A Recursive Algebraic Coloring Technique for
Hardware-efficient Symmetric Sparse Matrix-vector
Multiplication

CHRISTIE ALAPPAT, Department of Computer Science, Friedrich-Alexander-Universitit
Erlangen-Niirnberg

ACHIM BASERMANN, Simulation and Software Technology, German Aerospace Center

ALAN R. BISHOP, Science, Technology and Engineering Directorate, Los Alamos National Laboratory
HOLGER FEHSKE, Institute of Physics, University of Greifswald

GEORG HAGER, Erlangen Regional Computing Center, Friedrich-Alexander-Universitit
Erlangen-Niirnberg

OLAF SCHENK, Institute of Computational Science, Universita della Svizzera italiana

JONAS THIES, Simulation and Software Technology, German Aerospace Center

GERHARD WELLEIN, Department of Computer Science, Friedrich-Alexander-Universitit

Erlangen-Nirnberg

The symmetric sparse matrix-vector multiplication (SymmSpMYV) is an important building block for many
numerical linear algebra kernel operations or graph traversal applications. Parallelizing SymmSpMV on to-
day’s multicore platforms with up to 100 cores is difficult due to the need to manage conflicting updates
on the result vector. Coloring approaches can be used to solve this problem without data duplication, but
existing coloring algorithms do not take load balancing and deep memory hierarchies into account, hamper-
ing scalability and full-chip performance. In this work, we propose the recursive algebraic coloring engine
(RACE), anovel coloring algorithm and open-source library implementation that eliminates the shortcomings
of previous coloring methods in terms of hardware efficiency and parallelization overhead. We describe the
level construction, distance-k coloring, and load balancing steps in RACE, use it to parallelize SymmSpMV,
and compare its performance on 31 sparse matrices with other state-of-the-art coloring techniques and Intel
MKL on two modern multicore processors. RACE outperforms all other approaches substantially. By means

The project is funded by the German DFG priority programme 1648 “Software for Exascale Computing (SPPEXA)” and
the Swiss National Science Foundation (SNF) under the projects “Dual-Phase Steels — From Micro to Macro Properties
(EXASTEEL-2)” (DFG, SNF) and “Equipping Sparse Solvers for Exascale (ESSEX-1I)” (DFG).

Authors’ addresses: C. Alappat and G. Wellein, Department of Computer Science, Friedrich-Alexander-Universitat
Erlangen-Nirnberg Martensstr. 1, 91058 Erlangen, Germany; emails: {christie.alappat, gerhard.wellein}@fau.de; A. Baser-
mann and J. Thies, German Aerospace Center, Institute for Software Technology, Department High-Performance
Computing, Linder Hoehe, 51147 Cologne, Germany; emails: {achim.basermann, jonas.thiesj@dlr.de; A. R. Bishop,
Theory, Simulation and Computation, MS A127, DDSTE, Los Alamos National Laboratory, Los Alamos, Nm 87545,
USA; email: arb@lanl.gov; H. Fehske, Institute of Physics, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany; email:
fehske@physik.uni-greifswald.de; G. Hager, Erlangen Regional Computing Center, Friedrich-Alexander-Universitdt
Erlangen-Nirnberg; email: georg.hager@fau.de; O. Schenk, Advanced Computing Laboratory, Institute of Computational
Science, Faculty of Informatics, Universita della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Switzer-
land; email: olaf.schenk@usi.ch.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).
2329-4949/2020/06-ART19
https://doi.org/10.1145/3399732

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3399732

19:2 C. Alappat et al.

of a parameterized roofline model, we analyze the SymmSpMV performance in detail and discuss outliers.
While we focus on SymmSpMV in this article, our algorithm and software are applicable to any sparse matrix
operation with data dependencies that can be resolved by distance-k coloring.

CCS Concepts: « Mathematics of computing — Graph algorithms;

Additional Key Words and Phrases: Sparse matrix, sparse symmetric matrix-vector multiplication, graph al-
gorithms, graph coloring, scheduling, memory hierarchies

ACM Reference format:

Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies,
and Gerhard Wellein. 2020. A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric
Sparse Matrix-vector Multiplication. ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages.
https://doi.org/10.1145/3399732

1 INTRODUCTION AND RELATED WORK

The efficient solution of linear systems or eigenvalue problems involving large sparse matrices
has been an active research field in parallel and high-performance computing for many decades.
Well-known, traditional application areas include quantum physics, quantum chemistry, and engi-
neering. In recent years, new fields such as social graph analysis [41] or spectral clustering in the
context of learning algorithms [35, 45] have further increased the need for hardware-efficient, par-
allel sparse solvers and/or efficient matrix-free solvers. Assuming sufficiently large problems, the
solvers are typically based on iterative subspace methods and may include advanced precondition-
ing techniques. In many methods, two components, sparse matrix-vector multiplication (SpMV)
and coloring techniques, are crucial for hardware efficiency and parallel scalability. Typically, these
two components are considered to be orthogonal, i.e., hardware efficiency for SpMV is mainly re-
lated to data formats and local structures, while coloring is used to address dependencies in the
enclosing iteration scheme. The hardware-efficient parallelization of symmetric SpMV requires to
handle both these aspects efficiently.

The SpMYV operation is an essential building block in a number of applications such as algebraic
multigrid methods, sparse iterative solvers, shortest path algorithms, breadth first search algo-
rithms, and Markov cluster algorithms, and therefore it is an integral part of numerous scientific
algorithms. In the past decades, much research has been focusing on designing new data struc-
tures, efficient algorithms, and parallelization techniques for the SpMV operation. Its performance
is typically limited by main memory bandwidth. On cache-based architectures, the main factors
that influence performance are spatial access locality to the matrix data and temporal locality when
reusing the elements of the vectors involved. To address this problem, over the past two decades a
plethora of partitioning techniques and data structures to improve SpMV on cache-based architec-
tures have been suggested, including cache-oblivious methods using hypergraph partitioning [6].
One of the first studies on temporal locality optimizations was done by Toledo [43], who investi-
gated Cuthill-McKee (CM) ordering techniques on three-dimensional finite-element test matrices
when used in combination with blocking into small dense blocks. Various authors [19, 47] used
advanced data storage formats and techniques such as register and cache blocking for SpMV by
splitting the matrix into several smaller p X g sparse submatrices and presented an analytic cache-
aware model to determine the optimal block size. These algorithms are, e.g., included in OSKI [46],
which is a collection of low-level primitives of tuned sparse kernels for modern cache-based su-
perscalar machines. Kreutzer et al. [26], Yzelman [50], and Xing et al. [32] used techniques to
improve SIMD efficiency and performance on many-core and GPU architectures. Recent work
can be found, e.g., in References [29-31]. Previous work on SpMV has also focused on reducing
communication volume for distributed-memory parallelization, often by using variants of graph

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

https://doi.org/10.1145/3399732

SymmSpMYV with RACE 19:3

or hypergraph partitioning techniques. Yzelman and Bisseling [49, 51] extended hypergraph parti-
tioning techniques in a cache-oblivious method, permuting rows and columns of the input matrix
using a recursive hypergraph-based sparse matrix partitioning scheme so that the resulting matrix
exhibits cache-friendly behavior during the SpMV.

