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Abstract— The majority of optical observations acquired via
spaceborne Earth imagery are affected by clouds. While there
is numerous prior work on reconstructing cloud-covered infor-
mation, previous studies are, oftentimes, confined to narrowly
defined regions of interest, raising the question of whether an
approach can generalize to a diverse set of observations acquired
at variable cloud coverage or in different regions and seasons.
We target the challenge of generalization by curating a large
novel data set for training new cloud removal approaches and
evaluate two recently proposed performance metrics of image
quality and diversity. Our data set is the first publically available
to contain a global sample of coregistered radar and optical
observations, cloudy and cloud-free. Based on the observation
that cloud coverage varies widely between clear skies and
absolute coverage, we propose a novel model that can deal with
either extreme and evaluate its performance on our proposed data
set. Finally, we demonstrate the superiority of training models
on real over synthetic data, underlining the need for a carefully
curated data set of real observations. To facilitate future research,
our data set is made available online.
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I. INTRODUCTION

N AVERAGE about 55% of the Earth’s land surface is
Ocovered by clouds [1], impacting the aim of missions,
such as Copernicus, to reliably provide noise-free observations
at a high frequency, a prerequisite for applications relying
on temporally seamless monitoring of our environment, such
as change detection or monitoring [2]-[5]. The need for
cloud-free Earth observations, hence, gave rise to a rapidly
growing number of cloud removal methods [6]-[12]. While
the aforementioned contributions share the common aim of
dehazing and declouding optical imagery, the majority of
methods are evaluated on narrowly defined and geospatially
distinct regions of interest (ROIs). Not only is this specificity
posing challenges for a conclusive comparison of methodology
but also, furthermore, may cloud-removal performance on a
particular ROI poorly indicate performances on other parts
of the globe or at different seasons. Moreover, it would be
desirable for a cloud removal method to be equally applicable
to all regions on Earth, at any season. This generalizability
would allow for large-scale Earth observation without the need
for costly redesigning or retraining for each individual scene
that a cloud removal method is meant to be applied to.

This concern is sustained by previous analysis demonstrat-
ing that landcover statistics differ across continents [13] and
cloud-coverage is highly variable depending on meteorological
seasonality [1]. A major reason for these issues, which is
still remaining open nowadays, is the current lack of available
large-scale data sets for both training and testing of modern
cloud removal approaches. In this work, we address this issue
by curating and releasing a novel large-scale data set for
cloud removal containing over 100000 samples from over
100 ROIs distributed over all continents and meteorological
seasons of the globe. Especially, we address the challenge
of cloud removal in observations from Copernicus mission’s
Sentinel-2 (S2) satellites. While optical imagery is affected
by bad weather conditions and lack of daylight, sensors
based on synthetic aperture radar (SAR) as mounted on
Sentinel-1 (S1) satellites are not [14] and, thus, provide a valu-
able source of complementary information. Recent advances
in cloud removal combine multimodal data with deep neural
networks recovering the affected areas [6], [7], [12], [15].
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Fig. 1. Exemplary raw data and declouded images. Rows: S1 data
(in grayscale), S2 data (in RGB), predicted S2 data, and cloud-free (target)
S2 data. Columns: three different samples. The outcomes show that our model
learns to preserve optical data of cloudless areas while replacing cloudy
regions by the translation from the SAR domain.

However, many networks are trained on synthetic data or on
real data while making strong assumptions on the type and
amount of cloud coverage. Moreover, the majority of methods
do not explicitly model the amount of cloud coverage and
treat each pixel similarly, thereby making unneeded changes
to cloud-free areas.

In this work, we address the problem of cloud removal in
optical data by means of SAR-optical data fusion, as illustrated
in Fig. 1. To redeem the current lack of sufficiently sized
and heterogeneous Earth observation data for cloud removal,
we release a novel large-scale global data set of coregistered
optical cloudy, cloud-free, and SAR observations to train and
test the declouding methods. Our data set consists of over
100000 samples, allowing the training of large models for
cloud removal and capturing a diverse range of observations
from all continents and meteorological seasons. In addition, we
propose a novel generative architecture that reaches competi-
tive performance, as evidenced by two very recently proposed
metrics of generated image goodness and diversity. Finally,
we show that synthetic data utilized in previous studies are a
poor substitute for real cloud coverage data, underpinning the
needs for the novel data set proposed in our work.

