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Abstract— In this paper, the problem of estimating a contact
wrench at the end-effector for a space robot is addressed. To
this aim, a generalized force observer based on a base-joints
dynamics is first reviewed. Then, a different formulation is
proposed, which is based on a centroidal-joints dynamics. The
proposed observer features interesting decoupling properties
from the base linear velocity that lead to a more practical
and better-performing estimation when limitations in real space
scenarios are considered. The two observers are compared
and the advantage of the proposed one is shown through a
simulation example featuring a free-floating robot composed of
a 7 degrees-of-freedom (DOF) arm mounted on a 6DOF moving
base.

I. INTRODUCTION

Many on-orbit missions would potentially take advantage
of the use of manipulators [1]. However, their exploitation is
still very limited due to the high complexity involved in such
missions. Especially, dealing with physical contact between
the robot and a target object is considered one of the most
critical issue.

Many researchers have addressed the problem of guaran-
teeing a safe interaction between the robot and the target
during and after the contact in close proximity operations
[2][3][4]. In this situation, the end-effector comes into con-
tact with the target and the accurate knowledge of the force,
that is exchanged, can be a valuable information for the
implementation of an effective control strategy. For this
reason, the space robot can be equipped with a force-torque
sensor duly placed at the wrist. However, if the contact does
not occur exactly at the foreseen location, the measurement
may be inaccurate [5]. Furthermore, this kind of sensor can
not be redundant and thus a failure could jeopardize the
successful accomplishment of the task.

Therefore, other approaches have been proposed to esti-
mate the contact force without the need of a dedicated sensor
at the end-effector. In [5] the use of the disturbance observer
is proposed, while in [6] the force is estimated through the
target equations of motion. Both methods require quantities
that are not measured directly, as the joint accelerations and
the linear velocity of robot base for the former, and the
target accelerations for the latter. These quantities could be
obtained through numerical differentiation, but they would
introduce nonnegligible noise in the estimation process.
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In [7] a residual-based observer is proposed for hu-
manoids. This is an adaptation to floating robots of the well-
established momentum-based observer, presented in [8]. This
generalized force observer computes the linear, angular and
joint momentum residuals which turn out to be the estimates
of the external generalized forces acting on the floating base
and the disturbance joint torques due to a contact. Then, the
residuals can be used to estimate the external wrench acting
on the robot. The main drawback of the method is the need of
a fast and accurate reconstruction of the base linear velocity,
which is difficult to obtain in real space applications.

In this paper, the residual-based observer [7] is reviewed
and formulated for space robots based on a base-joints
dynamics. Then, a new observer is derived, which is based on
a centroidal-joints dynamics. The most important feature of
this observer is the complete decoupling of the angular and
joint momentum residuals from the base linear velocity. This
decoupling leads to a more practical and better-performing
estimation of the external wrench. Indeed, the proposed
method requires only the knowledge of the base angular ve-
locity and control moments, and the joint positions, velocities
and torques, which can be acquired at high frequency and
feature relatively low noise.

The paper is structured as follows: in Sect. II, the nota-
tions, assumptions and the main space robot equations are
introduced. In Sect. III, the method in [7] is formulated for
space robots and the proposed method is presented. In Sect.
IV, a method to reconstruct the external wrench at the end-
effector is proposed. In Sect. V, a simulation example is
proposed to assess the performance of the observers. Finally,
in Sect. VI, the main conclusions are drawn and future works
are discussed.

II. PRELIMINARIES

A. Problem statement and assumptions

A space robot can be represented as a multibody system
composed of n+ 1 rigid bodies connected with n joints (see
Fig. 1). In this paper, only revolute joints are considered. An
in-orbit proximity operation is taken as reference scenario.
The robot is required to perform a capture of another object
or manipulation tasks. In this context, accurate knowledge of
the contact force at the end-effector is important to guarantee
a safe physical interaction. In this study, no disturbances
caused by the environment (e.g. gravity gradient, air drag and
magnetic forces) are considered, because they are expected to
be considerably smaller than the actuation forces. Note that
this is a commonly accepted assumption in space robotics.
Finally, the presented observers are formulated considering
a contact wrench acting on the end-effector.
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Fig. 1: Floating space robot.

