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Abstract—In this paper, we explore the use of machine learning
methods as an efficient alternative to correlation in performing
packet detection. Targeting satellite-based massive machine type
communications and internet of things scenarios, our focus is on
a common channel shared among a large number of terminals
via a fully asynchronous ALOHA protocol to attempt delivery of
short data packets. In this setup, we test the performance of two
algorithms, neural networks and random forest, which are shown
to provide substantial improvements over traditional techniques.
Excellent performance is demonstrated in terms of detection
and false alarm probability also in the presence of collisions
among user transmissions. The ability of machine learning to
extract further information from incoming signals is also studied,
discussing the possibility to classify detected preambles based on
the level of interference they undergo.

Index Terms—machine learning, preamble detection, random
access, grant free protocols, machine-type communications.

I. INTRODUCTION

SMALL data networks are steadily gaining momentum as
a new approach for communications via Low Earth Orbit

(LEO) satellite constellations. Characterised by the exchange
of short information packets, this paradigm finds natural ap-
plication in massive machine type communications (mMTC),
and has been embraced by international terrestrial standards
(e.g., 3GPP, NB-IoT and LTE-M) as well as by commercial
solutions in the satellite domain (e.g., [1], [2]). In this context,
data are generated by a vast population of terminals that
transmit in a sporadic and unpredictable fashion. Accordingly,
grant-free schemes based on variations of the basic ALOHA
random access (RA) protocol [3] are commonly employed,
where users send information in a fully asynchronous and
uncoordinated way over the shared bandwidth. This approach
is especially suitable for satellite-based internet of things
(IoT) use-cases, allowing simple transmitter implementations
that match well the capabilities of the battery-powered, low-
complexity devices often encountered in these scenarios. The
computational burden is instead shifted at the receiver, which
has to attempt data retrieval from an incoming stream where
the arrival time of information units is not known in advance
and where packets may interfere with each other.

From this standpoint, packet detection, i.e., the ability to
understand whether a transmission is present and to identify
its start, is a key enabler to achieve good performance. Indeed,
operating the system at an exceedingly high false alarm
probability may trigger decoding procedures unnecessarily,

increasing the receiver computation complexity. Conversely,
missing or erroneously estimating the beginning of a data unit
could severely impact the decoding process, especially when
the receiver relies on successive interference cancellation (SIC)
to resolve collisions [4]. In most practical implementations,
detection is accomplished by correlating the incoming stream
with a know preamble sequence, and by applying a threshold
criterion to flag the presence of a packet. Despite being
sub-optimal [5][6], this solution is widely employed in view
of its simplicity. Good performance is achieved in lightly
loaded systems, yet a severe degradation is experienced in
the presence of interference, especially when short preambles
are employed. The definition of more effective approaches
represents thus a fundamental challenge to support mMTC in
LEO constellations.

In this perspective, the lack of a known optimal solution
for detection in grant-free access channels has recently drawn
attention to the use of machine learning (ML) as a promising
alternative to correlation. Some initial and interesting results
in this sense are provided in [7], where the authors focus
on the random access channel (PRACH) of LTE systems.
Considering the availability of multiple orthogonal sequences
distributed among users and transmitted over an OFDM-based
physical layer to ask for resource grants, authors apply neural
networks (NNs) to estimate which preambles were transmitted
as well as their multiplicity. Departing from this setting, and
having in mind mMTC applications in both the satellite and
terrestrial domain, we tackle in this paper a fully uncoor-
dinated scenario. Terminals do not undergo any negotiation
procedure, but rather access the medium via an asynchronous
ALOHA policy to directly send a short data packet that
includes few and common preamble symbols. In this setup, we
explore the potential of two ML algorithms, NNs and random
forest (RF), studying their performance in terms of detection
and false alarm probabilities. Remarkable improvements over
correlation-based methods are shown in a wide range of signal-
to-noise ratio configurations, especially when transmissions
are corrupted by mutual interference. Moreover, we suggest to
leverage the multi-classification capabilities of ML to gather
additional information on incoming signals. In particular, we
consider the possibility to differentiate whether a preamble was
received interference-free or endured a collision, involving one
or more packets. Such an approach can be beneficial at the
receiver, e.g. in order to determine the decoding order when
SIC is applied.