A. Related Work

The first deep neural architecture to reconstruct cloud-
covered images combined near-infrared and red-green-blue
(RGB) bandwidth optical imagery by means of a conditional
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generative adversarial network (GAN) [6], motivated by
infrared bandwidth being to a lesser extent impacted by
cloud coverage. Subsequent studies replaced the infrared input
with SAR observations [7], [15] due to SAR microwaves
not being affected by clouds at all [14]. While the early
works of [6] and [7] provide a proof-of-concept solely on
synthetic data of simulated Perlin noise [16], the networks
of [8] and [15] were first to demonstrate performances on
real-world data, though focusing primarily on the removal
of filmy clouds. Comparable to these studies, we investigate
the benefits of SAR-optical data fusion for cloud removal.
Unlike the prior work, we address declouding on a carefully
curated data set of real imagery sampled over all conti-
nents and meteorological seasons, relying neither on synthetic
data nor making any strong assumptions about the type
and percentage of cloud coverage. Building on the previous
studies, the models of [8] and [17] replace the conditional
GAN by a cycle-consistent architecture [18], relaxing the
preceding models’ requirements for pixelwise corresponding
training data pairs. While [8] relies solely on cloudy optical
input data at inference time, only SAR observations are
utilized in [17]. Similar to these two networks, the model
that we propose uses a cycle-consistent GAN architecture.
We combine cloudy optical with SAR observations and extend
on the previous models by incorporating a focus on local
reconstruction of cloud-covered areas. This is in line with
very recent work [12], [19] that proposed an auxiliary loss
term to encourage the model reconstructing information of
cloud-covered areas in particular. The network of [12] is
noteworthy for two reasons: first, for departing from the
previous generative architectures by using a residual network
(ResNet) [20] trained supervisedly on a globally sampled data
set of paired data; second, for adding a term to the local
reconstruction loss that explicitly penalizes the model for
modifying off-cloud pixels. Comparable to [12], our network
explicitly models cloud coverage and minimizes changes to
cloud-free areas. Unlike the model of [12], our architecture
follows that of cycle-consistent GAN and has the advantage
of not requiring pixelwise correspondences between cloudy
and noncloudy optical training data, thereby also allowing
for training or fine-tuning on data where such a requirement
may not be met. Complementary to the SAR-optical data
fusion approach to cloud removal, recent contributions pro-
posed integrating information of repeated observations over
time [10], [11]. The work indicates promising results but trades
temporal resolution for obtaining a single cloud-free observa-
tion, whereas our approach predicts one cloud-free output per
cloudy input image and, thus, allows for sequence-to-sequence
translation. Moreover, current multitemporal approaches make
strong assumptions about the maximum permissible amount
of cloud-coverage affecting individual images in the input
time series, which is required to be no more than 25% or
50% of cloud coverage for the method of [10] and 10%-30%
in the work of [11]. Our curated data sets evidence that
such strict requirements on the percentage of cloudiness may,
oftentimes, not be met in practice. Consequently, our model
makes no assumptions on the maximum amount of tolerable
cloud coverage per observation and can gracefully deal with
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samples ranging from cloud-free to widely obscured skies due
to minimizing changes to cloud-free pixels and using SAR
observations unaffected by clouds.

II. METHODS

We propose a novel model to recover cloud-occluded infor-
mation in optical imagery. Our network explicitly processes a
continuous-valued mask of cloud coverage computed on the
fly, as described in Section II-A, to preserve cloud-free pixels
while making data-driven adjustments to cloudy areas. The
continues-valued assignment of each pixel in the processed
cloud mask can be interpreted as the likelihood of the pixel
being cloud-covered according to the cloud detector algo-
rithm of [21]. Our model explicitly processing cloud coverage
information is in contrast to previous generative architectures
that are agnostic to cloud-coverage [6], [8] and networks that
only utilize binary cloud mask information [12] as opposed to
more fine-grained continuous-valued masks proposed in this
work. A cycle-consistent generative architecture detailed in
Section II-B allows for training without the need for coreg-
istered cloudy and noncloudy observations of strict pixelwise
one-to-one correspondences compared with earlier approaches
that required strict pixelwise alignments [7], [15]. We adapt
the architecture to integrate SAR with optical observations
and propose a new auxiliary cloud map regression loss that
enforces sparse reconstructions to minimize modification on
cloud-free areas, as described in Section II-C.

A. Cloud Detection and Mask Computation

To evaluate the cloud coverage statistics of our collected
data set and model cloud coverage explicitly while reconstruct-
ing cloud-covered information, we compute cloud probability
masks m. The masks m are computed online for each cloudy
optical image and contain continuous pixel values within
[0, 1], indicating, for a given pixel, its probability of being
cloud-covered. We compute m via the classifier s2cloudless
of [21], which demonstrated cloud detection accuracies on
par with the multitemporal classifier MAJA [22], running on
single-shot observations. While s2cloudless originally applies
classification to compute a sparsified binary cloud mask,
we wish to obtain a continuous-valued cloud map. We, there-
fore, take the intermediate continuous-valued representation
of the pipeline of [21], then apply a high-pass filter to only
keep values above 0.5 intensity, and, finally, convolve with a
Gaussian kernel of width 0 = 2 to get a smoothed cloud map
with pixel values in [0, 1]. We note that m may alternatively
be computed by a dedicated deep neural network [23], but our
solution is lightweight and, thus, perfect to support methods
running on very large data sets, at almost no additional compu-
tational cost in either memory or run time. Exemplary samples
of cloud probability masks are presented in Appendix A.

B. Architecture

The model proposed in this work follows the architecture
of cycle-consistent GAN [18], i.e., we use two generative
networks Ggi—.s2 and Ggy—. 51 that translate images from
the source domain of S1 to the target domain of S2, and

vice versa. Distribution S1 (or §2) denotes the target when
the generator performs a within-domain identity mapping,
preserving the input image’s sensor characteristics. For each
domain, there exists an associated discriminator network,
denoted as Dg; and Dga, respectively, classifying whether a
given image is a sample from the domain’s true distribution
S1 (or S2) or from the synthesized distribution S1 (or §2).
An overview of our model ensemble is given in Fig. 2.
While we keep the network Ggz—, 51 as in the original work,
we apply spectral normalization [24] to both discriminators
and make adjustments as follows: Ggi_ g2 receives an image
from domain S1 as input and is additionally conditioned on
the corresponding cloudy image from S2, as well as the cloud
probability mask m. For our cloud-removal network, we keep
the encoder—decoder architecture of the generator but add a
long-skip connection [20] such that the output is given by

