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Abstract— Object retrieval and reconstruction from very-high-
resolution (VHR) synthetic aperture radar (SAR) images are
of great importance for urban SAR applications, yet highly
challenging due to the complexity of SAR data. This article
addresses the issue of individual building segmentation from a
single VHR SAR image in large-scale urban areas. To achieve
this, we introduce building footprints from geographic informa-
tion system (GIS) data as a complementary information and
propose a novel conditional GIS-aware network (CG-Net). The
proposed model learns multilevel visual features and employs
building footprints to normalize the features for predicting
building masks in the SAR image. We validate our method
using a high-resolution spotlight TerraSAR-X image collected
over Berlin. Experimental results show that the proposed CG-
Net effectively brings improvements with variant backbones.
We further compare two representations of building footprints,
namely, complete building footprints and sensor-visible footprint
segments, for our task, and conclude that the use of the former
leads to better segmentation results. Moreover, we investigate
the impact of inaccurate GIS data on our CG-Net, and this
study shows that CG-Net is robust against positioning errors in
the GIS data. In addition, we propose an approach of ground
truth generation of buildings from an accurate digital elevation
model (DEM), which can be used to generate large-scale SAR
image data sets. The segmentation results can be applied to
reconstruct 3-D building models at level-of-detail (LoD) 1, which
is demonstrated in our experiments.

Index Terms— Deep convolutional neural network (CNN), geo-
graphic information system (GIS), individual building segmenta-
tion, large-scale urban areas, synthetic aperture radar (SAR).

I. INTRODUCTION

VERY-HIGH-RESOLUTION (VHR) synthetic aperture
radar (SAR) imagery has attracted many researchers in
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Fig. 1. Illustration of the difference between building semantic segmentation
and individual building segmentation. From left to right: an SAR image,
the result of building semantic segmentation [1], and the result of individual
building segmentation (ours). In the middle image, all buildings are assigned
the same label, while, in the right image, each individual building is identified
as one class.

modeling and characterization of objects of interest in urban
environments [2]–[8], as it is able to provide data being
independent of sun illumination and insensitive to weather
conditions. Such data source is particularly of interest to
studies concerning areas frequently covered by clouds [9]
and to applications of emergency response [10], [11]. How-
ever, because of side-looking imaging geometry and com-
plex backscattering mechanism, SAR image interpretation is
challenging, especially in urban areas where severe geometric
distortions, such as layover and shadowing, further complicate
SAR image understanding.

Buildings are the dominant structures in urban regions. The
literature on retrieving information (e.g., footprint and height)
from individual buildings on a large-scale VHR SAR image is
still in its infancy. In [11] and [12], buildings are segmented
from large-scale SAR images using deep networks. However,
individual buildings cannot be recognized due to serious
layover effects on high-rise buildings in urban areas. Fig. 1
shows the difference between building semantic segmentation
results (middle) and our individual building segmentation
results (right) in an SAR image (left). As can be seen, the lat-
ter is capable of not only providing pixelwise segmentation
masks but also separating building instances. On the other
hand, several works [4]–[6] develop tailored algorithms to
perform accurate analyses for buildings in complex urban
environments, but these methods are limited to be applied for
large-scale areas. In this work, we are interested in individual
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building segmentation from SAR images on a large scale. In
what follows, we briefly explain the challenges of this task
and review related work.

A. Challenges

Interpreting individual buildings in SAR images is highly
challenging, mainly for two reasons. First, intensity values
in SAR images are closely related to material types and
structural shapes of objects. Therefore, consecutive buildings
in the physical world are difficult to be separated from each
other in an SAR image, unless in the presence of obvious
material or structure changes at building boundaries. Second,
even if buildings in the real world are not neighboring, they
probably overlap with each other in the SAR image, which
significantly increases the difficulty of image interpretation.
Fig. 2 shows two typical urban areas in an optical image (the
first column) and a VHR SAR image (the second column).
Footprints and regions of buildings present in the SAR image
are marked with different colors, as shown in the following two
columns. It can be seen that some buildings severely overlap
in the SAR image even if their corresponding footprints are
not next to each other.

B. Related Work

Generally, building extraction approaches from SAR data
can be grouped into the following two categories: data-driven
methods and model-driven methods. The former extracts
building features and then deduces building parameters. Two
solutions based on this methodology have been developed.
The first one makes an attempt at detecting line- or point-like
features first and extracting building regions based on these
features. For example, in [3], feature lines are identified using
a line detector, and the layover areas are derived by extracting
parallel edges; Xu and Jin [13] exploit a constant false alarm
rate (CFAR) edge detector for line feature detection and apply
a Hough transform for parallelogram-like wall area extraction;
in [14] and [15], bright-line segments and regular spaced point-
like features are detected and subsequently grouped to building
footprints; and Ferro et al. [16] extract and combine a set of
low-level features to create structured primitives. The second
solution directly extracts building regions using segmentation
techniques, such as active contour [17], rotating mask [18],
mean-shift [19], and marker-controlled watershed transform
[20]. In model-driven methods, an SAR image or InSAR
phase is iteratively simulated using geometric and radiometric
hypothesis [4], [5], [21]–[25]. The desired building parame-
ters are progressively achieved by minimizing the difference
between simulated and real data.