The remainder of the paper is organised as follows. We
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provide a brief and general overview of NN and RF in Sec. II,
followed in Sec. III by a description of the system model
considered in our study. Sec. IV details the algorithms used
for detection, whose performance is discussed in Sec. V.

II. MACHINE LEARNING BACKGROUND

The vast and complex nature of ML renders a proper
introduction to the topic well beyond the scope of this article.
We provide instead a short high level overview of the two
algorithms that will be later employed for packet detection,
highlighting their key features in order to facilitate an un-
derstanding of the main results of our work. For a more
comprehensive overview of the methods, the interested reader
is referred to, e.g., [8], [9], [10].

Throughout our discussion, we focus on supervised learning
models for classification problems, which operate in two
phases. During the first, taking place offline, the machine
learns by being fed with a set of inputs of known classes,
i.e., each input is presented together with the corresponding
classification label. Once the training phase is complete, the al-
gorithm can be run online, returning a classification prediction
for any new unlabeled observation it is provided with. More
formally, let X = {x1,x2, ...,xd} indicate a training data-set
composed by d input vectors of m elements each, also referred
to as the number of features of the sample vector, and denote as
{k1, k2, . . . , kn} the corresponding set of classification labels.
The performance of the trained ML method can be measured
by feeding a test data-set T = {t1, t2, ..., ts}, and checking
the output predicted labels {yi}, i = 1, . . . , s. Following this
notation, the overall accuracy A of the algorithm is given by

A :=
1

s

s∑
i=1

1{yi = ki} (1)

where 1(·) is the indicator function and note that the cor-
responding classifications labels ki of the test data-set are
known. The metric offers thus an estimate of the probability
to correctly label an incoming vector, computed based on
the available training and testing sets. The definition can
straightforwardly be extended to evaluate the ability of a
trained ML method to classify inputs belonging to specific
classes of interest, as will be discussed in more details in
Sec. IV.

Among the variety of supervised learning techniques, we
focus on two widespread and efficient solutions, namely NNs
and RFs, which are briefly reviewed in the following.

A. Neural Network

An artificial NN [8] consists of a multipartite directed graph.
Nodes, also called neurons, are arranged in multiple distinct
layers, so that a neuron belonging to a layer is connected to all
and only neurons of the next layer through directed weighted
edges. Each node in the first layer is associated with one
element of an input vector, i.e., the number of neurons equals
the cardinality of features for the considered input, whereas
intermediate or hidden layers may be composed by a variable
number of nodes. Moreover, every neuron applies an activation
function, combining the (weighted) inputs of the nodes of

the previous layer and computing a scalar output, which is
propagated forward through the outgoing edges. Finally, the
last (output) layer is populated by as many nodes as the
possible number of classes, and computes the likelihood for
the fed data to be classified with a specific label.

The structure of the neural network is associated with a
cost function, equal to zero for a perfect classification, and
increasing as input vectors are wrongly labelled. In this sense,
the aim of the training is to identify the appropriate weights
that minimize the overall cost. Different algorithms to tackle
the problem exist, among which a relevant role is played by the
so called back-forward propagation. The method starts with
a random initialization of the edge weights. Then, during a
forward propagation phase, the training data set is given as an
input and the data is processed by the network to produce an
output prediction. In the back propagation, the algorithm takes
the predicted output given by the network, compares it with
the correct classification and calculates an error function at the
output layer. Then, the iterative gradient descent algorithm [11]
is used to iteratively minimize the cost function by updates of
the weight values. Once the last layer is adjusted, the algorithm
back-calculates the error associated with the neurons edges
from the preceding layer until the input layer is reached. When
the model is trained, the final structure of the neural network
is used for predicting new unlabeled data. A new observation
is given as input and the NN gives the corresponding predicted
classification as output.

