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Abstract
General matrix-matrix multiplications with double-precision real and complex entries (DGEMM and ZGEMM) in vendor-
supplied BLAS libraries are best optimized for square matrices but often show bad performance for tall & skinny matrices,
which are much taller than wide. NVIDIA’s current CUBLAS implementation delivers only a fraction of the potential
performance as indicated by the roofline model in this case. We describe the challenges and key characteristics of an
implementation that can achieve close to optimal performance. We further evaluate different strategies of parallelization
and thread distribution and devise a flexible, configurable mapping scheme. To ensure flexibility and allow for highly
tailored implementations we use code generation combined with autotuning. For a large range of matrix sizes in the
domain of interest we achieve at least 2/3 of the roofline performance and often substantially outperform state-of-the art
CUBLAS results on an NVIDIA Volta GPGPU.
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1. Introduction

1.1. Tall & skinny matrix multiplications

The general matrix-matrix multiplication (GEMM) is an

essential linear algebra operation used in many numerical

algorithms and hardware vendors usually supply an imple-

mentation that is well optimized for their hardware. In case

of NVIDIA, this is part of CUBLAS (NVIDIA, 2019a).

However, since these implementations are focused on

mostly square matrices, they often perform poorly for

matrices with unusual shapes.

This paper covers two types of matrix multiplications

with tall & skinny matrices, i.e. matrices that are much

taller than they are wide. We define skinny as having in

the range of ½1; 64� columns, and tall as having more than

106 rows. Both types of multiplications involve the two tall

& skinny matrices A and B, with sizes K �M and K � N ,

respectively, and K being the long dimension. The small

dimensions M and N form a small matrix C with size

M � N .

The two variants are shown in Figures 1 and 2: The Tall

& Skinny Matrix Transposed times Tall & Skinny Matrix

(TSMTTSM) multiplication AT B ¼ C and the Tall &

Skinny Matrix times Matrix (TSMM) multiplication

AC ¼ B. We are interested in a highly efficient

implementation of these operations using double precision

real and complex data types on the NVIDIA Volta GPGPU,

used nowadays in many HPC systems.

1.2. Application

Row-major tall & skinny matrices are the result of combin-

ing several vectors to block vectors. Block Vector Algo-

rithms are linear algebra algorithms that compute on

multiple vectors simultaneously for improved perfor-

mance. For instance, by combining multiple, consecutive

sparse matrix-vector (SpMV) multiplications to a sparse

matrix-multiple-vector (SpMMV) multiplication, the

matrix entries are loaded only once and used for the mul-

tiple vectors, which reduces the overall memory traffic and

consequently increases performance of this memory-bound
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Köln, Germany

Corresponding author:

Dominik Ernst, Erlangen Regional Computing Center, Martensstraße 1,

91058 Erlangen, Germany.

Email: dominik.ernst@fau.de

The International Journal of High
Performance Computing Applications
1–15
ª The Author(s) 2020

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020965661
journals.sagepub.com/home/hpc

https://orcid.org/0000-0003-3547-0611
https://orcid.org/0000-0003-3547-0611
mailto:dominik.ernst@fau.de
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020965661
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020965661&domain=pdf&date_stamp=2020-10-09


operation. This has first been analytically shown by Gropp

et al. (1999) and is used in many applications; see, e.g.

Röhrig-Zöllner et al. (2015); Kreutzer et al. (2018).

The simultaneous computation on multiple vectors can

also be used to gain numerical advantages. This has been

shown for block vector versions of the Lanzcos algorithm

(see Cullum and Donath, 1974), of the biconjugate gradient

algorithm (see O’Leary, 1980), and of the Jacobi-Davidson

Method (see Röhrig-Zöllner et al., 2015), each of which use

block vectors to compute multiple eigenvectors simultane-

ously. Many such algorithms require multiplications of

block vectors. For example, both the TSMTTSM (AT B) and

TSMM (AC) occur in classical Gram-Schmidt orthogona-

lization of a number of vectors represented by B against an

orthogonal basis A.

1.3. Roofline model

We use the roofline model by Williams et al. (2009) to

obtain an upper limit for the performance of these kernels.

In all cases, each of the three matrices has to be transferred

between the memory and the chip at least once. Even

though the directions of data transfers differ between the

kernels, the total data volume does not, as GPUs generally

do not need a write-allocate transfer. Therefore the arith-

metic intensity ID is the same for both kernels if M and N

are the same. 2MNK floating point operations are per-

formed in a matrix-matrix multiplication, so for double

precision the arithmetic intensity assuming K � M ;N and

M ¼ N is

ID ¼ 2MNK

ðMK þ NK þMNÞ � 8

flop

byte

�K�M ;N 2MN

ðM þ NÞ � 8

flop

byte

¼M¼N M

8

flop

byte
:

ð1Þ

In this symmetric case, the arithmetic intensity grows

linearly with M. We will show measurements only for this

symmetric case, although the nonsymmetric case is not

fundamentally different, with the intensity being propor-

tional to the harmonic mean of both dimensions and con-

sequently dominated by the smaller number. If the

achievable memory bandwidth is bs (see below in Section

Figure 1. The TSMTTSM operation AT B ¼ C with A and B being tall & skinny matrices. Note that A is transposed in the illustration.

Figure 2. The TSMM operation AC ¼ B with A and B being tall & skinny matrices.
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1.6), the model predicts Pmax ¼ minðI � bs;PpeakÞ as an

absolute upper performance limit. In the case of complex

numbers, the data volume increases by 2� and the number

of floating-point operations by 4�, resulting in a doubled

arithmetic intensity IZ ¼ M
4

flop=byte.

With proper loop optimizations in place, the GEMM is

usually considered a classic example for a compute-bound

problem with high arithmetic intensity. However, at

M ;N ¼ 1, the arithmetic intensity of 1=8 flop=byte is far

to the left of the roofline knee of modern compute devices

(typical values ranging from 5 flop/byte to 17 flop/byte)

and strongly memory bound. This is not surprising given

that a matrix multiplication with M ;N ¼ 1 is the same as a

dot product. At the other end of the considered spectrum,

at M ;N ¼ 64, the arithmetic intensity is 8 flop=byte,

which is close to the roofline knee of a V100 GPU (see

below in Section 1.6). Consequently, the performance

character of the operation changes from extremely mem-

ory bound at M ;N ¼ 1 to simultaneously memory and

compute bound at M ;N ¼ 64. An implementation with

perfect performance thus needs to fully utilize the mem-

ory bandwidth at all sizes and additionally reach peak

floating point performance for the large sizes. The very

different performance characteristics make it hard to write

an optimal implementation for both ends of the spectrum,

i.e. different optimizations and specialization is required

for both cases.

