This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3032221, IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. YY, MONTH ZZ 201X 1

Large-Scale Semantic 3D Reconstruction:
Outcome of the 2019 IEEE GRSS Data Fusion

Contest

- Part A

Saket Kunwar, Member, IEEE, Hongyu Chen, Manhui Lin, Hongyan Zhang, Senior Member, IEEE, Pablo
D’ Angelo, Daniele Cerra, Seyed Majid Azimi, Myron Brown, Senior Member, IEEE, Gregory Hager, Senior
Member, IEEE, Naoto Yokoya, Member, IEEE, Ronny Hiénsch, Senior Member, IEEE, and Bertrand Le
Saux, Member, IEEE

Abstract—In this paper, we present the scientific outcomes of
the 2019 Data Fusion Contest organized by the Image Analysis
and Data Fusion Technical Committee of the IEEE Geoscience
and Remote Sensing Society. The 2019 Contest addressed the
problem of 3D reconstruction and 3D semantic understanding
on a large scale. Several competitions were organized to assess
specific issues, such as elevation estimation and semantic mapping
from a single view, two views, or multiple views. In this Part A, we
report the results of the best-performing approaches for semantic
3D reconstruction according to these various set-ups, while 3D
point cloud semantic mapping is discussed in Part B [1].

Index Terms—Image analysis and data fusion, data fusion
contest, stereo, multi-view, 3D reconstruction, height estimation,
elevation model, point-cloud, semantic labeling, semantic map-
ping, classification, LIDAR, deep learning, convolutional neural
networks.

I. INTRODUCTION

One of the challenges inherent in Earth observation is to
add a new dimension to the representation of the world.
Multiple 2D imagery, with various sensors and resolutions, are
currently available with which the surface of the Earth can be
observed from above. However, for critical applications such
as flight management, urban planning, and the environmental
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monitoring of forests, floods, and landslides, 3D models of the
ground are significant sources of information.

Capturing this 3D information on a large scale is extremely
challenging. Two approaches are currently used: active and
passive. Active methods include Light Detection and Ranging
(LiDAR) acquisition, which is primarily carried out using
airborne sensors in large aerial laser scanning campaigns [2].
Satellite LiDARs, such as the Geoscience Laser Altimeter
System (GLAS) instrument on IceSAT (launched in 2003),
are also in operation but with lower-resolution products. Pas-
sive approaches include structure from motion and multi-view
stereo and leverage multiple optical images that correspond to
the same ground site in order to estimate common 3D points.
These approaches are cheaper, yield high-resolution and ac-
curate elevation models, benefit from developments that span
over four decades [3], and include various estimation models
that can be used by all the different satellite generations [4]-
[6]. The appeal of using passive methods has increased sig-
nificantly with the unprecedented number of imaging satellites
currently in orbit. This led to the development of a benchmark
on multi-view stereo 3D mapping [7] by the Johns Hopkins
University (JHU) Applied Physics Laboratory (APL) in 2016,
using data consisting of 47 WorldView-3 images of the same
area over San Fernandino (Argentina), with airborne LiDAR
used to define the reference data. The winning approach of this
challenge used multiple two-view stereo methods to generate
3D models, which were then fused [8].

A new benchmark was co-organized by JHU/APL with
the Image Analysis and Data Fusion Technical Committee
(IADF TC) of the IEEE Geoscience and Remote Sensing
Society (GRSS) in 2019, on the topic of semantic 3D with
two sites and more images (69 overall), while addressing
additional scientific issues. The IADF TC is an international
network of scientists working on Earth observation, geo-
spatial data fusion, and algorithms for image analysis. It aims
at connecting people and resources, educating students and
professionals, and promoting theoretical advances and best
practices in image analysis and data fusion. The IADF TC has
coordinated a challenge in order to foster ideas and progress in
remote sensing every year since 2006, distributing novel data
and benchmarking analysis methods, known as the Data Fu-
sion Contest (DFC) [9]-[21]. The 2019 DFC (DFC19) aimed
at large-scale semantic 3D reconstruction, encompassing 3D
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modeling of the Earth’s surface from satellite imagery with
the automated cartography of its physical aspects.

DFC19 used the Urban Semantic 3D (US3D) data [22] to
deliver an unprecedented number of images and 3D references,
producing more than 320 GB of data that span roughly 20 km?
over the urban areas of Jacksonville (Florida) and Omaha (Ne-
braska) in the United States. The data comprised WorldView-3
satellite images (courtesy of Maxar), both panchromatic and
eight-band visible and near-infrared, with ground sampling
distances (GSDs) of 35 cm and 1.3 m, respectively. Second, 3D
data were provided as point clouds or digital surface models
(DSMs), produced using airborne LiDAR at a resolution of
80 cm. Finally, semantic labels were produced for urban
classes including buildings, elevated roads and bridges, high
vegetation, ground, and water.

DFC19 consisted of four parallel challenges that were
organized as four independent tracks. Tracks 1, 2, and 3 were
dedicated to semantic 3D reconstruction with various levels of
input data. Participants were able to submit semantic maps and
Digital Elevation Models (DEMs) resulting from single-view
semantic 3D methods (Track 1), two-view stereo semantic
3D methods (Track 2), and multi-view stereo semantic 3D
algorithms (Track 3). Track 4 addressed a related but different
problem: large-scale 3D point cloud semantic labeling.

The present paper is the first of a two-part manuscript that
aims to present and critically discuss the scientific outcomes
of the 2019 Contest. This first Part A focuses on semantic 3D
reconstruction and covers Tracks 1, 2, and 3. Complementary,
Part B [1] is dedicated to large-scale point cloud classification
and reports on the results of Track 4.

In detail, we describe the relevant datasets in Section II, and
discuss the overall results of the 3D reconstruction challenges
of the contest in Section IIl. We focus on the approaches
proposed by the winning teams in each of the 3D recon-
struction challenges, reporting on single-view 3D estimation
in Section IV, pairwise semantic stereo reconstruction in
Section V, and multi-view stereo reconstruction in Section VI.
Finally, we present our concluding remarks in Section VIIL.

II. THE DATA OF THE 3D RECONSTRUCTION CHALLENGES
OF THE DATA FUSION CONTEST 2019

Data from US3D were provided for all DFC19 challenge
tracks. US3D is a large-scale public dataset including multi-
date, multi-view, and multi-band satellite images and ground
truth geometric and semantic labels covering approximately
100 square kilometers over Jacksonville, Florida and Omaha,
Nebraska, in the United States [22]. The diversity of image
viewpoints, resolutions, and months over which data were
collected is shown in Figure 1. Training and test datasets
were provided for each challenge track in the contest, which
included approximately 20% of the total US3D data. Details
of the data provided for the 3D point cloud semantic labeling
Track 4 are presented in Part B [1]. The following were
provided for Tracks 1, 2, and 3:

« Multi-date WorldView-3 panchromatic and 8-band visible
and near-infrared (VNIR) satellite images were provided
courtesy of Maxar. The source data consist of 26 im-
ages collected between 2014 and 2016 over Jacksonville,

Florida and 43 images collected between 2014 and 2015
over Omaha, Nebraska, in the United States. GSDs of
approximately 35 cm and 1.3 m were used for the
panchromatic and VNIR images, respectively. The VNIR
images were all pan-sharpened. The satellite images
were provided in geographically non-overlapping tiles,
whereas the airborne LiDAR data and semantic labels
were projected onto the same plane. Unrectified images
(for Tracks 1 and 3) and epipolar rectified image pairs
(for Track 2) were provided as TIFF files.

