand, FT methods exploit the entire feature set X with
dimensionality D in order to fulfill the dataset mapping to a
space Y with dimensionality d (d < D). The low-dimensional
projection is a combination of the original features according
to an explicit transformation. Depending on the nature of the
transformation, FT methods can be linear or nonlinear. The first
category includes algorithms like principal component analysis
(PCA) [10] and derivatives (probabilistic PCA [12], Kernel PCA
[13]) centered on the covariance matrix and its eigenvalues,
linear discriminant analysis—projecting data to increase the dis-
tance between means of the classes while decreasing the variance
within each class [14], factor analysis (FA)—maximizing intra-
class correlation by minimizing interclass correlation [15]. From
the nonlinear transformations, diffusion maps [16], t-distributed
stochastic neighbor embedding [17], Sammon mapping [18],
and autoencoders (AE) [19] are the most common methods.
They envisage multilayers transformation based on various rules
to weight down the number of features by preserving the relevant
information. Specific results for remote sensing data visualiza-
tion are presented in [20].

FS and FT are a matter of removing the redundant data in
the feature space and preserve the most relevant information
for visualization. Additionally, these approaches are fitting the
purpose of big EO data analysis as they map the existing features
into a lower feature space. They can improve learning perfor-
mance, create better models, lower computational complexity,
and reduce the storage requirements. However, linking the new
set of features to a physical meaning is difficult without further
analysis.

B. Proposed Concept for Sentinel-2 Data Analysis

The correct understanding of the data is critical for meaningful
analysis in EO. By targeting the proper features, the user can
focus content modeling toward the intended application. To
this aim, the present article introduces a data mining concept
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Fig. 2. Methodology for exploratory Sentinel-2 data analysis: Combining
visual characteristics (exploratory visual analysis) with latent features (data con-
tent representation) in view of extensive visual interpretation. Green arrows—
computational workflow; Red arrows—user role.

that uses advanced data visualization and explainable features
to enhance relevant aspects in the Sentinel-2 data and enable
semantic analysis.

Built to exploit both understandable, perceivable characteris-
tics of the analyzed scene and numerical features hidden inside
the data code, the proposed concept integrates all the general
data analysis methods (as presented in Section II.A) into a
single methodology entailing for two processing stages (see
Fig. 2): exploratory visual analysis for data visualization and
data content representation for semantic annotation. They act as
independent processes, yet, using the result obtained in the first
stage as visual support for the second stage, will allow for better
data understanding. The green arrows indicate the computational
workflow and dependencies, while the red arrows highlight
the user role and how he should exploit the two processing
stages (the result of the exploratory visual analysis will facilitate
parameter setup for the data content representation and results
interpretation). Nevertheless, all bands of a Sentinel-2 image
must be first brought to a common spatial resolution.

The first stage in the methodology focuses on data under-
standing. The existence of 13 spectral bands confers Sentinel-2
a complexity that is too high for a user alone to interpret through
simple visual analysis. Human perception is only able to analyze
and comprehend the information exposed through visualization
procedures, which are limited to the use of just three spectral
bands.

To make the most of the tri-channel display, the multispectral
information to be revealed during the process will be the output
of an exploratory visual analysis capable to underpin predom-
inant data features for the scene content. The discrimination
between ground structures is determined by their spectral signa-
ture. Therefore, advanced data visualization will help the user
to perceive certain aspects that are not always reflected in the
visible part of the spectrum. Each of the semantic classes (e.g.,
water, forest, and urban) distinguishable in the Sentinel-2 data
has a specific spectral signature, which may not be focused on
the visible spectral bands, so the “true color” image represen-
tation may hide important details. Data visualization includes 2

approaches: FS and FT. The first process avoids inconsistent data
representation provided usually by the bands in the visible range
and identifies a data subset of the most relevant spectral bands
according to a specific application. The second approach exploits
the entire feature set encapsulated in the Sentinel-2 data and
applies a low-dimensional transformation based on the original
features to project the full dataset into three bands.

