
The DLR Robots library – Using replaceable packages to simulate
various serial robots

Tobias Bellmann1 Andreas Seefried1 Bernhard Thiele1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
{firstname.lastname}@dlr.de

Abstract
In order to simulate different kinds of serial robots, the
implementation of functionalities such as the calculation
of their direct and inverse kinematics, visualization, col-
lision behavior, etc. is necessary. However, providing
these functionalities in robot specific models leads to ad-
ditional modeling overhead in cases where one would like
to switch between several different robot models. The
DLR Robots library demonstrates an implementation of
all robot specific components as replaceable Modelica
packages, allowing for an user-friendly way to exchange
robot models without modifying the general structure of
the overlying model.
Keywords: robots, replaceable packages, path-planning,
inverse kinematics, LUA scripts

1 Introduction
The simulation of robotic systems is a great example
for the multi-domain versatility of Modelica, combining
multi-body mechanics with controllers, electric drives and
algorithms, e.g. path-planning. A multitude of scientific
works uses Modelica to simulate a specific robot, provid-
ing models for the mechanics and all other components ex-
clusively for the simulated robot model (Kazi et al., 2002;
Hirzinger et al., 2005; Dwiputra et al., 2014; Brossog
et al., 2014). Other approaches use parameter sets to sim-
ulate more than one robot model within a given structure
(Reiner, 2011). However, both approaches lack flexibil-
ity regarding switching between different robot types in a
Modelica model, e.g. if the number of axes is changing.
In this case, instead of changing a parameter value, the
complete model structure has to be altered and adapted
for the new robot model. In this paper, a new approach
to model robots in Modelica is presented. By separat-
ing the robot functionalities (e.g. visualization, dynamics,
path-planning, etc.) from the model-based description of
the robot itself, and wrapping the latter in a replaceable
package, it becomes possible to switch between entirely
different robot models without the need for changing the
structure of the main model. This approach is inspired by
the Modelica Media library (Casella et al., 2006), where
different media provide their own functions and models,
also wrapped in a replaceable package, enabling the user
to switch easily between different media in a model.

2 Structure of the library
The library is structured into the following sub-packages
shown in Figure 1. The functional blocks e.g. for the
calculation of direct or inverse kinematics, visualization
functionalities, dynamic models, path-planning or colli-
sion detection can be found under Robots.Blocks. The
sub-package Robots.RobotModels mainly contains the
base class for the replaceable package baseRobotModel

defining all common properties, functions and records.
The implementation of two fictive robot models demon-
strates the usage of this base class. A virtual robot
controller is available in the Robots.Controllers sub-
package, allowing to interpret robot programs and gen-
erate reference trajectories for the robot models. The
Utilities and Functions sub-packages provide helper
models used in the blocks and examples.

Figure 1. Overview over the DLR Robots library and the partial
baseRobotModel package

2.1 Structure of a robot package
All specific robot models extend from the aforementioned
base package baseRobotModel. This partial package de-
fines the basic sub-models and their interfaces which are
required for a robot to function within this library. Figure
1 shows the base package components to be overloaded

DOI
10.3384/ecp20174153

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

153

and defined by the user implemented specific robot model:

Constant numAxes: The integer constant numAxes de-
fines the number of axes and is an important parameter for
all other blocks, defining their input / output dimensions.

Overloaded functions: For certain functionalities in al-
gorithms (e.g path-planning algorithms), a robot must pro-
vide several Modelica functions: the directKinematics
function calculates the Cartesian pose consisting of r[3]
(position) and T[3,3] (orientation matrix) of the robots
end-effector from its joint angles q[numAxes]:

(r,T) = directKinematics(q)

The rigidDynamics function returns the
torques tau[numAxes], the mass inertia matrix
M[numAxes,numAxes] and the additional torques
generated by the Coriolis and gravitational forces
tau_aux[numAxes]:

(tau,M,tau_aux) =
rigidDynamics(q,qdot,qddot)

In case a linearization of the direct kinematics is neces-
sary, the Jacobian and its derivative have to be provided as
well:

J = jacobian(q)
J_der = jacobianDer(q,q_dot)

In some cases, the inverse kinematics of a serial
robot can be calculated analytically. The function
inverseKinematicsAnalytic can be used to define it:

q = inverseKinematicsAnalytic(r,T)

Parameter records: Every robot model has to provide
two records to define its basic mechanical and dynamic
parameters. The record AxesData contains all axes re-
lated data, e.g. minimum and maximum joint angles/ex-
tensions, maximum joint velocities and accelerations, as
well as torque limits or gear transmission ratios. The
StructuralData record should be used to define the
mechanical dimensions of the robot, e.g. the distances
between the robot joints as well as the position of the
centers of gravity of the single robot components. The
StructuralData record provides no strict naming con-
vention to be overloaded, but is intended to be used freely
by the robot model designer to hold all structural informa-
tion of the robot.