B. Random Forest

Following a different approach to classification problems,
RFs rely on the notion of binary decision trees. Within a
decision tree, every node represents the evaluation of a feature
for a provided input, its branches indicate the outcomes
of such evaluation, and tree leaves are associated with the
categorization labels. Each decision tree populating the forest
is grown independently during the training phase following a
top-down approach. Specifically, a random feature is chosen,
and all vectors in the input data-set are split in two disjoint
subsets by applying a threshold on the value they exhibit for
the feature under analysis. The quality of the split is then
evaluated by applying a criterion of interest, and the procedure
is repeated considering other randomly chosen features. Once
this is done, the feature leading to the split with the best quality
(together with the employed threshold) is associated with the
root node of the tree. The whole process is then repeated for
the children nodes, building the tree in an iterative fashion.

In creating a forest, criteria to evaluate the obtained splits, as
well as to stop the growth of trees, shall be provided. Common
examples of the former are the Gini index and information gain
(IG) [12]. As to the latter criteria, can be for instance driven
by a trade-off between accuracy and data overfitting or by
defining a threshold on the splitting rule. When the stopping
condition is fulfilled, each node without children is declared
to be a leaf, and it is assigned the label of the category for
which most input vectors reach it.

Finally, when a new observation has to be classified, the
input sample is fed to each tree of forest. Here, the vector of



features travels from the root downwards according the eval-
uated conditions until it reaches a leaf, which determines the
prediction cast by the tree. As trees are grown independently,
different classifications for the same observation sample may
be obtained, and the RF algorithm bases its final prediction
on a majority voting criterion.

III. SYSTEM MODEL

We focus on a scenario where a number of users access a
shared wireless channel to send information to a single receiver
in the form of short data packets. A simple ALOHA policy
[3] regulates access to the medium, with nodes transmitting
data units in a fully asynchronous way. Such a setting is of
particular interest for mMTC via satellite, where large pop-
ulations of terminals may sporadically generate and transmit
small amount of information toward a sink in an unpredictable
and uncoordinated fashion.

As reported in Fig. 1, packets are assumed to be overall
N = 256 bits long, with the first L = 16 bits reserved to a
preamble (syncword) taking the form

p = [1110 1011 1001 0000]. (2)

The sequence p was originally proposed by the Consultative
Committee for Space Data Systems, and specifically designed
to perform well in detection of short packets thanks to good
auto-correlation properties [13].

After binary phase shift keying (BPSK) modulation, packets
are sent over a channel with additive white Gaussian noise
(AWGN), possibly interfering with each other. All users trans-
mit with the same power level, and performance is tested for
different signal to noise ratio (SNR) levels at the receiver,
namely 0, 3 and 8 dB. For simplicity, users are assumed to
be symbol-synchronous, i.e., no timing offsets are considered,
and no frequency offset is present either.1

To explore the capabilities of detection algorithms, two
relevant scenarios are studied, summarised in Fig. 2. First, we
focus on purely AWGN conditions, having receiver attempt
detection when a single user is accessing the channel (Fig. 2a).
This setup offers a benchmark for the achievable performance,
and can provide fundamental insights on the behaviour of
different detection methods. Moreover, the obtained results
can be representative for mMTC grant-free systems when
operated in lightly loaded conditions. We then complement
our analysis considering the practically relevant case of a true
interference channel, where multiple users contend for the
medium (Fig. 2b). Since simultaneously transmissions may
occur, the received signal can be corrupted by noise and
interference, rendering detection far more challenging.

In both scenarios, we evaluate the performance of detection
algorithms by deriving false alarm probability Pfa and correct
detection probability Pd. Formally, we denote by S the event of
having the complete preamble sequence within the observation
window of length L, and by S the complementary event, i.e.