For the second stage, a data content representation will focus
on the identification of relevant scene characteristics and further
grouping by means of classification methods. A compact process
interconnects FE and feature classification in such a way to best
describe the Sentinel-2 data content characteristics. FE is usually
employed to extract and infer knowledge about patterns that
are hidden inside the image, offering insights about the scene
and advanced content description. Specific classes in the image
share characteristics like coarseness, contrast, color distribu-
tion, or directionality, which will make FE methods sensitive
to spectral, texture, and shape information. The informational
content will be encapsulated into multi-dimensional feature
vectors (mathematical representations of the image properties).
Yet, feature vectors are a low-level semantic representation. To
reach actionable information, more compact structures must be
identified, as a combination between proportions of different
feature vectors. This is subject to a classification task, where a
set of patterns are assigned into a group so that, according to
some similarity metrics, the elements in the same cluster are
more similar to each other than to those in other clusters. To
this extent, similar extracted features are meaningfully grouped
together and generate a classification map.

The two stages of the proposed methodology complement
each other. While exploratory visual analysis is addressing visual
properties of structures to stress features beyond visible, data
content representation is focusing more on extracting numerical
patterns, which will lead to similarity by data processing and
results not always corresponding to the user perception on the
scene. Latent features are revealed, with no evident meaning
what so ever. As such, an extensive visual interpretation is
required, where, for each semantic class, a different data vi-
sualization can be computed to explain the classification result
through all land cover, land use, geographical variables, and land
transformations. Data visualization help the user understand the
similarities and the resulting classes. In the situation, where
several algorithms for data content representation are available,
data visualization will support the selection of those result best
fitting the application objective and the data semantic annotation.

Abstractly, the proposed methodology for Sentinel-2 data
analysis could accommodate a wide list of data visualization
and content representation algorithms. As already presented,
the research community generated over the years a multitude
of mathematical solutions capable to handle the data and make
use of the contained information. The motivation behind the
authors’ selection for the algorithms is the result of an extended
benchmark and experience gain over the past years.

For the exploratory visual analysis processing, there were
considered two complementary approaches dealing with both
observable features—mRMR [10]—and latent characteristics—
FA [15]. The spectral bands ranking provided through mRMR
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criteria has been proven efficient and effective in multispectral
data-based applications as it maximizes the response in the
human visual system. It increases the saliency of the target
class and highlights the bands enabling the higher contrast
among neighboring objects to enhance cognitive response to
visual physical characteristics. The FA method statistically mod-
els the joint variation of observed features and extracts linear
combinations of hidden features causing such variability. By
dealing with interdependencies between observed variables, the
resulting information is less contaminated with error variance
than alternative methods for dimensionality reduction, such as
the PCA algorithms.

Data content representation aims at semantic annotation by
means of explainable features. The proposed methodology
opens a double opportunity for data analysis: local processing,
at pixel level, and contextual processing, at patch level (after
preliminary dividing the scene into a grid of patches).

The selection of FE algorithms derived from their ability to
describe meaningful features from multispectral EO imagery
(mainly Sentinel-2 data) with high accuracy and performance in
information extraction.

At pixel level, the most important element to consider in data
interpretation and analysis is the tone expressed as a shade
of grey and color (hue, saturation, and value) [45]. Tone is
actually the result of measurements performed on the radiation
reflected by the Earth’s surface. Basic math between spectral
bands is describing physical parameters in terms of indexes for
vegetation, water, burned area, etc. A generalized approach to
determine such parameters is formalized by the spectral Indexes
FE algorithm [22], included in the proposed methodology. From
the color perspective, illumination invariance has been proven
more effective in feature separation. An extension of the MPEG-
7 standard for multispectral data representation leads to the
polar coordination (PC) based FE [23], which overcomes the
limitations of data analysis in case of shadows and light clouds.
This is the second algorithm considered in this article.

At the patch level, the spectral features are enriched with
spatial dependencies. Combined, spectral, and spatial informa-
tion can generate signatures encapsulating complex features
sharing similar patterns for categories of semantic objects. There
are numerous solutions to model the high diversity of spec-
tral information within an image patch and many algorithms
were successfully exploited in the field of EO. A selection
of five algorithms selection was incorporated for contextual
FE. Spectral histogram (Hist) and Gabor features (Gabor) [33]
are probably the most common FE algorithms with very good
results in multispectral data exploitation depicting spectral and,
respectively, texture properties. Mean and dispersion (MeDiB)
of the patch form a robust and fast computing feature vector,
very useful in the context of big EO data [43]. Bag of spectral
indexes (BoWSI) and bag of polar coordinates (BoWPC) [33]
use the BoW approach to define visual codebooks based on the
physical parameters of the scene.