Since SpMV is a bandwidth-limited operation, exploiting the symmetry property of symmetric
matrices to reduce storage requirements and data transfers by using only the upper/lower trian-
gular part of the matrix is paramount. The major challenge here is to resolve the potential write
conflicts of explicit SymmSpMYV kernels in parallel processing. There are general solutions for such
problems like lock-based methods and thread private target arrays [10, 17, 27, 36]. However, they
have in common that their overhead may increase with the degree of parallelism. Another recent
research direction is the use of specialized storage formats such as CSB [4], RSB [34], CSX [10]
combined with the use of bitmasked register blocking techniques as done by Bulug et al. [5]. As
pointed out by Liu and Vinter [31] these approaches have drawbacks such as missing backward
compatibility and matrix conversion costs. Due to these problems there are only a very few stan-
dard libraries, like Intel math kernel library (Intel MKL) [20], that support primitives for efficient
SymmSpMYV operation. Another potential way of tackling this inherent data dependency problem
is using a distance-2 coloring of the underlying undirected graph, which has not been investigated
so far to the best of our knowledge.

Multicoloring (MC) reordering to tackle data dependencies is a very well established strategy in
parallelization of iterative solvers. As it is applied to the underlying graph it is not bound to a spe-
cific data format and may use existing highly optimized (serial) kernels, i.e., it is orthogonal to gen-
eral code optimization strategies. Prominent examples for MC in iterative solvers are Gauss-Seidel,
incomplete Cholesky factorization, or Kaczmarz method [11, 13, 22], where typically a distance-1
or distance-2 coloring is applied subject to the underlying dependencies of the iterative scheme.
However, coloring changes the evaluation order of the original solver and may lead to worse con-
vergence rates. This is different when using MC methods for parallelization of SymmSpMV where
we only need to ensure that entries of the target vector are not written in parallel. Here, we do not
require strict serial ordering to get to the same result as in serial processing. In terms of hardware
utilization long-standing MC methods often generate colorings that lack efficiency on modern
cache-based processors. Studies have been made to increase their performance and improve in-
herent heuristics; an overview of the methods can be found in References [14-16, 33]. However,
for irregular and/or large sparse matrices MC may lead to load imbalance, frequent global synchro-
nization, and loss of data locality, severely reducing (single-node) performance. These problems
typically become more stringent for higher-order distance colorings and larger matrices. The al-
gebraic block multicoloring (ABMC) [21] proposed by Iwashita et al. in 2012 addresses some of
these issues as it tries to increase data locality by applying graph partitioning (blocking) before
coloring. Beyond the quality of the actual coloring, the time to generate it is also critical, especially
for very large problems. Here, widely used and publicly available coloring packages such as COL-
PACK [16], Kokkos [24], and ZOLTAN [2, 3] speed up the coloring process itself by parallelization
and other heuristics.

Design and implementation of hardware-efficient computational kernels can be supported by a
structured performance engineering process based on white-box models. On the processor/node
level, the most prominent model is the roofline model [48]. Its basic applicability as a reasonable
light-speed estimate for SpMV was already demonstrated by Gropp et al. [18], including an ex-
tension to sparse matrix block vector multiplication. The SpMV performance model was refined
by Kreutzer et al. [26] with a focus on modeling the performance impact of irregular accesses to
the right-hand side (RHS) vector. It has been successfully used to model performance on CPUs
and GPGPUs for SpMV kernels [26] and for augmented sparse matrix multiple vector kernels for

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:4 C. Alappat et al.

Chebyshev filter diagonalization [25]. However, there is no extension towards explicit SymmSpMYV,
which shows increased computational intensity and irregular accesses to both involved vectors.
Typically the expectation is that SymmSpMYV should be approximately twice as fast as SpMV, as
only half of the matrix information needs to be stored and accessed.

Finally, there is a clear hardware trend towards processors with advanced vector-style process-
ing, higher core counts, and more complex cache hierarchies. Also, attainable bandwidth may
increase even for “standard” CPU-based systems through the use of high bandwidth memory so-
lutions at the cost of very restricted memory sizes. A first step into this direction was the Intel
Xeon Knights Landing processor. The specification of the ARM-based Fujitsu A64FX processor (to
be used in the Post-K computer) may provide another blueprint for future processor configura-
tions [12]: A 48-core processor supporting 512-bit SIMD execution units on top of 32 GiB HBM2
main memory, which provides a bandwidth of 1 TB/s. It is obvious that such hardware trends call
for revisiting existing, time-critical components in simulation codes both in terms of scalability
and hardware efficiency. Moreover, the potential of SymmSpMYV to substantially reduce the mem-
ory footprint of sparse solvers needs to be exploited to meet the constraint of very limited memory
space.

Contribution and Outline

This article addresses the general problem of generating hardware-efficient distance-k coloring of
undirected graphs for modern multicore processors. As an application, we choose parallelization
of the SymmSpMYV operation. We cover thread-level parallelization and focus on a single multicore
processor. The main contributions can be summarized as follows:

e A new recursive algebraic coloring scheme (RACE) is proposed, which generates hardware-
efficient distance-k colorings of undirected graphs. Special emphasis in the design of RACE
is put on achieving data locality, generating levels of parallelism matching the core count of
the underlying multicore processor, and load balancing for shared-memory parallelization.

e We propose shared-memory parallelization of SymmSpMYV using a distance-2 coloring of
the underlying undirected graph to avoid write conflicts and apply RACE for generating
the colorings.

e A comprehensive performance study of shared-memory parallel SymmSpMV using RACE
demonstrates the benefit of our approach. Performance modeling is deployed to substan-
tiate our performance measurements, and a comparison to existing coloring methods as
well a vendor optimized library (Intel MKL) are presented. The broad applicability and the
sustainability is validated by using a wide set of 31 test matrices and two very different
generations of Intel Xeon processors.

e We extend the existing proven SpMV performance modeling approach to the SymmSpMV
kernel. In the course of the performance analysis, we further demonstrate why in some
cases the ideal speedup may not be achievable.

