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Abstract— Continuous spatial knowledge is required to control
the regional ozone pollution. Measurements from ground-level
sites are beneficial to this goal, but their number is limited
due to the huge expenses of site establishment, operation, and
maintenance. Remote sensing seems a promising data source, but
its application is challenged by bad weather conditions. Always
covered by thick clouds, Chongqing, a populated industrial city
in west China, is facing serious ozone pollution, but relevant
studies here are relatively insufficient. Another alternative is
estimating ozone by models. Well-performed models degrade in
Chongqing partially due to the very complex terrain. Modeled
hourly ozone does not agree with ground-level measurements.
Therefore, an optimization approach is proposed to improve
model estimates for such regions. This approach integrates the
ground-level information (e.g., measured ozone and meteorology)
through the employment of ResNet (Residual Network). ResNet
overcomes the notorious vanishing gradient issue in classic neural
networks, and the ability of learning complex systems is largely
boosted. Ozone distribution is like a gray image that varies
every second, which is not the case usually learned by ResNet.
A color-image alike data structure is raised to address this
“nonstill image” problem; according to the Taylor Expansion,
polynomials can describe a complex system, and the errors are
acceptable. To facilitate the usage in business operations, this
approach is designed to be robust, inexpensive, and easy to use.
The scheme of control site selection is discussed in detail. In cross-
validations, this approach performs well, averaged R% s higher
than 0.9 and the error is less than 5 pg/m>.
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I. INTRODUCTION

CREASING levels of surface ozone have been threatening

the globe since the 1970s. The precursor of tropospheric
ozone, NO;, mainly comes from vehicle and industry emis-
sions. China has undergone rapid urbanization, hence its ozone
pollution has become a region problem [1], [2]. In recent years,
less-developed mountainous west China is speedily catching
up its coastal east counterpart in various aspects, but surface
ozone studies about the west cities are still insufficient.

Chongqing, situated in southwest China, is a populated
industrialized municipality, and it is confronted with severe
ozone-related issues. As a mountain city, its extremely undu-
lating terrain influences the dispersion of ozone. About
one-third days per year are foggy; Chongqing is also known
as the “Fog City,” and it is always covered by thick clouds [3].
The harsh weather conditions furthermore complicate the
studies in Chongqing.

Continuous fine-resolution records are important to reduce
ozone pollution, but the mainstream data sources show obvious
defects in Chongqing. Ground-level sites provide accurate
measurements, but it is impractical to deploy many long-term
stable operation sites to cover a large region. In terms of cover-
age, satellite remote sensing provides low-cost ozone observa-
tion on a large scale. It seems promising, but the application
of remote sensing in Chongqing is greatly restricted by the
bad weather. By computer simulation, the chemical transport
models (CTMs) can offer regional hourly ozone concentra-
tions. The modeled ozone is estimated from emissions sources
(e.g., inventories), meteorological fields, photochemical equa-
tions, and so on.

Representatives of the CTMs include Goddard Earth
Observing System—Chemistry (GEOS-Chem), Model for
OZone and Related chemical Tracers (MOZART), and
Community Multiscale Air Quality Modeling System (CMAQ)
[4]-[6]. Overall, these models have been globally validated
in key regions, whereas the localized CMAQ is also widely
adopted in China. In addition, models originated from
China, like the nested air quality prediction modeling system
(NAQ-PMS), exhibit high precision in middle and eastern
China [7].
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Fig. 1. Locations of the CNEMC (red stars) for ozone measurements and
CMA (black pushpins) meteorology sites. The base-map depicts Chongging’s
terrain. Only ozone data available CNEMC sites are used.
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Fig. 2. Averaged daily O3 timeseries in Chongqging in the time range used
in this study. The discrepancy between ground measurements (green) and
NAQ-PMS (blue) at 500 m is very large. Unit of modeled ozone is converted
to i g/m3.

The reality is not very optimistic. Despite many advan-
tages, models face great challenges in Chongqing. First, it is
harder to quantify the atmospheric processes of ozone here.
Also, defining the “surface” is difficult in models, due to
Chongqing’s extremely uneven terrain. Fig. 1 demonstrates
the terrain of urban Chongqing and locations of ground-level
sites. The altitude here varies from lower 200 m to higher
than 800, whereas the layers’ altitudes in NAQ-PMS are
fixed. Fig. 2 shows the comparison between Chongqing’s daily
NAQ-PMS ozone simulations and site-based measurements.
The modeled ozone shown in the figure is at 500 m, which
is the lowest layer in NAQ-PMS. The correlation coefficient
between simulations and measurements is lower than 0.5.
Apparently, the performance of the model in Chongqing is
not very satisfactory, although NAQ-PMS is one of the most
excellent models for China.