The majority of related studies are carried out on build-
ings with specific geometric shapes, e.g., rectangular- [26]–
[28] or L-shaped footprints [20], [29], flat [30] or gable
roofs [31], [32], and different heights [32]–[35]. Only a few
studies address the problem of complex-shaped buildings [14],
[15]. Furthermore, most studies investigate simple scenarios
where a minimal distance between buildings is required to
ensure that scattering effects of different buildings do not
interfere with each other [4]–[6], [36]. In complex scenarios,

Fig. 2. Two typical urban areas shown in an optical image and an SAR
image. In columns 3 and 4, footprints and the corresponding building regions
in the SAR image are marked in different colors for reference. rg and az
denote the range direction and the azimuth direction, respectively.

possible overlapping areas between two buildings are usually
assigned to one building [7], [37], which may cause incor-
rect estimations. By using an SAR tomography (TomoSAR)
point cloud, Shahzad and Zhu [38] extract buildings without
imposing constraints on building shapes and study scenarios.
However, the TomoSAR technique [39] requires multiple SAR
acquisitions that are generally unavailable for most areas and
for applications with a stringent time limit, such as emergency
response.

In addition to SAR data, some auxiliary data are introduced,
e.g., building outlines extracted from optical images [6], [40]
and footprint polygons obtained from geographic information
system (GIS) data [7], [41], [42], for providing exact locations
and geometric shapes of buildings in the real world. As illus-
trated in Fig. 2, in complex urban regions, the use of footprints
is beneficial for tasks concerning individual buildings in SAR
images. In exploiting the shape information, sensor-visible
footprint segments, i.e., near-range segments in footprint poly-
gons that correspond to sensor-visible walls, are desirable for
extracting layover areas [7], [42]; contrarily, complete building
footprints may provide additional information, especially for
extracting roof areas of low-rise buildings [6]. Therefore,
it leaves a question on how footprints can be effectively used.
We demonstrate this issue in this work by comparing the
results from both the footprint utilization.

In recent years, deep neural networks have been becoming
increasingly popular and shown success in remote sensing
data analysis [43]–[52], including a wide range of applications
using SAR data, such as classification [53]–[57], segmentation
[58], [59], target recognition [60]–[63], and change detection
[64]–[66]. Instead of relying on handcrafted features, deep
networks can learn effective feature representations from raw
data in an end-to-end fashion. However, one problem of
applying deep networks to urban SAR analysis tasks is the
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Fig. 3. Workflow for data set generation. We first collect DEM and GIS data in the UTM coordinate system and then project them to the SAR image
coordinate system in order to generate building ground truth annotations and the corresponding footprints in our study area.

lack of annotation data. To address this issue, Wang et al. [67]
take building polygons from the OpenStreetMap (OSM) data
set and an official map as ground truth data and train a
network to segment buildings in an urban scene. For build-
ing footprint extraction, Shermeyer et al. [68] presented a
multisensor all-weather mapping (MSAW) data set containing
airborne SAR images, optical images, and building footprint
annotations, along with a deep network baseline model and
benchmark. However, in these two works, building footprints,
instead of building areas, are learning targets. By introducing
a TomoSAR point cloud, Shahzad et al. [12] are able to
acquire accurate building areas in an SAR image and take them
as ground truth annotations to train a segmentation network
for the purpose of building extraction. However, this work
cannot differentiate individual buildings. As our survey of
related work shows, there is a paucity of literature on using
deep learning for VHR SAR image interpretation in complex
urban areas, particularly aiming at segmenting individual and
overlapping buildings.

C. Contributions

In this work, we intend to segment individual buildings in
a large urban area by exploiting SAR images and building
footprints. For the training of models, we generate pixelwise
ground truth annotations from an accurate digital elevation
model (DEM). The building footprints are acquired from GIS
data. Afterward, a novel conditional GIS-aware network (CG-
Net) has been proposed to first learn multilevel visual features
and then employ GIS building footprint data to normalize
these features for predicting final building masks. In addition,
we compare two representations of building footprints, namely,
complete building footprints and sensor-visible footprint seg-
ments, aiming to find out a more suitable representation way
for this task.

The main contributions of this article are fourfold.
1) We propose a workflow for the segmentation of indi-

vidual buildings in VHR SAR images with GIS data.
To the best of our knowledge, this is the first time that

individual buildings are studied on a large-scale SAR
image, and deep networks are employed in the problem
of individual building segmentation of SAR images.