« Airborne LiDAR data from the Homeland Security Infras-
tructure Program (HSIP) were used to provide a reference
geometry with an aggregate nominal pulse spacing of
approximately 80 cm. The training data derived from
LiDAR included reference of the Above Ground Level
(AGL) height images for Track 1, pairwise disparity
images for Track 2, and Digital Surface Models (DSMs)
for Track 3, which were all provided as TIFF files. The
images were not collected concurrently with the LiDAR,
indicating that the solutions had to address noise in the
training labels caused by changes in the scenery.

« Semantic labels were provided as TIFF files for each
geographic tile in Tracks 1-3. Semantic classes in the
contest included ground, trees or high vegetation, build-
ings, water, and elevated roads or bridges.

The above datasets were only provided for the training
regions. The reference data for the validation and test regions
remained undisclosed and were used for evaluation of the
results. The training and test sets used in the contest included
dozens of images for each geographic 500m x 500m tile: 111
tiles for the training set, 10 tiles for the validation set, and 10
tiles for the test set. The training and test datasets were selected
to ensure similar semantic and geometric distributions, as
shown in Figure 2. After the contest was completed, we also
released an extended training dataset, including RGB and
VNIR images, AGL heights and the semantic labels for 756
geographic tiles. Additional reference layers were included
in the extended training set, including building footprints,
facades, and shadow masks, as described in [23]. The contest
data and extended training data are available on the IEEE
DataPort [24], [25].

ITI. ORGANIZATION, SUBMISSIONS AND RESULTS

Three parallel and independent tracks were dedicated to
semantic 3D reconstruction in DFC19. Each track addressed
a specific task and followed a different set-up, as described in
Sections III-A, III-B, and III-C. Because each of these three
tracks was concerned with semantic annotation as well as one
form of 3D reconstruction, performance was assessed using
pixel-wise mean Intersection over Union (mloU), for which
true positives must have both the correct semantic label as
well as a 3D estimate within a certain error range. We call
this metric mloU-3.

Participation is analyzed in Section III-E and the winning
approaches in Section III-F, while Section III-D discusses the
provided baseline solutions.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3032221, IEEE

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. YY, MONTH ZZ 201X

Journal of Selected Topics in Applied Earth Observations and Remote Sensing

® Omaha Jacksonville

Omaha Jacksonville
N N
T T S0 —T—,_ 3% 0.3
Azimuth * : Azimuth r
" 038
i, [ & 2 "l 037 ] A
g © 00 - \ 5
“ F) ‘. e ® ‘I | 038 g .
W Pl &o +———+— & Wi .'_ﬁ_.!.g_._._LE 0.35 éﬂ .
@0 0 B w0 e e 0 @0 e E =
W Off-nadir | '.- Oft-nadir | a8
~nadir -nadir
L ] .. L] 7 '
240 Jrave 240%° 1200 ey
_ _ _ | I I 18
F ) MOy re = ) ]
5 3 2 a . n \ 1 1 12
GSD Month of Year for Image Collection
(a) (b)

Fig. 1. Satellite image statistics. (a) Viewpoints and pixel ground sample distance for each image. (b) Seasonal distribution of image collection dates.

A. Track 1: Single-view semantic 3D

An unrectified single-view image was provided for each ge-
ographic tile. The objective was to predict semantic labels and
normalized DSM (nDSM) above ground heights, as shown in
Figure 3. Participants in Track 1 were tasked with submitting
2D semantic maps and AGL maps in raster format (similar to
the TIFF files in the training set). Performance was assessed
using the mloU-3 metric with a height error of less than a
threshold of one meter.

B. Track 2: Pairwise semantic stereo

In this case, a pair of epipolar rectified images was provided
for each geographic tile. The objective was to predict semantic
labels and stereo disparities, as shown in Figure 4. Participants
of Track 2 were tasked with submitting 2D semantic maps and
disparity maps in raster format (similar to the TIFF files in the
training set). Performance was assessed using mloU-3 with a
threshold of 3 pixels for disparity values.

Train

Fig. 3. Track l: From a single image (a), predict height above ground (b)
and semantic label (c) for each pixel.

C. Track 3: Multi-view semantic stereo

With multi-view images provided for each geographic tile,
the objective in this task was to predict semantic labels
and a DSM. Unrectified images were provided with Rational
Polynomial Coefficients (RPC) metadata that had already been
adjusted with LiDAR such that registration was not required
for the evaluation, indicating that the solutions could focus
on the methods used to select images, the correspondence,
semantic labeling, and the multi-view fusion. Because this
track relies on RPC metadata, which everyone may not be
familiar with, the baseline algorithm provided also included
simple Python code with which the RPC could be manipulated
for epipolar rectification and triangulation. Participants of

& » Groand Track 3 were tasked with submitting 2D semantic maps and
s u Trees DSMs in raster format (similar to the TIFF files in the training
\ = Bulldings set). Performance was assessed using mloU-3 with a threshold
% Wittey of 1 m for the DSM height values.
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Fig. 2. Distribution of semantic labels for Track 1, height above ground
values in Track 1, and stereo disparity values in Track 2.

D. Baseline Solutions

Lightweight baseline solutions were developed for all the
challenge tracks and used to validate the data and characterize
the expectations in terms of minimum performance. These
solutions were made available on GitHub for the contest par-
ticipants [26]. The Track 1 single-view semantic 3D baseline
solution combines semantic segmentation and height regres-
sion deep network models, both based on a ResNet34 [27]
encoder and U-Net [28] decoder implemented in Keras and
TensorFlow [29]. The Track 2 pairwise semantic stereo so-
Iution combines an ICNet [30] semantic segmentation model
with a DenseMapNet [31] stereo disparity regression model.
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Fig. 4. Track 2: From an epipolar rectified pair of multi-date images (a and b), predict stereo disparity (c) and semantic label (d) for each pixel.

The Track 3 multi-view semantic stereo baseline solution
combines semi-global matching [32] for disparity estimation
with the same ICNet model that was used in Track 2 for
semantic segmentation. These baseline solutions do not exploit
the complementary nature of semantic segmentation and 3D
reconstruction tasks. An initial experimental evaluation using
the baselines was reported in [22].