B. Main notations

Three main reference frames are defined. One, denoted by
B, is the body frame located on the center-of-mass (CM) of
the spacecraft. The second one, denoted by C, is a frame
with rotating axes, parallel to B, placed on the CM of the
whole space robot. The last one, denoted by E , is a frame
located on the end-effector.
In order to transform forces and velocities between reference
frames, the Adjoint transformation [9] is introduced:

Axy =

[
Rxy [pxy]∧Rxy

0 Rxy

]
∈ R6×6, (1)

where pxy ∈ R3 and Rxy ∈ SO(3) indicate the generic
position vector and rotation matrix from frame X to frame
Y , respectively. The operator [ · ]∧ stands for the skew-
symmetric matrix of the argument. Finally, the identity
matrix and zero matrix are denoted by E and 0 of suitable
dimensions, respectively.

C. Dynamics model of the impact phase

The dynamics of the space robot can be expressed as
follows:

 Mt Mtr Mtm

MT
tr Mr Mrm

MT
tm MT

rm Mm


︸ ︷︷ ︸

M(q)

 v̇b
ω̇b
q̈

+

+

 Ct Ctr Ctm
Crt Cr Crm
Cmt Cmr Cm


︸ ︷︷ ︸

C(vb,ωb,q,q̇)

 vb
ωb
q̇

 =

 fb
mb

τ

+

 fext,b
mext,b

τext

 ,

(2)

with  fext,b
mext,b

τext

 =

 E 0
[pbe]

∧ E
JTve JTωe

Fext, (3)

where Fext = [fText m
T
ext]

T ∈ R6 is the contact wrench at
the end-effector, expressed in B; Jve ∈ R3×n, Jωe ∈ R3×n

are the Jacobians mapping q̇ into the linear and angular
velocity of the end-effector, respectively, considering the
base fixed; vb,ωb ∈ R3 are the linear and angular velocity
of the base expressed in B; q, q̇ ∈ Rn are the joint angles

and velocities; fb,mb ∈ R3 are the commanded base force
and moment around B, expressed in B; τ ∈ Rn are the
commanded joint torques; the submatrices Mt,Mtr,Mr ∈
R3×3 compose the inertia matrix of the system regarded as a
composite rigid body; the submatrices Mtm,Mrm ∈ R3×n

are the coupling inertia matrices; Mm ∈ Rn×n is the inertia
matrix of the manipulator; C(vb,ωb, q, q̇) ∈ R(6+n)×(6+n)

is the Coriolis/centrifugal matrix. The analytical expressions
of the inertia matrix can be found in [10].
The total generalized momentum around B and expressed in
B, denoted by hb ∈ R6, can be written as

hb =

[
htb
hrb

]
=

[
Mt Mtr

MT
tr Mr

] [
vb
ωb

]
+

[
Mtm

Mrm

]
q̇, (4)

with htb,h
r
b ∈ R3 being the translational and rotational

momentum, respectively.

III. FORCE OBSERVER FOR SPACE ROBOTS

In this section, firstly, the generalized force observer
presented in [7] for humanoids is adapted to space robots.
This method is based on the momentum-based observer [8] in
which a residual vector is defined as the difference between
the generalized momentum of the robot and its estimate.
Under ideal condition, this residual vector turns out to be a
filtered estimation of the external disturbance on the joints.
Hereafter, the same idea is followed using the dynamics
model (2) to obtain estimates of fext,b, mext,b and τext.
Afterwards, the proposed observer, based on a centroidal-
joints dynamics, is derived and discussed. Interesting decou-
pling properties from the base linear velocity are highlighted,
which result in improved performance when real implemen-
tation issues are considered.

A. Observer based on a base-joints dynamics

Considering Eq. (2), the dynamics of the robot can be
split into base linear and rotational dynamics, i.e., the first
and second rows of the equation, and joint dynamics, i.e.,
the third row of the equation.
Denoting by f̂ext,b, m̂ext,b ∈ R3 and τ̂ext ∈ Rn the so-called
residuals, they are designed as follows:

f̂ext,b =Kf (Mtvb +Mtrωb +Mtmq̇︸ ︷︷ ︸
ht
b

−

∫
t

0
(fb +

+CT
t vb +C

T
rtωb +C

T
mtq̇ + f̂ext,b)ds), (5a)

m̂ext,b =Km(MT
trvb +Mrωb +Mrmq̇︸ ︷︷ ︸

hr
b

−

∫
t

0
(mb +

+CT
trvb +C

T
r ωb +C

T
mrq̇ + m̂ext,b)ds), (5b)