2) We propose a network termed CG-Net, which is capable
of significantly improving the performance of networks
for our task by imposing constraints on the learning
process.

3) We investigate the impact of inaccurate GIS data on
CG-Net and find out that CG-Net is robust against
positioning errors in GIS data. This study suggests that a
large amount of open-sourced GIS data can be exploited
for individual building segmentation in SAR images.

4) We propose a ground truth generation approach to pro-
duce building masks using an accurate DEM. We believe
that our method can provide large potential in analyzing
complex urban regions.

The remainder of this article is organized as follows. The
detailed procedure of the data set generation is presented
in Section II, and the proposed CG-Net is delineated in
Section III. Section IV introduces the configuration of experi-
ments and analyzes results. Section V demonstrates an appli-
cation using the produced segmentation results. In Section VI,
we conclude this article.

II. DATA SET GENERATION

A. Overview
Building annotations (as ground truth data) and building

footprints (as input data) in SAR images are necessary for
training our network. For this reason, we propose a workflow
that employs highly accurate DEM and GIS building footprints
to automatically label building masks and their correspond-
ing footprints in SAR images. Our data set is generated in
two stages. First, sensor-visible 3-D building models (i.e.,
nonoccluded roofs and facades) and building footprints are
prepared in the Universal Transverse Mercator (UTM) coor-
dinate system. Second, they are projected to the SAR image
coordinate system in order to generate building ground truth
annotations and the corresponding footprints. Fig. 3 illustrates
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Fig. 4. Illustration of scene modeling steps with a simulated DEM in 3-
D (first row) and 2-D (second row). (Left) DEM point cloud Pdem. (Middle)
Complete point cloud Pcom after adding vertical points. (Right) Sensor-visible
point cloud Psvs after HPR.

Fig. 5. Illustration of 2.5-D (dark blue) and 3-D (green) surface models.
In 2.5-D representation, each 2-D point (x, y) is assigned to a unique height
value z. Therefore, 2.5-D DEM can represent vertical walls of buildings, but
not vertical surfaces of complex objects, such as trees.

the workflow, and for more details, refer to the following
sections.

B. Data Preparation in the UTM Coordinate System

1) Sensor-Visible Scene Modeling: We first model a
scene that can be viewed by a radar sensor in the UTM
coordinate system. The procedure is conducted in three
steps (see Fig. 4).

1) DEM is Transformed to a Point Cloud Pdem: Specifically,
each pixel in the DEM with geolocation coordinates
(x, y) and a height value h is represented as a point
with coordinates (x, y, h), and hence, all pixels establish
a nadir-looking 3-D point cloud Pdem.

2) Complete 3-D Point Cloud Pcom is Generated by Fill-
ing Vertical Data Gaps: To be more specific, vertical
structures, such as building walls, that are absent from
Pdem are added through the following steps. We first
detect building points that are located at height jumps.
Afterward, at each detected point g(x, y, h), a vertical
point set G = {gi(xi , yi , hi )|i = 1, . . . , m} is added,
where xi = x, yi = y, hi = h0 + i × hstep, hi < he. h0

and he are the minimum and maximum heights in the
neighborhood of g, hstep is a predefined height step, and
the number of points is m = (he −h0)/hstep. Eventually,
a complete 3-D point cloud Pcom is built by all vertical
point sets and Pdem. Note that the DEM is 2.5-D instead
of true 3-D, i.e., each 2-D point (x, y) is assigned to
a unique height value z [69], that the vertical surfaces
of complex objects are not represented, such as trees
(see Fig. 5). Therefore, vertical points are only added to
building areas in this step.

3) Sensor-Visible Scene Point Cloud Psvs is Obtained
Through a Visibility Test on the Point Cloud Pcom: Since

Fig. 6. Examples of (top) visibility test of building footprints and (middle
and bottom) two footprint representations. (a) and (b) Footprints of isolated
buildings: red edges are sensor-visible, as the angle δ between the outward
normal vector of an edge −→n and the range direction vector −→r is in the range
of (90◦, 180◦], while green ones are invisible. (c) Case that a footprint is
touching another one; hence, common edges are sensor-invisible.

a radar sensor only sees one side of a scene, points on
the other side should be removed. To this end, the hidden
point removal (HPR) algorithm [70] is applied.
In our process, the viewpoint in HPR is positioned on the
line of sight of the radar sensor at a large distance away
from the scene, in order to simulate an orthographic view
in the azimuth of the radar sensor. In this way, sightlines
from the viewpoint to objects in the scene are parallel
to each other and orthogonal to the azimuth, enabling
HPR to remove sensor-invisible points.

2) Building Distinction: In this step, we distinguish build-
ing points1 for individual buildings. Given one building, its
building points are selected from Psvs using its footprint.
Note that there are two possible inconsistencies between
the DEM and GIS data. First, if a building is contained
in Psvs but not in GIS data, it is not selected from Psvs.
Second, if a building is contained in GIS data but not in
Psvs, i.e., points in the footprint region are not elevated than
surrounding ground points, we exclude this building from our
data set.