§2= Gsi-52(-) = tanh(52 + S2res)

where S2.s denotes the residual mapping learned by the
generator. To demodulate the effects of the output nonlinearity
on the long-skipped pixels, the inverse hyperbolic tangent is
applied to the cloudy input image from S2 before the residual
mapping. Furthermore, we insert a regression layer taking
the residual maps S2.s as input and returning a prediction
m of the cloud map m. The purpose of the regressor is to
enforce a meaningful relation between the learned S2..s and
the conditioning m, making the residual maps sparse. Here,
sparseness refers to the residual maps being (close to) zero
over noncloudy areas, as opposed to having widespread small
values, which would indicate many unneeded changes made
to cloud-free pixels. We enforce sparseness of the residual
maps by formulating an L1 loss on the cloud mask regression,
as defined in Section II-A. The loss term effectively acts as a
regularizer on changes made to noncloudy areas, penalizing
unnecessary adjustments. The regression layer consists of
a [3 x 3] convolutional kernel mapping the generated 3-D
image to a single-channel map and, thus, adds little to the
overall number of learnable parameters. The architecture of
generator Gg1—. 52 1s depicted in Fig. 3, and the details on its
parameterization are provided in Table I. Discriminator Dg>
is well-conditioned on the cloud probability maps m. Impor-
tantly, we forward the (unpaired) noncloudy optical images to
the discriminator Dg>, which learns the noncloudy patchwise
statistics and, thus, implicitly forces Ggi— 52 to synthesize
cloud-free images. In sum, our main contribution with respect
to architectural changes is twofold. First, we adjusted the gen-
erator predicting cloud-free optical images to learn a residual
mapping by introducing a long-skip connection forwarding
optical information, removing the previous need to reconstruct
(even cloud-free) pixels from scratch. Second, our generator
learns to constrain modifications to cloud-covered pixels while
keeping clear areas unchanged, which is encouraged by intro-
ducing a novel layer regressing the cloud coverage map by the
learned residual map.

C. Losses

We adjust the losses such that regions regressed as
cloud-free in map m remain untouched, while cloudy areas are



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

X
S1 = 51

338

Legend:

X =

D discriminator network i

generator network

information flow direction

loss computation

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

NG
S2 = = 52
Eau:z:
N7

ﬁcycx(l'!)

S2
m

>

b

S1
£ad’u * m
Dsy

NG

»Caua:

input/output information

E weighting by cloud mask

Fig. 2. Overview of our model ensemble based on cycle-consistent GANs [18]. The model consists of two generative networks G g1 g2 and G, g1 that
translate images from the source domain of S1 to the target domain of S2, and vice versa. Distribution S1 (or S2) denotes the target when the generator
performs a within-domain identity mapping, preserving the input image’s sensor characteristics. For each domain, there exists an associated discriminator
network, denoted as Dg; and Dgp, respectively, classifying whether a given image is a sample from the domain’s true distribution S1 (or S2) or from the
synthesized distribution S1 (or S2). The network architectures are as in [18]—except for the generator G g1, 52, which is modified as detailed in the main
text and in Fig. 3. The losses Lady, Leye, Lide, and Laux are defined in Section II-C.

recovered given the information from domain S1. The losses
minimized by the generators are

Laay = (Ds1(S1) — 1)* + (Ds2(82) — 1)?

Leye = m - (ST =SDly + (1 —m) - (52 — 82)||;
Ligt = lm - (S1=SDly + lm - (52 = 52) |y
Lawe = (1 —m) - (m — )|y

Lan = AadvLadv + AcyeLeye + AidtLide + Aaux Laux

where Aagy = 5.0, Acyc = 10.0, Ajge = 1.0, and Ayux = 10.0 are
the hyperparameters to linearly combine the individual losses
within L. The loss weightings are set similar to those in [18],
with minor adjustments made manually. £,4y is the adversarial
loss originally proposed in LSGAN [25], implementing a
least-squares error function on the classifications of the dis-
criminators Dg1 and Dg>. Lcyc and Lige are introduced in [18]
but weighted pixelwise with the cloud map m. The purpose of
the cycle-consistent loss Leyc is to regularizing the mapping
S1 — S2 by requiring S2 — S1 being able to reconstruct
the original input again (likewise for the direction S2 —
S1 — §2), constraining the potential mappings between both

domains. The idea behind L;jq; is to motivate generators to
perform an identity mapping and limit unneeded changes in
case the provided input is a sample of the target domain.
Laux is the loss associated with the cloud map regression
in Ggi1— 52, introduced to enforce sparseness of the learned
residual feature maps S2es such that the noncloudy pixels of
S2 experience little to no adjustments. Our modified generator
architecture, the usage of probabilistic cloud maps, and the
adjusted losses are showcased in context of a cycle-consistent
GAN ensemble, but we remark that they may as well be used
within alternative models, such as conditional GAN [26] or
ResNet architectures [20].

III. EXPERIMENTS AND ANALYSIS
A. Data

To conduct our experiments, we gather a novel large-scale
data set called SEN12MS-CR for cloud removal. For this
purpose, we build upon the openly available SEN12MS data
set [27] of globally sampled coregistered S1 plus cloud-free
S2 patches and complement the data set with coregistered
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Detailed architecture of the generator G g1_, 52 of Fig. 2. The generator receives S1, m, and S2 as input, the latter of which is long-skip forwarded

and modified by the learned residual map S2res. The result is passed via a nonlinearity as input to the next network, or treated as output. In parallel, S2res is

regressing m to enforce sparseness of the residual map.