E. Participation

A total of 710 unique registrations were received from 45
countries for downloading the DFC19 data. A total of 41,
37, and 23 teams finally entered Tracks 1-3, which received
337, 264, and 142 submissions, respectively, on the Codalab
competition websites during the test phase. These numbers in-
dicate that the single-view semantic 3D and pairwise semantic
stereo challenge were the most popular, with less demand for
the multi-view semantic stereo challenge. Tasks that required
more specialized knowledge were subjected to higher entry
levels, and the single-view semantic 3D that was composed
of estimating semantic labels and nDSM, which has been
actively studied with machine learning, was easier in terms
of participation.

F. Best-performing approaches and discussion

The first and second ranked teams in all tracks were awarded
winning places. The winners presented their solutions during
the 2019 IEEE International Geoscience and Remote Sensing
Symposium in Yokohama, Japan. The six winning teams for
Tracks 1-3 were:

o 1Ist place in Track 1: The nest team; Saket Kunwar
from NestAl, Nepal; with an ensemble of a few varied
backbones employed in a U-Net architecture [33].

e 2nd place in Track 1: The RSIDEA-WHU team; Zhuo
Zheng, Yanfei Zhong, and Junjue Wang from Wuhan
University, China; with a pyramid on pyramid network
based on an encoder-dual decoder framework [34].

o 1Ist place in Track 2: The BurningAllthing team; Hongyu
Chen, Manhui Lin, Hongyan Zhang, Guangyi Yang,
Guisong Xia, Xianwei Zheng, and Liangpei Zhang from
Wuhan University, China; with a modified version of the
pyramid stereo matching network (PSMNet) and disparity
fusion segmentation net (DFSN) [35].

o 2nd place in Track 2: The gin.324 team; Rongjun Qin,
Xu Huang, Wei Liu, and Changlin Xiao from Ohio Ohio
State University, US; with an U-Net and pyramid stereo
matching network (PSMNet) [36].

o Ist place in Track 3: The Panoptes team; Pablo
d’Angelo, Daniele Cerra, Seyed Majid Azimi, Nina
Merkle, Jiaojiao Tian, Stefan Auer, Miguel Pato, Raquel
de los Reyes, Xiangyu Zhuo, Ksenia Bittner, Thomas
Krauss, and Peter Reinartz from German Aerospace
Center, Germany; with semi-global matching and an
ensemble of CNN classifiers with ad hoc detectors [37].

o 2nd place in Track 3: The gin.324 team; Rongjun Qin,
Xu Huang, Wei Liu, and Changlin Xiao from the Ohio
State University, US; with semi-global matching and U-
Net [38].

Table I is a summary of the teams ranked top three for
Tracks 1-3 and their approaches. The overall trend was that
the top-ranked teams in each task extended well-established
techniques with practical tricks. All winners adopted fully con-
volutional neural networks (FCNs) and their variations (e.g.,
U-Net and LinkNet) for semantic segmentation. The methods
used to estimate height differed significantly depending on
the tracks. Both winners of Track 1 developed U-Net-based
regression models for the nDSM estimation that leveraged
global statistics in each class. The winners of Tracks 2
and 3 tackled height estimation using PSMNet and semi-
global matching (SGM), respectively. Many teams achieved
further improvements in performance by ensembling multiple
prediction models and post-processing.

In Sections IV, V, and VI, we present the solutions proposed
by the first ranked teams of Tracks 1, 2, and 3, respectively.
The winning classification methodologies are summarized and
an in-depth analysis of the pros and cons of each solution is
provided.

IV. FIRST PLACE IN THE SINGLE-VIEW SEMANTIC 3D
CHALLENGE: NESTAI TEAM

A. Method: U-Net ensemble for semantic and height estima-
tion using coarse-map initialization

We used a U-Net [28], which is an architecture that is widely
used for its strong performance in semantic segmentation
tasks, and evaluated it using mloU. It is a variation of the
classic auto-encoder architecture and consists of using an
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TABLE 1
TOP RANKED TEAMS AND APPROACHES.

Track  Rank Team mloU-3 Affiliation Approach
FCN  PSMNet SGM  Ensemble  Postprocess.
1 1 nest 0.5571 NestAl v v
2 RSIDEA-WHU 0.5340 Wuhan University v
o ___3__ _npicknec 0509 _ WuhanUniversity _ v ___ _____________¥__._
- Baseline 0.456 - v
2 1 BurningAllthing 0.7775 ‘Wuhan University v v v v
2 qin.324 0.7724 The Ohio State University v v v v
o ___3___ Xempai 07606 Xidian University v _ _ v __ _ ___ ______¥Y__._
- Baseline 0.608 -
3 1 Panoptes 0.7461 German Aerospace Center v v v v
2 qin.324 0.7300 The Ohio State University v v v
o ___3_ _ Midkeyzhong 07282 _ _Xidian University _ v _ _ _ _ _ _ _ A A
- Baseline 0.550 -
Encoder Backbone->ResNet D1, is a problem that is particularly prevalent in remote sensing
EenseNelion Soapia iesneie imagery. The relatively better performance of the inception
- \  network suggests that batch normalization adds to its effec-
512x512x(3/4) patches Db bl . .
; regression output tiveness. It should be noted though that batch normalization
i vari i wi
1 addresses the internal covariate shift and therefore deals with
W i) 126x128x256 the shift in the given dataset. When train and test images are
4 from different locations, an external covariate shift can occur.
R S 51 B4xB4X512 The batch statistics collected during training may therefore be
1 unsuitable and may lead to poor results. For example, if the
_ S\A L dataset used for training and testing had been obtained from
32x32x1024 > 32x32x1024 . . o . X
3 Africa or Asia as opposed to nearby cities, as with this dataset,

16x16x2048

16x16x2048 S

Decoder :-> 2xUp-Sampling,
Batch normalization,
filters={256, 128, 64,32,16)

Fig. 5. U-Net Encoder-Decoder Architecture

encoder followed by a decoder preserving the input-output
dimensionality. The novelty that was introduced alongside
the U-Net consists of a feature passing mechanism that used
lateral connections from each stage of the encoder to the
corresponding decoder stage, as shown in Figure 5, enabling
precise localization. A variety of backbones pretrained on
large datasets such as ImageNet can be used for semantic
segmentation, provided the decoder part is suitably constructed
to reflect the up-sampling or deconvolution necessary to output
the segmentation map.

We evaluated three backbones: ResNet101 [27], Inception
ResNetV2 [39], and DenseNet169 [40]. ResNet101, which has
101 layers, uses deep residual learning with skip connections
that allow for deeper networks and avoid performance sat-
uration. As a deep network, it has a hierarchical structure,
with each stage providing a specific feature representation,
such as the haar-like features from the first stage. Through
the use of skip connections at each stage, the residual blocks
enable better refinements of the feature representation, leading
to better segmentation maps. In the Inception ResNetV2 archi-
tecture, the layers are wider using filters of different size, in
addition to the residual connection for increasing depth. Batch
normalization is used to reduce the covariate shift between
the layers. The change in the distribution of pixel intensity
for the same conditional output distribution or covariate shift

other approaches would have been required. DenseNet [40]
expands upon the deeper and wider network architecture using
short-cuts between the layers, and was also evaluated during
the competition.