It is possible to judge the quality of an implementation’s

performance as the percentage of the roofline limit. This

metric is shown for CUBLAS in Figures 3 and 4, where the

ratio of measured and roofline performance is plotted as a

function of the matrix width. There is very little perfor-

mance improvement headroom for CUBLAS’ TSMM

implementation for real-valued matrices, but there is some

opportunity for complex matrices. For the TSMTTSM ker-

nel, there is a 2� to 50� gap to the upper limit, apart from

M ;N ¼ 1, where NVIDIA obviously implemented a spe-

cial case handling. Similarly to the BLAS nomenclature,

we use the shorthand “D” for double precision real values

and “Z” for double precision complex values.

1.4. Contribution

This paper presents the necessary implementation tech-

niques to achieve near-perfect (i.e., close to roofline)

performance for two tall & skinny matrix-matrix multipli-

cation variants on an NVIDIA V100 GPGPU with real- and

complex-valued matrices.

To this end, two parallel reduction schemes are imple-

mented and analyzed as to their suitability for small

matrices.

A code generator is implemented that produces code for

specific matrix sizes and tunes many configuration options

specifically to that size. This allows to precompute many

indexing and control flow expressions at compile time. As

a result, our implementation outperforms state-of-the-art

vendor implementations for most of the parameter range.

1.5. Related work

This work is an extended version of Ernst et al. (2020). In

comparison to that paper we have added a different variant

of matrix-matrix multiplication (TSMM), added a more in-

depth performance analysis, extended the analysis to dou-

ble precision complex data types, and examined a new

TSMTTSM thread mapping scheme.

CUBLAS is NVIDIA’s BLAS implementation. The

GEMM function interface in BLAS only accepts column-

major matrices, but our inputs are row-major. The memory

contents of a row-major tall & skinny matrix (TSM) A can

be reinterpreted as its transposed column major matrix ver-

sion ~A without any computation. It is then possible to use

the BLAS interface to compute ~A~B
T ¼ ~C

T , AT BT T ¼
CT T , AT B ¼ C. This works equivalently for TSMM by

executing ~C~A ¼ ~B , CT AT ¼ BT , AC ¼ B. All

shown data was measured with version 10.1 of CUDA and

CUBLAS. We also checked for improvements in version

10.2 of CUBLAS, but no deviations larger than 1% were

found.

CUTLASS (NVIDIA, 2019b) is a collection of primitives

for multiplications especially of small matrices, which can

be composed in different ways to form products of larger

Figure 3. Percentage of roofline-predicted performance
achieved by CUBLAS for the TSMTTSM kernel in the range
M ¼ N 2 ½1; 64�, complex (Z) and real (D) double precision, on
a Tesla V100-PCIe-16GB.

Figure 4. Percentage of roofline-predicted performance
achieved by CUBLAS for the TSMM kernel in the range
M ¼ N 2 ½1; 64�, complex (Z) and real (D) double precision, on
a Tesla V100-PCIe-16GB.
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matrices. One of these is the splitK kernel, which addi-

tionally parallelizes the inner summation of the matrix mul-

tiplication to increase parallelism for the TSMTTSM kernel.

We adapted the “06_splitK_gemm” code sample from

the library for benchmarking.

TSM2 (Chen et al., 2019) is another implementation that

meets the challenges of tall & skinny matrix multiplication,

albeit for a different application case (in our nomenclature

it would be MTSM, the multiplication of a large, square

matrix with a TSM). Some of the challenges like low arith-

metic intensity, data reuse, and the need for a flexible

thread mapping scheme are the same.

The Strassen algorithm (Strassen, 1969) for matrix-

matrix multiplications was profitably employed by Huang

et al. (2016, 2020) on CPUs and GPUs even for compara-

tively small matrices. However, we decided against

employing the Strassen algorithm, because, as the authors

of the latter paper point out, “it still trades memory opera-

tions (mops) for floating point operations (flops).” The

extremely non-square nature of the matrices examined in

our work makes the kernels memory bound; hence, the

trade-off offered by the Strassen algorithm, i.e. fewer float-

ing point operations in exchange for higher memory data

volume, is unfavorable.

1.6. Hardware

In this work we use NVIDIA’s V100-PCIe-16GB GPGPU

(Volta architecture) with CUDA 10.1. The hardware data

was collected with our own CUDA micro benchmarks,

which are available at Ernst (2019) together with more

detailed data.

1.6.1. Occupancy. The V100-PCIe-16GB GPU consists of

80 Streaming Multiprocessors (SM), each of which has

four quadrants with a scheduler and execution units.

Similarly to CPUs with simultaneous multi-threading

(SMT), each scheduler does not run just a single warp

at a time but selects from up to 16 warps to schedule the

next instruction. The large number of warps to pick from

decreases the chance that there is no warp that can cur-

rently execute because of dependencies. The ratio of

active warps on an SM to the maximum number of

active warps supported by the SM is called occupancy.

It is limited by the resources required by the warps, first

and foremost the number of registers. The compiler can

allocate a different number of registers for each program

individually. While the compiler tries to minimize the

number of allocated registers in order to maximize

occupancy, this is often impossible beyond some point

without spilling of registers to memory or generating

non-optimal machine code.

For the maximum occupancy of 100% (64 warps per SM

or 16 per quadrant), each thread must not allocate more

than 32 registers. At the maximum amount of 256 registers

per thread, only eight warps per SM or two warps per

quadrant can be run simultaneously.

1.6.2. Memory bandwidth. Whereas the TSMM operation has

a read and a write stream and fits well to the “scale” kernel

from the STREAM benchmarks (McCalpin, 1995), the

TSMTTSM is read-only. We thus use a thread-local sum

reduction to estimate the achievable memory bandwidth

bs (see Table 1). Read-only has a much higher maximum

ceiling of about 880 Gbyte/s, compared to 820 Gbyte/s for a

“scale” kernel. Maximum bandwidth is only attainable with

sufficient parallelism, either through high occupancy or

instruction level parallelism (ILP) in the form of multiple

read streams, achieved here through unrolling.