We have implemented our graph-coloring algorithms in the open source library RACE.! Informa-
tion required to reproduce the performance numbers provided in this article is also available.?
This article is organized as follows: Our software and hardware environment as well as the
benchmark matrices are introduced in Section 2. In Section 3, we describe the properties of the
SpMV and SymmSpMV Kkernels, including roofline performance limits, and motivate the need for
an advanced coloring scheme. In Section 4, we detail the steps of the RACE algorithm via an
artificial stencil matrix and show how recursive level group construction and coloring can be

Thttp://tiny.cc/RACElib.
Zhttp://tiny.cc/RACElib- AD.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

http://tiny.cc/RACElib
http://tiny.cc/RACElib-AD

SymmSpMYV with RACE 19:5

Table 1. Technical Details (Per Socket) of the Intel CPUs Used for the Benchmarks

Model name Xeon® E5-2660 Xeon® Gold 6148
Microarchitecture Ivy Bridge EP Skylake SP
Base clock frequency 2.2 GHz 2.4 GHz
Uncore clock frequency 2.2 GHz 2.4 GHz
Physical cores per socket 10 20

L1D cache 10 X 32 KiB 20 x 32 KiB
L2 cache 10 x 256 KiB 20 X 1 MiB
L3 cache 25 MiB 27.5 MiB

L3 type inclusive noninclusive, victim
Main memory 32 GiB 48 GiB
Bandwidth per socket, load-only 47 GB/s 115 GB/s
Bandwidth per socket, copy 40 GB/s 104 GB/s

leveraged to exploit a desired level of parallelism for distance-k dependencies. The interaction
between the parameters of the method and their impact on the parallel efficiency is studied in Sec-
tion 5. Section 6 presents performance data for SymmSpMYV for a wide range of matrices on two
different multicore systems, comparing RACE with ABMC and MC as well as Intel MKL, and also
shows the efficiency of RACE with respect to the roofline model. Section 7 concludes the article
and gives an outlook to future work.

2 HARDWARE AND SOFTWARE ENVIRONMENT
2.1 Hardware Test Bed

We conducted all benchmarks on a single CPU socket from Intel’s Ivy Bridge EP and Skylake SP
families, respectively, since these represent the oldest and the latest Intel architectures in active
use within the scientific community at the time of writing:

e The Intel Ivy Bridge EP architecture belongs to the class of “classic” designs with three
inclusive cache levels. While the L1 and L2 caches are private to each core, the L3 cache is
shared but scalable in terms of bandwidth. The processor supports the AVX instruction set
extension, which is capable of 256-bit wide SIMD execution.

e Contrary to its predecessors, the Intel Skylake SP architecture has a shared but noninclusive
victim L3 cache and much larger private L2 caches. The model we use in this work supports
AVX-512, which features 512-bit wide SIMD execution.

Architectural details along with the attainable memory bandwidths are given in Table 1. All the
measurements were made with CPU clock speeds fixed at the indicated base frequencies. Note
that for the Skylake SP architecture the clock frequency is scaled down internally to 2.2 GHz when
using multicore support and the AVX-512 instruction set; however, this is of minor importance for
the algorithms discussed here.

As the attainable main memory bandwidth is the input parameter to the roofline model used
later, we have carefully measured this value depending on the data set size for two access patterns
(copy and load-only). The data presented in Figure 1 basically show the characteristic performance
drop if the data set size is too large to fit into the last level cache (LLC), which is an L3 cache
on both architectures (cf. Table 1 for the actual sizes). Interestingly, there is no sharp drop at the
exact size of the LLC but a rather steady performance decrease with enhanced data access rates
also for data set sizes up to twice the LLC size on Ivy Bridge EP. For Skylake SP this effect is even
more pronounced, as the noninclusive victim L3 cache architecture only stores data that are not

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:6 C. Alappat et al.

[o - COpPY
Z 9007 1 Z 800 Dy
g 3
z 130+ : : 400
AN 1z
= =
S wl | 2w
4 M
T .
20 32 64 128 256 B2 1024 2048 20 32 64 128 256 12 1024 2048
Size (MB) Size (MB)
(a) Ivy Bridge EP (b) Skylake SP

Fig. 1. Attained bandwidth versus total data size for a range from 20 MB to 2 GB. The dotted lines show
the asymptotic bandwidth given in Table 1 for the load-only and copy benchmark. The benchmarks were
performed on the full socket using the 1ikwid-bench tool. The gray vertical lines correspond to the positions
of matrices that might show caching effects; see Section 2.3. Note the logarithmic scales.

in the L2 cache; thus, the available cache size for an application may be the aggregate sizes of the
L2 and L3 caches on this architecture. The final bandwidth for the roofline model is chosen as
the asymptotic value depicted in Figure 1. Of course caching effects are extremely sensitive to the
data access pattern, and thus the values presented here only provide simple upper bounds for the
SymmSpMYV kernel with its potentially strong irregular data access.

2.2 External Tools and Software

The LIKWID [44] tool suite in version 4.3.2 was used, specifically 1ikwid-bench for bandwidth
benchmarks (see Table 1) and 1ikwid-perfctr for counting hardware events and measuring de-
rived metrics. LIKWID validates the quality of its performance metrics and validation data is pub-
licly available.> Overall the LIKWID data traffic measurements can be considered as highly accu-
rate. Only the L3 data traffic measurement on Skylake SP fails the quantitative validation, but it
still provides good qualitative results.*

For coloring, we used the COLPACK [16] library and METIS [23] version 5.1.0 for graph par-
titioning with the ABMC method. The Intel SpMP [42] library was employed for reverse Cuthill
McKee (RCM) bandwidth reduction, and the Intel MKL version 19.0.2 for some reference compu-
tations and comparisons.

All code was compiled with the Intel compiler in version 19.0.2 and the following compiler flags:
-fno-alias -xHost -03 for Ivy Bridge EP and -fno-alias -xCORE-AVX512 -03 for Skylake
SP.

2.3 Benchmark Matrices

Most test matrices were taken from the SuiteSparse Matrix Collection (formerly University of
Florida Sparse Matrix Collection) [8] combining sets from two related papers [34, 38], which allows
the reader to make a straightforward comparison of results. We also added some matrices from
the Scalable Matrix Collection (ScaMaC) library [1], which allows for scalable generation of large
matrices related to quantum physics applications. A brief description of the background of these
matrices can be found in ScaMaC documentation.’ All the matrices considered are real, although

Shttps://github.com/RRZE-HPC/likwid/wiki/Test Accuracy.
4https://github.com/RRZE-HPC/likwid/wiki/L2-L3-MEM-traffic-on-Intel-Skylake-SP-CascadeLake-SP.
Shttps://alvbit.bitbucket.io/scamac_docs/_matrices_page.html.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

https://github.com/RRZE-HPC/likwid/wiki/TestAccuracy
https://github.com/RRZE-HPC/likwid/wiki/L2-L3-MEM-traffic-on-Intel-Skylake-SP-CascadeLake-SP
https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html