1In practice, symbol synchronization can be easily approached with the
use of the oversampling technique. Furthermore, we remark that such an
assumption does not alter the intrinsically asynchronous behaviour of the
access protocol, regulated by a pure ALOHA policy.

p

preamble
16 bits

data
240 bits

Fig. 1: Packet structure considered where data is preceded by a
preamble sequence.

having a sequence which contains noise, data, or part of the
syncword (or combinations thereof in case of interference).
Furthermore, we indicate as D, the event of having the
employed detection algorithm declare the presence of the
preamble sequence within the observed window. Following
this notation, we define

Pd := Pr {D |S} , Pfa := Pr
{
D |S

}
. (3)

From (3), the performance of an ideal detector is achieved
for Pd = 1 and Pfa = 0. Note that Pd and Pfa are not
complementary events.

IV. DETECTION ALGORITHMS

Detection performance is evaluated for three algorithms:
correlation, neural networks and random forest.

A. Correlation

By virtue of its simplicity, correlation represents the de facto
solution for detection in most practical systems. In order to
identify the start of a preamble sequence within an incoming
symbol stream, the receiver operates via a sliding window of
duration L symbols, corresponding to the preamble length. In
details, at symbol time n, the known preamble sequence p is
correlated with the received stream, to obtain

c(n) =

L−1∑
i=0

x(i+ n) · p(i)

where c(n) indicates the correlation output, x(j) is the in-
coming signal at time j and p(i) is the i−th symbol of the
preamble sequence defined in (2). The obtained value is then
compared against a predefined threshold, and the start of a
preamble is declared when c(n) exceeds the value. The choice
of the threshold triggers a key design trade-off, driving the
balance between false alarm rate and probability of correct
detection. It shall be noted that, despite its widespread use,
correlation does not represent the optimal solution even under
AWGN conditions [5], and its performance in the presence of
interference may be severely hindered.

B. ML for packet detection

From a ML perspective, packet detection can be treated as
a classification problem, consisting in categorising input data
onto a set of predefined classes. In the simplest instance, the
input data can be represented by a portion of the incoming
symbols stream, which needs to be classified as either being a
preamble or not. Nonetheless, ML offers further possibilities,
allowing to process richer sets of information and to extract
more in-depth classification outputs. For instance, the ability to
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Fig. 2: Scenarios considered: (a) AWGN scenario with no collisions and (b) interference scenario where multiple transmissions occur.

determine whether an input vector contains at least a portion of
a preamble, or to understand if a detected preamble is affected
by interference or not, may trigger further improvements in
the receiver design, as will be discussed in further details in
Sec. V.
Performance metrics. As for any supervised learning model,
the performance of both NN and RF applied to detection can
be evaluated resorting to the accuracy metric A defined in (1).
In particular, let us denote without loss of generality as ki = 1
the label indicating that the provided input sample vector xi

corresponds to the start of the packet (preamble sequence).
Following this notation, the probability of false alarm Pfa

defined in (3) can be estimated over a set of s test samples as

Pfa '
∑s

i=1 1{yi = 1, ki 6= 1}∑s
i=1 1{yi = 1}

where the numerator sums up the instances in which the
machine erroneously classifies an input as a preamble, while
the denominator accounts for all the fed samples that were
predicted as a preamble. Similarly, an estimate of the correct
detection probability Pd for a ML method can be derived as

Pd '
∑s

i=1 1{yi = 1, ki = 1}∑s
i=1 1{ki = 1}

. (4)

ML implementation. In order to evaluate detection and false
alarm probability for both NN and RF, a training dataset X
as well as a testing dataset T with the corresponding set
of classification labels were generated for each of the SNR
considered and for each scenario described in Sec. III-2.

Every dataset contains 104 vectors, generated as follows.
In the AWGN case, a window of duration equal to twice the
packet length is considered, and a single packet is randomly
placed therein. Then, we extract five vectors of L = 16
symbols each: one contains the preamble (corrupted by noise),
while the others are randomly picked within the window
duration. The process is then repeated until the whole dataset
is filled. Similarly, in the interference scenario, three packets
are placed uniformly at random within a window of 4 · N
symbols (i.e., we consider a system operating at a channel
load G = 0.75 [pkt/pkt duration]). A total of 15 L-symbol
vectors are then taken, including the three preambles, prior to
drawing a new realisation. The sequences obtained in this way
are then complemented by adding an additional feature taking
the form

xi =
[
rl, rl+1, . . . , rl+L−1,

L−1∑
k=0

r2l+k

]
.

