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Abstract: Recently, time-series from optical satellite data have been frequently used in object-based
land-cover classification. This poses a significant challenge to object-based image analysis (OBIA)
owing to the presence of complex spatio-temporal information in the time-series data. This study
evaluates object-based land-cover classification in the northern suburbs of Munich using time-series
from optical Sentinel data. Using a random forest classifier as the backbone, experiments were designed
to analyze the impact of the segmentation scale, features (including spectral and temporal features),
categories, frequency, and acquisition timing of optical satellite images. Based on our analyses,
the following findings are reported: (1) Optical Sentinel images acquired over four seasons can make
a significant contribution to the classification of agricultural areas, even though this contribution
varies between spectral bands for the same period. (2) The use of time-series data alleviates the
issue of identifying the “optimal” segmentation scale. The finding of this study can provide a
more comprehensive understanding of the effects of classification uncertainty on object-based dense
multi-temporal image classification.
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1. Introduction

There has been a progressive increase in the availability of open-source remote-sensing data
(e.g., Landsat and Sentinel imagery). This allows the application of satellite image time-series (SITS)
data in remote sensing-based land-cover classification [1–6]. Two common paradigms are used
to exploit time-series information according to different input data types. For the first paradigm,
the spectral features of multi-temporal images or features derived from them are used as inputs to a
conventional supervised classification procedure [7–11]; these conventional classification procedures
include support vector machines (SVM) [8] and random forests (RF) [9]. For the second paradigm,
semantic features based on phenological information are directly utilized for classification [12–14];
a common method used for this purpose is dynamic time warping (DTW) [13,14].

Belgiu et al. [12] compared the performance of both time-series classification paradigms using the
DTW method and an RF classifier. They confirmed that the DTW framework, representative of the
first paradigm as it only uses enhanced normalized difference vegetation index (NDVI) time-series,
is not superior to the RF framework, which is representative of the second paradigm as it uses all
of the features of individual spectral bands. Coincidentally, Pelletier et al. [15] recently claimed that
RF may be the best method for remote sensing time-series image classification, i.e., better than the

Remote Sens. 2020, 12, 3798; doi:10.3390/rs12223798 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-5530-3613
http://www.mdpi.com/2072-4292/12/22/3798?type=check_update&version=1
http://dx.doi.org/10.3390/rs12223798
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 3798 2 of 17

more popular DTW framework. Hence, in this study, the RF classifier was selected for an uncertainty
analysis of object-based classification using SITS.

For object-based image analysis (OBIA), numerous studies have explored techniques to effectively
analyze SITS data [7,16,17]. However, these studies are limited owing to numerous classification
uncertainty problems, which exist due to irregular objects caused by segmentation [18]. These problems
include the selection of the segmentation scale, sampling strategy, features, classifiers, and accuracy
assessment method [19]. Previous studies have already evaluated most of these problems using
high-resolution image analysis [20–24] while some have been alleviated through a combination
of advanced classification methods and OBIA [25–27]. With the availability of time-series data,
the selection of temporal data leads to more uncertainty problems. A typical problem is the interaction
between the volume of time-series data and the OBIA uncertainty factors that affect the classification.
Several previous studies involved the use of uncertainty analysis of these some factors. For example,
Stromann et al. [28] evaluated the impact of feature dimensionality and the training set size for Sentinel
time-series data, whereas Löw et al. [8] focused on the uncertainty in the number of images used in
the framework of multi-temporal object-based classification. Although these studies have obtained
some insights on object-based satellite image time-series (OB-SITS), no studies have considered the
uncertainty associated with segmentation scales as a key step in OB-SITS so far. Therefore, a systematic
uncertainty analysis of OB-SITS is urgently required.

The study presented in this paper aims to explore the uncertainty caused by integrating OBIA
with SITS data. Experiments were designed to provide a more comprehensive understanding of
the dependence of classification uncertainty in object-based time-series image classification on the
segmentation scale, features, categories, frequency, and acquisition timing of optical satellite images.
First, multi-resolution segmentation was used to generate irregular objects. Second, manual
interpretation, combined with auxiliary reference data, was applied to Sentinel 2 imagery to collect
samples for classification and feature selection. Third, RF classifiers were adopted to obtain classification
accuracy records on different conditions, e.g., a combination of different features, segmentation scales,
and image numbers. Based on these analyses, our findings can provide insights into the application of
SITS data in OBIA.