SymmSpMYV with RACE

Table 2. Details of the Benchmark Matrices

19:7

Index | Matrix name N, Noz | Npgr bw | bwgrcnm
1 crankseg_1* ©) 52,804| 10,614,210 201.01 50,388 5,126
2 ship_003* 121,728 8,086,034 | 66.43 3,659 3,833
3 pwtk™ 217,918 | 11,634,424 | 53.39 189,331 2,029
4 offshore* 259,789 4,242,673 | 16.33 237,738 | 19,534
5 F1 343,791 | 26,837,113 | 78.06 343,754| 10,052
6 inline_1 (C) 503,712 | 36,816,342| 73.09 502,403 6,002
7 parabolic_fem* (C) 525,825 3,674,625 6.99 525,820 514
8 gsm_106,857* 589,446 21,758,924| 36.91 588,744 | 17,865
9 Fault_639 638,802 | 28,614,564 | 44.79 19,988 | 19,487
10 Hubbard-12* (Q) 853,776 11,098,164| 13.00 232,848 | 38,780
11 Emilia_923 923,136| 41,005,206| 44.42 17,279 | 14,672
12 audikw_1 943,695 | 77,651,847 | 82.29 925,946 | 35,084
13 bone010 986,703 | 71,666,325| 72.63 13,016| 14,540
14 dielFilterV3real 1,102,824 | 89,306,020| 80.98| 1,036,475| 25,637
15 thermal2* 1,228,045 8,580,313 6.99| 1,226,000 797
16 Serena 1,391,349 | 64,531,701 | 46.38 81,578 | 84,947
17 Geo_1438 1,437,960 63,156,690| 43.92 26,018 | 30,623
18 Hook_1498 1,498,023 | 60,917,445| 40.67 29,036 | 28,994
19 Flan_1565 1,564,794 | 117,406,044 | 75.03 20,702| 20,849
20 G3_circuit” 1,585,478 7,660,826 4.83 947,128 5,068
21 Anderson-16.5" (Q) 2,097,152 | 14,680,064 7.00| 1,198,372| 24,620
22 FreeBosonChain-18 (Q) 3,124,550 38,936,700 12.46| 2,042,975 131,749
23 nlpkkt120 3,542,400 96,845,792 | 27.34| 1,814,521| 86,876
24 channel-500x100x100-b050 | 4,802,000| 90,164,744| 18.78 600,299 | 23,766
25 HPCG-192 7,077,888 189,119,224 | 26.72 37,057(110,017
26 FreeFermionChain-26 (Q) | 10,400,600 | 140,616,112| 13.52| 5,490,811 434,345
27 Spin-26 Q) 10,400,600 | 145,608,400 | 14.00 709,995 211,828
28 Hubbard-14 (Q) 11,778,624 176,675,928 | 15.00| 3,171,168 | 425,415
29 nlpkkt200 16,240,000 | 448,225,632 | 27.60| 8,240,201 | 240,796
30 delaunay_n24 16,777,216 | 100,663,202 6.00| 16,769,102 | 32,837
31 Graphene-4096 (C,Q) 16,777,216 218,013,704 | 13.00 4,098 6,145

N; is the number of matrix rows, and Ny, is the number of nonzeros. Ny, = Np,/N; is the average number of

nonzeros per row. bw and bwgcar refer to the matrix bandwidth without and with RCM preprocessing. The
letter “C” in the parentheses of the matrix name indicates a corner case matrix that will be discussed in detail,
while the letter “Q” marks a matrix from quantum physics that is not part of the SuiteSparse Matrix Collection.
With an asterisk (*), we have labeled all the matrices that are less than 128 MB, which could potentially lead to

some caching effects especially on the Skylake SP architecture.

our underlying software would also support complex matrices. As mentioned before, we restrict
ourselves to matrices representing fully connected undirected graphs. Table 2 gives an overview
of the most important matrix properties such as number of rows (N;), total number of nonzeros
(Nnz), average number of nonzeros per row (Np,,), along with the bandwidth of the matrix without
(bw) and with (bwgcar) RCM preprocessing.

Due to the extended cache size as seen in Figure 1, it might happen that some of the matrices
attain higher effective bandwidths due to partial/full caching, especially on Skylake SP. The 10
potential candidates for the Skylake SP chip in terms of symmetric and full storage (<128 MB) are

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:8 C. Alappat et al.

ALGORITHM 1: SpMV using the CRS format: b = Ax

1: double :: A[nnz], b[nrows], x[nrows]

2: integer :: col[nnz], rowPtr[nrows + 1], tmp
3: for row = 1 : nrows do

4: tmp =0

5. for idx = rowPtr[row] : (rowPtr[row + 1] — 1) do
6 tmp += Alidx] * x[col[idx]]

7: end for
8

9

blrow] = tmp
: end for

marked with an asterisk in Table 2, while only two among these (of fshore and parabolic_fem)
satisfy the criteria for Ivy Bridge EP (<40 MB). The corresponding data set sizes for storing the
upper triangular part of these matrices have been labeled in Figure 1.

3 KERNELS

We evaluate our methods by parallelization of the SymmSpMYV kernel using distance-2 coloring,
which avoids concurrent updates of the same vector entries by different threads.

Since the kernel is closely related to the SpMV kernel by structure and computational intensity,
we start with a discussion of SpMV and extend it towards SymmSpMV later. In all cases the aim
is to derive realistic upper performance bounds, which can be estimated once the computational
intensity and main memory bandwidth (single socket bandwidth (bs); see Table 1) are known [48],
ie.,

Prernel = Ikernel X bs. (1)

Since bs depends on the ratio of load to store streams, we present the model for both upper (load-
only) and lower bound (copy) bandwidth cases. In the following, we choose the compressed row
storage (CRS) format for the implementation of SpMV as well as SymmSpMV and assume symmet-
ric matrices. We use double precision numbers for matrix and vector entries and 32-bit integers
for the index arrays.

3.1 SpMV

A baseline SpMV kernel is presented in Algorithm 1. It has no loop-carried dependencies, so par-
allelization of the outer loop using, e.g., OpenMP, is straightforward. Following the discussion in
Reference [26], its computational intensity is

2 flops
8 + 4 + 8a + 20/ Ny, bytes

Ispmv () = (2)
Here, we assume that the matrix data (A[], col[]), the left-hand side (LHS) vector (b[]), and the row
pointer information (rowPtr[]) are loaded only once from main memory, since these data struc-
tures are consecutively accessed. The intensity is calculated from the average cost of performing
all computations required for one nonzero element of the matrix. Thus, contributions that are in-
dependent of the inner (short) loop are rescaled by Ny, which is the average number of nonzeros
per row (i.e., the average length of the inner loop). Due to the write-allocate transfer, each store
into the b[] vector gives rise to an additional read, leading to a traffic contribution of 16 bytes/Ny,r
in the denominator of Equation (2).