To optimize the modeled ozone, this work proposes an
approach by introducing measured ground-level information
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Fig. 3. Flowchart of the approach from data collection to application.
The core steps include data preparation, unification, network training, and
validation.

learned by a neural network. The problem here is that neural
networks usually recognize the still objects in satellite images,
but ozone distribution varies constantly [8]-[13]. The ResNets
(Residual Networks) overcome the vanishing gradient problem
in classic deep neural networks, so that they can process more
complex tasks [15]. Besides, a new data structure is also
created to help address this problem.

II. APPROACH FRAMEWORK

Fig. 3 gives the workflow for the proposed approach
(referred to as the approach hereafter). The framework of the
approach comprises of four major parts: 1) data unification
including spatial interpolation and resampling; 2) control site
selection; 3) 3-D structural data set construction; and 4) neural
network training and evaluation.

A. Data Unification

The study area is urban Chongqing where enough sites for
validation exist. NAQ-PMS has 12 altitude layers, and the
lowest one (500 m) is used. This area contains 12 China
National Environmental Monitoring Centre (CNEMC) sites
providing hourly ground-level ozone measurements, which
can be used as control sites or validation sites. There are
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four China Meteorological Administration (CMA) sites
offering hourly measured meteorological parameters. Here,
the used parameters are instantaneous wind speed, wind direc-
tion, precipitation per hour, temperature, relative humidity,
pressure, and visibility. All data used are from January 1, 2018,
to April 10, 2019, covering more than one year, because ozone
shows explicit seasonal patterns [14].

Preprocessing before feeding data to the neural network
includes data cleaning, resampling, and interpolation. Original
meteorology records have many invalid readings, and all
these readings are removed or replaced. A bilinear resampling
is carried out because the spatial resolutions of different
NAQ-PMS versions are not consistent (~0.15° and ~0.25°).
NAQ-PMS and CMA data at the geolocations of CNEMC
sites are obtained by interpolation, thereby 12 data groups are
generated. Each group is a time series of hourly records. Each
hourly record comprises meteorological parameters, modeled
and measured ozone at that time.

B. Control Points Selection

The concept of the control site is inspired by the satellite
image geometric correction. Briefly speaking, the control sites
are CNEMC sites used to improve the modeled ozone. Other
sites are called as validation sites. The number and position
of control sites are crucial to the balance of the approach’s
performance and practicality.

In terms of performance, too few control sites will result
in low accuracy. Values outside the envelope of control sites
are derived from extrapolation, which is less controllable and
reliable than interpolation. For the ozone regulation depart-
ments, too many control sites will increase the burden of the
practical running. In this study, four sites are used as control
sites. Control sites are not supposed to be too close or too far
from each other. In addition, ozone concentration is related to
terrain, and site elevation should be considered in the selection
as well.

In the experiment, the optimal selection marked as
“scenario 1” and other three typical selections (scenarios 2 to
4) are given. Due to the experiment sufficiency concerns,
ten more supplementary experiments are also carried out.
Scenario 1 uses four control sites to cover a large region
as possible. Site 1414A is hundreds of meters higher than
other sites, and it is treated as a control site in scenario 1.
In scenario 2, site 1414A is replaced by a lower nearby site
to assess the impact of elevation. Sites in the area center
are selected as control sites in scenario 3 to test whether the
approach is very biased by extrapolation. Regarding the influ-
ence of distance, sites located on the south edge are selected as
control sites in scenario 4. Southern sites are the farthest from
1414A, thus results can be compared with scenarios 2 and 3.
Failure modes are examined in the supplementary experiments
by changing the selection of control sites more strictly.

C. Data Structure Design and Modeling

ResNet is a compelling groundbreaker in deep neural
networks. Classic back-propagation networks can represent
nonlinear functions, but their simple architectures suffer from
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Fig. 4. Results of the approach validation at the scale of the whole study
region in the optimal scenario (i.e., scenario 1). Scatter plot of ResNet
prediction (X-axis) and ground CNEMC measured ozone (Y-axis) from the
test sets is presented. Linear regression, R2, p value, and standard deviation
are given as well. Measured ozone in the test sets are not involved in ResNet
training at all, which is used for validation only.

the overfitting problem. Deeper architecture can address this
problem, but attempts by stacking layers failed due to the
notorious vanishing gradient problem. In deep networks,
the gradient approaches infinitely small (i.e., vanishing) by
repeated multiplication in back-propagation. The philosophy
of ResNet is “discarding” some information [15]. In terms of
implementation, stacked layers fit a residual mapping, with the
support of “identity shortcut connection” which skips some
layers. ResNet features a greatly enhanced performance in
image recognition, therefore an 18-layer ResNet (ResNet-18)
is employed here. It is possible to train up to hundreds of
layers with ResNet but the trade-off is huge time-consumption
and much better hardware. It is not very friendly to depart-
ments with limited budgets, and ResNet-18 shows satisfactory
capability.