τ̂ext =Kτ (M
T
tmvb +M

T
rmωb +Mmq̇︸ ︷︷ ︸
hj

−

∫
t

0
(τ +

+CT
tmvb +C

T
rmωb +C

T
mq̇ + τ̂ext)ds), (5c)
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where Kf ,Km ∈ R3×3 and Kτ ∈ Rn×n are positive-
definite diagonal matrices containing the observer gains;
hj ∈ Rn is the joint generalized momentum.
Differentiating Eqs. (5a), (5b), and (5c), and exploiting the
dynamics (2) and the property Ṁ = C +CT , the resulting
relations between the estimates and the true quantities are

˙̂
fext,b = Kf (fext,b − f̂ext,b), (6a)

˙̂mext,b = Km(mext,b − m̂ext,b), (6b)

˙̂τext = Kτ (τext − τ̂ext). (6c)

From Eq. (6) it can be noticed that f̂ext,b, m̂ext,b, and
τ̂ext are first order estimations of fext,b, mext,b, and τext,
respectively.
Increasing the observer gains reduces the time constants of
the transient response of the estimates, and thus a faster
estimation of fext,b,mext,b, and τext. Ideally, if the observer
gains tend to infinity, it would be achieved f̂ext,b ≈ fext,b,
m̂ext,b ≈ mext,b and τ̂ext ≈ τext, respectively. However,
in practice, noise and uncertainties induce an upper bound
on the values that the observer gains can take. Moreover, the
computation of all the residuals, i.e., f̂ext,b, m̂ext,b, and τ̂ext
requires the knowledge of the base linear velocity vb. A fast
and accurate estimation of the linear velocity is particularly
difficult in practical applications and the observer scheme (5)
would require very low gains resulting in limited response
bandwidth. This limitation motivates the derivation of the
proposed observer presented hereafter, which turns out to be
more practical and better-performing.

B. Observer based on a centroidal-joints dynamics

In this section, the robot dynamics is transformed using
a new set of generalized velocities: the linear velocity of
the CM of the whole system, the angular momentum around
C expressed in C and the joint velocities. Afterwards, the
transformed dynamics is used to formulate the new observer
scheme.
The total momentum around C expressed in C, denoted by
hc ∈ R6, can be found as hc = A−Tcb hb [10]1, resulting in

hc =

[
htc
hrc

]
=

[
mE −m[pbc]

∧ mJ̄v
0 Ic IcJ̄ω

] vb
ωb
q̇

 , (7)

where htc ∈ R3 is the translational momentum and hrc ∈ R3

is the rotational momentum around C, both expressed in C,
m ∈ R and Ic ∈ R3×3 are the mass and the rotational
inertia around C of the whole body, and J̄v, J̄ω ∈ R3×n are
computed as follows

1The equations used herein are slightly different from the ones presented
in [10]: in [10] the frame C is nonrotating, whereas here C is rotating,
parallel to B.

J̄v =
1

m

n∑
i=1

miR
T
ibJvi, (8)

J̄ω = I−1c

n∑
i=1

RT
ibIiJωi +mi[pbi]

∧(Jvi − J̄v), (9)

with mi ∈ R and Ii ∈ R3×3 being the mass and rotational
inertia of body i, computed around its CM, and Jvi,Jωi ∈
R3×n being the Jacobians mapping q̇ in the linear and
angular velocity of body i, respectively. The Jacobians J̄v
and J̄ω can be also computed based on the inertia model in
(2) as:

J̄v =
1

m
Mtm, (10)

J̄ω =

(
Mr −

1

m
MT

trMtr

)−1(
Mrm −

1

m
MT

trMtm

)
. (11)

Introducing the linear velocity of the CM of the whole
system, vc = 1

mh
t
c ∈ R3, and exploiting Eq. (7), a

transformation matrix Γ ∈ R(6+n)×(6+n) can be defined as

 vc
hrc
q̇

 =

 E −[pbc]
∧ J̄v

0 Ic IcJ̄ω
0 0 E


︸ ︷︷ ︸

Γ

 vb
ωb
q̇

 . (12)