Overloaded models: Every user defined robot model
package extending the baseRobotModel package also in-
cludes a number of models to be used by the functional
blocks. The KinematicModel model uses standard Multi-
Body components as joints, rotations and translations to
build the kinematic chain between the robots base and its
tool center point (TCP). The coordinate frames of every
robot axis are provided as an array of MultiBody frames
()frame_axes).

The RobotVisualization model encapsules the vi-
sualization components of the DLR Visualization library
used for the real-time visualization of robot systems. It

does not contain a kinematic structure, but attaches a vi-
sualizer block to every frame of every axis, provided by
the frame_axes input.

The RigidDynamicsModel model uses standard Mod-
elica MultiBody components to model a rigid dynamics
model of the robot, including masses and inertias of the
robot arm. Similar to the KinematicModel, MultiBody
joints are used to build the kinematic, but this model also
describes the robot components’ masses (See Figure 2)
and therefore allows the calculation of the dynamic forces
acting them.

Figure 2. Example for a simple rigid dynamics model for a six
axes industrial robot

The CollisionModel provides an interface to the
DLR ContactDetection library, used to calculate colli-
sions between the robot, itself and other components in
its reach. Like the RobotVisualization block, the
CollisionObject blocks modeling the shape of the robot
are attached via the connector array frame_axes.

2.2 The robotChoice partial model
In order to exchange the robot package in a functional
model, the base class Internal.robotChoice is pro-
vided as an interface definition to parameterize the robot
model:

partial model robotChoice
"A base class providing the dialog option

to choose the robot model."
replaceable package robotModel =

Robots.RobotModels.BelloBot
constrainedby

Robots.RobotModels.Internal.baseRobotModel
"Robot model to be simulated"

annotation (choicesAllMatching=true);
...
end robotChoice;

The DLR Robots library Using replaceable packages to simulate various serial robots

154 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp20174153

Within the functional block extending this partial interface
definition, the robot package can now be chosen and used
with the parameter robotModel (see Figure 3).

Figure 3. Dymola parameter dialog showing the selection of the
robot model

For example, if the user requires access to the maximum
axis acceleration, this could be achieved by the following
code:

extends Robots.Internal.robotChoice;
Real q_ddot[robotModel.numAxes];
...
q_ddot = robotModel.AxesData.q_ddot;

3 Utilizing functional blocks to build
models with serial robots

The DLR Robots library provides a multitude of robot
model independent functionalities. These functional mod-
els from the subpackage Robots.Blocks utilize the afore-
mentioned robotChoice parameter to select the robot
model to be used and therefore allow the user to design
robot model independent simulation models. Figure 4
shows some of the available blocks of this sub-package.

Visualizer blocks: The Visualizer blocks allow the
user to visualize the simulated robot with the DLR Vi-
sualization library.The DLR Visualization library is used
to provide real-time visualization of the robot and its sur-
roundings.

Direct kinematics blocks: Blocks from the package
DirectKinematics enable access to the axes limits
(AxesLimits model) or provide models wrapping the
robots direct kinematics, Jacobian and its derivative. The
user can define additional TCP transformations in order to
account for different tool center points.

Inverse kinematics blocks: The InverseKinematics

package holds several algorithms to calculate the
robots inverse kinematics. If an analytical in-
verse kinematics is provided by the selected robot
model package, the AnalyticalInverseKinematic

model can be used, which simply wraps the func-
tion robotModel.inverseKinematicsAnalytic. The
DampedLeastSquares block calculates the inverse kine-
matics numerically via the well-known damped least
squares algorithm (Wampler, 1986). It uses the

Figure 4. A selection of functional block, to be parameterized
with the desired robot package