TABLE I

ARCHITECTURE OF OUR GENERATOR Gg|_.52. THE ARCHITECTURE IS DIVIDED INTO FOUR COMPONENTS, AS ILLUSTRATED IN FIG. 3, AND
INFORMATION FLOW IS FROM LEFT TO RIGHT ACROSS COMPONENTS AND TOP TO BOTTOM WITHIN COMPONENTS. SYMBOLS: R (RELU),
N (INSTANCE NORMALIZATION), C (CONVOLUTION), AND T (TRANSPOSED CONVOLUTION). FOR (TRANSPOSED) CONVOLUTION,
THE PARAMETERIZATION IS (KERNEL HEIGHT x KERNEL WIDTH, NUMBER OF FILTERS, STRIDE, AND PADDING SIZE).
THE ARCHITECTURE OF GENERATOR G g2, g1 IS SIMILAR TO THE 9-RESNET BLOCK GENERATOR IN [18], AND
THE TWO DISCRIMINATORS ARE KEPT AS THE PATCHGAN DISCRIMINATORS IN [18]

encoder | bottleneck

| decoder output

R(IN(C(3 x 3,64, 1, 1))
RIN(C(3 x 3,128,2, 1)) | 9 x
R(N(C(3 x 3, 256, 2, 1)))

dropout(0.5)

cloudy images close in time to the original observations.
SEN12MS-CR consists of 169 nonoverlapping ROIs evenly
distributed over all continents and meteorological seasons.
The ROI has an average size of approximately 52 x 40 km?
ground coverage, corresponding to complete-scene images
of about 5200 x 4000 pixels. Each complete-scene image
is checked manually to ensure freedom of noise and arti-
facts. The cloud-free optical images of four exemplary ROI
observed in four different meteorological seasons are depicted
in Fig. 4 to highlight the heterogeneity of landcover captured
by SEN12MS-CR. Each scene in the data set is subsequently
translated into Universal Transverse Mercator coordinate sys-
tem and then partitioned into patches of size 256 x 256 pixels
with a spatial overlap of 50% between neighboring patches,
yielding an average of over 700 patches per ROI. Each patch
consists of a triplet of orthorectified, georeferenced cloudy, and
cloud-free 13-band multispectral Sentinel-2 images, as well as
the correspondent Sentinel-1 image (see Fig. 1 for the exam-
ples of SAR, cloud-free, and cloudy optical patch triplets).
Paired images of the three modalities were acquired within
the same meteorological season to limit surface changes.
The Sentinel-2 data are from the Level-1C top-of-atmosphere
reflectance product. Finally, each patch triples is automatically
controlled for potential imaging artifacts, and exclusively,
artifact-free patches are preserved to constitute the final
cleaned-up version of SEN12MS-CR.

Evaluating the cloudiness of each patch with the algorithm
of [21], as described in Section II-A, yields a mean cloud

R(N(C(3 x 3, 256, 1, 1)))

R(N(C(3 x 3, 256, 1, 1)))

R(N(T(3 x 3, 256, 2, 1)))
R(N(T(3 x 3, 128, 2, 1)))

sigmoid(C(3 x 3, 1, 1, 1))
tanh(C3 x 3, 3, 1, 1))

coverage of circa 47.93% =+ 36.08%, i.e., about half of all
the optical images’ information is affected by clouds and
the amount of coverage varies considerably. This amount of
coverage is notably close to the approximately 55% of global
cloud fraction over land that has previously been observed
empirically [1]. The distribution of cloud coverage is shown
in Fig. 5 and is relatively uniform over the entire domain, with
slightly more samples showing (almost) no clouds or being
entirely cloud-covered. Note that the computed cloud proba-
bility masks are not used to filter any observations or actively
guide the data set creation in any manner, and they are solely
used post hoc to quantify the distribution of cloudiness. For the
sake of comparability across models in our experiments and
for further studies, we define a train split and a split of hold-out
data, which is reserved for the purpose of testing. The train
split consists of 114325 patches sampled uniformly across all
continents and seasons and is open to be entirely used for
training or in parts for training and validating. The test split
consists of 7893 geospatially separated images sampled from
ten different ROI distributed across all continents and meteo-
rological seasons, capturing a heterogeneous subset of data.

B. Experiments and Results

A total of three experiments are conducted. First, we train
our network and extend it by adding supervised losses for
the model to benefit of paired noncloudy and cloudy optical
observations in our data set at training time. We systematically
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Fig. 4. Cloudless S2 imagery of four exemplary ROI, illustrating the
diversity of SEN12MS-CR. The four different scenes are of four different
meteorological seasons from the test split of the data set. On average, an ROI is
split into over 700 patch samples, each observation of size 256 x 256 pixels.
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Fig. 5. Statistics of cloud coverage of SEN12MS-CR. On average, approx-
imately 50% of occlusion is observed. The empirical distribution of cloud
coverage is relatively uniform and ranges from cloud-free views to total
occlusion.

vary the amount of available supervision to investigate its
effects on model performance. Second, we evaluate it against
a set of baseline models. Third, we retrain the architectures
from the previous experiment on synthetic data of generated
cloudy observations and evaluate them on real data in order to
quantify to which extent models trained on simulated data are
capable to generalize to real-world scenarios. To the best of
our knowledge, neither of these experiments has previously
been conducted in depth. All experiments were conducted
on a machine of 8 Intel Core i7-§700 CPU @ 3.20-GHz
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processors, 16 GB of DIMM DDR4 Synchronous 2667-MHz
RAM, and an NVIDIA GeForce RTX 2080, running Ubuntu
18.04. Computation clock time for the training procedure may
vary according to the overall task load but is estimated to be
about seven days for model ours-0 and about 10-12 days for
model ours-100.

1) Metrics to Quantify the Goodness of Cloud Removal:
In order to evaluate model performances quantitatively, we uti-
lize the recently developed metrics of improved precision and
recall [28], as proposed in the context of generative modeling
and improving on previous metrics, such as Inception score
or Frechét Inception distance [29], [30]. Improved precision
and recall are measures of goodness quantifying similarities
between two sets of images in a high-dimensional feature
embedding space. Precision is a metric of sample quality,
assessing the fraction of generated images that are plausible
in the context of the target data distribution. In our context,
a generated image is plausible if its high-dimensional feature
embedding is sufficiently close to the high-dimensional fea-
ture embedding of a cloud-free target image. The distance
between both embeddings is sufficiently small if there is no
fixed number of neighbors closer to the target embedding
than the query embedding. For the formalities behind this
metric and motivation of the chosen parameterization, please
see Appendix B. Recall measures the diversity in generated
images and the extent to which the distribution of target data
is covered. Analogous to the metric of precision, a target
image is recalled if its high-dimensional feature embedding is
sufficiently close to the high-dimensional feature embedding of
a generated cloud-free image. Note that this allows interpreting
recall as a measure of generated image diversity as the metric
can score high only if the generated samples are spread
out in the feature embedding’s space and provide sufficient
coverage of the distribution of target images, capturing the
heterogeneity of the target images. To summarize, in the
context of our data set of Section III-A, precision specifies
the closeness of cloud-recovered information to its cloud-free
counterpart, whereas recall captures how well the declouded
images capture the heterogeneity of the test data (e.g., its
diversity in land-cover and seasonality).