Consequently, the generalized forces transform as fb
mb

τ

 = ΓT

 fc
ac
τ̄

 , (13)

 fext,b
mext,b

τext

 = ΓT

 fext,c
aext,c
τ̄ext

 , (14)

where fc ∈ R3, ac ∈ R3, and τ̄ ∈ Rn are new control
inputs; fext,c ∈ R3, aext,c ∈ R3, and τ̄ext ∈ Rn are
the projections of the external wrench Fext into the new
variables space.
Then, the dynamics in the new states is derived pre-
multiplying (2) by Γ−T and substituting vb, ωb, q̇ and their
derivatives isolated from Eq. (12) in (2). The resulting system
is mE 0 0

0 I−1
c 0

0 0 M∗
m

 v̇c
ḣrc
q̈

+

+

 Cc Ccr Ccm
−CT

cr C∗r C∗rm
−CT

cm −C∗Trm C∗m

 vc
hrc
q̇

 =

 fc
ac
τ̄

+

 fext,c
aext,c
τ̄ext

 .

(15)
Expressing the dynamics in these new variables enables to
obtain a system of inertially decoupled dynamic equations.
Moreover, it can be demonstrated (see Appendix) that the
following relations hold:
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Ccvc +Ccrh
r
c +Ccmq̇ = m [ωb]

∧
vc, (16a)

−CT
crvc +C∗rh

r
c +C∗rmq̇ = I−1c [ωb]

∧
hrc , (16b)

−CT
cmvc −C∗Trmhrc +C∗mq̇ = (Ṁ∗

m −
1

2
M∗

m/q)q̇+

+ ( ˙̄JTω − J̄Tω [ωb]
∧

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c , (16c)

with

M∗
m/q =


q̇T

∂M∗
m

∂q1
...

q̇T
∂M∗

m

∂qn

 ∈ Rn×n, (17)

I−Tc/q =


hrTc

∂I−Tc
∂q1

...

hrTc
∂I−Tc
∂qn

 ∈ Rn×3, (18)

J̄Tω/q =


q̇T

∂J̄Tω
∂q1
...

q̇T
∂J̄Tω
∂qn

 ∈ Rn×3. (19)

The dynamic equations can be rewritten as

mv̇c +m [ωb]
∧
vc = fc + fext,c, (20a)

ḣrc + [ωb]
∧
hrc = mc +mext,c, (20b)

M∗
mq̈ + (Ṁ∗

m −
1

2
M∗

m/q)q̇ + ( ˙̄JTω − J̄Tω [ωb]
∧

+

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c = τ̄ + τ̄ext, (20c)

where it is denoted mc = Icac ∈ R3 and mext,c =
Icaext,c ∈ R3.
First, note that Eqs. (20b) and (20c) do not depend on the
base linear velocity anymore. On the other hand, Eq. (20a)
depends on the base linear velocity trough vc. Second, note
that M∗

m, J̄ω , M∗
m/q , Ic/q , and J̄ω/q depend only on q, and

˙̄Jω depends on q and q̇.
Starting from (20), the residuals f̂ext,c, m̂ext,c ∈ R3 and
ˆ̄τ ext ∈ Rn, are designed as

f̂ext,c =Kf (mvc︸︷︷︸
htc

−

∫
t

0
(fc −m [ωb]

∧ vc + f̂ext,c)ds), (21a)

m̂ext,c =Km(hrc −

∫
t

0
(mc − [ωb]

∧ hrc + m̂ext,c)ds), (21b)

ˆ̄τ ext =Kτ (

h∗j︷ ︸︸ ︷
M∗

mq̇−

∫
t

0
(τ̄ + 1

2
M∗

m/qq̇ − ( ˙̄JTω +

−J̄Tω [ωb]
∧ + 1

2
I−Tc/q − J̄

T
ω/q)h

r
c + ˆ̄τ ext)ds), (21c)

where h∗j ∈ Rn is the new joint generalized momentum
in the centroidal-joints dynamics. Differentiating Eqs. (21a),
(21b), and (21c), and using the dynamics (20), the resulting
relations between the estimates and the true quantities are

˙̂
fext,c = Kf (fext,c − f̂ext,c), (22a)

˙̂mext,c = Km(mext,c − m̂ext,c), (22b)