Figure 5. The same visualization block is used with different
robot packages selected, visualizing Stäubli, KUKA, Mitsubishi
and fictional robots

directKinematics and jacobian functions from the
selected robot package to calculate the joint angles
to a given end-effector position via an iteration loop.
The ConstrainedInverseKinematics model imple-
ments the algorithm from (Bellmann et al., 2011b) to gen-
erate the joint trajectory resulting in a Cartesian movement
of the end-effector, where the reference pose is followed
as closely as possible. Here, joint limitations such as min-
imum and maximum joint angles, velocities, accelerations
and torques are considered. In every time step of the cal-
culation, the optimal change of the joint angles ∆q is cal-
culated via a local optimization step. The optimization
criterion demands a minimization of the pose error, but
can also contain additional sub-criteria, for example the
desired configuration of redundant robot kinematics with
more than six axes.

Robot dynamics blocks: The Dynamics sub-
package contains models to calculate the robot joint
torques/forces, mass inertia matrices and forces act-

Session 6: Tools and Robotics

DOI
10.3384/ecp20174153

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

155

ing on the robot structure, either by encapsuling the
robotModel.rigidDynamics function or utilizing the
RigidDynamicsModel to calculate them numerically.

Path-planning blocks: The DLR Robots library
provides several path-planning algorithms intended
to generate e.g. point-to-point (PTP) trajectories
between two poses. The LinearJoint and the
LinearJointAxes blocks generate time-optimal
PTP trajectories between two poses by interpolating
between them in joint space. Maximum joint velocities
and accelerations from robotModel.AxisData are
also considered. The LinearCartesianLimited and
LinearCartesianDynamicProgramming blocks also
generate PTP trajectories between two poses, but always
on a straight line, interpolated in Cartesian space. The
first one is a very fast two-pass algorithm considering
the velocity and acceleration limits, but the resulting
trajectory can exceed them in the vicinity of numerical
singularities (||J|| < eps). The second one implements
a Dynamic Programming approach to calculate the joint
trajectories in a time optimal way, always considering the
axes’ dynamical limits.

The RealtimeMovement block is basically an inverse
kinematics block to be used for sensor guided reference
trajectories, where a reference pose trajectory is given
and the joint angles have to be calculated accordingly and
checked for feasibility.

The TeachBox block calculates simple and slow move-
ments around the Cartesian axes, in order to implement
the possibility to control the robot by a classical teaching
interface.

All PTP path-planning blocks can be triggered via a
Boolean input. Upon activating the trigger, the current
reference pose (r_ref, T_ref) is then stored as the tar-
get pose, and the movement from the current robot con-
figuration q_robot starts. After finishing the movement,
the Boolean output finished becomes true, indicating the
completion of the movement.

4 Using LUA scripts as robot pro-
grams

In the real world, a robot program defines a sequence
of robot operations, for example different kind of move-
ments, activation of tools, etc. Robot programs must be
able to react to external signals, e.g. from a high-level
programmable logic controller, or sensors. Nearly every
manufacturer provides its own language for their robots,
for example KUKA KRL or Mitsubishi MELFA Basic. In
order to program a simulated robot in Modelica, different
methods can be thought of, for example using Modelica
state machines, Modelica functions generating reference
positions over time or Modelica models to be parameter-
ized with the reference trajectories and operation activi-
ties. However, all these pure Modelica implementations
generate significant overhead and require a recompilation
of the model if the program has to be changed. In the

DLR Robots library, a different approach has been cho-
sen. By utilizing the Modelica/C interface and the exter-
nal object mechanism, a LUA1 interpreter can be coupled
with the Modelica robot model, using a LUA script as
robot program. The flexibility of LUA allows the user
to exploit all aspects of a high-level scripting language
such as variables, mathematical operations or a feature-
rich command-set, but also the usage of custom designed
commands tailored to the needs of robot programming,
e.g. for PTP movement commands.

4.1 Coupling the LUA interpreter with Mod-
elica

The components of the LUA/Modelica conglomerate are
shown in Figure 6. One of the advantages of LUA is the
very sleek implementation of its interpreter in C, consist-
ing only of a handful .c/.h C-files. The Robots library pro-
vides a small C++ library integrating the following com-
ponents:

• the interface to the Modelica External Object (see Ta-
ble 1),

• the LUA interpreter,

• a data core to hold the robot program states like ref-
erence position, current command, etc.,

• helper functions to load and execute the LUA script,
and

• custom LUA function definitions to be used in the
LUA script to control the robot (see Table 2)

The LUA interpreter runs in a separate thread and there-
fore does not block the execution of the simulation process
in Modelica. The Modelica External Object interface to
said C++ library comprises of several Modelica functions
listed in Table 1.