The 8a term quantifies the data traffic caused by accessing the RHS vector (x[]). The value of
a depends on the matrix structure as well as on the RHS vector data set size and the available

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:9

ALGORITHM 2: SymmSpMV b = Ax, where A is an upper triangular matrix

1: for row =1 : nrows do

2: diag_idx = rowPtr[row]

3 blrow] += Aldiag_idx] * x[row]

4 tmp =0

5. for idx = (rowPtr[row] + 1) : (rowPtr[row + 1] — 1) do
6

7

8

tmp += Alidx] * x[col[idx]]
blcol[idx]] += Alidx] = x[row]

end for
9: blrow] +=tmp
10: end for

cache size. The minimum value of @ = N is attained if the RHS vector is only loaded once from
main memory to the cache and all subsequent accesses in the same SpMV are cache hits. This
limit is typically observed for matrices with low bandwidth (high access locality) or if the cache
is large enough to hold the full RHS data during one SpMV. The actual value of & can be deter-
mined experimentally by measuring the data traffic when executing the SpMV; see Reference [26]
for more details.® The optimal value of @ = N1 together with the corresponding computational
intensities for all matrices is shown in Table 3. The measured as,arv is used as a sensible lower
bound for asymmsparv values (see Section 3.2) in cases where advanced cache replacement strate-
gies do not apply; therefore, the table also presents the corresponding measured as,arv (= assumed
asymmspmv) values for different matrices. Choosing the matrices 10, 22, and 31, which have ap-
proximately the same optimal asparv, one can study the delicate influence of matrix structure (i.e.,
matrix bandwidth and number of rows; see Table 2) and the cache size on the actual data traffic,
i.e., the measured values of asyarv.

For most of the 10 candidate matrices on the Skylake SP architecture that could potentially
show a caching effect (see Table 2), we observe the measured asparv to be lower than optimal. In
this case, we set their asymmsparv values to the optimal alpha value of SymmSpMV (@symmsparrv)s
which will be defined in the following Section 3.2. These cases are marked with an asterisk in
Table 3.

3.2 SymmSpMV

SymmSpMYV exploits the symmetry of the matrix (A;; = Aj;) to reduce storage size for matrix data
and reduce the overall memory traffic by operating on the upper (or lower) half of the matrix only.
Thus, for every nonzero matrix entry, we need to update two entries in the LHS vector (b[]) as
shown in Algorithm 2.

In line with the discussion above and assuming the diagonal is fully populated, the computa-
tional intensity of SymmSpMYV is

4 flops

I a) = ’ ’
SymrnSpMV() 8+ 4+ 2a + 4/]\]3;’;“]“ bytes ©)
where Ny = (Npyr — 1)/2 + 1. “)

For a given nonzero matrix element four flops are performed, which is twice the amount of work
than in SpMV. In addition, we have indirect access to the LHS vector (read and write), which triples

the traffic contribution quantified by . The only term scaled with Nyy, (number of nonzeros per

%In Reference [26] the traffic for the row pointer was not accounted for, i.e., the denominator in Equation (2) is larger by
ﬁ bytes. This error is only significant when Ny, is small.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:10 C. Alappat et al.
Table 3. The optimal aspary and assumed asymmspmy for the benchmark matrices.
. asppmv | Ispmv(aspamy) | Assumed asymmspmv
Index Matrix name Opfimal g Optiml;l SKX "IVB
1 crankseg_1 0.0050 0.1648 0.0099* 0.0179
2 ship_003 0.0151 0.1610 0.0297* 0.0390
3 pwtk 0.0187 0.1597 0.0368" 0.0383
4 offshore 0.0612 0.1458 0.1154* 0.1058
5 F1 0.0128 0.1618 0.0253* 0.0436
6 inline_1 0.0137 0.1615 0.0137 0.0340
7 parabolic_fem 0.1431 0.1249 0.2504* 0.2250
8 gsm_106857 0.0271 0.1568 0.0528* 0.0946
9 Fault_639 0.0223 0.1584 0.0453 0.0861
10 Hubbard-12 0.0769 0.1413 0.1429* 0.2318
11 Emilia_923 0.0225 0.1583 0.0827 0.0855
12 audikw_1 0.0122 0.1621 0.0624 0.0638
13 bone010 0.0138 0.1615 0.0492 0.0523
14 dielFilterV3real 0.0123 0.1620 0.0728 0.0675
15 thermal2 0.1431 0.1249 0.2504* 0.2277
16 Serena 0.0216 0.1587 0.1006 0.1156
17 Geo_1438 0.0228 0.1583 0.0896 0.0917
18 Hook_1498 0.0246 0.1576 0.1031 0.0948
19 Flan_1565 0.0133 0.1616 0.0541 0.0525
20 G3_circuit 0.2070 0.1124 0.3429* 0.3360
21 Anderson-16.5 0.1429 0.1250 0.3634 0.3187
22 FreeBosonChain-18 0.0802 0.1404 0.2708 0.2628
23 nlpkkt120 0.0366 0.1536 0.1600 0.1656
24 channel-500x100x100-b050 0.0533 0.1482 0.1735 0.1339
25 HPCG-192 0.0374 0.1533 0.1358 0.1391
26 FreeFermionChain-26 0.0740 0.1421 0.3879 0.3973
27 Spin-26 0.0714 0.1429 0.3670 0.3518
28 Hubbard-14 0.0667 0.1442 0.3575 0.3598
29 nlpkkt200 0.0362 0.1537 0.1669 0.1720
30 delaunay_n24 0.1667 0.1200 0.4065 0.3192
31 Graphene-4096 0.0770 0.1413 0.1604 0.1278

The optimal value of a5y v is shown in column three. Following Equation (1) the maximum SpMV performance can

.l .
be calculated for each architecture using the best intensity values (Isparv (aspary) in %) shown in the fourth

column. The assumed @symmsparv on Skylake SP and Ivy Bridge EP architectures are presented in columns five
and six, respectively. The assumed asymmsparv is equal to the measured asparv for all matrices except the ones

marked with asterisk, where asymmsparv is set to optimal asymmsparv (

= 1/N,

symm)

row in the upper triangular part of the matrix) is the row pointer. The most optimistic value of &

(etsymmspmvy) in this case is 1/Nyy;

NEymm

, which corresponds to a one-time transfer of the LHS and

RHS vectors. The a for SpMV and SymmSpMV may be different even for the same matrix and the
same compute device, as in the latter case the two vectors are accessed irregularly and compete
for cache. Thus, we can assume that the a value measured for SpMV (as,arv) is a lower bound
for SymmSpMV. Table 3 shows the assumed asymmspmv values taken for performance modeling.
Since an upper bound for the performance is the product of computational intensity and main

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:11

([~ SpMV BMeM 161 SpMV 0/ e
SymmSpMV MC | SymmSpMV MC Nl IR
6| SymmSpMV ABMC 1 60 L%} 14 H==SymmSpMV ABMC 60 L%
g [< Jdeal SymmSpMV é 1o e 50| ¥ 1deal SymmSphv
&) o 2
T <10 240
< = o
g = s = 30
E E 6 20
</ e) S S £y JEURE= (1= —
T ¢ 2 ! i N ¢
e 05 N R
9 4 8 12 16 20 o oY
& N, S "
(a) SymmSpMV (b) Data traffic (c) SymmSpMV (d) Data traffic

Fig. 2. Scaling performance of SymmSpMV with MC and ABMC compared to SpMV on one socket of lvy
Bridge EP and Skylake SP is shown in Figures 2(a) and 2(c), respectively. Figures 2(b) and 2(d) show average
data traffic per nonzero entry (Np;) of the full matrix as measured with LIKWID for all cache levels and main
memory on full socket of lvy Bridge EP and Skylake SP, respectively. The Spin-26 matrix was prepermuted
with RCM.

memory bandwidth (see Equation (1)), this approach provides an upper performance bound for
SymmSpMV. However, the performance models derived for matrices having caching effects (see
Table 3) need not be strictly upper bound, as they heavily depend on the caching strategy of the
underlying architecture.