Here, l indicates the position of the first symbol of the consid-
ered L-symbol sequence within the stream and the last feature

Neural Network
Number of hidden layers 2
Neurons at input layer 17
Neurons at first hidden layer 325
Neurons at second hidden layer 320
Training algorithm back-forward propagation

gradient descent
Random Forest

Numbers of trees 100
Splitting algorithm information gain (IG) [11]
Stopping criteria IG < 0.01

TABLE I: Parameters used for the considered ML algorithms.

corresponds to the aggregate power over the period, thus
leading to 17-component input vectors for the ML algorithms.
Information about the power can help in differentiating pream-
bles from sequences with portions of noise-only samples, and
was shown to offer a slight increase in performance by means
of a dedicated study, whose outcome is not reported here
due to space constraints. Additional parameters employed in
the implementation of the ML algorithms are summarized in
Table I. The table parameters are sub-optimized based on the
greedy research algorithm.

V. RESULTS

In this section, we present the results obtained for packet
detection with the proposed ML schemes in both the AWGN
and interference scenarios. As a foreword, we observe that
optimal metrics for the synchronization issue, which is close
to our detection problem, have been studied for the AWGN
channel, for example in [5] [6]. However, such metrics are
not valid in interference-beset settings, for which performance
bounds remain elusive. In view of this, the sub-optimal yet
practical and widely employed correlation technique has been
chosen as reference for comparison.

A. AWGN Scenario

We start our discussion focusing on an interference-free
case. In this setting, Fig. 3 reports the detection probability
Pd against the false alarm probability Pfa, i.e. the receiver op-
erating characteristic (ROC) diagram. Let us first focus on the
curves, which represent the performance achieved when using
correlation. In this case, each point was obtained by changing
the threshold value used to declare the presence of a preamble,
and the plot clearly highlights the trade-off between high
false alarm probabilities (obtained by setting low thresholds)
and good detection. As expected, the behaviour improves for
higher values of SNR. In particular, reasonable performance
are obtained for a SNR of 8 dB, where correlation can provide
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Fig. 3: Probability of detection in function of the false alarm con-
sidering a AWGN scenario for SNR = 0, 3, 8 dB. Curves represents
the results obtained with the correlation technique while circles and
crosses represent the results obtained by neural network and random
forest, respectively.

a Pd = 0.96 while granting Pfa ' 0.062. On the other hand,
already when operating at 3 dB, a detection probability larger
than 90% can only be achieved by tolerating a false alarm
probability of more than 40%. This may unnecessarily trigger
the decoding process very often, with detrimental effects on
computational complexity and energy efficiency.

Conversely, the plot reveals a remarkable potential in using
supervised learning algorithms for small packet detection. The
results for both ML solutions, indicated by single points,
consistently outperform correlation and, even at low levels
of SNR, offer a high probability of detection while seldom
triggering false alarm. Already at 0 dB, a detection probability
of 90% is obtained with false alarms far lower than 5%.
Moreover, Fig. 3 clarifies how NN (non-circle markers) offers
better performance than RF (circle markers), regardless of the
SNR. This is confirmed when evaluating the results through
the overall accuracy metric defined in (1) and considering a
binary classification problem (i.e. preamble, non-preamble):
at 0 dB, we have A = 0.9771 for NN, and A = 0.9502 when
using RF. Such a trend emerges also in the other settings we
considered, and highlights to the use of NN as supervised
learning scheme. From this standpoint, it shall be however
noted that all the presented results were obtained by running
the algorithms according to the parameters given in Table I,
which were not specifically optimised. While this further
stresses the potential of ML, leaving room for improvement, it
also prompts the need for additional tuning and optimisations,
in order to clarify which method (if any) shall be preferred.
We regard these aspects as part of our future work.