To enable the user to program robot operations in LUA,
a set of custom LUA functions must be provided. Table
2 shows the available commands, which can be used in a
LUA script to control the robot in Modelica.

4.2 The robot controller in Modelica
The DLR Robots library provides a robot controller
model (Robots.Controllers.ControllerSixAxes)
suited for the control of six axes industrial robots. Figure
7 shows the interfaces of this model. The inputs and
outputs can be utilized by the LUA robot program with
the I/O commands from Table 2, allowing the controller
to react to signals from the Modelica model. The robot
joint sensor input q_robot is used by the controllers’
path-planning in order to determine the start point for
planned trajectories and whether the trajectory is finished.
Said trajectory is provided via the robot reference joint
angle output q_ref and can be subsequently used as an

1https://www.lua.org/

The DLR Robots library Using replaceable packages to simulate various serial robots

156 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp20174153

LUA Script LUA
Interpreter API

Data

Modelica
Robot

Controller

Pathplanning
Interpolation

Modelica
Robot
Model

q_ref

q_robot

...
ptpCartesianSpace
 (1,0,1.5,0,90,0)
...

robotCommandState =
PTPCartesian
currentReferencePos =
(1,0,1.5,0,90,0) [m,deg]

getRobotCommandState

getCurrentReferencePos

[wait until movement

is finished]

setRobotCommandState

Figure 6. Overview of the LUA/Modelica integration. The LUA script is executed by the LUA interpreter. The Modelica model
communicates via the external object API with the LUA Interpreter and handles the physics simulation of the LUA program
commands.

Table 1. Modelica functions utilized by the External Object
(con-/destructor omitted)

Function Description

open Opens a LUA script

run Runs the loaded LUA script in
a parallel thread

getRobot←↩
CommandState

Returns the current command
state of the robot program

setRobot←↩
CommandState

Sets the current command
state of the robot program

setNumAxes Defines the number of axes in
programs

getReference←↩
CartesianPosition

Returns the current TCP ref-
erence position in Cartesian
space

getAnalogOutputs Returns the value of the ana-
log outputs to Modelica

setAnalogInputs Sets the value of the analog
inputs in the LUA interpreter

getDigitalOutputs Returns the value of the digi-
tal outputs to Modelica

setDigitalInputs Sets the value of the digital in-
puts in the LUA interpreter

getOverrides Retruns the override values to
set a speed scale factor for
movements

input for the axes controllers. Internally, the controller
consists of three sub-components (see Figure 8). The
interpreter encapsules the API from Table 1 and pro-
vides the sample clock for the robot controller. The
path-planning block contains the trajectory generator
models from Robots.Blocks.Pathplanning.

TrajectoryGenerators, and switches between the
different path-planning algorithms depending on the robot
command state (e.g. idle, PTP in joint space or Cartesian
space, etc.). The interpolator block takes the sampled
reference trajectory from the path-planning block and

analog inputs

robot joint sensors

digital inputs

analog outputs

robot reference joint angles

digital outputs

Figure 7. Interfaces of the ControllerSixAxes model

interpolates it with various filters (e.g. moving average)
to create a smooth reference joint trajectory output.

Figure 8. Sub-components of the ControllerSixAxes
model

4.3 The robot command state

The main arbiter between the LUA interpreted pro-
gram calls and the Modelica model is the Variable
RobotCommandState. It determines the current
state of the robot and can be set to one of the path-
planning command states (PTPJOINT_CARTESIAN,
PTPJOINT_JOINT, PTPCARTESIAN, TRAJECTORY,
TEACH) by the LUA interpreter. Additionally, it can be
reset by the Modelica model to IDLE by the path-planning
block at the end of a movement. Figure 9 shows this
alternating interaction between the two executed threads:
the LUA interpreter and the Modelica simulation.