Further feature classification makes use of learning processes
to extract similarity from the feature space and defined se-
mantics. The pixel-based analysis is designed for automatic
modeling and the LDA model will reveal hidden topics in

an unsupervised manner [42]. Local features are difficult to
perceive, therefore, user intervention brings no significant value.
However, the contextual analysis is centered on features that
can be visually distinguished and understood. The user plays an
important role in knowledge extraction. SVM and kNN [33] are
the selected classifiers, as they deliver increased accuracy with a
small training dataset. K-means clustering algorithm is adapted
to work on both pixel and patch-based approaches, aiming
to showcase computational similarities between the extracted
features.

C. DAS-Tool—A Plugin for Sentinel-2 Toolbox in SNAP

Further attention has been paid to build a standardized
methodology for Sentinel-2 data analysis (DAS), extendable to
multispectral imagery in general. The proposed concept has been
implemented as an operational tool (DAS-Tool) and installed as
a plugin for the SNAP, [6]. SNAP is a multisession scientific plat-
form released by the European Space Agency (ESA) as a free,
open-source tool to support the exploitation of ERS-ENVISAT,
Sentinel −1, −2, and −3 and a range of national and third party
missions. Some of the platform feature highlights are common
architecture for all toolboxes, including DAS-Tool: fast image
display and navigation, layer management, band arithmetic, and
interactive visualizations of three-dimensional (3-D) globe (the
WorldWind visualization, [46]). All these benefits transform this
platform into a very useful tool suited for everyone.

SNAP underlies sensor-specific toolboxes and is based on the
legacy of ESA BEAM, which incorporates many years of evo-
lution and improvements in terms of application programming
interfaces (API) design, processing framework development,
and in terms of common EO data model, also called product
data model.

Usually, it is a good practice to separate the data and func-
tionality from the Graphical User Interface (GUI) code and
this is also the case here. The GUI and non-GUI code are
placed in different projects named SNAP desktop and SNAP
engine. The first one contains the interface with the user and the
second includes the functionality. The Engine is independent
but the GUI is dependent on the first one. On top of these two
components, the user can add any combination of toolboxes as
add-ons.

Being a logical and physical software configuration item with
a unique name, the module is the main component of the SNAP
architecture. The module comprises both resources and source
code, has a version and it may be interdependent with other
modules, meaning that it may reuse provided resources and
functions or use their application programming interfaces (API).
In SNAP every module is a plug-in and it can be dynamically
loaded and unloaded at runtime using the dedicated plug-in
management. The installation of new extension modules or the
update of the installed ones can be performed by the users
through a local module file.

The integration of DAS-Tool in SNAP has a double purpose
envisaged: enrich SNAP capabilities, on one hand, allow the
proposed tool to access a large pool of processes, functionalities,
and GUI, on the other hand, all for the ease of Sentinel-2 data
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Fig. 3. DAS-Tool modules and their dependencies on the Sentinel-2 Toolbox
and SNAP main framework, composed of SNAP Desktop (for GUI components),
and SNAP Engine (functionalities for products).

understanding and analysis. The architecture of the DAS-Tool
plugin follows the methodology in Fig. 2 and comprises two
main modules, Exploratory visual analysis and Semantic anno-
tation based on data content description. The second module is
also divided into two submodules: FE and Feature classification.
The plugin depends on the Sentinel-2 Toolbox, as shown in
Fig. 3.

The development of the plugin was done using IntelliJ IDEA,
the predominant programming language being Java. Both main
modules are independent, being structured following the good
practice explained above.

The general workflow follows few general steps: load data into
product explorer, perform basic data preparation (i.e., resam-
pling), visual inspection through exploratory analysis, extract
image features, and define groups of similar patterns that can
depict a semantic meaning to the user.

The GUI of SNAP guides the user for the entire process,
allowing different interactions with the system focusing on the
selection of parameter values for the algorithms applied, saving
the results. Using the SNAP GUI the user may access the
DAS-Tool GUI from where he can navigate into one of the
two main modules and their functionalities. The exploratory
visual analysis module enables the identification of a visual
representation to fit the image content by means of the two
approaches. The semantic annotation based on data content
description allows the user to control the algorithms for both
features extraction and feature classification actions in a way
that the resulting data include actionable information in the
context of the intended application. All of the processing is
based on Sentinel-2 data. Fig. 4 resumes the main steps of the
DAS-Tool workflow. SNAP is automatically indicating if the
bands of Sentinel-2 data do not have the same spatial resolution
and automatically opens the resampling functionality. Following
the dedicated process to bring all bands to a native resolution,
Sentinel-2 data will be ready to enter the DAS-Tool processing.
If bands are not brought to the same spatial resolution, DAS-Tool
will remain inactive.