Comparing Equation (3) and Equation (2) it is obvious that the perfect speedup of 2Xx when
using SymmSpMV instead of SpMV is only attainable in the limit of small «. Considering the large
prefactor of the a contribution, any implementation of SymmSpMV must aim at ensuring high
data locality, i.e., loading each cache line of LHS and RHS as few times as possible. The indirect
update of the LHS also has a large impact on the parallelization strategy, as two rows that have
a nonzero in the same column cannot be computed in parallel. In a graph-based approach to this
problem, this is equivalent to the constraint that only vertices that have at least distance two can
be computed in parallel.

3.3 Analysis of the SymmSpMYV Kernel Using Parallel Coloring Schemes
for the Spin-26 Matrix

The parallelization of the SymmSpMYV kernel can be done via distance-2 coloring of the corre-
sponding graph. The computational intensity, and hence the performance, depends on the data
access patterns to the LHS and RHS vectors. As coloring schemes change those patterns, they may
change the computational intensity, and we have to investigate this effect in more detail. We ap-
ply the basic MC scheme generated by COLPACK [16] to parallelize SymmSpMV and compare
it with SpMV, which serves as our performance yardstick. Note that any required preprocessing
is excluded from the timings. In Figure 2, we present performance and data transfer volumes for
the Spin-26 matrix on a single socket of the Ivy Bridge EP and Skylake SP systems. For SpMV, we
recover the memory bandwidth saturation pattern as we fill the chip (Figures 2(a) and 2(c)). Mea-
suring the actual data volume from main memory using LIKWID, we find 16.24 and 16.36 bytes
per nonzero matrix entry (Figures 2(b) and 2(d)) on Ivy Bridge EP and Skylake SP architectures.
This corresponds to the denominator of Is,yy in Equation (2), so we can determine aspmy = 0.351
for Ivy Bridge EP and 0.367 for Skylake SP, and we can calculate an optimistic bound for the in-
tensity of SymmSpMV according to Equation (3). Using the copy and the load-only bandwidth
of Ivy Bridge EP (see Table 1) in Equation (1), we find a maximum attainable SymmSpMV per-
formance range for this matrix of Psymmspmv = 7.63-8.96 GF/s, while for Skylake SP, we expect

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:12 C. Alappat et al.

o

Fig. 3. lllustration of the increase of « by MC. Numbers represent thread I1Ds. Note that this figure shows only
rows of the matrix permuted according to MC, but in practice one would permute both rows and columns.

Psymmspmy = 19.49-21.55 GF/s. This indicates a possible speedup of approximately 1.4x~1.6X com-
pared to the SpMV baseline (5.5 GF/s and 13.41 GF/s on Ivy Bridge EP and Skylake SP); the Symm-
SpMV implementation using MC falls short of this expectation and is more than three times slower
than SpMV.

The reason for this decrease is the nature of the MC permutation. For distance-2 coloring, sets
of structurally orthogonal rows have to be determined [15], i.e., rows that do not overlap in any
column entry. These sets are referred to as colors. Figure 3 shows the corresponding permutation
and the obtained sets of colors when applied to a toy problem with high data locality. Different
rows of the same color can be executed in parallel, but colors are operated one after the other.
After MC a color may contain rows from very distant parts of the matrix, potentially destroying
data locality. Assuming that the LLC can hold a maximum of six elements, we find that the RHS
vector must be loaded every time for each new color increasing the data traffic from main memory.
This degradation of data locality is the reason why we observe 3X more bytes per nonzero for
SymmSpMV with MC compared to SpMV for the Spin-26 matrix, as seen in Figures 2(b) and 2(d).
However, our performance model indicates that SymmSpMV should exhibit only 0.7 the data
traffic of SpMV (see red dotted line in Figures 2(b) and 2(d)). Of course this effect strongly depends
on the matrix structure, the matrix size, and the cache size.

ABMC [21] tries to preserve data locality by first partitioning the entire matrix into blocks
of specified size and then applying MC to these blocks. Threads then work in parallel between
blocks of the same color. Along the lines of Reference [39], we use METIS [23] to partition the
matrix into blocks, and COLPACK for MC. The size of blocks for ABMC is determined by a pa-
rameter scan (range 4 ...128; see Reference [21]). As stated above, the timing for the performance
measurements excludes preprocessing and the parameter search. This method reduces the data
traffic (see Figures 2(b) and 2(d)), as there is better data locality within a block. Consequently, the
performance improves over plain MC (see Figures 2(a) and 2(c)). However, we are far from the
performance model prediction. In addition to data locality, other factors such as global synchro-
nizations and false sharing also contribute to this. These effects strongly depend on the number of
colors and in general increase with chromatic number. In the case of the Spin-26 matrix the over-
head of synchronization is roughly 10% for the MC method. For most of the matrices considered in
this work one can also observe a strong positive correlation between false sharing and the number
of threads for SymmSpMYV kernels due to the indirect writes in SymmSpMV.

4 RECURSIVE ALGEBRAIC COLORING ENGINE (RACE)
Our advanced coloring algorithm is based on three steps:
(1) level construction,

(2) distance-k coloring,
(3) load balancing.

In the first step, we apply a bandwidth reduction algorithm including level construction and
matrix reordering. We then use the information from the level construction step to form subsets

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE

10f*

20
30

Q00O -
o0 .
60

%

%
7
"@
(&5
7
(X5

-2
%
%
%
(&)
e
s
(65
9%

AP
o
5
'9

®)

Pl
1)
%

%

%

%

(=)
%
)
1%
&)

7
¥
7
“
7

%
/i

(a) Stencil example

10 20 30 40 50 60

(b) Sparsity pattern (c) Graph

Fig. 4. (a) Structure of an artificially designed stencil, (b) corresponding sparsity pattern of its matrix rep-
resentation on an 8 X 8 lattice with Dirichlet boundary conditions, and (c) the graph representation of the
matrix. The stencil structure was chosen for illustration purposes and does not represent any specific appli-

cation scenario.

of levels that allow for hardware-efficient distance-k coloring of the graph. Finally, we present
a concept to ensure load balancing between threads. These steps are applied recursively when

required.