1.6.3. Floating-point throughput. The V100 can execute one

32-wide double precision (DP) floating point multiply add

(FMA) per cycle on each of its 80 streaming multiproces-

sors (SMs) and runs at a clock speed of 1.38 GHz for a DP

peak of 80� 32� 2� 1:38 Gflop=s ¼ 7066 Gflop=s.

One SM quadrant can process one instruction that is 32

warp lanes wide every four cycles at a latency of eight

cycles. Full throughput can already be achieved with a

single warp per quadrant if instructions are independent.

1.6.4. L1 cache. The L1 cache is instrumental in achieving

the theoretically possible arithmetic intensity. Though load

and DP FMA instructions have the same throughput of

1=cy=SM , the actual L1 cache bandwidth of one 128-

byte cache line per cycle means that the actual load instruc-

tion throughput is dependent on the number of touched

cache lines. For example, a 32-wide, unit-stride DP load

touches 2 cache lines and therefore takes two cycles. For

that access pattern, the floating point to load instruction

ratio would need to be at least 2:1 to attain peak

performance.

1.6.5. Shared memory. The Shared Memory uses the same

physical structure on the chip as the L1 cache. It has the

same bandwidth, but lower access latency than the L1 cache.

2. General implementation strategies

2.1. Code generation

A single implementation cannot be suitable for all matrix

sizes. In order to engineer the best code for each size, some

Table 1. Measured memory bandwidth on a Tesla V100-PCIe-
16GB of a read-only kernel with different amount of load
parallelism (ILP) and occupancies.

ILP, Gbyte/s

occupancy 1 4 16

1 block, 4 warps 3.0 10.1 16.3
6.25% 228 629 815
12.5% 419 824 877
25% 681 872 884
50% 834 884 887
100% 879 891 877
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form of meta programming is required. Cþþ templates

allow some degree of meta programming but are limited

in their expressiveness or require convoluted constructs.

Usually the compiler unrolls and eliminates short loops

with known iteration count in order to reduce loop over-

head, to combine address calculations, to avoid indexed

loads from arrays for the thread-local results, to deduplicate

and batch loads, and much more. Direct generation of the

intended code offers more control, however. For example,

when using a thread count per row that is not a divisor of

the matrix width, some threads would need to compute

fewer results than others. This is achieved via guarding if

statements around computations that would access out-of-

bounds elements. These can be omitted wherever it is safe,

i.e. all threads compute a valid value, in order to not com-

promise performance for even, dividing thread mappings.

We therefore use a code generating script in Python, which

allows to prototype new techniques much quicker and with

more control. Many different parameters can be configured

easily and benchmarked automatically, for example

whether leap frogging and unrolling (see below in Section

3) are used, how the reduction is performed, and what

thread mapping to set. The same reasoning for code gener-

ation is made by Herrero and Navarro (2006), Huang et al.

(2017), and Benson and Ballard (2015).

2.2. Thread mapping options

The parallelization scheme, i.e. the way in which work is

mapped to GPU threads, plays an important role for data

flow in the memory hierarchy. The canonical formulation

of an MMM is the three-level loop nest shown in Listing 1.

The iteration space of an MMM can be visualized as a

cuboid spanned by the outer product of the two matrices

being multiplied. For the TSMTTSM (Figure 5), the

matrices A and B span the cube, and reduction along the

long axis K results in the matrix C . For the TSMM (Fig-

ure 6), the cube is flipped on its side, so the the matrices A

and C span the cube and a reduction along the short side M

results in B .

This representation allows to visualize the locality of

data transfers. Looking at a slice of the cube perpendi-

cular to the long K axis spanned by one row of A and B,

as depicted in Figures 7–9, shows all the data uses and

computations. Each such slice contains M � N cells,

which correspond to one FMA each, and requires the

transfer of one row each of A and B, causing a data

transfer of M þ N elements. The arithmetic intensity

associated with the computations in one slice is the

same as for the whole MMM kernel. We assume perfect

caching, i.e. that A and B are transferred from memory

Listing 1. Naive matrix-matrix multiplication (MMM) pseudo
code for C ¼ ATB.

f o r m = 0 . . .M:
f o r n = 0 . . . N:

f o r k = 0 . . . K:
C[m] [ n ] += A[ k ] [m] * B [ k ] [ n ]

Figure 5. Illustration of the iteration space of the TSMTTSM
operation C ¼ ATB.

Figure 6. Illustration of the iteration space of the TSMM opera-
tion B ¼ AC.

Figure 7. TSMTTSM: Parallelization over K only.

Ernst et al. 5



just once and reused as many times as necessary

throughout the calculation.

The fastest way to reuse values is to use a register and

have the thread the register belongs to perform all required

operations on this data. Data used by multiple threads can

(preferably) be shared in the L1 cache for threads in the

same thread block or in the L2 cache otherwise. This works

only if some spatial and temporal access locality is in place.

Therefore, the mapping of cells, i.e. work, to threads deter-

mines which thread requires what data for its computations

and the locality of data access.

3. TSMTTSM

For the TSMTTSM, the two outer loops, which are com-

pletely independent and therefore well parallelizable, are

usually the target of an implementation focused on square

matrices. For skinny matrices, these loops are much too

short to yield enough parallelism for a GPU. In conse-

quence, the loop over the long K dimension has to be par-

allelized as well, which also involves parallelizing the sum

inside the loop. There are many more terms in the parallel

reduction than threads, so that each thread can first serially

compute a thread local partial sum, which is afterwards

reduced to a total sum (see Listing 2). Here, a so-called

grid stride loop, described by Harris (2013), is used to map

rows to threads.

For data locality, the two small loops have to be moved

into the K loop. Since they are short loops with constant

loop trip count, they can be unrolled completely, which also

allows to map the intermediates to local variables instead

of indexing into a local array (see Listing 3). Depending on

whether and how the two small loops are parallelized, each

thread computes only some of these MN intermediates.