Being a plugin to SNAP, a platform already known in
terms of user interface, DAS-Tool has a very big advantage

Fig. 4. DAS-Tool Workflow—The overall processing chain goes outside the
functionality of DAS-Tool, stressing SNAP basic components to cover all nec-
essary actions from data loading and preparing through actual data processing,
up to results display and saving.

regarding logic and usability. The new functionalities are natu-
rally integrated with the old ones and also offer a very intuitive
usage flow. The modules are independent of each other, but
both of them allow the ingestion of human knowledge through
human interaction. The integration of multiple algorithms gives
flexibility to the process.

The results obtained using the plugin do not require special
resources or special knowledge and do not take too much time
to be displayed. The hardware requirements are in accordance
with the ones of SNAP.

Fig. 5 shows the path to DAS-Tool functionalities into SNAP
interface (the A snapshot), the graphical elements involved in
parameter setup for the exploratory visual analysis (the B snap-
shot) and the GUI flow to follow to perform semantic annotation
through FE and feature classification (the C snapshots).

III. RESULTS

A. Experimental Setup

For demonstration purposes, the proposed framework is de-
ployed as the core of a procedure dedicated to the analysis of
Sentinel-2 data properties. To present the overall capabilities of
the DAS-Tool plugin, we present two use case scenarios. The
first use case presents a situation, where significant information
about the analyzed area is available. We benchmarked all inte-
grated FE and feature classification algorithms against reference
data. Our goal is to identify the best performing combination of
algorithms for a given class (forest) and the overall best per-
forming duo for an entire Sentinel-2 scene. For the benchmark,
we selected a cloud-free scene from august 19, 2019, covering
southern Romania, between the cities of Bucharest, Ploieşti,
Buzău, Slobozia, and the Danube, presented in Fig. 6.

Experiments will be continued with the second use case de-
picting a damage assessment scenario (recent fires in Australia,
at the end of 2019, Fig. 13) for which there is no ground truth.
Considering no prior information about the affected area, the
second use case will import the combination of the algorithms
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Fig. 5. (A) SNAP GUI indicating the path for the DAS-Tool interface;
(B) DAS-Tool GUI for exploratory visual analysis (the FA approach);
(C) DAS-Tool GUI components for the semantic annotation—the steps to
analyze EO data through feature extraction and feature classification.

selected during the benchmark in the first use case. The overall
processing workflow is presented in the rest of this section.

To support the evaluation of data content representation, we
constructed the ground truth for the scene in Fig. 6 using Urban
Atlas data from the Copernicus Land Monitoring Service [47]
to precisely map the main urban areas covered by our test scene.
The ground truth from all the other regions from our scene
was built from land cover data from GEOFABRIK [48]. The
resulted land cover map, built at pixel level is presented in
Fig. 7 and contains the following land cover classes: forests
(green), agriculture (yellow), water bodies (blue), low-density
urban areas (red), and high-density urban areas (grey).

We resampled all Sentinel-2 bands to the same spatial res-
olution of 10 m, increasing the size of our test image to the

Fig. 6. Sentinel-2 scene from August 19, 2019, covering southern Romania,
between Bucharest, Ploieşti, Buzău, Slobozia cities and the Danube.

Fig. 7. Ground truth for Fig. 6: forests (green), agriculture (yellow), water
(blue), low density urban (red), high density urban (grey).

level of big data. To assess the performance of the integrated
DAS-Tool algorithms, we mainly focused on patch-based land
cover classifications—where the scene is divided into patches,
for each patch the features are extracted and then classified.
Contextual information is thus considered, reducing also the
size of the data and lowering the computational burn, as the
analyzed scene is a full Sentinel-2 acquisition of 10 980 ×
10 980 pixels. The process is applied for two subscenarios
(two patch sizes): 25 × 25pixels (demonstrated to enable best
structure discrimination for Sentinel-2, [35]), and 60 × 60pixels
(representing the average-sized patch to encompasses a semantic
class for medium size multispectral image resolution, [2]). The
process includes MeDiB, Hist, Gabor, BoWSI, BoWPC (FE
algorithms), SVM, kNN, K-means (classification methods).
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Fig. 8. Training samples (60 × 60 pixels patches): water, forest, agriculture,
high density urban (HD_Urban), low density urban (LD_Urban). The columns
from left to right are the RGB, mRMR, FA visualization modes.