To provide context to the higher resolution stages, we
added a feature pyramid network [41] to the encoder that
started at the low-resolution stage. The top-down pathways
were constructed via successive up-sampling. We evaluated the
feature pyramid network for the semantic prediction task as
well, but found its performance slightly worse in this case. The
backbones, which were primarily developed for classification
tasks with high-resolution images, downsample the input by a
factor of four in the first stage. For remote sensing imagery,
this can be too severe as the input resolution is low compared
to that of natural images, leading to difficulties in fine-
grained object segmentation or detection. A possible fix is
to upsample the input image by a factor of two or to reduce
the stride in the convolution layer of the first stage of the
backbone to two. However, this was not performed in this
challenge because mloU was used as an evaluation metric,
which rewards semantic accuracy rather than detection.

1) Semantic Prediction: From the eight multispectral bands
of Worldview-3 images, bands 7 and 8, and the infrared
bands including band 6, the red-edge band, provide spectral
signatures that are most suitable for delineating urban areas.
We created patches of 512 x 512 3-band combinations from
these bands as well as RGB bands from the given 1024 x 1024
dimensional images. The model performance on a local vali-
dation set for the three backbones (ResNet101 [27], Inception
ResNetv2 [39], and DenseNet169 [40]) with four different
band combinations is shown in Table II. We determined
that Inception ResNetV2 with the band combination of 7,
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6, 4 provided the best overall single model performance.
Nadam [42], which is an optimizer with momentum, was used
beginning at a learning rate of 0.002 for 30 epochs and then
fine-tuned for 5 more epochs at a learning rate of 0.0002.

We used the Hybrid Jaccard loss (HJL), a weighted sum
of binary cross-entropy loss (BCE) and the Jaccard loss (JL),
shown in Equation 1. The dataset contains classes that have
imbalanced pixels as a result of the used images. Ground and
water are generally balanced, while roads and bridges tend to
face a foreground-background imbalance problem. Introduced
in RetinaNet [43], focal loss can help with this imbalance,
and in combination with cross-entropy loss, can enhance the
performance of the imbalanced classes, as noted for JL above.
Conceptually, focal loss down-weights the contribution of easy
predictions and instead focuses on more difficult samples,
while JL works by penalizing incorrect predictions.

The final prediction during the competition phase was a
simple mean ensemble of all the semantic models, as seen
in Table II. Vertical flips, horizontal flips, and rotation were
used to augment the dataset during training. The test time
augmentation consisted of one additional vertical flip.

TABLE I
MODELS PERFORMANCE FOR SEMANTIC SEGMENTATION

Inception Inception DenseNet | ResNet
ResNetV2 | ResNetV2 | 169 101
Bands 4,6,7 1,24 4,5.6 5,6,7
Ground | 0.891 0.885 0.868 0.861
Trees 0.701 0.696 0.648 0.640
Roof 0.862 0.847 0.825 0.812
Water 0.940 0.941 0.932 0.915
Bridge 0.819 0.802 0.771 0.750
mloU 0.843 0.834 0.809 0.795
HJL = 0.75JL+0.25BCFE (nH
n
= 075ypredimytrue —0.25 Z Ytrue; - lOg(ypredi)
Ypred Y Ytrue i——1

After the competition, we evaluated the combination of
focal loss and cross-entropy loss against the combination of
JL and cross-entropy loss, while maintaining the same training
and model parameters, except for the loss. As shown in
Table III, the focal loss performed better when evaluated with
two different models and two different band combinations.
This was only carried out for the imbalanced bridge class.

TABLE III
PERFORMANCE COMPARISON FOR FOCAL AND JACCARD LOSS

BCE + Jaccard | BCE + Focal
Class = Bridge
Model = ResNet101 0.750 0.762
Bands = 5, 6, 7
Class = Bridge
Model = DenseNet 169 | 0.771 0.793
Bands =4, 5,6

2) Height Prediction: Predicting height from a single opti-
cal image without any additional supporting data or metadata
is a challenging task. It is easy to overfit when a small
validation dataset is used, especially for buildings and bridges.
This is demonstrated using an experiment following a simple
method to fill in the height values with one globally computed
mean or median. In Table IV 65 instances are extracted from
different tiles (i.e., JAX_204, JAX_224, and OMA_292), and
the AGL is filled-in after the semantic segmentation. Each
label was replaced with a corresponding single global height
value. A change of 1 m in the global value for buildings and
5 m for bridges can generate mloU-3 variation of as much as
8%. The selected global value may work for this particular
set but may fail to generalize for other test sets such as those
with predominantly high-rise buildings or urban areas in the
city outskirts. Exceptions to this rule can be observed in the
ground and water classes, as there is a 1 m tolerance for mloU-
3 calculations with these classes and the deviation from the
mean value for these classes lies within this tolerance limit.

TABLE IV
VARIATION OF MIOU-3 SCORES OF HEIGHT PREDICTIONS BASED ON
COARSE DEFAULT VALUES AND THE ESTIMATE OF A REGRESSION MODEL.

Building value | value | value | Regression model
=53 =6.3 =7.3 (with coarse-map)

mloU3 0.64 0.59 0.47 0.72

Bridges value | value | value Regression model
=73 =10.3 | =153 | (with coarse-map)

mloU3 0.268 | 0.372 | 0.453 | 0.46

Fig. 6. Based on the initial coarse AGL (left) the final AGL (right) is
predicted.

Instead of using a single model to predict the semantic class
and height values, we opted to use two models to predict
the height once the semantic class is mapped. To introduce
cues from which a deep network can bootstrap, we added a
coarse channel to the 3-band optical imagery (see Figure 6)
initialized from pre-computed global statistics. Addition of a
coarse-map was also performed by [44] for depth prediction
using RGB images, as the map provides essential cues for
depth estimation, such as starting or terminating points. We
trained a U-Net regression model and used rmsProp [45] for
the height prediction.

In addition to the model with a coarse channel, a model
without a coarse channel constituted part of the class-specific
ensembles (see Table V). For the Tree class, the model with the
coarse channel achieved a worse mloU-3 score than the model
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without it, indicating that its contribution was down-weighted.
Similar to semantic segmentation, the height prediction test
time augmentation included one vertically flipped image.
Ensembling and test time augmentation leads to significantly
better results in terms of height prediction.