Session 6: Tools and Robotics

DOI
10.3384/ecp20174153

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

157

Table 2. Custom LUA functions to be used in robot programs

Function Description

ptpCartesianSpace
(rre f ,ϕre f

)
Commands a linear PTP
movement in Cartesian space

ptpJointSpace←↩
Angles(q1, ..,qn)

Commands a linear PTP
movement in Joint space
(reference position in joint
angles)

ptpJointSpace←↩
Position(rre f ,ϕre f

)
Commands a linear PTP
movement in Joint space (ref-
erence position in cartesian
coordinates)

setDigitalOutput
(index, value)

Sets the digital output index
to value. This value can then
be used in Modelica to control
parts of the model.

value =
getDigitalInput
(index)

Returns the value of the digi-
tal input from Modelica to be
used in the LUA script

setAnalogOutput
(index, value)

Sets the analog output index
to value. This value can then
be used in Modelica to control
parts of the model.

value =
getAnalogInput
(index)

Returns the value of the digi-
tal input from Modelica to be
used in the LUA script

wait(time) Pauses the robot program ex-
ecution for time seconds

print(string) Outputs string to the console
window.

4.4 Program example - positioning during a
welding process

In this example, a LUA robot program is used to position
a robot in predefined welding positions and to activate the
welding gun. The following listing shows a part of the
LUA robot program:
print("Welding Program 1")
setDigitalOutput(1,0); //deactivate

welding gun
wait(1);
ptpJointSpaceAngles(0,-90,45,0,45,0)
ptpCartesianSpace
(0.37,-1.78,1.21,-42.03,117.47,-35.89)

ptpCartesianSpace
(0.37,-1.78,1.18,-42.03,117.47,-35.89)

setDigitalOutput(1,1); //activate welding
gun

wait(1); // wait for completion of
welding process

setDigitalOutput(1,0); //deactivate
welding gun

ptpCartesianSpace
(0.375,-1.78,1.21,-42.03,117.47,-35.89)
...

triggers

triggers

Start Robot Movement
from current position to

POS

(RobotCommand
State == IDLE?

Modelica Simulation

Wait for robot
command

Set
RobotCommandState to

IDLE

Movement finished

Command call: PTP
Cartesian to POS

Set
RobotCommandState to

PTPCARTESIAN

Set Reference Cartesian
Position to POS

Wait for robot to finish
its movement

(RobotCommand
State == IDLE?

Call next command

LUA Interpreter

no

yes

no

yes

Figure 9. Exemplary interaction between the LUA interpreter
thread and the Modelica simulation thread performing a Carte-
sian PTP movement to the position POS

Figure 10 shows the Modelica model with the aforemen-
tioned ControllerSixAxes, the robot drive train, kine-
matics and the robot visualization. The selected robot
model is a KUKA Quantec robot, equipped with a weld-
ing gun operating on a car frame. The first digital output of
the robot controller is connected with the welding gun to
control their actuators and to activate the welding process.
The robot uses the PTP path-planning blocks of the library
to reach the predefined welding positions in the program.
After a position is reached, the digital output is activated
triggering the closing of the welding gun and ultimately
the start of the welding. After waiting for the welding
process to finish, the robot moves to the next welding po-
sition.

5 Applications
As a base library for robotic research, the DLR Robots
library can be used in various simulation and control ap-
plications. Some projects utilize it to analyze robotic sys-
tems, while others are making use of the real-time capa-
ble path-planning algorithms to control real-world robots.
All following examples are basically using the same func-
tional blocks introduced in Section 3, but with different
robot model packages.

The DLR Robots library Using replaceable packages to simulate various serial robots

158 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp20174153

Figure 10. Modelica model utilizing the DLR Robots library to
simulate the robot movements of a welding process

Figure 11. Positioning for multiple welding processes during
execution of the LUA robot program

5.1 DLR Robotic Motion Simulator
The DLR Robotic Motion Simulator is a modified KUKA
KR500TÜV industrial robot carrying a multi-purpose
simulator cockpit (see Figure 12). The system can be
used to perform interactive driving and flight simulations
(Bellmann et al., 2011a). During the simulation run,
the driver/pilot controls the virtual vehicle and the robot
moves accordingly in real-time to simulate the movements
of the vehicle. In this use-case, the DLR Robots library is
used to provide the real-time path-planning of the robot
joint trajectories while considering the hardware limits of
the system.