2. Study Area and Dataset

This study used the suburbs to the north of Munich, Germany, as the study area (Figure 1).
The first experimental site (Study Area 1) is far from the urban area of Munich, covering an area
of approximately 53,731 ha, which mainly includes (coniferous) forests, grasslands, maize fields,
cereal fields, and artificial land. Thus, this area is sufficiently representative of agricultural areas.
The second site (Study Area 2) is located closer to the actual urban extent of Munich and covers an
area of ~21,726 ha. The primary land-cover types are (mixed and broad-leaved) forests, water bodies,
maize fields, cereal fields, and artificial land. Study Area 2 can be used to examine the mapping of
suburban areas.

The optical Sentinel images (Level-2A) were downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/dhus/#/home). We selected temporal images with <20% cloud coverage
according to the metadata, acquired between January and December 2018, yielding a total of 39 images.
Subsequently, Study Areas 1 and 2 were extracted by clipping. Cloud-free images for these areas were
selected for subsequent classification analysis to explore how the time-series images impact the OBIA.
Thus, stacks of 20 and 22 images were obtained for Study Areas 1 and 2, respectively (see Table A1 in
Appendix A). Given that images with high spatial resolution are preferred in OBIA [19], only the 10 m
resolution bands (R, G, B, and near-infrared (NIR)) of the optical Sentinel images were employed in
this study.

https://scihub.copernicus.eu/dhus/#/home
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of 39 images. Subsequently, Study Areas 1 and 2 were extracted by clipping. Cloud-free images for 
these areas were selected for subsequent classification analysis to explore how the time-series images 
impact the OBIA. Thus, stacks of 20 and 22 images were obtained for Study Areas 1 and 2, 
respectively (see Table A1 in Appendix A). Given that images with high spatial resolution are 
preferred in OBIA [19], only the 10 m resolution bands (R, G, B, and near-infrared (NIR)) of the optical 
Sentinel images were employed in this study. 

3. Methods 

Figure 2 presents the main steps employed to assess the uncertainty caused by integrating OBIA 
with SITS data. After preparing the data (e.g., clipping and stacking) as mentioned above, the input 
data that satisfied the conditions for both areas were generated. Then, a sampling process was 
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Figure 1. Study area. (a) Map of Germany; (b) images of Study Area 1; and (c) images of Study Area 2.

3. Methods

Figure 2 presents the main steps employed to assess the uncertainty caused by integrating OBIA
with SITS data. After preparing the data (e.g., clipping and stacking) as mentioned above, the input
data that satisfied the conditions for both areas were generated. Then, a sampling process was
conducted to generate the reference layer for labeling the segmented objects. Segmentation based
on the multi-temporal images was then performed to delimit the outlines of homogeneous areas
for classification. Feature selection, as an optional process, was carried out before RF classification.
We note that it is possible to repeat the classification process by randomly separating the labeled objects
to obtain enough classification accuracy records and serve various uncertainty analysis evaluations.
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Figure 2. The object-based satellite image time-series (OB-SITS) workflow. (a) The optical Sentinel
images are first processed to create stacked input data. Based on the input data, (b) the sampling units
are then extracted and (c) multi resolution segmentation is used to generate the segmentation objects.
(d) The labelled objects are determined by the sampling units. (f) A random forest classifier is employed
to classify the un-labelled objects. (e) Before classification, feature selection is an optional step to filter
out redundant features. (g) The metrics of the overall and user’s accuracy are used to analyze the
classification uncertainty.

3.1. Segmentation of Multi-Temporal Images

Multi-resolution segmentation is used [29] to partition the images into homogeneous objects.
This step is realized using the eCognition 9.0 commercial software. For segmentation, the red, green,
blue, and near-infrared spectral bands for six images from Study Area 1 and seven images from Study
Area 2 (Figure 3) were used because a large number of images yield complex segmentation. Images for
an entire calendar year (corresponding to the solid triangles in Figure 3) were used for segmentation
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to account for the characteristics of crop phenology, resulting in stacks of 24 and 28 layers for Study
Areas 1 and 2, respectively. Here, the general parameter setting suggestions for multi-resolution
segmentation were followed to ensure that the spectral information had the most important role during
segmentation [18]; the color/shape parameters were set to 0.9/0.1 and the smoothness/compactness
ratio was set to 0.5/0.5. The size of the segmented objects was controlled by the scale parameter
(homogeneity threshold). Subsequently, different segmented layers were generated from scale 40 to
150 at increments of 10 to analyze the impact of scales on the accuracy of multi-temporal object-based
classification; this has rarely been addressed in previous studies. Then, the segmentation results
with feature information for each scale were exported for classification using Visual Studio 2010 and
ArcEngine 10.0.
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Figure 3. Images used for segmentation (solid triangles) and classification (all) for Areas 1 (a) and 2 (b).
DOY = day of year.