TABLE V
HEIGHT MODELS WEIGHTED ACCORDING TO SEMANTIC CLASS

Band Band Band Band
467 467 456 456
Inception Inception DenseNet | DenseNet Ensemble
ResNetV2 | ResNetV2 )
(With (Without (With (Without
coarse) coarse) coarse) coarse)
Buildings | 0.33 0.16 0.33 0.16 ;?”}flbmmg
raction
mloU3
Public 0.4080 0.3803 0.3920 0.3750 0.4383
Validation
mloU3
Public 0.4147 0.4060 0.4230
Test
Trees 0.16 033 0.16 033 Contributing
Fraction
mloU3
Public 0.2745 0.2830 0.2703 0.2780 0.2974
Validation
mloU3
Public 0.2394 0.2598 0.2714
Test

B. Results and Discussion

In this report, we show that an ensemble consisting of a few
varied backbones with different band combinations in a U-Net
architecture, with hybrid JL and a Nadam optimizer, provides
the best semantic segmentation result for the grss_dfc_2019
dataset. For the challenging task of height prediction, we
show that the addition of a coarse-map initialized using global
statistics provides a model that can generalize well and con-
verges rapidly. Our band selection strategy proved successful;
however, the key to the challenge-specific performance was
the use of coarse maps, while utilizing essential cues for the
height estimation. Methods that utilize the predicted height
and perform further iterative refinement based on local and
global contexts with the addition of pyramid features should
be investigated. Another avenue for improvement is to replace
dice loss with focal loss [43], as the road and highway classes
are generally imbalanced.

V. FIRST PLACE IN THE PAIRWISE SEMANTIC STEREO
CHALLENGE: WUHAN UNIVERSITY TEAM

In this section, we describe the winning algorithm proposed
for the pairwise semantic stereo challenge. This method is
based on a fusion-based framework in which the semantic
segmentation and disparity estimation tasks are performed
simultaneously. A deep neural network is utilized to extract
multi-scale features of the input epipolar rectified stereo image
pair. The construction and minimization of the cost volume
finally allows to apply regression to infer the disparity map.
For the semantic segmentation task, the multi-receptive fields
semantic features of the stereo image pair are exploited, before
being fused with the disparity features. The segmentation
accuracy is improved using information about the semantic

context of an object as well as the disparity information
that contains cues regarding object elevation. Further, high
vegetation, elevated roads, and buildings are refined with the
help of class elevation priors, and noisy pixels are eliminated
through morphological operators during post-processing.

A. Proposed Framework

" Sem u;nic_b'eg;nen_mti;n Network

Disparity Network

Left VNIR

SSN_RGB Right VNIR
Left RGR

SSN_MSI

Left MST

DFSN

Lelt RUB Rizht RGB

3!

Encoder

IDCNN

Disparity Feature

7

Upsample
Regression

LY

I Post-processing )

Disparity Image

Left Semantic Segmentation Map
Fig. 7. The flow chart of the proposed method for pairwise semantic stereo.

The flow chart of our approach is shown in Figure 7 [35].
The framework can be summarized as follows:

« For the disparity estimation branch, a disparity network
is developed that considers the VNIR stereo pair as input
and generates the disparity map in an end-to-end manner.

o For the semantic segmentation branch, the left image is
fed into our proposed single segmentation network (SSN)
to predict the left segmentation map. With respect to the
different data types, the SSN-RGB is built for the RGB
inputs and the SSN-MSI for the 11-band multispectral
images (MSIs), i.e., the concatenation of RGB and VNIR.

o For further mining of 3D stereo segmentation infor-
mation, we propose the disparity fusion segmentation
network (DFSN), which aggregates the semantic features
from the stereo pair and fuses them with the disparity
features from the disparity network.

o To fully combine the complementary information of the
three segmentation models, we apply a pixel-wise median
filter on the three probability maps of SSN-RGB, SSN-
MSI, and DFSN, and determine the ensemble prediction.
After post-processing, with the assistance of the disparity
results, the final segmentation map is obtained.

B. Disparity Estimation

Owing to the different acquisition times of the stereo
image pairs, there are obvious differences in the irradiation
and environmental changes in the image pairs, which will
significantly interfere with the accuracy of the traditional dis-
parity estimation algorithms based on low-level image features
(geometry, texture, color, etc.). Therefore, we need to utilize
a deep learning method that generates high-level semantic
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features, use these features to construct the cost volume, and
finally regress the final disparity map.

As shown in Figure 7, we adopt the PSMNet [46] to enable
end-to-end disparity estimation. The atrous convolution with
a downsampling rate of 8 is not only used to increase the
receptive field for semantic features, but also to reduce the
computational costs of the network. Meanwhile, the Spatial
Pyramid Pooling (SPP) module helps to fuse the contextual
information at different scales. The SPP features from stereo
pairs are then utilized to form the 4D (height x width x
disparity x channel) cost volume by concatenating the stereo
feature maps across each disparity level. Moreover, stacked
hourglass 3D convolutional layers are employed to aggregate
the feature information along the disparity and spatial dimen-
sions. Finally, the stereo features are regressed to the disparity
map. For the contest, the disparity range was set to [—96, 96],
according to the statistics of the training set.

C. Semantic Segmentation

In this section, our fusion-based segmentation method for
deep learning-based semantic segmentation is elaborated in
three parts: 1) SSN, 2) DFSN, and 3) probability fusion. The
architectures of the proposed SSN and DFSN are shown in
Figure 8 [35], where the dash-dot arrowed line is used to
denote the SSN and the dashed line describes the DFSN.
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Fig. 8. The architecture of the proposed SSN and DFSN for semantic
segmentation.

1) Single Segmentation Network: The SSN is designed in
an encoder-decoder architecture. A pretrained ResNet-50 [27]
is adopted as the backbone for the encoder, which is known to
extract multi-level features effectively. The remainder of this

section discusses the special block that was introduced into
the decoder.

(b)

Fig. 9. (a) Objects of the same class in different scales. (b) Similar color and
texture between different classes.

The complex urban scene also leads to different character-
istics within objects of the same class; the intra-class variance
tends to be large. For example, it is apparent from Figure 9(a)
that the size and shape of buildings varies considerably. As a
result, extracting semantic features with a constant receptive
field size weakens the inference ability of the network to
identify the same object in different scenes. Therefore, the
network should be designed to automatically extract semantic
information from different receptive fields. In addition, the
network should be able to adaptively weigh the features of
different receptive fields through learning from mass data.
Given these requirements, we propose the Multi-Receptive
Fields Block (MRFB) as the basic block in our decoder to
segment objects on multiple scales.

ConCab, B Channel Atiention

" Fu
Foa

¥ Separable
F amil Shared ¥
Convalutinn

Fig. 10. The architecture of the proposed MRFB.