Upon comparing the obtained classification results, we de-
termine the FE—feature classification algorithms combination
generating the highest accuracy for the class of forest (the central
class for the intended application) and also that leads to the
highest average accuracy (over all classes). We apply these
two algorithm combinations on two other scenes from west of
Sydney, Australia: the first is before the large vegetation fires
(November 06, 2019) and the second is acquired during the
fires (December 31, 2019). In this case, no reference data were
available, particularly in the context of a dynamic land trans-
formation, and the classification was built on the annotations of
observable land cover classes and with the help of the integrated
visual enhancement algorithms, mRMR and FA.

B. Prospect of Both Visual and Latent Characteristics

In order to build the training set for benchmarking the in-
tegrated supervised algorithms and FE algorithms, we em-
ployed FA and mRMR algorithms, to enhance data visualization
and minimize the semantic gap between human perception (a
trichannel perspective, centered on the RGB bands) and numeric
data (13 bands, including also radiation outside the visible
spectrum). For each of the five land cover classes, we selected
representative samples (see Fig. 8), which are easier to identify
using the two visualization modes (see Figs. 9 and 10).

C. DAS-Tool—the Semantic Assessment

The overall performances for each combination of bench-
marked algorithms are presented in Figs. 11 and 12 as F1-scores.

The interpretation should go, however, beyond the values
obtained for the validation measures. For instance, the proposed
methodology is intended to integrate human feedback to obtain
the best class separation (through supervised feature classifi-
cation), but, at the same time, it allows data content analysis
with no prior information about data or the process itself (when

Fig. 9. mRMR representation (Relevant bands selection) for image in Fig. 6.—
bands 1, bands 9, and bands 5.

Fig. 10. FA representation for image in Fig. 6.

Fig. 11. F1 score computed for different combinations of feature extraction
algorithms (MeDiB, Hist, Gabor, BoWSI, BoWPC) and feature classification
algorithms (SVM, K-NN, K-Means) applied on the Sentinel-2 image divided in
patches with a size of 25 × 25 pixels.
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Fig. 12. F1 score computed for different combinations of feature extraction
algorithms (MeDiB, Hist, Gabor, BoWSI, BoWPC) and feature classification
algorithms (SVM, K-NN, K-Means) applied on the Sentinel-2 image divided in
patches with a size of 60 × 60 pixels.

using kmeans or LDA, combined with a set of default parameters
experimentally determined). Both scenarios (25 × 25 pixels and
60 × 60 pixels patch size) show increased accuracy for the
supervised analysis, yet all results show an average F1 of 0.5861
for patches of 25 × 25 pixels and of 0.5855 for patches of 60 ×
60 pixels.

After we analyzed all the possible combinations for patch-
based land cover classifications, we resume the best scores as
follows

1) Best F1, averaged over all classes: 0.8074 for MeDiB and
SVM, patches of 60 × 60 pixels, 0.8056 for MeDiB and
SVM, patches of 25 × 25 pixels, 0.7929 for MeDiB and
kNN, patches of 25 × 25 pixels.

2) Best F1 score for the forest class: 0.8843 for MeDiB and
SVM, patches of 25 × 25 pixels, 0.8786 for Hist and
kNN, patches of 60 × 60 pixels, 0.8396 for Hist and kNN,
patches of 25 × 25 pixels.

Expanding to the forest fire assessment near Sydney, Australia
scenario, we employed the MeDiB FE algorithm combined with
the SVM classifier, applied on 25 × 25 pixels patches. For the
training set, we manually selected representative areas from each
of the two analyzed scenes (before and after fire event).