˙̄̂τext = Kτ (τ̄ext − ˆ̄τ ext), (22c)

meaning that f̂ext,c, m̂ext,c, and ˆ̄τ ext are first order es-
timations of fext,c, mext,c, and τ̄ext, respectively. The
observations about the gains tuning made in the previous
section are also valid for the proposed observer.
Note that the residuals m̂ext,c and ˆ̄τ ext in (21b) and (21c)
are computed without using the linear velocity. Indeed, vb
does not appear in (21b) and (21c), and the matrices therein
are only function of q and q̇, as remarked previously. This
property has an important implication from the practical
point of view. Considering the on-orbit scenarios, the linear
velocity is not directly measured and its accurate estimation
or reconstruction is difficult. Thanks to the decoupled struc-
ture of (20b) and (20c), the residuals m̂ext,c and ˆ̄τ ext can
be computed just relying on gyroscopes, encoders and torque
sensors, which typically feature good acquisition frequency
and relatively low noise. The use of star trackers, limited
in frequency, and the discrete derivative of lidar or camera
measurements, limited in frequency as well and featuring
relatively high noise, is totally avoided. Then, the estimates
m̂ext,c and ˆ̄τ ext can be exploited to reconstruct the external
wrench Fext, as it will be shown in the Sect. IV.

IV. EXTERNAL WRENCH RECONSTRUCTION

Assuming a contact at the end-effector, the relation be-
tween the contact generalized forces fext,b, mext,b, and τext
in (2) and the external wrench Fext has been reported in
Eq. (3). Using the inverse of Eq. (14) and recalling that
mext,c = Icaext,c, the relation between fext,c, mext,c, and
τ̄ext and Fext is given by: fext,c

mext,c

τ̄ext

 =

 E 0
[pce]

∧ E
JTc,ve JTc,ωe


︸ ︷︷ ︸

JT
vhc

Fext, (23)

where

Jc,ve = −J̄v + [pce]
∧
J̄ω + Jve ∈ R3×n, (24a)

Jc,ωe = −J̄ω + Jωe ∈ R3×n. (24b)

Then, an estimate F̂ext of the external wrench at the end-
effector can be computed as
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F̂ext =

 E 0
[pce]

∧ E
JTc,ve JTc,ωe

#  f̂ext,c
m̂ext,c

ˆ̄τ ext

 , (25)

where the operator ( · )# stands for the Moore-Penrose
inverse of the argument.
Considering Jvhc has maximum rank, one has the freedom
to eliminate redundant rows. Especially, the estimate of the
external wrench can be obtained using only m̂ext,c and ˆ̄τ ext,
and thus getting rid of the base linear velocity measurement.
Selecting the last two rows of Eq. (23) and taking the pseudo
inverse, the following relation can be written

F̂ext =
(
JThc
)# [ m̂ext,c

ˆ̄τ ext

]
, (26)

with

Jhc =

[
− [pce]

∧
Jc,ve

E Jc,ωe

]
∈ R6×(n+3). (27)

Clearly, the rank of Jhc should be maximum to reconstruct
F̂ext correctly. Notice that by using Eq. (26), it is possible
to estimate the external wrench acting on the end-effector
without using any unpractical measurements, such as the base
linear velocity or the joint accelerations.
As last remark, note that the proposed observer can be used
to detect and reconstruct contacts along generic points of
the robot. Indeed, it is sufficient to substitute in Eq. (24) the
Jacobians computed for the end-effector, i.e., Jve and Jωe,
with the ones computed for the generic point. Afterwards,
the resulting relations between the external wrench and the
residuals, having the same form of (25) and (26), can be
used for the reconstruction.

V. SIMULATION EXAMPLE

In this section, the two observers are compared through
a simulation example and the superior performance of the
proposed method based on the centroidal-joints dynamics is
shown.

A. Simulation scenario

A 7DOF manipulator mounted on a 6DOF floating base
is considered. The kinematics and dynamics parameters are
reported in Tab. I.
The system is free-floating, namely the base actuators are
turned off, i.e., fb = 0 and mb = 0, and the manipulator
is controlled to keep the initial configuration, i.e., q0 =
[0 40 0 110 0 45 0] deg. A simple PD controller is
implemented for each joint. Note that the performance of
both observers does not depend on the control strategy
adopted.
A constant external wrench is applied at the end-effector
between t = 1 s and t = 2.1 s. The wrench consists of only
a linear force, with value fext = [−10 5 8]T N, and no
torque.