3.2. Training and Validation of Data Collection

To obtain sample objects for classification, polygon-shaped sampling units were generated
and labeled. For this step, visual interpretation keys were used based on expert knowledge and crop
phenology information from the European Land Use and Coverage Area Frame Survey (LUCAS) and
the CORINE Land-Cover (CLC) data updated in 2018. Subsequently, these reference polygons
were obtained manually; Table 1 lists the total sample area of each class for both study sites.
Then, the segmented objects at each segmentation scale were labeled according to the 50% overlap rule
with these reference polygons [30]. Subsequently, 30% of the labeled objects were selected as training
samples using the stratified random sampling strategy [18], whereas all of the labeled objects were
used for validation.

When utilizing CLC and LUCAS data for interpretation to obtain a reference layer, if the definitions
of the CLC classes differ from those of the LUCAS classes, the latter were adopted. However, as barley
(class B13), common wheat (class B11), and oats (class B15) have similar growth cycles and there were
limited samples of barley and oat classes in the LUCAS dataset for the experimental sites, they were all
recognized as cereals in this study. Table 1 lists the detailed definition principles, which also provides
the relationship between the classes defined in this study and those of the CLC and LUCAS systems.



Remote Sens. 2020, 12, 3798 6 of 17

Table 1. Redefining classes combining CORINE Land-Cover (CLC) and European Land Use and Coverage Area Frame Survey (LUCAS), with the total sample area of
each class for both study sites.

Defined Class CLC Description LUCAS Description Study Area 1 (ha) Study Area 2 (ha)

Maize—11

211-Non-irrigated arable land

B16-Maize 1.1728 501.3447

Rapeseed—12 B32-Rape and turnip rape 0.6796 -

Cereals—13 B11-Common wheat B13-Barley
B15-Oats 1.1603 290.0912

Forest—2 312-Coniferous forest
313-Mixed forest311-Broadleaved forest

C21-Coniferous woodland
C31, C32-Mixed woodland

C10-Broadleaved woodland
17.2707 762.3008

Artificial land—3
111-Continuous urban fabric

112-Discontinuous urban fabric
121-Industrial or commercial units

A22-Artificial non-built up areas
A11, A12-Roofed built-up areas 6.1375 738.8659

Grassland—4 231-Pastures E20-Grassland without tree/shrub cover
E10-Grassland with sparse tree/shrub cover 2.4517 236.0831

Water areas—5 512-Water bodies G10-Inland water bodies 0.2653 726.3547
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3.3. Classification Using Random Forest

Since its proposal by Breiman [31], the RF classification algorithm has been proven to outperform
other supervised algorithms in extracting information from remote-sensing images [32,33]. As its
name suggests, the algorithm randomly constructs a forest consisting of many interdependent
decision trees. After the forest is constructed using training samples, if new samples must be classified,
all decision trees are employed to make separate decisions. These decisions are taken as votes and the
sample is classified into the class with the highest number of votes. Based on previous studies [32],
in this study, the RF model used 479 trees and one randomly split variable; the ‘randomForest’ R
package was integrated into the Visual Studio platform to implement classification for all of the images
from both study areas.

3.4. Filtering Feature Subset and Temporal Characteristics Analysis

To obtain feature patterns in a season, the frequency of features selected were evaluated for
different periods. This differs from the approach of evaluating an individual feature using the feature
importance index. Therefore, correlation-based feature selection (CFS) [34] was used to calculate the
frequency of the selected features. The CFS assesses the worth of a set of features using a heuristic
evaluation function based on the correlation of features, and has been proven to be suitable for
object-based classification in our previous study [24].

For feature evaluation and classification, the 20 images from Study Area 1 and 22 images from
Study Area 2 were used. In this experiment, the inputs of the features for feature evaluation were
derived from the red, green, blue, and near-infrared spectral bands of 10-m-resolution Sentinel data,
resulting in stacks of 80 and 88 features for Study Areas 1 and 2, respectively. CFS was applied to
these features repeatedly, maintaining a constant segmentation scale. This enabled the identification
of the most used features in a certain period to determine the feature pattern in multi-temporal
object-based classification.