5.2 DLR Terramechanics Robotic Locomo-
tion Lab

The DLR Terramechanics Robotic Locomotion Lab
(TROLL) is a robotic test bed for automated wheel/soil

Figure 12. The Robotic Motion Simulator (RMS) is a flexi-
ble, industrial robot based flight/driving simulator. The path-
planning algorithms and kinematic functions of the DLR Robots
library are used to control the Robotic Motion Simulator in real-
time.

contact tests (Buse et al., 2018). An industrial robot is
pressing a space rover wheel into a soil surface, measur-
ing the resulting forces, slip of the wheel, deformation of
the soil or even the movement of soil particles via cam-
era based particle image velocimetry. The DLR Robots
library has been used to simulate the complete system as
part of a feasibility study (see Figure 13), and is also used
to control the robot during operations.

Figure 13. Feasibility study of the DLR Terramechanics
Robotic Locomotion Lab - A KUKA KR3100 Quantec presses
a rover wheel into a simulated soil surface, while following the
rotating wheel with constant speed over the ground

5.3 Active Space debris removal with a robot
arm

The increasing density of large debris objects in Low
Earth Orbit poses a growing problem as the probability
for collisions increases. In order to de-orbit large objects,
several approaches are actively researched, such as Active
Debris Removal (ADR) utilizing a robot arm. As part of
an ESA project, this approach has been simulated utilizing
the DLR Robots library to model the robots’ arm behav-
ior in a combined control GNC simulation (Reiner, 2018).
The chaser satellite first synchronizes with the tumbling

Session 6: Tools and Robotics

DOI
10.3384/ecp20174153

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

159

movement of the target satellite (here: Envisat). Next,
the robot arm with three axes grabs the docking ring and
enables a physical connection between the chaser satel-
lite and the target. Thereafter, the chaser satellite actively
steadies the tumbling target and subsequently initiate the
controlled de-orbiting. In this use-case, the DLR Robots
library was used to simulate the kinematics and dynamics
of the robot arm, whereas the drive-trains have been sim-
ulated with additional detailed models.The GNC simula-
tion tool based on the object-oriented DLR SpaceSystems
(Reiner and Bals, 2014) library and DLR Environments li-
brary (Briese et al., 2017) is used to design and simulate
the control algorithms, satellite dynamics including flexi-
ble elements such as the solar panel, kinematics as well as
the robot arm control.

3 Axis
Robot Arm

Chaser Satellite

EnviSat

Flexible Solarpanel

Figure 14. De-orbit scenario simulation of the nonfunctional
EnviSat. The capture satellite grasp the tumbling target with a
three axes robot arm.

5.4 Analyzing grasping and placement pro-
cesses during rover missions

For the research project ROBEX (Robotic Exploration
of EXtreme Environments) an analog (on earth) mis-
sion scenario has been designed, where a rover performs
autonomous pick-up and placement of sensor packages
(Hellerer et al., 2016; Wedler et al., 2015). In order to
analyze the forces and torques acting on both the arm and
the rover, the DLR Robots library has been used. Addi-
tionally the complete mission scenario has been simulated
including robotic operations (see Figure 15).

6 Conclusions
The replaceable package mechanism in Modelica provides
the user with great flexibility, as it allows parameteriz-
ing models not only with parameters or functions but also

Figure 15. Rover equipped with Jaco Arm lifting a sensor pack-
age during the ROBEX mission scenario

complete sets of functionalities and even structural com-
ponents. This is used in the DLR Robots library to ease
the workload of system-modelers and to increase the re-
usability of Modelica models utilizing robotic systems.
The combination of Modelica with the scripting language
LUA is a promising method to provide flexible and higher-
level control over simulation procedures, such as robot op-
erations. In the future, a more generic LUA library will
be developed in order to enable this potential in other do-
mains beyond robotics.

7 Acknowledgments
The authors would like to thank Matthias Reiner and
Fabian Buse (DLR) for providing additional example ma-
terial for this paper. Additionaly we would like to thank
Mehran Assanimoghaddam, Stefan Hartweg, Matthias
Reiner and Robert Reiser (DLR) for their contributions to
the library and valuable discussions.

References
Tobias Bellmann, Johann Heindl, Matthias Hellerer, Richard

Kucher, Karan Sharma, and Gerd Hirzinger. The DLR Robot
Motion Simulator Part I: Design and setup. In 2011 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 4694–4701. IEEE, Mai 2011a.

Tobias Bellmann, Martin Otter, and Gerd Hirzinger. The
DLR Robot Motion Simulator Part II: Optimization based
path-planning. In 2011 IEEE International Conference on
Robotics and Automation (ICRA), pages 4702–4709. IEEE,
Mai 2011b.