While we emphasize the benefit of both measures to disen-
tangle image quality and image heterogeneity, we also define
the F1 score as

PR(X,Y) -RC(X,Y)
PR(X,Y) +RC(X,Y)

FI(X,Y)=2"

where X and Y are sets of images to be compared, and
PR and RC denote the functions of precision and recall,
respectively. In contrast to the first two experiments, the gen-
eration of synthetic data in the third experiment guarantees
a one-to-one pixelwise correspondence between cloudy and
ground-truth cloud-free images (i.e., perfect coregistration,
no atmospheric disturbances other than the simulated noise,
control for no landcover, and daylight changes between both
observations), ensuring that pixelwise metrics are well-defined.
Therefore, complementary to the previous measures of good-
ness, we additionally assess performances on synthetic data
in the third experiment by means of mean absolute error
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(MAE), root-mean-square error (RMSE), peak signal-to-noise
ratio (PSNR), structural similarity (SSIM) [31], and spectral
angle mapper (SAM) [32], as given by

C,HW
MAE(x, y) = ——— Z [Xe,n,w — Yesh,wl
C-H-W c=h=w=1
1 C,H,W
RMSE(x, y) = CH W > @Eehw = Yerw)?
c=h=w=1

1
PSNR(x, y) = 20 - log, <W(xy)>

Quxpy +€1)(2oxy + €2)
(ﬂx + uy + El)(o'x + oy + €)
SAM(x, y) = cos™ !

SSIM(x, y) =

C,H,W
Zc —h=w=1 Xc,h,w " Ye,h,w
C,H,W C,H,W
Zc h=w= 1xchw'Zc h=w= 1yc,h,w

where x and y are images to be compared with pixel-values
Xehws Yehw € 10, 1], dimensions C = 3, H = = 256,
means [y, iy, standard deviations oy, oy, covariance oy, and
small numbers € and €; to stabilize the computation. MAE
and RMSE both are pixel-level metrics quantifying the mean
deviation between target and predicted images in absolute
terms and units of the measure of interest, respectively. PSNR
is an imagewise metric to measure how good of a reconstruc-
tion in terms of signal-to-noise ratio a recovered image is
to a clear target image. SSIM is a second imagewise metric,
quantifying the structural differences between the target and
predicted images. It is designed to capture perceived change
in structural information between two given images, as well as
differences in luminance and contrast [31]. The SAM metric is
an imagewise measure, quantifying the spectral angle between
two images, measuring their similarity in terms of rotations in
the space of spectral bands [32]. Further technical information
with respect to the metrics utilized in our experiments to
quantify goodness of predictions is provided in Appendix B.

2) Quantifying the Benefits of Paired Data: First, we train
the architecture described in Section II without using any
pixelwise correspondences, as in a manner conventional for
cycle-consistent GAN. For our generative model, we consider
the VV and VH channels of images from the S1 domain
and add a third mean (VV and VH) channel to satisfy the
dimension-preservation requirement of cycle-consistent archi-
tectures. For images from the S2 domain, all multispectral
information is used when computing cloud probability maps,
while the S1-S2 mapping uses exclusively the three RGB
channels. All images are value-clipped and rescaled to contain
values within [—1, 1], while the cloud probability map values
are within [0, 1]. Value-clipping is within ranges [—25; 0]
and [0; 10000] for S1 and S2, respectively. Notably, before
training, we perform an imagewise shuffling of the optical
data of paired cloudy and cloud-free observations to remove
the pixelwise correspondences satisfied when cloudy and
cloud-free patches would be available as sorted tuples. That
is, the optical cloudy and noncloudy patches presented at
one training step may be no longer strictly aligned or could

TABLE 11
EFFECT OF PERCENTAGE OF PAIRED TRAINED DATA ON PERFORMANCE
OF CLOUD REMOVAL MODEL. THE MORE THE PAIRED TRAINING DATA
IS AVAILABLE, THE BETTER THE RESULTING PERFORMANCES

% paired precision  recall F1 score
0 (ours-0) 0.560 0.491 0.523
10 0.559 0.499 0.527
20 0.560 0.506 0.532
50 0.562 0.528 0.544
100 (ours-100) 0.564 0.551 0.557

reflect differences in landcover and atmosphere, reflecting
practical challenges commonly encountered when gathering
data for remote sensing applications. We train our network
on a 10000 images multiregion subset of the training split
introduced in Section III-A. Network weights w are initialized
by sampling from a Gaussian distribution w ~ N(u = 0,