3.5. Accuracy Evaluation and Statistical Tests

In this study, multi-temporal object-based classification was evaluated in terms of the overall
accuracy (OA) and user’s accuracy (UA) metrics. These metrics were calculated using the
area-based accuracy evaluation framework [35]. The OA was used to analyze the uncertainty
of the segmentation scale, the number of images used, and the feature pattern. UA was employed
to analyze the class-specific classification uncertainty influenced by the number of images used and
the image scale. In addition, Welch’s t-test was conducted to compare the results obtained with and
without feature selection.

4. Results

4.1. Influence of Multi-Temporal Images and Segmentation Scale on Overall Accuracy (OA)

First, the relationship between the image number/segmentation scale and OA was assessed.
This was completed by classifying the samples from both study areas at various scales and incrementally
increasing the number of input images. For this purpose, new images were added consecutively based
on their DOY attribute. The contours in Figure 4a,b show the change pattern of the OA with regard to
the segmentation scale and number of images used for both areas. From Figure 4, the influence of the
number of images used on classification accuracy is much stronger than that of the segmentation scale,
such that the accuracy increases steadily with the number of images used (Figure 4a,b). When the
maximum number, i.e., 20, of images are used, up to 80 features are utilized. However, the RF
classifier can still effectively use the multi-temporal spectral information and the results do not exhibit
a significant Hughes phenomenon (Hughes phenomenon states that excessive features may lead to a
negative impact on the classification accuracy) [36]. This may be attributed to the fact that images can
contribute to the classification performance regardless of their specific acquisition time because of the
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different growth stages of crops [37]. We note that the results of this study are not consistent with those
presented by Stromann et al. [28] because they argue that dimensionality reduction should be a key
step in land-cover classification using SVM; however, this discrepancy can be attributed to the usage of
the sensitive SVM.
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To analyze the classification stability with changes in the segmentation scale, the mean value
and mean square error of the classification accuracies of different segmentation scales (from scale
40 to 150, with an increment of 10) were calculated with a changing number of images. Figure 5
shows the results in the form of error bars, which indicates that the classification results at different
scales differ more significantly when fewer images are included. In contrast, when more images are
used during classification, scale variations have less of an influence on the classification accuracy
(see Figure 5). Hence, we suggest that the use of multi-temporal data significantly alleviates the
problem of identifying the “optimal” segmentation scale. This result is important because it means
that selection of scales is less important in OB-SITS mapping, which until now, has been a particularly
difficult task in OBIA [18,19]. Furthermore, owing to this novel finding, the integration of OBIA and
time-series analysis becomes more feasible.
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Figure 5. The mean value of the OAs with different segmentation scales for specific images in Area
1 (circles) and Area 2 (triangles). Error bars indicate the mean square error for a certain number of
images used.

4.2. Effect of Multi-Temporal Images on Category Accuracy

Here, the UA index was used to evaluate the class-specific classification uncertainty. According to
the previous analysis of the OA, the segmentation scales have less influence on accuracy than the
number of images used. Therefore, this section examines the effects of the number of images used
on the classification accuracy for different classes. For this purpose, bar charts were plotted to show
the classification accuracy for different classes with different numbers of images. The results show
that the accuracies of seasonal crops (maize, cereals, and rapeseed) generally increased when using an
increasing number of input images (see Figures 6 and 7).
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Figure 6. The user’s accuracy (UA) of each class with an increasing number of images used at different
segmentation scales for Study Area 1. (a) Scale 50, (b) scale 100, and (c) scale 150. The colored bars
from left to right represent the number of images from 1 to 20.
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segmentation scales for Study Area 2. (a) Scale 50, (b) scale 100, and (c) scale 150. The colored bars
from left to right represent the number of images from 1 to 22.
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Figures 6 and 7 also show that the classification quality for winter or summer crops is significantly
affected by the time of data retrieval. For both areas, we observed that the potential to classify
summer crops (maize) increased from spring to summer and stabilized toward late summer to autumn.
For both winter crops (rapeseed and cereals), the input of winter images was necessary to improve the
performance, especially in the case of rapeseed. The rapeseed classification performance decreased
with the input of summer images; this effect was most notable when the segmentation scale was large.
However, the use of all images in the same year improved the classification performance of rapeseed
(see Figure 6). In contrast, the classification accuracy for forests, grasslands, and artificial lands
remained almost unchanged even if more images were used. This can be attributed to their spectral
information being relatively stable throughout the year because the forest area in Study Area 1 is almost
completely covered by coniferous forest. Despite this, we observed improvements in the accuracy
for artificial lands and forests in Study Area 2 when more images were included as input (Figure 7).
This is likely because this study area is closer to the urban area of Munich. Urban areas in Study Area
2 are more complicated due to the presence of various types of vegetation; a significant proportion
of the forest areas in Study Area 2 comprise mixed and broad-leaved forests. This is the reason why
Mendili et al. [38] adopted optical Sentinel time-series data in urban mapping; they suggested that the
vegetation in an urban area affects the mapping of that area.