C. Data Set Generation in the SAR Image Coordinate System

1) Coordinate Transformation: The aforementioned pro-
cedures are carried out in the UTM coordinate system,
and in our case, building points generated in the previ-
ous steps should be projected to the SAR image coordi-
nate system; that is to say, coordinates (x, y, h) need to

1Building points refer to points in a point cloud that belong to the building
class.
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Fig. 7. Overview of the CG-Net architecture.

be transformed to (range, azimuth). Moreover, building foot-
prints are also projected to this coordinate system by using
ground height values obtained from the DEM. Generally,
the coordinate transformation of the point cloud from the
UTM coordinate system to the SAR imaging coordinate sys-
tem includes iterative solving Doppler-range-ellipsoid equa-
tions that can be implemented with different approaches
[71]–[74]. In this work, radar coding was performed using
German Aerospace Center’s (DLR’s) Integrated Wide Area
Processor (IWAP) [75].

2) Mask Creation: Finally, according to range-azimuth
coordinates of building points, we generate building ground
truth masks, in which buildings are indicated by 1 and
backgrounds are marked as 0. In addition, building footprint
masks in the SAR image coordinate system are also created.
Notably, in order to find out an effective way of using building
footprints, we create two representations: complete building
footprints and sensor-visible footprint segments. The latter is
generated via a visibility test (see Fig. 6). Formally, let −→n be
the outward normal vector of a polygon edge, −→r be the range
direction vector, and δ ∈ [0◦, 180◦] be the angle between −→n
and −→r . A polygon edge is sensor-visible if δ ∈ (90◦, 180◦],
and if a footprint is touching other footprints, common edges
are invisible because they do not exist in the real world (e.g.,
Fig. 6(c)).

D. Postprocessing

Since the used SAR image and DEM are collected at differ-
ent times, there might be inconsistencies resulted from urban
changes, such as building construction and deconstruction.
This leads to inaccurate ground truth data. We cope with the
problem using intensity values of the given SAR image. In
the SAR image, the intensity values are generally larger in
building areas than ground areas. Therefore, a threshold is set
to be the mode of the intensity values of the SAR image,
to exclude buildings whose mean intensity values are smaller
than the threshold.

III. METHODOLOGY

A. Overview

In this work, our goal is to train a network that takes a SAR
image and building footprint as inputs and predicts the building
area associated with the footprint in the SAR image. Since
footprints and visible segments generated from GIS data can
provide precise geometry and location information, we resort
to exploiting such cues in our task and devise a network
module that performs a conditional GIS-aware normalization.
By utilizing the CG module, our network, termed CG-Net,
can learn feature representations from not only SAR but
also GIS data. Specifically, we employ VGG-16 [76] as the
backbone of CG-Net to learn multilevel features from SAR
images. Afterward, the outputs of the last three convolutional
blocks are upsampled and fed into the CG module separately.
Meanwhile, footprints or visible segments are imported into
the CG module as complementary inputs in order to yield
final predictions. In what follows, Section III-B illustrates
the procedure of multilevel feature extraction. Section III-C
introduces details of our CG module, and Section III-D details
the configuration of our CG-Net.

B. Multilevel Feature Extraction Module

We make use of VGG-16 [76] as the backbone of our
network to extract features from multiple layers, as these
multilevel features help in recognizing buildings with variant
scales. The backbone consists of five convolutional blocks, and
each of them contains two or three convolutional layers. The
size of their filters is 3 × 3. The outputs of all convolutional
layers are activated by rectified linear unit (ReLU) [77], and
2 × 2 max-pooling layers with a pooling stride of 2 are
interleaved among these blocks. Features learned from deep
layers are considered to include high-level semantics, while
those from shallow layers are low-level. Therefore, in this
task, we utilize features learned from the last three blocks,
i.e., Block3, Block4, and Block5 (see Fig. 7). Afterward,
the extracted features are fed into the CG module separately.
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C. Conditional GIS-Aware Normalization Module