The architecture of the proposed MRFB is shown in Fig-
ure 10 [35]. The MRFB benefits from atrous SPP (ASPP) in
deeplabv3+ [47], where four atrous convolutions with different
dilation rates are applied in parallel to extract multi-context
features. The original input feature F; is then concatenated
with these features for more stable training. Meanwhile, the
discriminative contextual feature F, = [F;, F.1, Feo, Fi3, Fe4)
is obtained for five different receptive fields. The atrous convo-
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lution is well-known to impose the expansion of the receptive
fields without the loss of resolution or coverage. However, it
can sometimes result in gridding artifacts. Therefore, separable
and shared convolution [48] are employed in the MRFB to
establish dependencies among the input channels.

Simply concatenating the features of different receptive
fields is inefficient. Hence, in order to understand the relative
significance of different contexts, channel attention [49] is
introduced to weigh the features in respect of their importance.
Specifically, average pooling is adopted to distill a feature vec-
tor from the input feature maps, and the multi-layer perceptron
(MLP) is used to obtain the channel attention vector. The MLP
plays an essential part as it automatically learns the nonlinear
mapping of a channel’s significance via back-propagation in
the training process. The formulation of the channel attention
vector is:

AC(Fi) = O(MLP(Fic(ave))) € RIx! (2)

where 6 denotes the sigmoid function. We use the channel
attention vector A, to weight the contextual features of the
different receptive fields, as described below:

Foa =F; ® A(F) 3)

where ® denotes element-wise multiplication. The 3 x 3
convolutional layer is utilized to fuse the weighted feature
Fca and reduce the channel number to 256 for concentration.

The US3D dataset covers extensive scenes. As a result,
objects of different classes in the US3D can appear to be
similar. For instance, the characteristics of the buildings and
ground in terms of color and texture are very similar in
Figure 9(b). Thus, the network learns more robust features
and makes more accurate inferences only if the long-range
relationship between the input pixels is fully utilized. In order
to establish long-range dependence among these features, a
global convolutional layer is required, which has a large
number of parameters and high computational costs. The
Global Convolutional Network (GCN, [50]) module builds
dense connections within the global feature maps with a size
of k x k through a combination of 1 xk+kx1and kx1+1xk
convolutions. Because deeper features can lose large amounts
of structural information compared with shallower ones, the
shallow features are transmitted to the deeper layers by GCN
and boundary refinement (BR) in order to better recover the
spatial information.

2) Disparity Fusion Segmentation Network: Since the
stereo images in US3D were not acquired in the same time
phase, the two acquisition times could be in different seasons.
As shown in Figure 11, objects in the same scene may appear
different in different seasons: the flourishing and withering of
trees and changes in the color or the physical state of water.
This nonconformity led to great challenges for the network. To
better resolve this issue, we include a stereo image pair in the
network inputs. By combining semantic information from dif-
ferent time phases, the representative power of the network is
enhanced, which increases the robustness to seasonal change.
Therefore, on the basis of the SSN, the semantic features of the
right image are extracted through the weight-sharing encoder
and concatenated with the features of the left image.

(b)

Fig. 11. Different seasons between the epipolar rectified pair (a and b), and
their semantic label (c).

(b) ©

Fig. 12. The disparity cues contain important information for semantic
segmentation. (a) The left-view image, (b) the disparity map and (c) the
semantic label

It is apparent from Figure 12 that the elevated and non-
elevated roads share similar geometric and textural character-
istics. Similar observations can be found in the pairs including
high vegetation and grasslands, or buildings and parking
lots. It is not easy to discriminate these highly correlated
objects using only the semantic features. However, the dis-
parity information inherently contributes to the discrimination
between easily confused objects at different elevations. Hence,
a straightforward approach is to incorporate the features of
the disparity network into the semantic segmentation network.
Our solution is to reshape the 4D stereo features from the
PSMNet, transform them in channels via a 1 X 1 convolution,
and feed them into the segmentation net in concatenation with
the semantic features of the left and right images. Additionally,
the disparity information also plays an important role in the
alignment of the left and right images. At this point, the entire
DFSN model is built, as shown in Figure 8.

3) Probability Fusion: As shown in Figure 7, three proba-
bility maps are predicted by SSN-RGB, SSN-MSI, and DFSN.
Then, a median filter is used to perform post-inference fusion.
Subsequently, the fused map is normalized, and the ensemble
segmentation map is obtained by considering the class with
the maximum probability at each pixel.

D. Implementation Details

Since the RGB and VNIR epipolar rectified images were
valued in different ranges, we first pre-processed all the
samples via the well-known z-score normalization, with the
channel-wise mean and variance calculated on the training set.
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In the PSMNet the loss function is the mean absolute error
(MAE).

1 n
MAE:fE i — P 4
ni=1|y, i | 4)

where y” and y; denote the estimated disparity and ground
truth, respectively. Cross-entropy loss was used in the SSN
and DFSN.

We selected the Adam optimizer [51] with £; = 0.9,
B2 = 0.999 for all networks. Regarding the learning rate 7,
we employ an auto-attenuating learning rate that halved every
30 epochs, which initializes at 0.01 in the PSMNet and 0.001
in the SSN and DFSN.

Four different 3 x 3 atrous convolutions are used in the
MREFB, with dilation rates set to [1, 4, 8, 16], corresponding to
a kernel size of 31 for the separable and shared convolution.
For the segmentation task, random flipping and random rota-
tion are adopted to augment the training data. With respect
to the RGB inputs, a ResNet-50 pretrained on ImageNet
is used, significantly accelerating the convergence. As for
the MSI inputs, the input convolutional layer in ResNet-50
is modified to match the channels. The parameters of the
pretrained PSMNet are frozen during training for training
stability of the DFSN.

E. Post-Processing

Because all the classes in the US3D dataset have natural
characteristics in terms of elevation, we propose a post-
processing method based on class elevation priors in order
to correct confused labels and remove noise caused by mis-
classification.

o Correction for high vegetation: Although the proposed
DFSN has to some extent addressed the difficult classifi-
cation problem under seasonal change, high vegetation is
sometimes confused with the ground class, or the miscel-
laneous collection of low ground objects. This is because
of the variable appearance of high vegetation and its
similar spectral characteristics with those of grasslands.
To separate the high vegetation from the ground class,
corrections are made on the basis of prior knowledge of
elevation. We first remove the average disparity of the
ground class from the original disparity map and consider
the absolute values, obtaining an estimation of the pseudo
DSM. Then, the ground pixels with a pseudo DSM value
higher than 3.0 and the probability of high vegetation
higher than 0.3 are set as high vegetation.

« Removal of noise in the segmentation map: The building
and elevated road classes are known to have distinct
geometric and elevation characteristics. To fill in the
potential holes and gaps caused by the inside of buildings
and elevated roads, we create a binary segmentation map
of the buildings and elevated roads, and use a morpho-
logical method to extract all 8-connected components.
The connected domain filtering algorithm is then applied
to fill the holes, with thresholds of 600 for the pixel
number and 5.0 for the average pseudo DSM in the
component. We also remove the noise caused by water

and elevated roads via a simple global filtering strategy.
Compared with other classes, the spatial distribution of
water and elevated roads is usually clustered within a few
isolated points. Based on this prior knowledge, if the total
number of pixels denoting water or elevated roads in a
segmentation map is less than 500, the predicted class for
these pixels is set to ground.