To illustrate the method, we choose a simple matrix that is associated with an artificially con-
structed two-dimensional stencil as shown in Figure 4(a). The corresponding sparsity pattern and
the graph of the matrix are shown in Figures 4(b) and 4(c), respectively.

Definitions

We need the following definitions from graph theory:

e Graph: G = (V, E) represents a graph, with V(G) denoting its set of vertices and E(G) de-
noting its edges. Note that we restrict ourselves to irreducible undirected graphs.
e Neighborhood: N(u) is the neighborhood of a vertex u and is defined as

N(u) = {v e V(G) : {u,v} € E(G)}.

e kth Neighborhood: N* (u) of a vertex u is defined as

N*(u) = N(N(u))
N*(u) = N*(N(u))

N*(u) = N*Y(N ().

e Subgraph: In this article a subgraph H of G specifically refers to the subgraph induced by
vertices V' C V(G) and is defined as

4.1 Level Construction

= (V',{{u,v} € E(G) and u,v € V'}).

The first step of RACE is to determine different levels in the graph and permute the graph data
structure. This we achieve using well-known bandwidth reduction algorithms such as RCM [7] or
breadth-first search (BFS) [28]. Although the RCM method is also implemented in RACE, we use
the BFS reordering in the following for simpler illustration.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:14 C. Alappat et al.

(a) Level construction (b) Permuted graph (G’) (c)

Fig. 5. (a) Levels of the original graph and (b) the permuted graph for the stencil example. Insets show the
corresponding sparsity patterns. (c) Shows the entries of the level_ptr array associated with G’.

First, we choose a root vertex and assign it to the first level, L(0). For i > 0, level L(i) is defined
to contain vertices that are in the neighborhood of vertices in L(i — 1) but neither in L(i — 2) nor
its neighborhood [9], i.e.,

root ifi =0,
LGi)={u:ueNL(i-1)) ifi=1, (5)
u:ueNLGI-1)NN(L(GE-2))NL({i—-2) otherwise.

From Equation (5) one finds that the ith level consists of all vertices that have a minimum distance
i from the root node. Algorithm 3 (see Section A) shows how to determine this distance and thus
set up the levels L(i). We refer to the total number of levels obtained for a particular graph as
Np. Figure 5(a) shows the Ny = 14 levels of our artificial stencil operator, where the index of each
vertex (v) is the vertex number and the superscript represents the level number, i.e.,

vl = vel(i). (6)

Note that the L(i) are substantially different from the levels used in the “level-scheduling” [40]
approach, which applies “depth first search.”

After the levels have been determined, the matrix is permuted in the order of its levels, such that
the vertices in L(i) are stored consecutively and appear before those of L(i + 1). Figure 5 shows the
graph (G’ = P(G)) of the stencil example after applying this permutation (P) and demonstrates the
enhanced spatial locality of the vertices within and between levels (see Figure 5(b)) as compared
to the original (lexicographic) numbering (see Figure 5(a)). Until now the procedure is the same as
BFS (or RCM).

As RACE uses information about the levels for resolving dependencies in the coloring step, we
store the index of the entry point to each level in the permuted data structure (of G’) in an array
level ptr[0: N¢], so that levels on G’ can be identified as

L(i) ={u:u € [level_ptr[i] : (level_ptr[i+ 1] —1)]andu € V(G')}.
The entries of level_ptr for the stencil example are shown in Figure 5(c).

4.2 Distance-k Coloring

The data structure generated above serves as the basis for our distance-k coloring procedure, as it
contains information about the neighborhood relation between the vertices of any two levels. Fol-
lowing the definition in Reference [15], two vertices are called distance-k neighbors if the shortest
path connecting them consists of at most k edges. This implies that u is a distance-k neighbor of

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:15

48°

0000
8880
9%
Gl
eeco
6556
b9%%:

3
/s
/s
(s
/s
/s
e

5
8
9
®

)
)
&)
3

®

4
"
5
(s
Y
¢
o6

(6
(8
(8
(d

8
%
Y
7

o R R, TR

a) Distance-1 independent level groups

—

Fig. 6. Forming distance-1 and distance-2 independent level groups for the stencil example.

v (referred to as u LA v) if
15y = ve{uUNWUN @) U---NFw)) . (7)

For the undirected graphs as used here, u X, v also implies v X, 4. Based on this definition, we
consider two vertices to be distance-k independent if they are not distance-k neighbors, and two
levels are said to be distance-k independent if their vertices are mutually distance-k independent.
Thus, levels L(i) and L(i = (k + j)) ¥j > 1 of the permuted graph G’ are distance-k independent,
denoted as

L() b LG+ (k+)V) > 1. (8)
Equation (8) implies that if there is a gap of at least one level between any two levels (e.g.,
L(i) and L(i + 2)) all pairs of vertices between these two levels are distance-1 independent. Simi-
larly, if the gap consists of at least two levels between any two levels (e.g., L(i) and L(i + 3)), we
have distance-2 independent levels, and so on.

The definition used in Equation (8) offers many choices for forming distance-k independent sets
of vertices, which can then be executed in parallel. In Figure 6, we present one example each for
distance-1 (Figure 6(a)) and distance-2 (Figure 6(b)) colorings of our stencil example. The distance-
1 coloring uses a straightforward approach by assigning two colors to alternating levels, i.e., levels
of a color can be calculated concurrently. In case of distance-2 independence, we do not use three
colors but rather aggregate two adjacent levels to form a level group (denoted by T(i)) and perform
a distance-1 coloring on top of those groups. This guarantees that vertices of two level groups
of the same color are distance-2 independent and can be executed in parallel. Here, the vertices
in T(0), T(2), T(4), and T(6) can be operated on by four threads in parallel, i.e., one thread per
level group. After synchronization the remaining four blue level groups can also be executed in
parallel. This idea can be generalized such that for distance-k coloring, each level group contains
k adjacent levels. Thus, formed level groups are then distance-1 colored. Then, all level groups
within a color can be executed in parallel. This simple approach allows one to generate workload
for a maximum of N¢/2k threads if distance-k coloring is requested.” In all cases, vertices within a
single level group are computed in their BES/RCM permuted order, which allows for good spatial

This implies that as the number of levels increases, so does the parallelism. However, if the matrix contains at least one
row that is significantly longer than the average, parallelism may be very limited (e.g., for link matrices like com-Orkut
from the SuiteSparse Matrix Collection). For a completely dense row, we have Ny = 2.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:16 C. Alappat et al.