An intuitive way to make use of GIS data is to simply
concatenate them with SAR images and then feed them to a
vanilla semantic segmentation network, such as fully convolu-
tional networks (FCN). However, such a method might suffer
from the inefficient use of GIS data and leads to unstructured
predictions (see the third column in Fig. 13). To address this
issue, in this article, we propose a conditional GIS-aware
normalization module to distill the geometry information of
individual buildings from GIS data and normalize final pre-
dictions with such information. Formally, let mgis be the mask
of the complete building footprint or sensor-visible footprint
segments with a spatial size of W × H , and xb denotes feature
maps extracted from the bth convolutional block. The width
and height of xb are represented as W � and H �, respectively.
The number of channels is denoted as C �. We consider a naive
conditional normalization procedure as follows:

x̂b = γb xb + βb (1)

where γb and βb represent a scale factor and a bias, respec-
tively, and they indicate to what extent xb should be scaled
and shifted. The normalized xb is denoted as x̂b. A commonly
used measure of γ and β is to calculate the standard deviation
and mean of xb. Since xb consists of more than one channel,
γ and β are often computed in a channelwise manner, and
thus, (1) can be rewritten as

x̂b,c = γb,c(xb,c) · xb,c + βb,c(xb,c) (2)

where c denotes the cth channel of xb and ranges from
1 to C �. This equation can be easily extended to the batch
normalization [78] by computing the standard deviation and
mean of each xb,c in a batch.

In our case, we want to normalize feature representations
learned from SAR images, conditioned on GIS data. Our
insight is that the GIS data imply coarse localization cues, and
their use can guide the network to segment individual buildings
accurately. Therefore, we reformulate (2) as follows:

x̂b,c,p,q = γb,c,p,q(mgis) · xb,c,p,q + βb,c,p,q(mgis) (3)

where γb,c,p,q and βb,c,p,q indicate the scale factor and bias
learned specifically for the pixel located at (p, q) in the c-th
channel of xb. As a consequence, normalization parameters
γb and βb are formatted as matrices with a size of W � ×
H �×C �. Such a design enjoys an advantage that normalization
parameters are learned in a data-driven manner, and thus
these parameters are expected to be more adapted to xb.
As to the implementation of (3), we first project mgis onto
a latent space through 3 × 3 convolutions and then employ
two convolutional layers to learn γb and βb from the encoded
mgis. Subsequently, the elementwise multiplication of γb(mgis)
and xb is performed, and the output is added to βb(mgis) pixel
by pixel. Fig. 8 illustrates the architecture of our CG module.

D. Configuration of CG-Net

In order to fully exploit GIS data at multiple scales,
we append three CG modules to the last three convolutional
blocks of the backbone (see Fig. 7). However, a question is

Fig. 8. Architecture of the proposed CG module. Here, we take the sensor-
visible footprint segments as an example. γ and β are the normalization
parameters learned from the sensor-visible footprint segments and used to
normalize input feature maps with (3).

Fig. 9. Architecture of the final CG module. In advance of performing
normalization, the channel of input feature maps is first reduced, and the
spatial size is enlarged according to that of sensor-visible footprint segments.

that spatial and channel dimensions of the extracted multilevel
features are inconsistent with those of complete building
footprints/sensor-visible footprint segments. To address this
issue, we upsample these multilevel feature maps to match
the spatial resolution of mgis via bilinear interpolation. Note
that doing so would significantly increase the computation
overhead of subsequent operations. Hence, we reduce the
number of feature channels through 1 × 1 convolutions and
modify the CG module (see Fig. 9) accordingly. The outputs of
the CG module are squashed into the number of classes (two)
and added via an elementwise addition operation to produce
final segmentation results. Fig. 7 illustrates the architecture of
the proposed CG-Net. Furthermore, we note that the proposed
CG module is in a plug-and-play fashion and is flexible enough
to enhance other semantic segmentation network architectures,
e.g., DeepLabv3. For DeepLabv3, since it already fuses fea-
tures from different layers in its architecture, we simply add
our module right before the last layer.

IV. EXPERIMENTS

A. Data Description

In our data set, a TerraSAR-X image was acquired in
the high-resolution spotlight mode over Berlin with the pixel
spacing2 of 0.871 m in the azimuth direction and 0.455 m

2In SAR images, pixel spacing represents that the length one pixel corre-
sponds to in the real world, while resolution indicates the minimum distance
at which the radar can distinguish two close scatters.
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Fig. 10. Our study area in the UTM coordinate system that is the intersection
between the SAR image and the DEM.

in the slant range direction. The incidence angle of this SAR
image is 36◦, and the heading angle is 194.34◦. To reduce the
speckle effect, the SAR image was filtered using a nonlocal
InSAR algorithm [79]. Besides, building footprints in the study
area were downloaded from Berlin 3D-Download Portal.3 In
order to yield ground truth annotations, we use a highly
accurate DEM that was obtained via the stereo processing of
aerial images with a resolution of 7 cm/pixel [80]. Fig. 10
illustrates our study region (the intersection area), the SAR
image (yellow rectangle), and DEM (red rectangle). Notably,
only data covering the study region are used for generating
our data set.

By using the workflow described in Section II, building
annotations and footprints are generated. Since we want to
explore how GIS data can be effectively used for individ-
ual building segmentation, these two versions of footprint
masks are produced: complete building footprints and sensor-
visible footprint segments. Our data set, therefore, contains a
5736 × 10312 SAR image, two versions of footprint masks,
and ground truths of individual buildings.