2 = 0.02). The optimizer and the hyperparameters for the
optimizer and loss weightings are set as in [18]: We use
ADAM with an initial learning rate €, = 0.0002, momentum
parameters f = (0.5,0.999) for computing sliding averages
of the gradients, and their squares and a small constant of
1078 added to the denominator to ensure numerical stability
of the optimizer. Instance normalization [33] is applied to the
generators as in the original architecture [18], with adjustments
detailed in Fig. 3 and Table I. Spectral normalization [24] is
applied to the discriminators as in [34] in order to prevent
mode collapse during training [35]. The networks are trained
for njer = 50 epochs at the initial learning rate of €,
and then for another ngecay = 25 epochs with a multiplica-
tive learning rate decay given by Irgecay(current) = 1.0 —
max (0, 1 + ncurrent — Miter)/ (ndecay + 1), where ncurent denotes
the current epoch number. The gentle learning rate decay
over a long period of epochs serves to ensure a well-behaved
optimization process during training [18], [35]. All our gen-
erator networks are trained on center-cropped 200 x 200 px?
patches but tested on full-sized 256 x 256 pixels patches
of the hold-out split, as the generator architecture is fully
convolutional. As proposed in [36] and implemented in [18],
we maintain two pools of the last 50 generated images to
update the discriminators with a random sample from the
respective image buffers such that oscillations during training
are reduced [18], [35]. Representative qualitative outcomes are
depicted in Fig. 1. The results highlight that our model can
reconstruct cloud-covered areas while preserving information
that is not obscured. A quantitative evaluation of the described
model (ours-0) is given in Table II.

Second, we retrain the model, as described earlier, but on
paired cloudy—cloudless optical observations in order to assess
the benefits of paired training data, as provided by our data set.
To let the cycle-consistent architecture described in Section II
benefit of paired training data, we combine the losses defined
in Section II-C with cost functions defined on paired images:
first, a pixelwise L1 loss penalizing prediction errors between
generated and paired target images as in [37]; second, per-
ceptual losses for features and style [38], as evaluated on
the features extracted at ReLU layers 11, 20, and 29 of an
auxiliary pretrained VGG16 network [39]. We retrain our
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network with these losses and systematically vary the percent
of paired cloudy and cloud-free optical data available. The
paired patches are equally spaced across the training split at
the beginning of the training procedure, and patch pairings
are fixed across epochs. During training, the presentation of
paired and unpaired samples occurs in random order. Table II
shows the different models’ performances. The base model
trained on unpaired data (ours-0) performs worst, while the
model fully trained on paired samples (ours-100) achieves the
best performances. In general, the more paired samples are
available the better the model performs.

3) Model Ablation Experiment: To put the results of
the previous experiment into perspective and further eval-
uate the factors benefiting the robust reconstruction of
cloud-covered information, we conduct an ablation study.
Especially, we investigate the effectiveness of the novel
cloud detection mechanism explained in Section II-A and
the local cloud-sensitive loss introduced in Section II-C. For
this purpose, we retrain the model ours-0, as described in
Section II, but omit the cloud-sensitive terms by fixating
the values of all pixels in the cloud probability masks m
to 1.0. The effect of this is that the ablated model is no
longer encouraged to minimize the changes to areas free of
cloud coverage, thus potentially resulting in unneeded changes.
As additional baselines, we evaluate the goodness of simply
using the S1 observations (VV- or VH-polarized), as well as
cloud-covered S2 images as predictions and comparing against
their cloud-free counterparts. Table III reports the declouding
performance of baseline models and our models (0% and
100% paired data from Table II). Our network of 100% paired
data performs best in terms of precision and F1 score. The raw
S1 and S2 observations perform relatively poorly, except for
the cloudy optical images scoring high on image diversity due
to random cloud coverage. While it may be useful to consider
the raw data as baselines, it is necessary to keep in mind
that modalities, such as SAR, maybe at a disadvantage when
directly comparing against the cloud-free optical target images.

4) Assessing the Goodness of Synthetic Data: To com-
pensate for the lack of any large-scale data set for cloud
removal, previous works simulated the artificial data [6], [7],
[10], [40], [41] of synthetic cloudy optical images. This raises
the question of the goodness of the simulated observations,
i.e., how good of an approximation such simulations are to any
real data. In this experiment, we consider the two architectures
ours-0 and ours-100 from Table III and retrain them on
synthetic data to subsequently evaluate the retrained models
on the real test data and assess if performance generalizes to
real-world scenarios. Two approaches to generating synthetic
data are evaluated.

1) Perlin: We generate cloudy imagery via Perlin noise [16]
and alpha-blending as in the preceding studies of [6], [7],
and [40]. This approach has the limitation of adding
Perlin noise to all of the multispectral bandwidths
evenly, due to lack of a better physical model of mul-
tispectral cloud noise. Since cloud detectors trained on
real observations are expected to fail in such a case,
we substitute the cloud map of Section II-A by the
synthesized alpha-weighted Perlin noise.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE III
CLOUD-REMOVAL PERFORMANCE OF BASELINE METHODS AND OUR
MODELS ON TEST SPLIT OF SEN12MS-CR.ROowS S1 VV AND
VH REFER TO THE RAW S1 IMAGE, CHANNELS VV AND VH,
RESPECTIVELY, COMPARED WITH THE GRAY-SCALE
CLOUD-FREE S2 IMAGE. S2 CLOUDY REFERS TO THE
RAW CLOUDY S2 IMAGE COMPARED WITH THE RGB
CLOUD-FREE S2 IMAGE. ALL MODELS’ METRICS
BEAT THE LOWER-BOUND PERFORMANCES
ESTABLISHED BY THE RAW DATA, EXCEPT
ON THE RECALL METRIC. THE FULL MODELS
PERFORM BETTER THAN THE ABLATION
MODELS WITHOUT THE CLOUD-SENSITIVE
Lo0sS AND CLOUD PROBABILITY MASKS.
MODEL OURS-100 PERFORMS BEST IN
TERMS OF PRECISION AND F1 SCORE.
NOTE THAT THE RESULTS DEPICT A
PRONOUNCED TRADEOFF BETWEEN
PRECISION AND RECALL, AS
ANALYZED, IN DETAIL, IN [28]

model precision  recall  F1 score
st Vv 0.000 0.001 0.001
VH 0.012 0.017 0.014
S2 cloudy 0.161 0.705 0.267
ours-0 (no m) 0.181 0.572 0.279
ours-100 (no m) 0.232 0.535 0.323
ours-0 0.560 0.491 0.523
ours-100 0.564 0.551 0.557

2) Copy: We generate cloudy imagery by taking the
ground-truth cloud-free optical observations and com-
bine them via alpha-blending with clouded observa-
tions as in the approach of [10]. Different from [10],
we benefit from our curated data set and alpha-blend
paired cloudy—cloudless observations, whereas the
prior study mixed the two unrelated images. More-
over, we alpha-blend weighted by the cloud map of
Section II-A, whereas the original study alpha-blended
via sampled Perlin-noise. We believe that these modi-
fications better preserve the spectral properties of real
observations and keep cloud distribution statistics closer
to that of real data, as shown in Figs. 6 and 7.