F. Results and Discussion

In this subsection, we evaluate the performance of our
proposed framework using a test set of 50 images. Our
method achieves an average endpoint error (EPE) of 1.3966,
an erroneous pixel score (D1) of 0.0906, and a final mIoU-
3 of 0.7775. An ablation study is conducted to verify the
influence of different components in our framework, including
segmentation network architectures and post-processing. A
brief introduction to the methods used for comparison is given
as follows.

o SSN-RGB: The single segmentation network with RGB

input.

o SSN-MSI: The single segmentation network with MSI

input.

o DFSN: The disparity fusion segmentation network.

o Fusion: The fusion of the proposed SSN-RGB, SSN-

MSI, and DFSN via a median filter.
« Post-fusion: Fusion with post-processing.

TABLE VI
EXPERIMENTAL RESULTS WITH DIFFERENT STRATEGIES

class SSN-RGB SSN-MSI DFSN Fusion Post-fusion
Ground 0.7925 0.7928 0.8026  0.8114 0.8093
High vegetation 0.5178 0.5333 0.5417  0.5495 0.5692
Building 0.7744 0.7703 0.7767  0.7964 0.7964
Water 0.9381 0.9421 0.9435  0.9488 0.9511
Elevated road 0.7459 0.7690 0.7785  0.8013 0.8264
All 0.7537 0.7615 0.7686  0.7815 0.7905

The results of all the compared methods are shown in
Table VI and Figure 13 [35]. First, it is not difficult to
ascertain that SSN-MSI achieves better results for high veg-
etation (51.78% versus 53.33%) and water (93.78% versus
94.21%) than SSN-RGB. This is because MSI contains more
spectral information, and thus includes rich prior knowledge
for the identification of vegetation and water. Additionally, the
significant accuracy improvement of the elevated road class is
due to the fact that the rich spectral information diminishes
confusion with other classes. Second, from the experimental
results of SSNs and DFSNSs, there are obvious improvements
in the classes with elevation characteristics, including high
vegetation, buildings, and elevated road classes. Therefore, the
elevation information carried by disparity cues is shown to
play a significant role in semantic segmentation. Moreover, the
increase in the ground, vegetation, and water classes, which are
sensitive to seasonal changes, affirms the effectiveness of the
fusion of the multi-date stereo pair. Finally, it is clear from
the results that by combining the elevation information and
the semantic confidence maps in our post-processing method,
the accuracy concerning high vegetation and elevated roads is
further improved.
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Fig. 13. Disparity estimation (c) between the epipolar rectified pair (a and b), and semantic segmentation results of (d) SSN-RGB, (e) SSN-MSI, (f) DFSN,

and (g) Fusion-post

In post-processing, we introduce the pseudo DSM to per-
form class correction and denoising, and several thresholds are
manually set. For future research, it is important to consider
how to incorporate these steps into network training and
build an end-to-end framework. In addition, since the disparity
estimation accuracy benefits from the semantic information
in the same manner, a joint multi-task framework can be
established, where the semantic segmentation task receives
guidance from the disparities, and vice versa. This will be
an interesting topic to discuss in the future.

VI. FIRST PLACE IN THE MULTI-VIEW SEMANTIC STEREO
CHALLENGE: DLR TEAM

In this section, we describe the winning algorithm pro-
posed for the multi-view semantic stereo challenge. We used
the procedure shown in Fig. 14 to obtain the best score
on the multi-view semantic stereo challenge. After refining
image orientation using bundle block adjustment, Semi-Global
Matching (SGM) was used to produce height maps, Digital
Surface Models (DSM), and normalized DSM (nDSM). Con-
volutional Neural Network (CNN) based semantic segmenta-
tion was performed on the RGB, multi-spectral images (MSI)
and height maps and projected into UTM coordinates. Pixel-
wise detectors were applied to the orthorectified MSI images,
deriving binary maps for the classes high vegetation and water.
An ensemble of three CNN classifiers was merged with the ad
hoc detectors to obtain the final semantic segmentation maps,
after an additional step of morphological filtering.

A. Image Orientation and Multi-View 3D Reconstruction

Before performing dense matching, a good relative image
orientation is required. The contest dataset is only coarsely
aligned to the reference data, leading to height offsets of
more than 1 m for some stereo pairs. Additionally, relative
orientation is required to avoid systematic height offsets
between individual stereo pairs. For image orientation and
dense matching, a synthetic panchromatic image is generated
by averaging the red, green, and blue channels of the MSI
images. Multi-ray tie points are matched using SIFT, refined,
and transferred to unmatched images using local least-squares
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Fig. 14. Processing steps for multi-view semantic segmentation.

(a) (b)
Fig. 15. DSM after matching (a) single stereo pair and (b) merging of 50
stereo pairs.

matching. Bias-corrected RPCs are then obtained using bundle
block adjustment [52].

Following [53], dense stereo matching is performed using
pairwise SGM using CENSUS as the matching cost. Owing
to the difference in image acquisition time, dense matching
of single stereo pairs yields incomplete results, particularly in
areas that have undergone changes or include vegetation (cf.
Fig. 15). All possible stereo pairs with a convergence angle
above a predefined threshold are ranked based on the number
of tie points found in the image orientation step, matching
the 50 pairs with the highest number of tie points. Each pair
is matched in both directions, resulting in 100 height maps.
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We compute height clusters for every pixel in the final DSM
and select the mean height of the cluster with the highest
number of points. In addition to the DSM heights, we produce
quality layers containing the number of matches and standard
deviations of all height values. The remaining holes are filled
using interpolation. Finally, all images are orthorectified using
the DSM. Additionally, normalized DSM [54] and dense
height maps are generated for each input image, allowing the
use of height information during semantic segmentation of the
original images in sensor geometry.

B. Semantic Segmentation

Semantic classification is performed by utilizing three dif-
ferent neural network architectures, and two ad hoc approaches
for the classes high vegetation and water. The RGB and MSI
images, along with the dense height maps generated during
our stereo matching, are used as input for the classification.
Note that the third network of choice is the provided baseline
U-Net network' and is therefore not described below.

The most interesting aspect for the ad hoc detection of the
classes water and elevated roads is the use of information
derived from multi-view processing, detailed below.

In order to initialize the water mask, pixels with low
consistency in the DEM are selected, where the consistency is
estimated as the number of DEMs in which an image element
has been matched, by selecting pixels matched in less than
5 stereo pairs. Such pixels correlate well with the presence
of water, which makes it difficult to obtain reliable matchings
and height values. The Normalized Difference Water Index
(NDWI) [55] is computed for these image elements: the water
mask is initialized by maintaining higher values whenever a
bimodal distribution of the NDWTI is detected by an adaptive
Otsu threshold, indicating the presence of bodies of water. The
results are then refined with morphological filtering.