Figures 7 to 11 visualize this by showing a slice of the

multiplication cube and which values a single thread would

compute. The number of loads that each thread has to do

are the affected values in the row of A and B, also visible in

the illustrations, while each highlighted cell in the slice

stands for one line in the loop body of Listing 3, which

Figure 8. TSMTTSM: Parallelization over the K and N loop.

Figure 9. TSMTTSM: Parallelization over K and tiling of the two
inner loops, here with tile size. 2� 3.

Listing 2. TSMTTSM pseudo code, with the K loop parallelized as
a grid stripe loop.

c l o c a l [ : ] [ : ] = 0

f o r ( k = t h r e a d I d ; k < K; k += g r i d S t r i d e )
f o r m = 0 . . .M:

f o r n = 0 . . . N:
c l o c a l [m] [ n ] += A[ k ] [m] * B [ k ] [ n ]

f o r m = 0 . . .M:
f o r n = 0 . . . N:

C[m] [ n ]
= g l o b a l r e d u c t i o n ( c l o c a l [m] [ n ] )

Listing 3. TSMTTSM pseudo code with parallelized K loop, after
unrolling the two inner loops (here shown exemplarily for
M ¼ N ¼ 2) and mapping array entries to variables. The global
reduction is omitted for brevity.

f o r ( k = t h r e a d I d ; k < K; k += g r i d S t r i d e )
c0 0 += A[ k ] [ 0 ] * B[ k ] [ 0 ]
c0 1 += A[ k ] [ 0 ] * B[ k ] [ 1 ]
c1 0 += A[ k ] [ 1 ] * B[ k ] [ 0 ]
c1 1 += A[ k ] [ 1 ] * B[ k ] [ 1 ]

Figure 10. Example for transposing a 1D continuous thread
mapping. The colors denote which thread the element belongs
to, the numbers are their positions in the thread.

Figure 11. TSMTTSM: Parallelization over K and transposed tiling
of the two inner loops, here with tile size 2� 3.
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corresponds to one FMA operations and one intermediate

variable.

Since the L1 cache is not able to deliver one operand per

FMA instruction, a high FMA-to-load ratio is desirable.

This can be achieved by maximizing the area and the

“squareness” of the area that is computed by a single

thread. At the same time, more intermediate results per

thread increase the register count, which can limit the occu-

pancy and eventually lead to spilling.

The approach of only parallelizing the K loop (shown in

Listing 2 and Figure 7) easily achieves this goal. While it

maximizes the arithmetic intensity already in the L1 cache,

the MN intermediate results occupy 2MN registers, so the

maximum of 256 registers per thread is already exceeded at

M ;N > 11, causing spilling and poor performance.

Parallelizing one of the inner loops as well (Listing

4) leads to the pattern shown in Figure 8. The amount of

registers required is only M here, so there is no spilling

even at M ;N ¼ 64. However, the narrow shape results

in an FMA/load ratio below 1 (i.e., a low arithmetic

intensity in the L1 cache), as values from A are used

just once per load.

A better approach, which combines manageable register

requirements with a more square form of the tile is to sub-

divide the two smaller loops into tiles (see Listing 5 and

Figure 9). This mapping also allows for much more flexi-

bility, as the tile sizes can be chosen small enough to avoid

spilling or reach a certain occupancy goal but also large

enough to create a high FMA/load ratio. Tile sizes that are

not divisors of the small loop dimensions can be covered by

generating guarding statements for tile entries that could

possibly overlap to only be executed by threads with a tile

index that does not extend beyond the border of the slice.

This is helpful for matrix dimensions that have few divi-

sors, e.g. prime numbers.

Mapping a continuous range of values to a thread leads

to strided loads, which can be detrimental to performance.

The same entry in two consecutive threads’ partitions is

always as far apart as the tile side length. A more advanta-

geous, continuous load pattern can be achieved by trans-

posing the threads’ tiles, as shown in Figure 10. The

elements belonging to a thread do not form a contiguous

range anymore but are interleaved. Therefore, when all

participating threads load their n-th element, the addresses

referenced by that load have a uniform stride. With a trans-

posed mapping, the 2D TSMTTSM mapping from Figure 9

becomes Figure 11.

3.1. Leap frogging

On NVIDIA’s GPU architectures, load operations can

overlap with each other. The execution will only stall at

an instruction that requires an operand from an outstanding

load. The compiler maximizes this overlap by moving all

loads to the beginning of the loop body, followed by the

floating-point (FP) instructions that consume the loaded

values. Usually at least one or two of the loads come from

memory and thus take longer to complete than other queued

loads, so that execution stalls at the first FP instruction. A

way to circumvent this stall is to load the inputs one loop

iteration ahead into a separate set of next registers, while

the computations still happen on the current values. At the

end of the loop, the next values become the current values

of the next loop iteration by assignment. These assignments

are the first instructions that depend on the loads and thus

the computations can happen while the loads are still in

flight. This is a common technique for loops that iterate

over data items, and a similar strategy is also used by Chen

et al. (2019) for TSM2.

3.2. Global reduction

After each thread has serially computed its partial, thread-

local result, a global reduction is required, which is consid-

ered overhead. Its runtime depends only on the thread count,

though, whereas the time spent in the serial summation

grows linearly with the row count. The time spent for the

global reduction therefore becomes marginal for large row

counts compared to the time for the serial summation. How-

ever, as shown by Thies et al. (2019), the performance at

small row counts can still be relevant, as the available GPU

memory may be shared by more data structures than just the

two tall & skinny matrices, limiting the data set size.

Starting with the Pascal architecture, atomic add oper-

ations for double precision values are available for global

memory, making global reductions more efficient than on

older systems. Each thread can just use an atomicAdd of

its partial value to update the final results. The throughput

of global atomicAdd operations is limited by the amount

of contention, which grows for smaller matrix sizes. We

Listing 5. TSMTTSM pseudo code, with tiled M and N loop using
tile sizes TM and TN. The global reduction and row calculation in
the K loop is omitted.

midx = ( t h r e a d I d x / N) % M
nidx = t h r e a d I d x % N
f o r ( . . . )

f o r tm = 0 . . . TM:
f o r t n = 0 . . . TN:

m = midx * TM + tm
n = n idx * TN + t n
c [ tm ] [ t n ] += A[ k ] [m] * B [ k ] [ n ]

Listing 4. TSMTTSM pseudo code, with the K and N loop
parallelized. The global reduction is omitted.

f o r ( k = t h r e a d I d / N; k < K;
k += g r i d S t r i d e / N)

n = t h r e a d I d % N
f o r m = 0 . . .M:

c l o c a l [m] [ n ] += A[ k ] [m] * B [ k ] [ n ]

Ernst et al. 7



improve on this global atomic reduction variant with a

local atomic variant that reduces the amount of global

atomicAdd operations by first computing thread-block-

local partial results using shared memory atomics. This is

followed by a global reduction of the local results. Addi-

tionally, we opportunistically reduce the amount of

launched threads for small row counts.