Furthermore, this allows for synthesizing coverage ranging
from semitransparent to fully occluded clouds, which would
be less straightforward on unpaired observations. Exemplary
observations generated by both simulation approaches and
empirical observations are presented in Fig. 6.

The outcomes of this experiment are presented in Table IV.
For all data simulation approaches, training a network on
generated data and, subsequently, evaluating it on synthetic test
data are overestimating the performances on the corresponding
real test data. This observation holds for both models evaluated
in the experiment. The models display a drop in performance
when moving from synthetic to real testing data. The drop
being considerably smaller in the case of copy—paste data
than for Perlin noise data may be due to the copy-pasted
data closer resembling the real data and its underlying sta-
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Fig. 6. Exemplary cloud-free, real cloudy, and generated cloudy optical
observations. Rows: cloud-free S2 data (plotted in RGB), real cloudy S2 data,
real cloud coverage maps (same for copy—paste), Perlin-noise simulated
cloudy S2 data, Perlin-noise cloud coverage maps, and copy—paste simulated
cloudy S2 data. Columns: three different samples.

Fig. 7. Exemplary cloudy optical observations and cloud maps. Rows: cloudy
S2 data and cloud probability masks. Columns: four different samples.

tistics of cloud coverage and spectral distributions. In this
context, it is instructive to investigate spectral distortions by
means of SAM, which indicates that models trained and
tested on synthetic data are considerably poorer to predict
spectral distributions on Perlin-simulated data compared with
the copy-pasted observations, which is arguable more alike

TABLE IV
CLOUD-REMOVAL PERFORMANCE OF MODELS OURS-0 AND
OURS-100 FROM TABLE III, RETRAINED ON SYNTHETIC CLOUD
DATA (EITHER PERLIN-SIMULATED OR COPY-PASTED) AND
TESTED ON SYNTHETIC AND REAL DATA. BOTH MODELS,
WHEN TRAINED ON SYNTHETIC DATA, PERFORM MUCH
BETTER ON SYNTHETIC TEST DATA THAN ON REAL
TEST DATA. IMPORTANTLY, THE TEST PERFORMANCE
OF MODELS TRAINED ON SYNTHETIC AND TESTED ON
REAL DATA Is CONSIDERABLY POORER THAN THAT
OF THE SAME ARCHITECTURES TRAINED ON
REAL DATA (REPORTED IN TABLE III)

model ours-0 ours-100

metric [ Perlin copy Perlin copy
MAE 0.045 0.023 0.041 0.017
RMSE 0.067  0.031 0.059  0.023
PSNR 24.75 34.034 25775  35.802
SSIM 0.803 0.882 0.824  0.904
SAM 27.527 10.626  26.013  9.936
cecision synth  0.155 0.693 0.239  0.692
PIECISION  real  0.115 0425  0.168  0.458
recall synth  0.781 0.851 0.800  0.856
real 0.624  0.611 0.592  0.586

Fl synth ~ 0.258 0.764 0.368  0.766
real 0.194  0.501 0262 0514

to real data in terms of its spectral properties. The findings
in this experiment underline the need for synthetic data to
closely capture the properties of real data, yet even when
real and synthetic observations may be hardly distinguishable
by eye (as the examples shown in Fig. 6), there persist
important discrepancies unaccounted for, which hinders the
models trained on synthetic sampled to perform equally on
real data.

IV. DISCUSSION

The contribution of our work is in providing a large-scale
and global data set for cloud removal and developing a new
model for recovering cloud-covered information to highlight
the data sets benefits. With over 55% of the Earth’s land
surface covered by clouds [1], the ability to penetrate cloud
coverage is of great interest to the remote community in order
to obtain continuous and seamless monitoring of our planet.
While the focus in this work is on providing the first glob-
ally sampled multimodal data set for general-purpose cloud
removal, future research should also address the benefits of
cloud removal approaches for particular applications common
in remote sensing. An example application is in semantic
segmentation, which necessitates clear-view observations for
accurate land-cover classification. Another, in the context of
having consecutive observations over time, would be change
or anomaly detection where cloud removal methods may be
beneficial particularly for the purpose of early stage detection,
which could, otherwise, be delayed in the presence of clouds.
A limitation of our proposed cloud removal model is its
restriction to work on a subset of the optical observation’s
spectral bands. While this constraint is required due to the
choice of the network architecture as necessitated by our
experiments conducted, we are certain that it will be beneficial
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for future research to consider the full spectral information.
To allow for this, our curated global data set is released with
all available information for both modalities, including the full
spectrum of bands for the optical observations.!