TABLE I: Kinematics and dynamics parameters.

l [m] m [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]
Base - 150 15.0 21.8 18.88

Link 1 0.17 5 0.03 0.03 0.03
Link 2 1.3 15 1.65 1.65 0.64
Link 3 0.17 8 0.15 0.15 0.03
Link 4 1.3 12 0.25 0.25 0.03
Link 5 0.17 10 0.26 0.26 0.03
Link 6 0.1 5 0.02 0.02 0.02
Link 7 0 4.7 0.01 0.01 0.01

B. Measurement model

The angular velocity can be directly measured using a gyro
and the joint angles are measured by the encoders. On the
other hand, the linear velocity, required only by the observer
(5), and the joint velocities, required by both observers, are
not directly measured but need to be reconstructed, either by
using a discrete derivative or by fusion. Herein the problem
of the reconstruction is not addressed and a simplified noise
performance model has been used for the sake of comparing
the performance of the two observer schemes with similar
noise conditions. A white Gaussian noise with zero mean is
considered. For the angular velocity a bias is also introduced
leading to the following model [11]:

ωmb = ωb + bω + ηω

ḃω = ηbω,
(28)

where ωmb ∈ R3 is the measured angular velocity of the
base; the term bω ∈ R3 is the bias, considered to be
a ”Brownian” motion process; the terms ηω,ηbω ∈ R3

are white Gaussian noise with zero mean. The standard
deviations of the considered noise models are σvb = 1 mm/s,
σq = 5 · 10−5 rad, σq̇ = 10−4 rad/s, στ = 0.1 Nm,
σbω = 3.162 · 10−4 µrad/s3/2, and σω = 0.316 µrad/s1/2.
The initial bias for each axis of the gyro model is bω,0 =
0.0017 rad/hr.

C. Observers comparison

Figs. 2 and 3 show a comparison between the reviewed
observer [7] and the proposed one. Fig. 2 compares the two
observers when all the three residuals are used to reconstruct
fext. In this case, for the observer based on a base-joints
dynamics, i.e., given by (5), a contact force estimate f̂ext is
computed by taking the pseudo inverse of the relation (3) and
using the residuals f̂ext,b, m̂ext,b, and τ̂ext, whereas for the
observer (21) it is given by using the relation (25). On the
other hand, Fig. 3 compares the two observers when only the
angular and joint momentum residuals are used to reconstruct
fext. For the observer (5), the contact force estimate f̂ext is
computed removing the first row of (3), i.e., without f̂ext,b,
and by taking the pseudo inverse of the resulting relation,
while for the observer (21) it is given by using the relation
(26), i.e., without f̂ext,c. In both observers, all the gains are
set equal to 20 s−1.
Fig. 2 shows that the estimation process is significantly
affected by noise in the measurements and the observers
provide similar bad performance. This is caused by the
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(a) x component. (b) y component. (c) z component.

Fig. 2: Comparison between the reviewed observer [7] and the proposed one, including f̂ext,b and f̂ext,c in the estimation
process.

(a) x component. (b) y component. (c) z component.

Fig. 3: Comparison between the reviewed observer [7] and the proposed one, without using f̂ext,b and f̂ext,c in the estimation
process.

residuals f̂ext,b and f̂ext,c, which are the residuals mostly
affected by noise in the linear velocity. Indeed, in their
computation, the linear velocity is multiplied by the total
mass of the system and consequently its noise is amplified.
On the other hand, the simulation shown in Fig. 3, in which
f̂ext,b and f̂ext,c are not used in the estimation process,
highlights the advantage of using the proposed observer
based on the centroidal-joints dynamics. Indeed, it provides
a definitely more accurate estimate of the contact force. It is
worth stressing that the superior performance of the proposed
method derives from the complete decoupling of m̂ext,c

and ˆ̄τ ext from the linear velocity vb, which is difficult to
reconstruct and, if available, can be particularly noisy and
uncertain. The difference in the performance can be even
more pronounced if the noise increases. The performance
of the observer based on the base-joints dynamics would
deteriorate significantly. As a matter of fact, in Fig. 4 the
performance of the two observers considering an increased
noise level of 3 mm/s on vb is shown. To decrease the
noise in the estimation process, the observer gains should be
strongly reduced, leading to very low response bandwidth.
Conversely, the proposed observer is not affected by the
increase of noise in the linear velocity, preserving good
performance. The observer gains could be even increased,
leading to a larger response bandwidth.