B. Training Details

In order to train an effective and robust segmentation net-
work, we crop the SAR image into patches of 256×256 pixels
with a stride of 150 pixels. Note that patches including incom-
plete footprints or ground truth annotations are discarded.
Consequently, 30 056 buildings are remaining, and each of
them has three patches: an SAR image patch, a footprint patch,
and a ground truth mask. Among all buildings, 19 434 of them
are utilized to train networks, and the others are test samples.
Note that training and test regions do not overlap. The network
takes one SAR patch and the corresponding GIS patch for one
building as inputs. After predicting masks of all buildings,
overlapping areas are obtained by overlaying all masks.

During the training phase, components of the proposed
CG-Net are initialized with different strategies. Specifically,

3https://www.businesslocationcenter.de/downloadportal/

TABLE I

NUMERICAL RESULTS USING SENSOR-VISIBLE FOOTPRINT SEGMENTS.
THE HIGHEST VALUES OF DIFFERENT METRICS ARE HIGHLIGHTED

IN BOLD

the multilevel feature extraction module is initialized with
weights pretrained on ImageNet [81], and all convolutional
layers in the CG modules are initialized with a Glorot uniform
initializer. The network is implemented on TensorFlow and
trained on one NVIDIA Tesla P100 16-GB GPU for 155k iter-
ations. During the training procedure, all weights are updated
through backpropagation, and we select Netrov Adam [82]
as the optimizer. The parameters of this optimizer are set as
recommended: � = 1e−08, β1 = 0.9, and β2 = 0.999. The
loss is defined as binary cross-entropy, as only two classes
are considered in our data set, i.e., building segments and
background. We initialize the learning rate as 2e−3 and reduce
it by a factor of

√
10 once the loss stops to decrease for two

epochs. Moreover, we utilize a small batch size of 5 in our
experiments.

C. Quantitative Evaluation

To evaluate the performance of networks, we calculate the
F1 score as follows:

F1 = 2 · P · R

P + R
, P = t p

tp + f p
, R = t p

tp + f n
(4)

where P and R denote the precision and recall, respectively.
In addition, the intersection over union (IoU) and overall
accuracy (OA) are also calculated for a comprehensive com-
parison

IoU = t p

tp + f p + f n
, OA = t p + tn

tp + tn + f p + f n
(5)

where t p, f p, tn, and f n represent pixel-based true positives,
false positives, true negatives, and false negatives for buildings,
respectively.

In our experiments, we compare four models: FCN, FCN-
CG, DeepLabv3, and DeepLabv3-CG. It is worth mentioning
that FCN and DeepLabv3 are regarded as baselines, and their
inputs are concatenations of SAR patches and their corre-
sponding footprint patches. Both FCN-CG and DeepLabv3-
CG are our proposed networks with different backbones.

Table I reports numerical results of different models on
our data set, where sensor-visible footprint segments are
used. Comparison of these results corroborates that the pro-
posed CG module can improve the performance of indi-
vidual building segmentation. Specifically, compared with
FCN and DeepLabv3, FCN-CG and DeepLabv3-CG achieve
improvements of 0.75% and 2.17% in the precision, respec-
tively. Besides, increments of 1.23% and 1.65% in the mean
F1 score and IoU can be observed by comparing FCN-CG
and FCN, while improvements of 0.97% and 1.14% in the
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Fig. 11. Examples of segmentation results using sensor-visible footprint segments (SFS). Pixel-based true positives, false positives, and false negatives are
marked in green, red, and blue, respectively.

TABLE II

NUMERICAL RESULTS USING COMPLETE BUILDING FOOTPRINTS.
THE HIGHEST VALUES OF DIFFERENT METRICS ARE HIGHLIGHTED

IN BOLD

same metrics are achieved by introducing the CG module to
DeepLabv3.

Table II presents results of variant models using complete
building footprints. We can see that the results are consis-
tent with those using sensor-visible footprint segments. For
example, with the CG module, the precision improves 1.95%
and 3.94% with the backbone, FCN and DeepLabv3, and the
IoU increases 1.50% and 2.16%. To summarize, improvements
achieved by FCN-CG and DeepLabv3-CG demonstrate the

effectiveness of the proposed CG module, and DeepLabv3-CG
can achieve the best performance in all four metrics on our
data set. Moreover, we note that all models achieve relatively
high OAs, and even the worst model can achieve an OA
of 83.40%. This is because OA is computed by considering all
pixels, while nonbuilding pixels, which are easily recognized,
account for a large proportion.

D. Qualitative Evaluation

In addition to the quantitative evaluation, we visualize
several segmentation results in Figs. 11 and 12. Pixel-based
true positives, false positives, and false negatives are presented
in green, red, and blue, respectively.