The elevated road labels are refined by adding to the class
elevated pixels with a similar gradient to the objects detected,
assuming that such a gradient is homogeneous for a small
scene. This improves the accuracy of this class by 1.5%.

C. Results
TABLE VII
HEIGHT STATISTICS FOR DIFFERENT DSM FUSION AND POST-PROCESSING
ALGORITHMS.
Method  Postproc. Height accuracy ~ Completeness
Median 0.411 0.654
Median ~ VegHeight 0.408 0.658
Cluster 0.356 0.671
Cluster ~ VegHeight 0.355 0.675

Table VII reports the DSM statistics for the different pro-
cessing options. On the one hand, the cluster-based merging
leads to significant improvement in height accuracy, increasing
ToU-3 for ground and building classes by 0.5% and 0.4%,
respectively. On the other hand, the systematic vegetation
height difference correction only has a small impact.

Thttps://github.com/pubgeo/dfc2019

—
LS}

Quicklook U-Net CNN-Ensemble Final Results

Fig. 16. Examples for semantic classification results. From left to right:
true color combination of the median multispectral image, baseline U-
Net classification, CNN-Ensemble classification, and final results after post-
processing. A water mask is computed separately and overlaid on all results.
Ref. Fig. 2 for a legend of the classes.

The impact of different classification and post-processing
steps is shown in Table VIII. The first row uses a basic
median fusion for the DSM generation and the baseline U-
Net and NDWI-based water detection without morphological
refinement. The second row reports the results of the CNN
ensemble, without further refinements in the classification. The
classification benefits from the fusion of the network outputs,
particularly the class high vegetation, for which an accuracy
improvement of approximately 5% is observed. Finally, the
last row shows the final results of the complete process.
Further post-processing includes morphological filtering, im-
proving the accuracy for each class slightly by up to 0.5% for
the class buildings.

Examples of the different classification strategies are re-
ported in Fig.16. Improvements in the classes buildings, ele-
vated roads, and high vegetation are evident when switching
from the U-Net to the ensemble CNN classifier, and after post-
processing.

The results show that the basic CNN ensemble with over-
laid water masks, without extensive post-processing, would
have been sufficient to win the contest. Nevertheless, the
cluster-based height merging, water mask, high vegetation,
and elevated roads post-processing led to a further overall
improvement of 1%.

The semantic classification yielded the best performance
across all tracks using multispectral images (Tracks 1, 2,
and 3). This may be due to the inclusion of parameters
derived from the multi-view processing, which allows for
improvements to the water and elevated road classes, which
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TABLE VIII
EVALUATION SCORES OF DIFFERENT CLASSIFIERS AND DSM COMBINATIONS.

DSM Fusion Semantic Segmentation mIOU-3 mIOU | Ground High Vegetation Building  Water  Bridges
Median-Fusion ~ UNet + Water Mask 0.718 0.782 0.819 0.509 0.809 0.949 0.823
Median-Fusion =~ CNN-Ensemble + Water Mask 0.736 0.798 0.827 0.564 0.803 0.953 0.843
Cluster-Fusion  All 0.746 0.806 0.831 0.571 0.814 0.958 0.855

is not possible for Tracks 1 and 2.

D. Discussion

The final contest results show that, while CNNs are in-
dispensable for high-quality semantic segmentation, they can
still be improved using traditional methods for specific tasks
such as water detection. For DSM generation from multi-view
data, classical non-deep learning approaches based on SGM
were used by the top three entries, indicating that more work
needs to be done on CNN-based stereo algorithms to reach the
accuracy of traditional methods, especially when many stereo
pairs are available. While our work includes some integration
between semantic segmentation and DSM generation in the
form of using height information in the multimodal fusion net-
work, and semantic segmentation results during DSM merging,
future work could further benefit from a tighter integration of
both semantic segmentation and stereo matching. Our entry
won the competition by a margin of 1.46%, of which 1% was
the result of post-processing aimed at improving the semantic
segmentation of large buildings, bridges, and high vegetation.
In spite of the final semantic segmentation score of the top
two teams being comparable, the better DSM owing to bundle
adjustment and mature implementation of SGM led to a final
difference of 1.46% for mloU-3.

VII. CONCLUSIONS

Geometric and semantic analyses of images have long been
treated independently. However, the increasing abundance of
available images and reference data as well as the use of
mature methods for image-based 3D reconstruction and the
semantic analysis of 2D and 3D information, have allowed
the research directions to be combined in recent years. Corre-
sponding approaches solve both tasks simultaneously and are
able to provide semantically annotated 3D models, which are
of great importance in a wide range of applications ranging
from urban planning to monitoring of natural environments.

The 2019 Data Fusion Contest of the Image Analysis and
Data Fusion (IADF) Technical Committee of the IEEE Geo-
science and Remote Sensing Society addressed the challenges
within the context of semantic 3D reconstruction for various
aspects by providing high-resolution image data, LiDAR based
3D reference data, and semantic annotations for two different
sites, resulting in 69 image tiles with more than 320 GB of
data. This allows for the efficient benchmarking of methods
that aim to solve large-scale semantic 3D reconstruction tasks.

The contest was arranged in four different tracks corre-
sponding to different input modalities. Tracks 1-3 addressed
image-based semantic 3D reconstruction based on a single
image, a stereo image pair, or multiple images, respectively,

while Track 4 addressed the semantic annotation of point
clouds. This first Part A of a two-part paper describes the
data modalities, challenges, performance metrics, and winning
approaches of Tracks 1-3, while Part B provides an in-depth
discussion on Track 4.

Despite the challenges of this contest, for example, the
large amount of data, participation numbers continued to
increase compared to previous years [21]. With a total of 45
participating countries and winning approaches from China,
Germany, Nepal, and the USA, DFC19 was a truly global
event. All winners used FCNs for the semantic analysis of
the data, while 3D estimation was performed via modern
deep learning methods (e.g., PSMNet [46], as in Section V)
or more traditional approaches (such as SGM [53], as in
Section VI). Finally, various methods for post-processing as
well as using ensembles of multiple predictors, allowed for
significant performance gains.

After the contest, the data remained accessible for further re-
search on the globally accessible data platform IEEE DataPort?
and the evaluation servers were re-opened and made accessible
on the contest website*. While addressing semantic 3D at such
a scale was unprecedented, many promising improvements
can already be foreseen. In addition to scaling up (with
more scenes and more semantic classes, including objects and
underrepresented land-use classes), new problems can also
be addressed, such as estimation of physical variables (e.g.,
albedo, atmosphere, and aerosol measurements) or the evolu-
tion along the time dimension (temporal changes in semantics
and in 3D). Moreover, it will be crucial to investigate how
currently emerging machine-learning techniques such as weak
supervision and self-supervised learning can be harnessed to
build well-performing models.
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