D. Reconstruction of the contact force on a generic point

In this section, it is shown that the proposed observer based
on a centroidal-joints dynamics can be used also to detect and
reconstruct a contact force acting on a generic point along
the robot. Note that it is assumed to know where the contact
occurs. This is a strong assumption since it is not trivial to
identify exactly the contact point. Methods are available in
the literature to tackle the isolation of the contact point for
fixed-base robots and humanoids [7][8]. This problem will
be investigated in future works.
Similarly to the previous case, a constant external wrench
is applied between t = 1 s and t = 2.1 s and it consists of
the linear force fext and no torque. In this case, the external
wrench acts on the CM of the link 5.
Known the contact point, the relation (24) should be modified
substituting the Jacobians computed for the end-effector, i.e.,
Jve and Jωe, with the ones computed for the CM of the link
5. Afterwards, the resulting relation, having the form of (26),
is used to estimate the contact force fext. Fig. 5 shows that
the proposed observer provides good performance even in
the case of a contact on a generic point along the robot.

VI. CONCLUSIONS AND FUTURE WORKS

The problem of estimating a contact wrench at the end-
effector for a space robot was addressed. Two observers
were presented. The first one was formulated readapting the
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(a) x component. (b) y component. (c) z component.

Fig. 4: Comparison between the reviewed observer [7] and the proposed one, increasing the noise on the linear velocity and
without using f̂ext,b and f̂ext,c in the estimation process.

(a) x component. (b) y component. (c) z component.

Fig. 5: Reconstruction of an external wrench acting on the CM of link 5 by the observer based on a centroidal-joints
dynamics.

work in [7] to space robots; the second one was derived
introducing a new set of generalized velocities, including the
linear velocity of the CM of the whole system, the rotational
momentum around C and the joint velocities. Based on the
new generalized velocities, an observer was derived, which
does not use any measurement of the linear velocity and
can be implemented with realistic sensor measurements.
The improved performance of the proposed observer was
validated in simulation.
Future works may validate the proposed method on hard-
ware, considering both free-floating and actuated base robots.
Furthermore, the problem of the isolation of the contact point
along the robot structure may be addressed.

APPENDIX
In this appendix, the mathematical derivation of the rela-

tions (16) is reported.
Deriving the relations (16a) and (16b) is straightforward.
Indeed, the differentiation of the momenta htc and hrc , which
are expressed in a frame rotating with an angular velocity ωb,
results in

ḣtc + [ωb]
∧htc = fc,tot (29)

ḣrc + [ωb]
∧hrc = mc,tot (30)

where fc,tot ∈ R3, mc,tot ∈ R3 are the total centroidal force
and moment acting on the system. Recalling that htc = mvc

and comparing Eq. (29) with the first row of Eq. (15), the
first relation (16a) is obtained. Similarly, comparing Eq. (30)
with the second row of Eq. (15), the second relation (16b)
is obtained.
For what concerns the third relation (16c), a quasi-
Lagrangian approach [12] is used to rederive the joint
equation in (15). Then, the relation (16c) is obtained by
comparison of the quasi-Lagrangian joint formulation with
the third row of Eq. (15). In the quasi-Lagrangian formula-
tion, the generalized velocities vc and hrc are called quasi-
velocities since they are not integrable. In order to derive the
dynamic equations, some integrable generalized coordinates
y ∈ R6+n are defined, whose derivatives are related to the
quasi-velocities as follows: vc

hrc
q̇

 =

 E −[rc]∧J−1
φ 0

0 IcJ
−1
φ IcJ̄ω

0 0 E

 ṙc
φ̇
q̇

 = ΞT ẏ, (31)

where rc ∈ R3, ṙc ∈ R3 are the position of the CM of
the whole system expressed in C and its time derivative,
respectively; φ ∈ R3, φ̇ ∈ R3 are the Euler angle vector and
its time derivative, respectively; Jφ ∈ R3×3 is the Jacobian
mapping ωb in φ̇. The matrix Ξ is function of the general-
ized coordinates y. Note that any rotation parameterization
different from the Euler angles can be used without affecting
the following joint dynamics derivation.
Introducing x = [vTc h

rT
c q̇T ]T ∈ R6+n and assuming that
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ΞT is invertible, the following relation can be written:

ẏ = Ωx (32)

where Ω = Ξ−T ∈ R(6+n)×(6+n).
Exploiting Eqs. (31)-(32), the quasi-Lagrangian formulation
can be derived from the standard one [12], resulting in

δyT
(

Ξ
d

dt

[
∂T

∂x

]
+ Ξ̇

∂T

∂x
− ∂T

∂y
−H ∂T

∂x
−Q

)
= 0,

(33)
where

H =

 xTΩT ∂Ξ
∂y1

...
xTΩT ∂Ξ

∂y6+n

 ∈ R(6+n)×(6+n); (34)

Q ∈ R6+n is the vector of the generalized forces; T ∈ R is
the kinetic energy of the system expressed in terms of x. The
potential energy is assumed to be zero. T can be computed
as follows

T =
1

2

(
mvTc vc + q̇TM∗

mq̇ + hrTc I
−T
c hrc

)
. (35)

The matrices Ξ̇ and ΩT ∂Ξ
∂yi

, appearing in Eqs. (33)-(34), can
be expanded as

Ξ̇ =

 0 0 0

J̇−Tφ [rc]
∧+J−Tφ [ṙc]

∧ J̇−Tφ ITc +J
−T
φ İTc 0

0 ˙̄JTωI
T
c + J̄Tω İ

T
c 0

 (36)

ΩT ∂Ξ

∂yi
=


0 0 0

I−Tc JTφ
∂(J−T

φ
[rc]
∧)

∂yi
I−Tc JTφ

∂(J−T
φ

ITc )

∂yi
0

−J̄Tω JTφ
∂(J−T

φ
[rc]
∧)

∂yi
−J̄Tω JTφ

∂(J−T
φ

ITc )

∂yi
+

∂(J̄Tω ITc )

∂yi

0


(37)

Therefore, the matrix H has this form:

H =

 xTΩT ∂Ξ
∂y1

...
xTΩT ∂Ξ

∂y6+n

 =

 Ht Htr 0
Hrt Hr 0
Hmt Hmr 0

 (38)

Since the joint dynamics is of interest, only the last n rows
of the Lagrangian system can be considered. Hence, only
the last n rows of H are expanded. It can be noted that
Hmt = 0 because neither Jφ nor rc depends on q, while
Hmr can be expanded as follows

Hmr =


hrTc I

−T
c

∂ITc
∂q1

+ q̇T
∂J̄Tω
∂q1

ITc
...

hrTc I
−T
c

∂ITc
∂qn

+ q̇T
∂J̄Tω
∂qn

ITc

 =

=− I−Tc/q I
T
c + J̄Tω/qI

T
c ,

(39)

where I−Tc/q , J̄Tω/q are reported in Eqs. (18) and (19), respec-
tively.
Considering that

∂T

∂x
=

 mvc
I−Tc hrc
M∗

mq̇

 , (40)

∂T

∂y
= 0, (41)

after some simplification, the joint dynamic equation turns
out to be

J̄Tω I
T
c (I−Tc ḣrc + İ−Tc hrc) +M∗

mq̈ + Ṁ∗
mq̇+

+ ˙̄JTωh
r
c −

1

2
(M∗

m/qq̇ − I
−T
c/qh

r
c)− J̄Tω/qh

r
c+

+J̄Tω İ
T
c I
−T
c hrc = τtot − J̄Tv fb,tot

(42)

where τtot ∈ Rn are the total torques acting on the joints,
i.e., including commanded torques and disturbance torques;
fb,tot ∈ Rn are the total forces acting on the base, i.e.,
including commanded forces and disturbance forces.
Substituting ḣrc from Eq. (30) and İTc = −ITc İ−Tc ITc , and
using relations (13) and (14), the dynamics (42) can be
rewritten as

M∗
mq̈ + (Ṁ∗

m −
1

2
M∗

m/q)q̇ + ( ˙̄JTω − J̄Tω [ωb]
∧

+

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c = τ̄tot,

(43)

where τ̄tot = τ̄ + τ̄ext ∈ Rn.
Finally, comparing Eq. (43) and the third row of Eq. (15),
the relation (16c) can be obtained.
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