Fig. 14 illustrates the training dataset (manually selected using
polygon drawings) for the scene from December 31, 2019, where
examples were given for the following semantic classes: water
bodies, agriculture, high-density urban areas, low-density urban
areas, forests, burned areas, and smoke. For the scene before the
forest fires, from November 06, 2019 (see Fig. 13 ), the burned
areas and smoke classes were omitted. The results for semantic
land cover classification are presented in Fig. 15 for the pre fires
scene, whereas the results for the post fires scene are shown in
Fig. 16.

Due to the presence of smoke during the fires, most of the
classes show variations compared to the prior scene, but the
overall impact of the large scale forest fires can be observed
and tracked. For performance assessment, we compare the
results with the information provided by the My Fire Watch
platform [62], presented in Fig. 17. Fires from 2019 and 2020 are
represented as grey and black shapes, respectively. The grey
areas largely represent the burned area land cover class, while
the black shapes cover the smoke. As the post fires Sentinel-2

Fig. 13. Sentinel-2 scene from West of Sydney, acquired on November 6,
2019, before the large scale forest fires.

Fig. 14. Sentinel-2 scene from West of Sydney, acquired on December 31,
2019 during the large scale forest fires. Training dataset are marked using
polygon regions: water bodies (orange), agriculture (light purple), high density
urban areas (dark blue), low density urban areas (light green), forests (light blue),
burned areas (purple) and smoke (light pink).

scene used in our analysis is dated, December 31, 2019, we can
estimate that representations in Figs. 16 and 17 mostly cover the
same land cover classes.

To conclude the forest fires scenario, Fig. 18 presents a FA
data visualization mode for the image acquired postevent to help
the user better understand the extent of the fires. The features
computed are revealing part of the structures covered by smoke.
Visually, they look similar to the burned area.

IV. DEEP LEARNING—A FUTURE PERSPECTIVE

Data analysis, and machine learning in general, is a multiple-
stage process. The corresponding algorithms can be classified
as shallow and deep learners. In the EO community, traditional
(implemented in this article and the most common) approaches,
such as SVM and ensemble classifiers are successful “shallow
learners” used for image classification and change detection.



GRIVEI et al.: MULTISPECTRAL DATA ANALYSIS FOR SEMANTIC ASSESSMENT—A SNAP FRAMEWORK FOR SENTINEL-2 USE CASE SCENARIOS 4439

Fig. 15. Classified Sentinel-2 scene from West of Sydney, Australia, Novem-
ber 06, 2019 using MeDiB and SVM, patches of 25 × 25 pixels. Classes: low
density urban (brown), high density urban (grey), forest (green), agriculture
(yellow), water bodies (blue).

Fig. 16. Classified Sentinel-2 scene from West of Sydney, Australia, Decem-
ber 31, 2019 using MeDiB and SVM, patches of 25 × 25 pixels. Classes: low
density urban (brown), high density urban (grey), forest (green), agriculture
(yellow), water (blue), smoke (light grey), burned area (red).

Fig. 17. Print-screen from MyFireWatch web platform [62], covering approx-
imately the same area as the analyzed Sentinel-2 scenes, showing fires from
2019 (grey), and fires from 2020 (black).

Fig. 18. FA representation for the Sentinel-2 scene from West of Sydney,
Australia, acquired on December 31, 2019. The smoke covering the central and
bottom area of the scene is greatly faded, enabling visual observation of the
Earth surface, under the smoke. SNAP uses a randomly selected pseudo color
scheme representation.

Due to its ability to handle high dimensionality data and perform
well with limited training samples, SVMs gained widespread
use in image analysis. Various implementations were also intro-
duced for EO, as reviewed in [49]. Another “shallow learner” is
random forest, an ensemble classifier that became popular in the
EO community due to the accuracy of its classifications [50].

Over the past years, the popularity of DL algorithms has
massively risen in the entire data science community. Although
in the literature, there are hundreds of DL papers, only a few
studies are on EO data and even fewer on multispectral medium
resolution satellite images, including Sentinel-2 data.

Two comprehensive surveys of state-of-the-art EO DL re-
search are presented in [51] and [52]. The main DL architectures
are AE, deep belief networks, recurrent neural network (RNN).
Most of the studies addressing the land use classification based
on DL algorithms are using stable benchmark datasets, including
RSSCN7 [53], UC-Merced [54], or WHU-RS [55]. Compared
with the benchmark datasets used in multimedia scene classi-
fication, the volumes of available RS datasets are limited. To
overcome this inconvenience, two new Sentinel-2 benchmark
archives were created. EuroSAT consists of 10 classes, covers
13 different spectral bands, and includes a total of 27 000 labeled
and geo-referenced images [56]. The performance of SVM,
CNN, ResNet-50, and GoogleNet architecture was tested on this
dataset. Training a shallow CNN architecture on the BigEarthNet
(multilabel 590 326 Sentinel-2 image patches) provides much
higher accuracy compared to a state-of-the-art CNN model
pretrained on the ImageNet [57].