Results presented so far were obtained employing ML for
binary classification. As discussed, however, the receiver can
also benefit from additional information, gathered by defining
further classes for the data-set. For instance, identifying that
an input vector – although not corresponding to the start of
a packet – contains a portion of the preamble followed by

TABLE II: Confusion matrices for AWGN at 3 dB. Labels indicate:
(n) noise, (p) preamble, (n-p) noise and preamble, (p-d) preamble
and data, (d) data, (d-n) data and noise.

Neural Network
n p n-p p-d d d-n

n 0.7956 0.0018 0.1326 0.0054 0.0060 0.2233
p 0 0.9958 0 0.0054 0.0072 0.0072
n+p 0.1169 0 0.6929 0.0492 0.1692 0.1693
p+d 0.0024 0 0.0120 0.6425 0.3221 0.1813
d 0.0006 0.0006 0.0738 0.1956 0.3965 0.1447
d+n 0.0845 0.0018 0.0888 0.1020 0.0990 0.2743

Random Forest
n p p-n p-d d d-n

n 0.8136 0.0066 0.1620 0.0126 0.0162 0.2215
p 0.0024 0.9616 0.0018 0.0060 0.0174 0.0162
n+p 0.0815 0.0048 0.6671 0.0414 0.1321 0.0804
p+d 0.0072 0.0054 0.0366 0.6605 0.3565 0.1639
d 0.0042 0.0126 0.0804 0.1938 0.3818 0.1501
d+n 0.0911 0.0090 0.0522 0.0858 0.0960 0.3679

data, may allow to infer that a detection was missed, possibly
triggering countermeasures. To explore the ability to classify
data into multiple categories, both NN and RF were then tested
considering six distinct labels: noise (n), noise and preamble
(n-p), preamble (p), preamble and data (p-d), data (d), data and
noise (d-n). Note that all labels refers to noisy observations.
For instance, the difference between (n-p) and (p) is that the
former corresponds to a sequence formed by noise samples
followed by noisy preamble’s symbols while the latter corre-
sponds to the observation of the preamble sequence which is
noisy. The results of this study are illustrated in the confusion
matrices given in Table II, operating at a SNR of 3 dB. Within
each matrix, the element in position (i, j) corresponds to the
estimated probability that the model classifies an input vector
as belonging to the class associated with the i-th row given
that the real label is the one associated with the j-th column.
Ideally, when the accuracy of a model is A = 1, the confusion
matrix is the identity matrix, providing correct classification
of every sample. Moreover, Pd and Pfa can easily be derived
from a confusion matrix (in this scenario). For the labelling
of Table II, indicating as aij the element in position (i, j), we
have Pd = a22 while Pfa =

∑6
j=1 a2j − a22.

In this case, we obtain A = 0.6329 for the NN and for
RF A = 0.6421. Even though the accuracy is lower than
in the binary classification due to the fact that the ML has
more possibilities of miss-classifications, the detection and
false alarm probabilities remain excellent estimated. For NN
we obtain Pd = 0.9958 and Pfa = 0.0198 while for RF we
obtain Pd = 0.9616 Pfa = 0.0438.

B. Interference scenario

Let us now focus on a scenario of practical relevance for
transmission of small data packets for mMTC applications,
considering the case in which multiple users concurrently
contend for the channel. Given the uncoordinated nature of the
ALOHA medium sharing policy, simultaneous transmissions
may lead to collisions, rendering the detection of packets cor-
rupted by interference considerably more challenging. Fig. 4
illustrates the performance of the detection algorithms under
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Fig. 4: Probability of detection in function of the false alarm
considering a interference scenario for SNR = 0, 3, 8 dB. Curves
represent the results obtained with the correlation technique while
circles and crosses represent the results obtained by neural network
and random forest, respectively.

study assuming a channel load G = 0.75 [pkt/pkt duration],
i.e on average 0.75 packets are received per packet duration.
As expected, all methods present a performance degradation,
due to the worse signal to interference and noise ratio (SINR)
experienced at the receiver. The effect is especially strong for
correlation, for which detection probabilities higher than 90%
come at the expense of a comparable level of false alarm prob-
abilities, forcing the rest of the receiver chain to be activated
almost at any incoming sample. Conversely, both NN and RF
are capable of offering an excellent detection behaviour even
in the presence of multiple users, performing almost ideally
for sufficiently large SNR values. The achievable improvement
can be for instance appreciated by observing how, if the
receiver accepts a Pfa in the order of 10−2, the correlation
technique reaches only a Pd = 0.5734 at 8 dB while with ML
a Pd = 0.98 can be ensured.