V. CONCLUSION

We demonstrated the declouding of optical imagery by
fusing multisensory data, proposed a novel model, and released
the, to the best of our knowledge, first global data set com-
bining over a 100 000 paired cloudy, cloud-free, and coregis-
tered SAR sample triplets. Statistical analysis of our data set
shows a relatively uniform distribution of cloud coverage, with
clear images occurring just as probable as wide and densely
occluded ones—indicating the need for flexible cloud removal
approaches to potentially handle either case. Our proposed
network explicitly models cloud coverage and, thus, learns
to retain cloud-free information while as well being able to
recover information of areas covered by wide or dense clouds.
We evaluated our model on a globally sampled test set and
measure the goodness of predictions with recently proposed
metrics that capture both prediction quality and coverage of
the target distribution. Moreover, we showed that our model
benefits from supervised learning on paired training data as
provided by our large-scale data set. Finally, we evaluated the
goodness of synthetically generated data of cloudy—cloudless
image pairs and show that great performance on synthetic
data may not necessarily translate to equal performance on
real data. Importantly, when testing on real data, the networks
trained on real observations consistently outperform models
trained on synthetic observations, indicating the existence of
properties of the real observations not modeled sufficiently
well by the simulated data. This underlines the need for
a set of real observations numerous enough to train large
models, as provided by the data set released in this work.
In further studies, we will address the fusion of multitemporal
and multisensory data, combining and comparing across both
currently segregated approaches. To support future research
and make contributions comparable, we share our global data
set of paired cloudy, cloud-free, and coregistered SAR imagery
and provide our test data split for benchmarking purposes.

APPENDIX A
CLOUD DETECTION

We present exemplary cloudy optical observations and cloud
maps in Fig. 7. The cloud masks are as predicted by our cloud
detection pipeline detailed in Section II-A. The illustrated
examples show that our proposed method can reliably detect
clouds and provide continuous-valued cloud masks.

APPENDIX B
IMPROVED PRECISION AND RECALL

We provide a definition of improved precision and
recall in line with the definitions in [28]. For further

IThe SEN12MS-CR data set is shared under the CC-BY 4.0 open access
license and available for download provided by the library of the Techni-
cal University of Munich (TUM): https://mediatum.ub.tum.de/1554803. This
article must be cited when the data set is used for research purposes.
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details, the interested reader is referred to the original
publication.

Definition (Improved Precision and Recall [28]): Let
X, ~ P, and X, ~ P, denote paired samples drawn from
the real and generated distributions of cloud-free images,
where P, is the distribution learned by the generator network
whose quality is to be assessed. Each sample is mapped via
an auxiliary pretrained network M? in a high-dimensional
feature space to obtain latent representations ¢, = M (X,) and
¢g = M(Xg) such that the two sets of samples are mapped
into two feature sets @, and ®,. A distribution P € {P;, Py}
is approximated by computing pairwise distances between
feature embeddings of the observed samples ® € {D,, g}
and, centered at each feature ¢ € @, forming a hypersphere
with a radius corresponding to the distance to its kth nearest
neighbor embedding Nk (¢). Hence, whether an embedded
sample ¢ falls on manifold @ or not is given via

L if 3¢ € ®: ¢ — @'l < ll¢" — Ni(¢)l2

0, else.

f(g,®) =

The fraction of samples that fall on the paired distribution’s
manifold are then defined in [28] as

- 1
precision(®,, ®g) = — Z f(¢g, @)
| D
Pg ey
1
recall(®,, Pg) = E Z f(pr, Dg).
" pre®,
We set parameters |®| = 7893 corresponding to the size of

the test split of SEN12MS-CR and k = 10 because every
sample has up to 50% overlap with its neighboring samples.
This setting removes the paired target itself plus its eight
overlapping samples when computing N (¢).

APPENDIX C
CLOUD COVERAGE STATISTICS ON TEST SPLIT

In addition to the cloud coverage statistics on the entire data
set, as reported in Section III-A, Fig. 8 provides the empirically
observed distribution of cloud coverage on the data sets test
split. Even though the histogram of the test split is less smooth
than that of the complete data set due to the test split being
much smaller, both distributions are considerably alike.

APPENDIX D
EXEMPLARY PROBLEMATIC CASES

For the sake of completeness, we discuss cases that we con-
sider challenging for cloud removal approaches, specifically
our method, and present exemplary data and predictions of
such cases in Fig. 9. We consider the following challenges.

1) Changes in landcover, atmosphere, day time acquisition,

or seasonality that may occur between (visible parts of)
the cloudy reference image and the cloud-free target
optical image. While our data set is curated to minimize
such cases by selecting observations that are close in

zHere, VGG16 [39], with features extracted at the second fully connected
layer, as argued for in [42]. Metric evaluation on alternative pretrained
networks has shown to provide virtually identical results [28].
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Fig. 8. Statistics of cloud coverage of test split of SEN12MS-CR. As for
the statistics on the complete data set, an average of circa 50% of occlusion
is observed.

Fig. 9. Exemplary cases posing challenges to our cloud-removal
approach. Rows: S2 data (in RGB), predicted cloud map m, predicted S2
data, and cloud-free (target) S2 data. Columns: three different samples.
Reconstructing optical information obscured by clouds is a hard problem.
Among the challenges faced by cloud removal approaches may be: 1) overtime
changes in landcover, atmosphere, day time acquisition, or seasonality;
2) precise detection of clouds with few misses and false alarms; and 3) correct
reconstruction of information fully covered by large and dense clouds.

time, strict ground-truth correspondence is challenging
to establish and may only be guaranteed by simulating
synthetic data as in experiment III-B4.

2) Precise detection of clouds and accurate cloud masks
that minimizes false alarms and misses. With respect to
our cloud detection algorithm, there exist cloud masks

where, even for completely cloud-free images, pixels
are assigned a nonzero (albeit rather low) probability
of being cloudy.

Correct reconstruction of cloud-covered information.
In particular, for the case of complete coverage by large
and dense clouds, this is a very challenging problem.
We observed the cases where the information recon-
structed by our model did not match the target images;
for instance, urban-like landcover was predicted in place
of agricultural areas.

(98]
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