Based on the above analysis, we can conclude that the effect of the time of data retrieval on
the classification quality can be explained with respect to the development stages of winter and
summer crops. Furthermore, the recommendations for feature selection in the frame of crop mapping
proposed by Veloso et al. [37] are acceptable. However, a decreasing trend was not observed in the
classification accuracy for a single class when all images were used as input. Instead, a notable increase
was observed in the classification accuracy of seasonal crops. Therefore, we recommend the use of
as many Sentinel-2 images as possible within the year of interest to ensure an optimal classification
performance, especially when the optical data in the time-series are not numerous (approximately
20 timestamps). Furthermore, excluding images from certain periods is not advised.

4.3. Effect of Segmentation Scale on Category Accuracy

To analyze the change pattern of the classification of a specific class, error bars with the mean
value and mean square error were plotted to show the change in the UA for different classes when
the number of images used was different (Figures 8 and 9). As mentioned in the previous section,
Figures 8 and 9 show that the accuracies of seasonal crops (e.g., maize and cereals) benefit more from
an increasing number of input images. More importantly, as revealed by the error bars, when more
images are used, there is a reduction in the fluctuation of the accuracy of seasonal crops caused
by segmentation scale variations (Figures 8 and 9). This phenomenon was observed in the overall
classification accuracy (Figure 5).

The findings of this study are slightly different from those reported by Löw et al. [8]. According to
Löw et al. [8], constantly accurate classification can be achieved using, in general, five images.
They stated that dense Sentinel or Landsat data exhibit no advantages in time-series classification.
However, this study demonstrates that using more images enhances the classification accuracy due to
the contribution of additional images to seasonal crop recognition. Thus, we recommend that image
selection should not be applied in multi-temporal object-based classification.
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4.4. Feature Selection Response

The classification was repeated 10 times with CFS for each segmentation scale and the frequency
of the feature selected was calculated. In this section, for conciseness, only the experimental results
for Study Area 1 are shown. In Figure 10, the size of the dot indicates the selected frequency of a
specific band (y-axis) and date (x-axis) in the classification models. Only the 10 m resolution bands
were evaluated. When only the acquisition time is considered, images taken in all seasons can be
used with an equal frequency, except for images taken during the spring–summer transition in June.
In contrast, based on comparisons of the frequencies at which different bands are selected, for the
winter season, we observe that bands 3 and 4 are often not chosen in winter while bands 1 and 2
contribute more. This is likely because different bands respond to crops differently. For example,
band 4 (NIR) is relatively sensitive to vegetation. However, vegetation coverage is less in winter;
hence, the NIR band cannot contribute significantly to analyses during this period. In summary,
Sentinel images acquired over all four seasons yield significant contributions to the classification of
agricultural areas. Hence, images taken during a certain period of time must not be excluded without
careful inspection and consideration. Moreover, we do not recommend filtering imported data based
on a timeline, which has been conducted in most previous object-based multi-temporal classification
studies (e.g., Vieira et al. [39]).Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 18 
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In addition, the classification was repeated 10 times for each scale with or without feature selection,
followed by Welch’s t-test to compare their performance. From Table 2, all of the p-values are more than
the significance level of alpha = 0.05, except at scale 50. Therefore, for almost all segmentation scales,
we can conclude that the mean value of the classification accuracies with feature selection is not
significantly different from that with all features. Hence, according to the experimental results,
feature selection is not required when RF classifiers are used. This is possible because RF classifiers
themselves can overcome the limitations of dimensionality more satisfactorily than other classifiers [20].

Table 2. Differences between classification accuracies with or without feature selection based on Welch’s
t-test.