Fig. 11 shows the results of models using sensor-visible
footprint segments. We can observe a general improvement
in quality from FCN/DeepLabv3 to FCN-CG/DeepLabv3-CG,
especially for buildings in column b, c, and g. For buildings
with simple structures (e.g., the building in column a), all
models are able to offer satisfactory segmentation results,
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Fig. 12. Examples of segmentation results using complete building footprints (CBF). Pixel-based true positives, false positives, and false negatives are marked
in green, red, and blue, respectively.

while for those with complicated shapes (see column e),
large undersegmentation areas (see red pixels) can be seen
in predicted building masks. Besides, the utilization of the
proposed CG module can effectively reduce oversegmentation
in final predictions.

Fig. 12 presents the results of models using complete
footprints. They indicate that our CG module can ease
both oversegmentation (see blue pixels in column b) and
undersegmentation (see red pixels in column e) problems
to a considerable extent. Moreover, examples in the third
row, column f and the fifth row, column f show that
the connectivity of segmentation results are disrupted (see
green pixels), while the integration of the CG module can
alleviate such a problem. A similar phenomenon can also
be seen in column d and g that exploiting the CG module
can enhance the connectivity of predictions. In summary,
the proposed CG module effectively improves segmentation
results.

E. Comparison of Complete Building Footprints and
Sensor-visible Footprint Segments

From Tables I and II, we can see that models trained
with complete building footprints surpass those trained with
sensor-visible footprint segments. For instance, DeepLabv3-
CG trained on complete footprints improves the F1 score and
IoU by 4.40% and 5.45%, respectively, compared with that
learned with sensor-visible segments.

Fig. 13 provides segmentation results of two patches using
two versions of footprint masks, and different buildings are
marked in different colors (50% transparency). Note that
individual building masks are predicted separately, and then
the masks of buildings in the same patch are plotted together
to visualize the overlapping areas. Here, patch 1 presents a
simple scenario, in which buildings are isolated and show
clear signatures in the SAR image. In this case, all models
can obtain good segmentation results. Patch 2 shows a fairly
complicated scene, where two consecutive buildings exist in
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Fig. 13. Examples of segmentation results from different models on two patches, using complete building footprints (CBF) and sensor-visible footprint
segments (SFS). CBF and SFS are overlaid on the ground truth (GT) to visualize the difference between building footprints and buildings. Different buildings
are plotted in different colors (50% transparency).

the center (see buildings in cyan and blue), and SAR signa-
tures are unclear. Although all networks can still successfully
segment isolated buildings, the two overlapped buildings are
not correctly segmented by models trained with sensor-visible
footprint segments (see the third row of Fig. 13). This is
because the mask of sensor-visible footprint segments for
the building on the left contains only one edge, which does
not provide adequate information. Moreover, we notice that
the overlapping region between these two buildings can only
be well identified by models trained with complete building
footprints.

Overall, these results suggest that complete building foot-
prints are more befitting for the segmentation of individual
buildings than sensor-visible footprint segments. This may be
because the former delivers more information, especially for
low-rise buildings.

F. Can CG-Net Work With Inaccurate GIS Data?

So far, building footprints used in our experiments are
highly accurate as they are acquired from official GIS data.
However, most openly available GIS data, such as Open-
StreetMap (OSM), often contain positioning errors. To test
the performance of CG-Net in such cases, we conduct supple-
mentary experiments on training our CG-Net with inaccurate
building footprints and discuss the impact of positioning errors
in GIS data.

Fig. 14. Illustration of generating building footprints with positioning errors.
Positioning error −→e is added to building footprint CBF, resulting in that CBF-
E. rg and az denote the range direction and the azimuth direction, respectively.
α is the angle between −→e and rg.

First, we generate inaccurate CBF, termed CBF-E, by inject-
ing positioning errors. As illustrated in Fig. 14, −→e is the added
positioning error, and α is the angle between −→e and the range
direction. According to the quality assessment study of OSM
in [83], the average offset of building footprints is 4.13 m with
a standard deviation of 1.71 m. Therefore, we consider the
positioning error as a variable whose magnitude is Gaussian
distributed, i.e., |−→e | ∼ N (μ = 4.13, σ 2 = 1.712). Since the
offset may point to different directions, we assume that the
direction of −→e is uniformly distributed, i.e., α is uniformly
distributed in the range of [0◦, 360◦). For simplicity, let α be
discrete: α ∼ DiscreteUniform(0◦, 359◦). Note that this is the
most difficult case that all footprints contain positioning errors.
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TABLE III

NUMERICAL RESULTS OF DEEPLABV3-CG TRAINED USING CBF AND
CBF-E

Fig. 15. Examples of segmentation results of networks trained using
CBFs and networks trained using building footprints with positioning errors
(abbreviated as CBF-E). Pixel-based true positives, false positives, and false
negatives are marked in green, red, and blue, respectively.

Then, we train DeepLabv3-CG using CBF-E and SAR
patches and test the trained network with a clean test set.
DeepLabv3-CG is chosen because it performs best among all
the networks. The parameter settings of the network remain the
same as previous experiments, as described in Section IV-B.