4 TSMM

4.1. Thread mapping

In contrast to the TSMTTSM kernel, the summation is done

along the short M axis, with no need for a global reduction.

Though the short sum could be parallelized, this is not

necessary in this case, as the other two loop dimensions

supply sufficient parallelism. The visualizations in

Figures 12–14 show slices perpendicular to the M axis,

since this dimension will not be parallelized.

The first option is to only parallelize over the long K

dimension as shown in Figure 12. Each entry in A would be

loaded once and then reused out of a register. The N sums

that each thread computes require 2N registers, which is

not a prohibitive number even at N ¼ 64 but still does

reduce occupancy. A more severe disadvantage are the

strided stores. As each thread produces and stores a full

row of B, the addresses stored to by the different threads

are far apart, leading to partially written cache lines. This in

turn causes a write-allocate read stream of the result matrix

B to ensure fully consistent cache lines, thereby reducing

the arithmetic intensity of the kernel.

This can be avoided by parallelizing the N loop. Each

thread computes a single result of the output row of B.

Because consecutive threads compute consecutive results,

cache lines are always written fully and no write-allocate

stream is necessary. The disadvantage is a low compute/

load ratio. Each value from A is loaded and used just once

in each thread.

A more balanced approach is to have a smaller group of

threads compute on each result row, with a few results

computed by each thread. Each value loaded from A is

reused multiple times, once for each result computed by

this thread. Using a transposed mapping as shown in Fig-

ure 13, each thread does not compute consecutive elements;

results computed by threads are interleaved, so that consec-

utive elements are written and the amount of partial writes

is reduced. This works best if the thread count is a multiple

of four, which corresponds to the L1 cache line manage-

ment granularity of 32 bytes. If N is not a multiple of four,

the writes will necessarily be misaligned, with some cache

lines being cut. Larger thread counts slightly reduce the

impact of cut cache lines.

4.2. Data from C

Our discussion of thread mappings and data transfers so far

has ignored the entries of the matrix C. These values are the

same for every index of the K loop. The fastest would be to

load all entries of C into registers and reuse them from

there, but this strategy would quickly exceed the number

of available registers even at moderate M and N. Since they

are accessed frequently and all threads in a thread block

access similar values, the contents of C should continu-

ously stay in the L1 cache, making reloads of these values

a question of L1 cache bandwidth and not memory latency.

Depending on the number of threads per row and the align-

ment, each load from C spans up to three 128-byte cache

lines, which would then be used for a single FMA. This is

higher than the sustainable ratio of one 128-byte cache line

per FMA. A solution is to reuse each value loaded from C

by unrolling the K loop and pulling the unrolled iterations

Figure 12. TSMM: Parallelization over K, a single thread com-
putes a full result row of B. Slice perpendicular to the M axis, the
(long) K axis extends “indefinitely” on both sides.

Figure 13. TSMM: Parallelization over K and N, two threads
compute two results each. Slice horizontal to the M axis, the
(long) K axis extends “indefinitely” on both sides.

Figure 14. TSMM: Parallelization over K and N and 2� unrolling,
two threads compute two results each and on two rows of B in a
single iteration. Slice horizontal to the M axis, the (long) K axis
extends “indefinitely” on both sides.
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inside the M loop. Each iteration over K loads the same

values of C, which can subsequently be used for multiple

iterations per load.

The loads from C can also be sped up by using the

shared memory to cache these loads. Threads in a thread

block collaboratively load the contents of C into the shared

memory at the beginning of the kernel. The loop over K is

parallelized with a grid stride loop, where only as many

threads as necessary for full occupancy are launched. Each

kernel instantiation then computes on multiple rows of B.

Therefore, loading C into shared memory can be amortized

over many rows.

On the V100, the shared memory has the same band-

width as the L1 cache, given that they occupy the same

hardware structure. However, shared memory accesses

guarantee cache hits, as they avoid conflict misses with

other data. They also have a lower latency, since no tags

have to be checked.

5. Results: TSMTTSM

5.1. Transposition and leap frogging

An exhaustive search was used to find the best tile size and

configuration for each matrix size. The simpler mapping

schemes are subsets of the tiled mapping. E.g. the mapping

in Figure 8 corresponds to a tilesize of M � 1. Figure 15

shows the performance of the four configurations of using

leap frogging and a transposed mapping. The performance

agrees with the roofline prediction (dashed line) perfectly

until M ;N ¼ 20. Until M ;N ¼ 36, the best performance

stays within 95% of the limit. Beyond that, the growing

arithmetic intensity does not translate into a proportional

speedup anymore, although the performance is still about a

factor of two away from peak. The best variants plateau at

about 2/3 of peak. Both variants using leap frogging are

clearly faster, but the transposed mapping is only a bit

faster if leap frogging is used. This is in contrast to experi-

ences with the Kepler GPU architecture, where strided

loads are slower, and this kind of transformation is more

beneficial. The best tile size changes when leap frogging is

used as it requires more registers.

5.2. Tile sizes

Figure 16 shows the dependence of performance on the tile

sizes TM and TN for the case M ;N ¼ 32 with leap frogging

and transposed mapping. Performance drops off sharply if

the tile sizes become too large and too many registers are

used. The number of registers can be approximated by

2� ðT M T N þ 2ðTM þ T N Þ þ 8Þ, which accounts for the

thread-local sums (TM T N ), loaded values ðTM þ T N Þ, and

eight registers for other purposes. Leap frogging introduces

a factor of two for the number of loaded values (for current

and next values), and double precision values generally

require two 32-bit registers for an overall factor of two.