There are very few studies on DL architecture applied to real
satellite images and most of them addressing high-resolution im-
ages [58]. A deep patch-based CNN system tailored for medium-
resolution RS image classification was proposed in [59]. The
achieved accuracies were 61.86% for SVM, 63.01% for pixel-
based CNN, and 85.60% for the proposed deep patch-based
CNN. The authors of [60] investigated the behavior of LSTM
convolutional blocks integrated into fully convolutional deep



4440 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

architectures for urban change detection from multitemporal
Sentinel-2 data. For the experiment, they used a single NVIDIA
GeForce GTX TITAN with 12 Gb of GPU memory achieving
an overall accuracy of more than 95%, and the training time for
each model was approximately 70 min. Random forests (RFs),
RNN, and temporal CNN (TempCNN) were compared for the
classification of Sentinel-2 time series in [61]. For an accurate
evaluation, they made all the experiments on the same machine
with 12 Central Processing Units (CPUs) and 256 GB of RAM
and on an NVIDIA Tesla V100 GPU. They obtained a similar
result for RFs and TempCNN, with TempCNNs obtaining the
highest overall accuracy values. The required time on CPU
to classify about 120M pixels was 20 h for RNN, 2 h15 for
TempCNN, and 17 min for RF.

DL architectures have proven capable to outperform humans
and human-coded features [51]. However, various DL systems
have many parameters and require a significant amount of train-
ing data to learn data representation for EO imagery, turning into
a cornerstone for the field. Community shares a large amount
of data but only a small number of labeled training samples.
Other challenges of DL are to define the appropriate network
topology and subsequently optimizing its hyperparameters. In
many situations, DL systems are difficult to put at work without
specific knowledge, coding skills, and extensive computational
resources, being out of the reach of common users. Despite all
the progress presented in the literature, scenarios depending
on real-time response such as damage assessment and crisis
monitoring are out of the scope of DL systems at this point,
being more appropriate for traditional approaches.

Nevertheless, with the rise of thematic exploitation platforms,
high-performance data processing infrastructure and cloud-
based services will be within reach for the entire EO community,
with full data access. This perspective is addressing the short-
comings of DL approaches for wide use. DAS-Tool is prepared to
integrate new algorithms due to its modular architecture, aiming
for an evolution closely connected to SNAP’s development.

V. CONCLUSION

This article introduces a data analysis tool (DAS-Tool) that
aims at enhancing the exploitation of Sentinel-2 data through
fast image understanding and analysis. Based on a data min-
ing concept for knowledge discovery and semantic annotation,
DAS-Tool is integrated into SNAP, a standard, open-source
operational platform dedicated to Sentinel data exploitation. As
such, the proposed tool is enhanced with intuitive interfaces to
encourage wide use even outside the EO scientific community.
Centered on the characteristics of Sentinel-2 data, the concept
behind DAS-Tool aims at increasing the accuracy of traditional
algorithms by combining processes that are fit to the image con-
tent. The user gains flexibility in data exploration with multiple
solutions to extract features (spectral, texture, and physical pa-
rameters) and model similarities (through automatic and super-
vised learning procedures), in multilevel processing (locally—at
pixel level, contextually—at patch level). The methodology
reduces the semantic gap by revealing to the user the kind of
patterns that are statistically similar through exploratory visual
analysis. This will increase the relevance of the training samples

and the accuracy given a specific application. Experiments show
high scores for the validation measures when comparing results
with ground truth and demonstrate reproducibility at various
scales (different patch sizes) in different applications (land cover
classification and burned area detection in forest fires).

The proposed concept is aligning with the new study pointing
that a great part of the so called breackthrouh algorithms are just
one small step ahead their predecessor. With a careful parameter
setup, the traditional machine learning approaches have the
potential to reach similar performances for data exploitation.
In fact, intelligent, DL it seems to be reaching a limit in its core
progress in some fields [63].
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