The results are listed in Table III. As can be seen, comparing
to results using CBF, the precision of the network trained on
CBF-E is decreased by 3.02%, the F1 score is reduced by
3.62%, and the IoU is decreased by 4.5%. However, it still
gives competent segmentation results. For visual comparison,
Fig. 15 shows the results of DeepLabv3-CG trained with
CBF-E and CBF. For the building in column c, DeepLabv3-CG
trained with CBF performs much better than that with CBF-E.
However, the predictions for buildings in columns a and b are
visually very similar. Moreover, we observed that predictions
from DeepLabv3-CG trained on CBF-E are satisfactory for
most buildings.

The experiments show that, although weakened by posi-
tioning errors in GIS data, the proposed CG-Net is robust
even in the most difficult case. This finding suggests that a
large amount of existing open-sourced GIS data, such as OSM,

Fig. 16. Projection geometry of two flat-roof buildings in a slant-range SAR
image. θ is the incidence angle. h is the building height. l, r, and f denote
the length of layover, roof, and footprint areas in a slant-range SAR image,
respectively.

can be exploited for segmenting individual buildings in SAR
images.

V. FURTHER APPLICATION: RECONSTRUCTION OF

LOD1 BUILDING MODELS FROM AN SAR IMAGE

Building models can be created at different levels-of-detail
(LoD). According to the terminology of CityGML [84],
LoD1 models represent buildings as blocks with flat roof
structures and can be reconstructed by extruding footprints
with building heights. Here, we regard the average roof height
as the building height.4 In this section, we demonstrate the
process of reconstructing LoD1 models using our predicted
individual building masks.

Fig. 16 illustrates the projection geometry of two flat-roof
buildings in a constant azimuth profile of an SAR image.
θ is the incidence angle. l, r, and f denote the length of
layover, roof, and footprint areas in the slant-range SAR
image, respectively. Notably, the building region in the SAR
image contains both the layover and the roof areas. The
layover area coincides with the building region when the
building height h is large, e.g., the case in Fig. 16 (left), and
it is covered by the building region when h is small, e.g.,
the case in Fig. 16 (right). In both cases, the layover area can
be calculated by subtracting the footprint from the building
region. Therefore, l is estimated to be the length of the layover
area in the slant-range direction, and h can be computed with
the following equation:

h = l/ cos θ. (6)

From the predicted individual building masks (see Fig. 17),
we calculate building heights with (6). Afterward, LoD1 build-
ing models are created by extruding building footprints with
obtained heights. Fig. 18 presents example LoD1 models
superimposed on the SAR image in the study area. It can
be observed that buildings with large l (pointed by yellow
arrows) are predicted as high-rise, while those with small l
(pointed by red arrows) are reconstructed as low-rise buildings.
This is in line with reality. We further evaluate the estimated
height against the mean height from the accurate DEM for
each building. The mean height error that we achieve in the

4http://en.wiki.quality.sig3d.org/index.php/Modeling_Guide_for_3D_Objects
_-_Part_2:_Modeling_of_Buildings_(LoD1,_LoD2,_LoD3)
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Fig. 17. Segmentation results in the study area obtained by DeepLabv3-CG. The building segments are plotted with different colors translucently for
visualizing the layover areas between buildings. rg and az denote the range direction and the azimuth direction, respectively.

Fig. 18. Example LoD1 building models in the study area superimposed on
the SAR image. Layover areas of some buildings are visible, as pointed by
the yellow and red arrows. Building heights are color-coded.

Fig. 19. Histogram of building height errors in the study area.

study site is 2.39 m. The histogram of height errors is shown
in Fig. 19.

VI. CONCLUSION

In this article, we propose a CG-Net to segment individual
buildings from a large-scale VHR SAR image. We also pro-
pose an approach for generating ground truth annotations of
buildings using a high-resolution DEM. The proposed method
is evaluated in the Berlin area, using a high-resolution spotlight
TerraSAR-X image and building footprints obtained from
GIS data. Both qualitative and quantitative results demon-
strate the effectiveness of the proposed CG-module. Compared
with competitors, DeepLabv3-CG achieves the best F1 score
of 75.08%. In addition, we compare two building footprint rep-
resentations, namely complete building footprints and sensor-
visible footprint segments. Experimental results suggest that
the use of complete building footprints leads to better results.
Further experiments of training the networks using inaccurate
GIS data suggest that CG-Net is robust in presence of position-
ing errors in GIS data. In addition, we demonstrate an applica-
tion of our results, i.e., LoD1 building model reconstruction.
In the future, we are interested in applying the proposed data
generation workflow to areas of various urban morphologies
and using our CG-Net to reconstruct LoD1 building models
from TerraSAR-X and TanDEM-X stripmap images.
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