The graph shows the iso-lines of 128 and 256 registers,

which represent the occupancy drop from 25% to 12.5%
at 128 registers and the onset of spilling at 256 registers.

The best-performing tile sizes generally sit on or just

below these lines, maximizing the area of the tile for a

given occupancy. The dimensions are largely symmetric

but not perfectly so, as threads are mapped to tiles in M

direction first. There are clear patterns favoring powers of

two as those are divisors of the matrix size 32 and avoid

both the overhead of guarding statements and idle threads.

5.3. Analysis

According to the roofline model, at M ¼ N ¼ 64 the upper

performance limit is

Figure 15. Performance comparison of real-valued double-
precision TSMTTSM vs. quadratic tile size with K¼ 229=M on the
V100 across the four different permutations of using leap frogging
(LF) and transposed mapping (trans). The best performance for
each matrix size and configuration is shown. The arithmetic peak
performance of the device is 7:066 Tflop=s.

Figure 16. Performance of TSMTTSM for M;N ¼ 32 and

K¼ 229=M vs. tile sizes in M and N directions, using real-valued
double-precision matrices, with leap frogging and transposed
mapping. The two white lines are defined by
2� ðTMTN þ 2ðTM þ TNÞ þ 8Þ ¼ R, with R ¼ 128; 256 to mark
approximate boundaries of register usage.
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P ¼ 64

8

flop

byte
� 880 Gbyte=s ¼ 7060 Gflop=s ; ð2Þ

which is almost exactly the PPeak of 7066 Gflop=s. How-

ever, our implementation cannot realize the roofline-

predicted performance, and instead tops out at

4766 Gflop=s � 2=3PPeak . The reason for the limitation

is memory latency, which can be shown by a simple model:

Whereas the memory latency for an idle memory interface

measured with a pointer chasing benchmark (see Ernst,

2019) is only 435 cy, this latency increases as the load on

the memory interface increases. For the values in Table 1, it

is possible to calculate corresponding latency values

according to Little’s Law via

T ‘ ¼
f N � 8 byte

b
; ð3Þ

with f being the clock frequency, N the thread count, and b

the memory bandwidth. For the unloaded case in the first

row of Table 1 (ILP ¼ 1), the latency according to (3) is

T ‘ � 470 cy, which matches the measured pointer chasing

latency quite well. The bandwidth of b ¼ 681 Gbyte=s at

25% occupancy in the fourth row roughly corresponds to

the highest observed memory bandwidth, based on the

computational intensity, for M ;N ¼ 64, and result in

T ‘ � 664 cy of memory latency.

The best tile size without leap frogging is 11� 8, which

requires 11� 8 ¼ 88 FMA operations. These can be com-

puted on a single quadrant in 88� 4 cy ¼ 352 cy. At this

large tile size, the register requirements of at least

2� 11� 8 ¼ 176 registers allow to run only eight warps,

i.e. two warps per quadrant, simultaneously on a SM. One

warp doing 352 cy of compute work finishes earlier than

the other warp waiting for 664 cy for data from memory. It

will then also wait for the next data to be loaded, which is a

period of time where none of the two warps are issuing

floating point operations, and therefore counts as wasted

cycles.

Leap frogging does improve the situation, as even with a

single warp the memory latency and compute times can

overlap. However, additional registers are required to hold

the data for the next iteration, which either necessitates

smaller tile sizes or reduces occupancy, both of which are

bad for overlapping. Overall, leap frogging is still benefi-

cial, though.

Figure 17 shows an experiment that gives insight into

the relationship of latency and occupancy. A modification

of the generated kernels allows testing the impact of higher

occupancies even for kernels with larger tile sizes, where

the high register requirements usually limit the occupancy

to the minimum of eight warps per SM. Instead of comput-

ing TM � T N intermediate results, all summands are

summed up in just two accumulators. This does of course

not compute the correct results any more, but all the

instructions and loaded operands are the same, while reduc-

ing the register count so that 32 warps per SM can run

concurrently. Another modification to the generated kernel

introduces a division of the K loop row index by a large

constant. In consequence, all loop iterations compute on

data of very few rows, which makes almost all accesses

L1 cache hits with the corresponding much smaller latency.

Repeatedly using the same row is done in such a contrived

way in order to prevent the compiler from pulling the loads

in front of the loop.

With tile sizes of 8� 4 and 8� 8, as used in this experi-

ment, 16 and 8 warps per SM can run concurrently. At these

occupancies (green circles in Figure 17), the respective real

kernels (circle symbols) performance is highest, as the max-

imum possible number of thread blocks run concurrently.

Figure 17. TSMTTSM performance vs. occupancy of real, correct
kernels and two modified (incorrect) kernels at tile sizes of 4� 8
and 8� 8, respectively. The first modification reduces register
count, while the second kernel additionally reduces the data set
so that it resides in L1 cache. Green circles mark the point with
the highest performance of the unmodified kernels. (Real-valued
double-precision matrices).

Figure 18. TSMTTSM percentage of roofline-predicted perfor-
mance for real (D) and complex (Z) double-precision data in
comparison with CUBLAS and CUTLASS.
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With an increased number of launched thread blocks, the

unmodified kernels’ performance does not increase any-

more, as additional thread blocks do not run concurrently

but are scheduled in a “second wave” of thread blocks. An

imbalance in the number of thread blocks per wave leads to

fluctuating performance.

The kernels modified for higher occupancy (triangle

symbols) have the same performance as the unmodified

kernels up to these points, but allow to see the hypothetical

speedup if more thread blocks could run concurrently,

which would be possible on a hypothetical V100 with four

times as many registers.

The performance increase is linear in all cases up to four

warps per SM, as this is the minimum to fill all four quadrants

of an SM. For both tile sizes, the L1 load kernels (square

symbols) profit somewhat from a second warp on each

quadrant to overlap the remaining latency and overhead

but quickly saturate at ceilings of 6080 Gflop=s and

5700 Gflop=s, respectively, which is not a latency effect any

more. The reason for these lower roofs remains open, but we

suspect that it is rooted in limited instruction throughput. We

noticed that the gap to the device peak performance matches

one missing DP FP operation per four non-DP FP operations,

i.e. integer and load instructions. DP FP operations are sup-

posed to execute on separate execution units, and so we can

only speculate whether there is a restriction in co-issuing DP

FP operations with integer and load instructions.