A “fake colorful image” alike data structure is proposed
to take ResNet’s advantage of learning structural and spectral
information. As argued in literature, a complicated system
(e.g., atmosphere) can be approximated by polynomials
through the Taylor Expansion, and the uncertainty is a
high-order infinitesimal [16]. Accordingly, a three-order
Taylor Expansion is applied to every record of validation
sites at each timestamp. The coordinates of sites are known,
and a record of the validation site consists of four control
sites’ information (network inputs) and measured ozone at
this validation site (ground-truth). As usual, data sets are
randomly split into train-sets and test-sets, and test-sets are
not involved in network training at all.

III. RESULTS AND DISCUSSION
A. Approach Results for Four Scenarios

Fig. 4 exhibits the comparison between the approach’s
results and measured ground-level ozone. The comparison
given is in scenario 1, and all validation sites are involved
in the evaluation. Apparently, the accuracy of NAQ-PMS
ozone at 500 m is significantly improved. The R? score of
test-sets in Chongqing increases from less than 0.5 to ~0.91
(p value < 0.05).
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TABLE I

STATISTICAL METRICS OF THE APPROACH VALIDATION IN
SCENARIOS 1 AND 2. CONTROL SITES ARE REPRESENTED
BY HYPHENS. PCC: PEARSON CORRELATION COEFFICIENT;
STD.: STANDARD DEVIATION

Code Scenario 1 Scenario 2
PCC R? Std. PCC R? Std.
1414A - - - 0.86 0.74 0.03
1416A 097 094 0.01 - - -
1417A - - - - - -
1418A - - - - - -
1419A 095 0.89 0.02 096 091 0.02
1420A 095 090 0.02 095 090 0.02
1421A° 096 092 0.01 097 094 0.01
1422A° 097 094 0.01 096 093 0.01
1426A 097 093 0.01 097 094 0.01
1427A 096 092 0.01 095 091 0.02
1428A 096 092 0.01 098 096 0.01
1429A - - - - - -
Whole 096 091 0.01 095 091 0.01
TABLE II

STATISTICAL METRICS OF THE APPROACH VALIDATION IN
SCENARIOS 3 AND 4, SEE TABLE I

Code Scenario 3 Scenario 4
PCC R? Std. PCC R? Std.
1414A 085 073 0.03 083 068 0.03
1416A 097 094 0.01 094 088 0.02
1417A 095 0.89 0.02 094 088 0.02
1418A 096 093 0.01 096 091 0.01
1419A - - - - - -
1420A 096 092 0.02 095 090 0.02
1421A 096 092 0.01 - - -
1422A° 095 090 0.02 096 092 0.01
1426A - - - - - -
1427A - - - 094 089 0.02
1428A - - - 095 091 0.02
1429A 096 092 0.01 - - -
Whole 096 091 0.01 096 092 0.01

Evaluations details for all four scenarios are summarized
in Tables I and II. In addition, Fig. 5 gives a more intu-
itive demonstration of how well does the approach per-
forms. It shows the correlation between approach results and
ground-level measurements. Indices to assess the approach
are the Pearson correlation coefficient (PCC) with p values,
R? score, and standard deviation (std). Overall, p values
and standard deviations are small enough for all sites in all
scenarios, e.g., p values are all far less than 0.05. In scenario 1,
the approach shows excellent performance at every validation
site. For almost all validation sites, the R? scores are higher
than 0.9 except at site 1419A. The high correlations indicate
that the approach is feasible in Chongqing.

Scenario 2 is a comparative experiment to explore the
impact attributed by elevation. Only one control site is replaced
compared to scenario 1. Except site 1414A, there is no
obvious discrepancy in the metrics between scenarios 1 and 2.
Interestingly, sites 1414A and 1416A are horizontally close
compared to all other sites, whereas the result at 1414A is the
worst. Evaluation metrics at other farther validation sites are
much better. The huge elevation difference may be prominent
in affecting the approach performance.
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Fig. 5. Regional correlation coefficient distribution of the four scenarios
between measured ozone and ResNet-18 predictions. (a)—(d) Scenarios 1-4,
respectively. Similar to Fig. 4, the predictions are results from the approach,
and data used to demonstrate here are from the test sets only. Below the
correlation distribution is the terrain map. The red stars are the CNEMC
sites, circled ones among them are the control sites, and others are the
validation sites.