Scale 50 60 70 80 90 100 110 120 130 140 150

p value 0.012 0.393 0.449 0.158 0.870 0.263 0.454 0.211 0.672 0.175 0.679

5. Conclusions

In this study, object-based land-cover classification using RF was applied to time-series optical
Sentinel data. A systematic evaluation was conducted to understand classification uncertainty in
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object-based dense multi-temporal image classification, including the impact of the segmentation scale,
spectral features, categories, frequency, and acquisition timing of optical satellite images. Subsequently,
several important findings were obtained regarding the input of time-series data and the optimization
of the segmentation scale.

The use of multi-temporal data significantly alleviates the problem associated with identifying
an “optimal” segmentation scale. This finding is important because this makes the selection of scales,
which was a challenge in OBIA, less important in OB-SITS mapping. As a result, the integration
of OBIA and time-series analysis becomes more feasible. The findings of this study provide a
scientific basis for the future application of Sentinel time-series data in conventional object-based
supervised land-cover classification. We recommend the use of as many images as possible to enhance
classification performance. Feature selection is an optional process when only limited Sentinel 2 images
(e.g., approximately 20 timestamps) are used with RF as the classifier.
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Appendix A

Table A1. Sentinel 2 image scenes and the corresponding date selected by sub-areas.

Selected by Area 1 Selected by Area 2 File Name of Sentinel 2 Image Scenes

2 April 2018 2 April 2018 S2A_MSIL2A_20180402T102021_N0207_R065_T32UPU_20180402T155007

7 April 2018 7 April 2018 S2B_MSIL2A_20180407T102019_N0207_R065_T32UPU_20180407T143030

19 April 2018 19 April 2018 S2A_MSIL2A_20180419T101031_N0207_R022_T32UPU_20180419T111252

22 April 2018 22 April 2018 S2A_MSIL2A_20180422T102031_N0207_R065_T32UPU_20180422T141352

27 April 2018 27 April 2018 S2B_MSIL2A_20180427T102019_N0207_R065_T32UPU_20180427T123359

7 May 2018 7 May 2018 S2B_MSIL2A_20180507T102019_N0207_R065_T32UPU_20180507T125310

1 July 2018 1 July 2018 S2A_MSIL2A_20180701T102021_N0208_R065_T32UPU_20180701T141038

31 July 2018 31 July 2018 S2A_MSIL2A_20180731T102021_N0208_R065_T32UPU_20180731T133841

2 August 2018 2 August 2018 S2B_MSIL2A_20180802T101019_N0208_R022_T32UPU_20180926T110335

12 August 2018 12 August 2018 S2B_MSIL2A_20180812T101019_N0208_R022_T32UPU_20180812T153601

17 August 2018 17 August 2018 S2A_MSIL2A_20180817T101021_N0208_R022_T32UPU_20180817T150139

20 August 2018 - S2A_MSIL2A_20180820T102021_N0208_R065_T32UPU_20180820T161429

22 August 2018 22 August 2018 S2B_MSIL2A_20180822T101019_N0208_R022_T32UPU_20180822T161243

- 27 August 2018 S2A_MSIL2A_20180827T101021_N0208_R022_T32UPU_20180827T152355

16 September 2018 16 September 2018 S2A_MSIL2A_20180916T101021_N0208_R022_T32UPU_20180916T132415

4 October 2018 - S2B_MSIL2A_20181004T102019_N0208_R065_T32UPU_20181004T151558

11 October 2018 11 October 2018 S2B_MSIL2A_20181011T101019_N0209_R022_T32UPU_20181011T131546

14 October 2018 14 October 2018 S2B_MSIL2A_20181014T102019_N0209_R065_T32UPU_20181014T165307

16 October 2018 16 October 2018 S2A_MSIL2A_20181016T101021_N0209_R022_T32UPU_20181016T131706

- 21 October 2018 S2B_MSIL2A_20181021T101039_N0209_R022_T32UPU_20181021T151822

18 November 2018 18 November 2018 S2A_MSIL2A_20181118T102311_N0210_R065_T32UPU_20181118T120023

- 20 November 2018 S2B_MSIL2A_20181120T101319_N0210_R022_T32UPU_20181120T151547

- 18 December 2018 S2A_MSIL2A_20181218T102431_N0211_R065_T32UPU_20181218T115057

28 December 2018 28 December 2018 S2A_MSIL2A_20181228T102431_N0211_R065_T32UPU_20181228T114836
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