The two experiments with the normal, higher latency

from memory (triangular symbols) need many more warps

to overlap their longer latency to eventually saturate at the

same level as the L1 load kernels. At least two to three

times larger register files would be required to get there.

At the same time, it also shows how devastating it would be

if the register files were half as large, a situation that is not

dissimilar to the older Kepler GPU architecture, where

double the number of execution units were backed by a

similar sized register file. The larger tile size saturates more

quickly, because it amortizes the same latency over twice

the number of floating-point operations. Note that in the

end, both tile sizes have a similar real-world performance,

as the higher possible occupancy of 16 warps per SM com-

pared to 8 warps per SM balances the smaller amount of

work per iteration.

This simple model also helps to explain the rather small

benefits from using the transposed mapping. The trans-

posed mapping changes the load pattern to contiguous

blocks instead of long strides. This in turn reduces the

number of touched cache lines, and increases the rate at

which the L1 cache can serve the outstanding loads after

the data has arrived from memory. However, this rate is

only really a limiter at low FMA/load ratios, or at the

beginning of the floating-point operation phase, where the

FP units still wait for enough registers being filled for

uninterrupted operation. The transposed mapping therefore

only gives a small speedup in the phase that is mostly not

the limiter, but at the same time also makes smaller tile

sizes more feasible.

On the other hand, the strided access patterns of the

nontransposed mapping touch most cache lines already

on the first load, and therefore already cause most cache

misses with the first load. Subsequent loads are cache hits.

With the transposed mapping, with its contiguous blocks of

addresses per load, cache misses are postponed until later

loads, which starts the memory latency penalty later. That

is why the configuration using the transposed mapping

without leap frogging performs worst (see Figure 15).

However, in combination with leap frogging it is faster than

the two variants with the nontransposed mapping.

5.4. Comparison with libraries

Both CUBLAS’ and CUTLASS’ performance (see Figure

18) is far below the potential performance, except for

M ;N ¼ 1, where CUBLAS seems to have a special detec-

tion for the dot product corner case. The utilization of

potential performance increases as matrices become wider,

which makes them more square and compute bound, bring-

ing them closer to more standard scenarios.

In contrast, the presented implementation shows full

efficiency for narrow, clearly memory bandwidth limited

matrices, and utilization slightly drops off as matrices

become more compute bound. For complex-valued

matrices, the TSMTTSM becomes compute bound already

at M ;N ¼ 32. Instruction throughput becomes the limiter

much earlier than memory bandwidth and latency, which is

why the utilization drops earlier. With increasing matrix

size, it fully saturates the previously explained lower ceil-

ing due to our speculated co-issue limitation between

double-precision FP instructions and integer instructions.

5.5. Impact of reductions

Figure 19 shows the relative performance of our TSMTTSM

implementation versus row count with respect to a baseline

Figure 19. Global reduction impact for TSMTTSM: Performance
when using each of the two global reduction variants as the per-
centage of the performance of a kernel without a global reduction,
using two different matrix widths and tile sizes. (Real-valued
double-precision matrices).
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without any reduction for a selection of inner matrix sizes

and tile sizes, choosing either of the two reduction methods

described in Section 3.2. As expected, the impact of the

reduction generally decreases with increasing row count.

The method with only global atomics is especially slow for

the narrower matrices (M ;N ¼ 4). Many threads writing to

a small amount of result values leads to contention and

causes a noticeable impact even for a matrix filling the

device memory (K¼ 108). The local atomic variant drasti-

cally reduces the number of writing threads, resulting in

less than 10% overhead even for the smallest sizes and

near-perfect performance for K> 106. For the wider

matrices, the difference is smaller. The global atomic ver-

sion is not as slow because writes spread out over more

result values and the local atomic variant is not as fast

because the larger tile size requires more work in the local

reduction. Both variants incur less than 10% overhead just

above K¼ 104, a point where only about 0:2% of the GPU

memory is used.

6. Results: TSMM

The described methods and parameters open up a large

space of configurations. Each of the Figures 20, 21, and

22 shows a cross section of each configuration option by

displaying the best-performing value for each choice for

that configuration option.

6.1. Source of C

The data in Figure 20 demonstrates that trying to keep the

values of matrix C in registers works well only for small

M ;N . The increasing register pressure at larger sizes

reduces occupancy, which is especially bad if multiple

results are computed per thread.

Reloading values from shared memory has a consis-

tently small performance advantage especially for sizes

that are not multiples of four, due to a smaller penalty

because of misaligned loads. Each additional cache line

that gets touched because of misalignment costs an addi-

tional cycle.

6.2. Unrolling

Although there is little improvement with further unrol-

ling beyond 2�, as Figure 21 shows, unrolling at least

once shows a clear speedup compared to no unrolling.

Without unrolling, the shared memory bandwidth would

limit the performance due to the high ratio of shared mem-

ory loads to FP DP instructions, and its latency could not

be hidden as well with FP DP instructions from further

iterations. Generally, a similar reasoning as for the

TSMTTSM kernel applies, where computing more results

per thread and higher unrolling counts increase the num-

ber of floating-point operations per iteration but also

decrease the occupancy that would be needed to overlap

the memory latency.

6.3. Thread count

Fewer threads per row mean more work per thread. For

large matrix sizes, this can result in huge kernels with high

register requirements, which is why Figure 22 does not

show measurements for the whole matrix size range for

one and two threads per row. These two thread counts are

the slowest variants, as they show the effects of strided

writes the most. With four threads writing consecutive

values, there is at least a chance of writing a complete

32-byte cache line sector. The difference between 4, 8

or 16 threads is not large, although the larger thread

counts perform slightly more consistently (i.e., with less

fluctuation across M).

The performance analysis for TSMM shows a clear pre-

ference for the small matrix dimension M ¼ N to be a

Figure 20. TSMM performance comparison at K¼ 229=M among
different sources for the matrix C, showing the best-performing
configuration of each method and matrix width. (Real-valued
double-precision matrices).