To conclude our study, we finally investigate the potential
of multi-classification for ML in a RA setup. From this stand-
point, the ability to understand whether a preamble is affected
by a collision, or even to differentiate among different levels
of interference, may enable important features to improve the
overall system performance. For instance, in modern random
access schemes where SIC is employed [14], [15], the receiver
may start the decoding process from interference-free data
units, or determine the order of SIC so as to tackle first less
interfered packets, increasing the probability of success and
possibly reducing the computational complexity of the process.

Having this in mind, four labels were specified for ML
to classify an input sample: no preamble (np), preamble (p),
preamble with one interferer (p+1), preamble with multiple
interferers (p+m). The confusion matrix obtained following
this approach for a SNR of 3 dB are presented in Table III.
The NN presents an accuracy A = 0.9335 while a little
degradation is given by the RF model with A = 0.8920. The

TABLE III: Confusion matrices for interference scenario at 3 dB.
Labels indicate: (np) not preamble, (p) preamble, (p+1) preamble
with one interferer, (p+m) preamble with multi-interferers.

Neural Network
np p p+1 p+m

np 0.9728 0.0022 0.0520 0.1599
p 0.0026 0.9696 0.0830 0.0093
p+1 0.0204 0.0282 0.8502 0.4504
p+m 0.0042 0 0.0149 0.3804

Random Forest
np p p+1 p+m

np 0.9676 0.0213 0.1244 0.2107
p 0.0074 0.9396 0.1453 0.0220
p+1 0.0202 0.0392 0.7083 0.5063
p+m 0.0048 0 0.0220 0.2610

probabilities of detection, calculated according (4), are slightly
lower than in the AWGN scenario Pd = 0.9714 for NN and
Pd = 0.9311 for RF while the probability of false alarm for the
interference scenario is similar to the one achieved in single-
user scenario, i.e. Pfa = 0.0272 for NN and Pfa = 0.0324
for RF. More interestingly, the algorithms are capable to
very accurately distinguish among interference-free preambles
and preambles affected by a single interferer (elements along
the main diagonal of the confusion matrix). Furthermore,
taking NN as reference, while preambles undergoing multiple
collisions (p+m) are correctly identified only ∼ 40% of the
times, in the vast majority of cases they are still perceived
as being affected by interference, although from a single user
(p+1), proving the robustness of the algorithm.

VI. CONCLUSIONS

In this paper we showed the effectiveness of supervised
learning techniques for short packet detection. We started
by comparing the de facto correlation solution with artificial
neural networks and random forest classifiers for a point-to-
point link affected solely by AWGN. The benchmark scenario
already anticipates promising performance. For instance, at
3 dB and for a target false alarm probability Pfa of 0.003
correlation provides a detection probability Pd ' 0.11 while
RF shows an improvement up to 0.995. Having in focus an
mMTC scenario, we then moved to analyse an uncoordinated
and asynchronous medium access setup with packet collisions.
As envisaged the supervised learning detectors largely outper-
form traditional correlation. The NN solution achieves up to
0.975 detection probability for a target false alarm of 0.03,
an at least 10-fold improvement over correlation. Finally, we
explored the multi-category classification capabilities, showing
that the proposed machine learning detectors are also able to
identify possible collisions, and eventually distinguish between
one or more interferers, with reasonable accuracy. Such feature
can be profitably exploited by a SIC receiver so to process
first lightly interfered packets having higher chances to be
correctly decoded. Relevant future work involves a computa-
tional complexity analysis of the ML schemes, together with
a comparison with reference benchmarks that go beyond the
correlation-based approach.
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