It is still uncertain if the issue raised in scenario 2 is caused
by terrain, because in both scenarios, one of sites 1414A and
1416A is used as a control site. Accordingly, scenarios 3 and 4
are used to discuss this issue furthermore. In these cases, both
1414A and 1416A are used as validation sites; hence, a more
reasonable deduction can be derived from a direct comparison.
At the scale of the whole study area, PCC and R? metrics of
scenarios 3 and 4 agree with each other and the two previous
scenarios. The PCC is about 0.95 while the R? is about 0.91.
As suggested in Table II, first, the approach tolerates extrap-
olation to some extent. All control sites in scenario 3 are
situate in the center of the study area, and evaluation metrics
are consistent with scenarios 1 and 2. Meanwhile, distance is
influential. Target sites (i.e., 1414A and 1416A) lie in northern
Chongqing, thus all the control sites are on the south edge. The
approach degrades totally in the middle and northern parts,
especially at the target sites. For example, the R* at 1416A
decreases from 0.94 to 0.88. Apparently, it is the terrain that
accounts for the less good results at site 1414A. Regarding
all four scenarios, NAQ-PMS optimization results at 1414A
degrade with increasing distances, but the variations are not
large. Moreover, the results of site 1417A also agree with
this assumption about elevation. Site 1417A is located in the
mid-east of the study region. Its altitude (about 500 m) is
higher than the average of other sites (about 200 m), although
it’s lower than 1414 A (about 800 m). In scenario 3, despite the
close distance to control sites, the R? of 1417A is a little lower
than other validation sites. Reasonably, its metrics decrease a
bit in scenario 4, and this agrees with our argument.
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TABLE III

STATISTICAL METRICS FOR R%Z SCORES IN CROSS VALIDATION
AT THE SITE LEVEL. THE APPROACH IS TESTED AT EACH
VALIDATION SITE FOR EVERY EXTRA TESTING

be very encouraging. It tolerates extrapolation to some extent,
and the distance between control sites can be as large as 50 km.
Its simple architecture, affordable economical costs, and low
requirements on fancy hardware make this approach feasible

in business operations.

Case Min Max Mean  Std. ’ . o . .
. It is noteworthy that there is also a limitation in this

exc. (S) 0.89 094 0.91 0.02 h. Th d el i diff bet trol
exe.(N) 073 094 089 007 approach. The averaged elevation difference between contro
exc. (W) 0.89 095 092 002 sites and validation sites should be less than 800 m, and
em( ® ggg 83‘2‘ 83; 88§ less than 400 m would be better. In the future, elevation
pos. (NE) "~ 0. . . . . . . . .
pos. (NW) 083 090 088 003 1nf0r.mat10r.1 W.lll be conslldered in the network, because only
pos. (SW) 070 094 089  0.08 12 sites exist in Chongqing now.
pos. (W) 0.85 093 0.89 0.03
pos. (E) 0.68 0.94 0.88 0.09
pos. SE) 071 093 088 0.07 REFERENCES

* Control site in south (S) is excluded (exc.)
from the selection. Initials within
parenthesises represent positions, e.g. N
and NE stand for north and northeast,
respectively.
** All the four control sites are located in
position (pos.) northeast (NE).

B. Performance in Extra Cross Validations

More extreme cases are tested to assess the robustness
of the proposed approach. First, four optimal control sites
are excluded from testing, individually. Subsequently, control
sites are geographically located in different directions.
Contributions from validation sites’ geographical locations and
their properties are estimated in these cross-testings. Table III
provides the statistical estimates among validation sites in
these rigorous cross-testings. Correlation coefficients are all
higher than the corresponding R? scores, and all p values are
smaller than 0.05. Due to the limited letter length, only details
of R? are given here. For all cases, the mean R? scores are
about 0.9, and the standard deviations among sites are smaller
than 0.1. Minimums lower than 0.8 are all observed at site
1414A. Results of the supplementary cross-testing infer that
the approach is reliable in Chongqing, and the selection of
control sites should take the site elevation into consideration.

IV. CONCLUSION

In this study, an optimization approach is proposed to
improve the surface ozone modeling for complex terrain.
Chongqing, facing ozone threats and always covered by
clouds, is an ideal place example to carry out the approach.

One key suggestion of this work is to simplify the
continuously varying ozone and meteorology as “still images”
by Taylor Expansion. Three-order polynomials are used to
express the ozone distribution, and their uncertainties are
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