Figure 21. TSMM performance comparison of different degrees
of unrolling at K¼ 229=M, showing the best-performing configura-
tion for each unrolling depth (1; . . . ; 4) and matrix width. (Real-
valued double-precision matrices).
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multiple of four. For this case, all writes of computed data

to the matrix B are aligned to 4� 8 byte ¼ 32 byte, which

is the management granularity for L1 cache lines and the

cache line length for the L2 cache. With this alignment,

cache lines are fully written and there is no overhead for

write allocation from memory. Misalignment is the major

performance hurdle for matrix widths that are not multiples

of four.

6.4. Comparison with libraries

Figure 23 shows that, except for very small M ;N ,

CUBLAS performs very well for the real-valued TSMM

kernel. With increasing width, the development in utiliza-

tion is very similar to the presented implementation. Our

solution works similarly well for complex-valued matrices,

which is not the case for CUBLAS. Here, a strong perfor-

mance drop for medium-wide matrices can be observed.

7. Conclusion and outlook

We have shown how to optimize the performance for two

types of multiplication of double-precision, real and com-

plex tall & skinny matrices on a V100 GPU. With matrices

narrower than 32 columns, near-perfect performance in

accordance with a roofline performance model could be

achieved. Over the rest of the skinny range up to a width

of 64, between 60% and 67% of the potential performance

was attained. We used a code generator on top of a range of

suitable thread mapping and tiling patterns, which enabled

an exhaustive parameter space search. Two different ways

to achieve fast, parallel device-wide reductions for long

vectors have been devised in order to ensure a fast ramp-

up of performance already for shorter matrices. An in-depth

performance analysis was provided to explain observed

deviations from the roofline limit. Our implementation out-

performs the vendor-supplied CUBLAS and CUTLASS

libraries by far or is on par with them for most of the

observed parameter range.

In future work, in order to push the limits of the current

implementation, shared memory could be integrated into

the mapping scheme to speed up the many loads, especially

scattered ones, that are served by the L1 cache.

The presented performance figures were obtained by

parameter search. An advanced performance model, cur-

rently under development, could be fed with code charac-

teristics such as load addresses and instruction counts

generated with the actual code and then used to eliminate

bad candidates much faster. It will also support a better

understanding of performance limiters.

Prior work by us in this area is already part of the sparse

matrix toolkit GHOST (Kreutzer et al., 2016) and we plan

to integrate the presented work there as well.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work was supported by the ESSEX-II

project in the DFG Priority Programme SPPEXA.

ORCID iD

Dominik Ernst https://orcid.org/0000-0003-3547-0611

References

Benson AR and Ballard G (2015) A framework for practical par-

allel fast matrix multiplication. ACM SIGPLAN Notices 50(8):

42–53.

Figure 23. TSMM percentage of roofline-predicted performance
for real (D) and complex (Z) double-precision data in comparison
with CUBLAS.

Figure 22. TSMM performance comparison of different thread
counts per row at K¼ 229=M, showing the best-performing con-
figuration for each thread count and matrix width. (Real-valued
double-precision matrices).

Ernst et al. 13

https://orcid.org/0000-0003-3547-0611
https://orcid.org/0000-0003-3547-0611
https://orcid.org/0000-0003-3547-0611


Chen J, Xiong N, Liang X, et al. (2019) TSM2: optimizing

tall-and-skinny matrix-matrix multiplication on GPUs. In:

Proceedings of the ACM international conference on super-

computing, ICS ‘19. New York, NY, USA: Association for

Computing Machinery, pp. 106–116. ISBN 9781450360791.

DOI: 10.1145/3330345.3330355.

Cullum J and Donath WE (1974) A block Lanczos algorithm for

computing the q algebraically largest eigenvalues and a corre-

sponding eigenspace of large, sparse, real symmetric matrices.

In: 1974 IEEE conference on decision and control including

the 13th symposium on adaptive processes, Phoenix, AZ,

USA, 20–22 November 1974, pp. 505–509.

Ernst D (2019) CUDA microbenchmarks. Available at: http://

tiny.cc/cudabench (accessed 2 February 2020).

Ernst D, Hager G, Thies J, et al. (2020) Performance engineering

for a tall & skinny matrix multiplication kernels on GPUs. In:

R Wyrzykowski, E Deelman, J Dongarra, and K Karczewski

(eds) Parallel Processing and Applied Mathematics. Cham:

Springer International Publishing, pp. 505–515.

Gropp WD, Kaushik DK, Keyes DE, et al. (1999) Towards rea-

listic performance bounds for implicit CFD codes. In: Pro-

ceedings of parallel CFD ‘99, pp. 233–240. Amsterdam, the

Netherlands: Elsevier.

Harris M (2013) CUDA pro tip: write flexible kernels with grid-

stride loops. Available at: devblogs.nvidia.com/cuda-pro-tip-

write-flexible-kernels-grid-stride-loops/ (accessed 2 February

2020).

Herrero JR and Navarro JJ (2006) Compiler-optimized kernels:

an efficient alternative to hand-coded inner kernels. In: ML

Gavrilova, O Gervasi, V Kumar, et al. (eds) Computational

science and its applications—ICCSA 2006. Berlin, Heidel-

berg: Springer, pp. 762–771. ISBN 978-3-540-34080-5.

DOI: 10.1007/11751649_84.

Huang J, Rice L, Matthews DA, et al. (2017) Generating families

of practical fast matrix multiplication algorithms. In: 2017

IEEE international parallel and distributed processing sym-

posium (IPDPS), Orlando, FL, USA, 29 May–2 June 2017,

pp. 656–667.

Huang J, Smith TM, Henry GM, et al. (2016) Strassen’s algorithm

reloaded. In: Proceedings of the international conference for

high performance computing, networking, storage and analy-

sis, SC ‘16, Salt Lake City, UT, USA, 13–18 November 2016.

Hoboken, NJ, USA: IEEE Press.

Huang J, Yu CD and van de Geijn RA (2020) Strassen’s algorithm

reloaded on GPUs. ACM Transactions on Mathematical Soft-

ware 46(1): 1–22.

Kreutzer M, Ernst D, Bishop AR, et al. (2018) Chebyshev filter

diagonalization on modern manycore processors and

GPGPUs. In: R Yokota, M Weiland, and D Keyes (eds) High

Performance Computing. Cham: Springer International Pub-

lishing, pp. 329–349.
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