Lale Evrim Briese, Andreas Klöckner, and Matthias Reiner. The
DLR Environment Library for Multi-Disciplinary Aerospace
Applications. In 12th International Modelica Conference,
Mai 2017. URL https://elib.dlr.de/112971/.

Matthias Brossog, Johannes Kohl, Jochen Merhof, Simon
Spreng, Jörg Franke, et al. Energy Consumption and Dy-
namic Behavior Analysis of a six-axis Industrial Robot in an
Assembly System. Procedia Cirp, 23:131–136, 2014.

The DLR Robots library Using replaceable packages to simulate various serial robots

160 Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

DOI
10.3384/ecp20174153

Fabian Buse, Tobias Bellmann, Roy Lichtenheldt, and Rainer
Krenn. The DLR Terramechanics Robotics Locomotion
Lab. In International Symposium on Artificial Intelligence,
Robotics and Automation in Space, Juni 2018. URL https:
//elib.dlr.de/121796/.

Francesco Casella, Martin Otter, Katrin Proelss, Christoph
Richter, and Hubertus Tummescheit. The Modelica Fluid
and Media Library for Modeling of Incompressible and Com-
pressible Thermo-fluid Pipe Networks. In Proceedings of the
5th international modelica conference, pages 631–640, 2006.

Rhama Dwiputra, Alexey Zakharov, Roustiam Chakirov, and Er-
win Prassler. Modelica Model for the Youbot Manipulator.
In Proceedings of the 10 th International Modelica Confer-
ence; March 10-12; 2014; Lund; Sweden, number 096, pages
1205–1212. Linköping University Electronic Press, 2014.

Matthias Hellerer, Martin J. Schuster, and Roy Lichten-
heldt. Software-in-the-Loop Simulation of a Planetary Rover.
In The International Symposium on Artificial Intelligence,
Robotics and Automation in Space, Juni 2016. URL https:
//elib.dlr.de/104934/.

Gerd Hirzinger, Johann Bals, Martin Otter, and Johannes Stel-
ter. The DLR-KUKA Success Story: Robotics Research im-
proves Industrial Robots. IEEE Robotics & Automation Mag-
azine, 12(3):16–23, 2005.

Arif Kazi, Günther Merk, Martin Otter, and Hui Fan. De-
sign Optimisation of Industrial Robots using the Model-
ica multi-physics Modeling Language. In 33rd Interna-
tional Symposium on Robotics, pages 347–352, Oktober
2002. URL https://elib.dlr.de/11898/. LIDO-
Berichtsjahr=2002,.

Matthias Reiner and Johann Bals. Nonlinear inverse models for
the control of satellites with flexible structures. In 10th In-
ternational Modelica Conference 2014, Linköping Electronic
Conference Proceedings, pages 577–587. LiU Electronic
Press, 2014. URL https://elib.dlr.de/92164/.

Matthias J. Reiner. Modellierung und Steuerung von struk-
turelastischen Robotern. PhD thesis, Technische Universität
München, 2011.

Matthias J. Reiner. Modelling And Combined Control Of A
Satellite With A Robot Arm For Active Debris Removal.
In 69th International Astronautical Congress, 2018. URL
https://elib.dlr.de/123349/.

Charles W Wampler. Manipulator Inverse Kinematic Solutions
based on Vector Formulations and Damped Least-Squares
Methods. IEEE Transactions on Systems, Man, and Cyber-
netics, 16(1):93–101, 1986.

Armin Wedler, Mathias Hellerer, Bernhard Rebele, Heiner
Gmeiner, Bernhard Vodermayer, Tobias Bellmann, Stefan
Barthelmes, Roland Rosta, Caroline Lange, Lars Witte,
Nicole Schmitz, Martin Knapmeyer, Alexandra Czeluschke,
Laurenz Thomsen, Christoph Waldmann, Sascha Flögel,
Martina Wilde, and Yuto Takei. ROBEX – Components and
Methods for the Planetary Exploration Demonstration Mis-
sion. In 13th Symposium on Advanced Space Technologies
in Robotics and Automation (ASTRA), ASTRA. ESAWebsite,
2015. URL https://elib.dlr.de/98242/.

Session 6: Tools and Robotics

DOI
10.3384/ecp20174153

Proceedings of the Asian Modelica Conference
Oct 08-09, 2020, Tokyo, Japan

161