Step 1 Step 2
flh N NN SRS S SN 8 N S N R S N S |
ey [1[4]2]3]1l5]6 5 4 3[9]2]8]4i1[2]4] | ~way [1]4]2]3[12[5]6][5[4]3]9]2]8]411][2]4]
Tasize = meanr = 15 meanb = 13.3 » Tsize | 720]15/14/12/]17) meanr = 11.3 meanb = 17
N(T(j)) ‘.‘
signed dev [3 var = 37.78 signed dev var = 8.45 I
Step 4 Step 3 l

fuudl SN A A S G A Al AND SO AN NN G S |

ey [1[4]2]3]il5]6 5 439284 i1[2]4] | ~way [1]4]2]3]12[5]6][5[4]3]9]2]8]411][2]4]
——
T size meanr = 11 meanb = 17.3 T size meanr = 10.3 meanb = 18
signed dev ‘ ‘ var = 0.44 signed dev 5.01.7 var = 6.6

Fig. 7. All steps of the load balancing scheme, applied to an arbitrarily chosen initial distribution of 17 levels
into six level groups for distance-2 coloring. Rebalancing steps are performed clockwise starting from top
left. mean_r and mean_b denote the current average number of rows per level group and color. var is the
overall variance.

locality if the level groups are sufficiently large. Note that keeping level groups large is one of the
major advantages of RACE.

Choosing the same number of levels for each level group may, however, cause severe load im-
balance, depending on the matrix structure. In particular, the use of bandwidth reduction schemes
such as BFS or RCM will further worsen this problem due to the lenslike shape of the reordered
matrix (see inset of Figure 5(b)), leading to low workload for level groups containing the top and
bottom rows of the matrix. Compare, e.g., T(0) and T(7) with T(3) and T(4) in Figure 6(b). How-
ever, Equation (8) does not require exactly k levels to be in a level group but only at least k. In the
following, we exploit this to alleviate the imbalance problem.

4.3 Load Balancing

The RACE load balancing scheme tries to balance the workload across level groups within each
color for a given number of threads while maintaining data locality and the distance-k constraint
between the two colors. To achieve this, we use an idea similar to incremental graph partition-
ing [37]. The level groups containing low workload “grab” adjacent levels from neighboring level
groups; overloaded level groups shift levels to adjacent level groups. One can either balance the
number of rows (i.e., vertices) N;(T'(i)) or the number of nonzeros (i.e., edges) Ny, (T(i)). Both
variants are supported by our implementation, and we choose balancing by number of rows in the
following to demonstrate the method (see Algorithm 4 in Section A).

For a given set of level groups, we calculate the mean and variance of N;(T(i)) within each
color (red and blue). The overall variance, which is the target of our minimization procedure, is
then found by summing up the variances across colors. To reduce this value, we first select the
two level groups with largest negative/positive deviation from the mean (which is T(5) and T'(4)
in step 1 of Figure 7) and try to add/remove levels to/from them (see top row of Figure 7). When
removing levels from a level group, the distance-k coloring is strictly maintained by keeping at
least k levels in it. The shift of levels is done with the help of an array T_ptr[], which holds pointers
to the beginning of each level group (see Figure 7), avoiding any copy operation. If shifting levels
between the two level groups with the largest deviation does not lead to a lower overall variance,
no levels are exchanged and we choose the next pair of level groups according to a ranking that is

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE

(a) Five threads

19:17
@ee @@ @ @@
D06 CROLLREOLBELLLD
D N EE R

D e R e
e e e e e YN

0O CEENEITEN EIRE

E00 CERLETELLLBLL R0

EO0 GLOBEUBREL BB
RO @RLRRRTERRRRROE
DES CRRBERBEOEEEDBE
OO QRO RLLE@ERDE
SEC Cett et e e
ool mo o e

N OO D@ DD NN

(b) Eight threads

Fig. 8. Domain size 16 X 16 for the stencil example and distance-2 dependency, (a) after load balancing for
five threads, (b) after load balancing for eight threads.

based on the absolute deviation from the mean (see Algorithm 4 for implementation details) and
continue. Following this process in an iterative way, we finally end up in a state of lowest overall
variance at which no further moves are possible, either because they would violate the distance-k
dependency or lead to an increase in overall variance. Figure 7 shows the load balancing procedure
under a distance-2 constraint for some initial mapping of 17 levels to six level groups. Applying the
procedure to our stencil example of size 16 X 16, requesting distance-2 coloring and 10 level groups
leads to the mapping shown in Figure 8(a). The level groups at the extreme ends have more levels
due to fewer vertices (N;) in each level, while level groups in the middle, having more vertices,
maintain two levels to preserve the distance-2 constraint.

4.4 Recursion

As discussed in Section 4.2, the maximum degree of parallelism is limited by the total number of
levels (N¢) and may be further reduced by level aggregation. In case of our 16 X 16 stencil example
the maximum possible parallelism is eight threads, which may cause load imbalance as seen in
Figure 8(b). Hence, further parallelism must be found within the level groups. Compared to meth-
ods like MC, we do not require all vertices in a level group to be distance-1 (or distance-k in gen-
eral) independent. This is a consequence of our level-based approach, which requires distance-k
independence between vertices of different levels but not within a level (see Equation (8)). There
may be more parallelism hidden within the level groups, which can be interpreted as subgraphs.
Thus, we apply the three steps of our method recursively on selected subgraphs to exploit the

parallelism within them.

In the following section, we first demonstrate the basic idea in the context of distance-1 de-
pendencies, which can be resolved within the given level group by design. However, for k > 1,
vertices in a level group may have distance-k dependencies via vertices in adjacent level groups.
We generalize our procedure to distance-k dependencies as a second step in Section 4.4.2. Finally,
in Section 4.4.3, we apply the recursive scheme to our stencil example and introduce proper sub-
graph selection as well as global load balancing strategies.

To visualize the basic concepts easily and discuss important corner cases of the recursive ap-
proach, we start with the simple graph shown in Figure 9(a), which is not related to our stencil
example. To distinguish between level groups at different stages s of the recursive procedure, we

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:18 C. Alappat et al.

(a) Example graph (b) Stage 0, levels in graph (c) distance-1 coloring

Fig. 9. Exposing potential for more parallelism in a graph with distance-1 coloring. To(1), To(2), and Ty (3)
have internal unexposed parallelism. Note that the graph shown here is not related to the previous stencil
example.

® @ & @&
22

i eeose
rd 06

1

@

(@) (© (d) (@)

Fig. 10. Applying recursion to the subgraph induced by Ty(2). Figure 10(b) shows the isolated subgraph,
while Figure 10(c) presents the level construction step on the subgraph. Two potential distance-1 colorings
of this subgraph are shown in Figures 10(d) and 10(e).

add a subscript to the levels (Ls(i)) and level groups (T(i)) indicating the stage of recursion at
which they are generated, with s = 0 being the original distribution before recursion is applied to
any subgraph.

4.4.1 Distance-1 Dependency. For the distance-1 coloring of the graph in Figure 9, we find that
three of the four level groups of the initial stage still contain distance-1-independent vertices; e.g.,

in Ty (2), we have vertices 3 7L> 4 (3 distance-1 independent to 4), 3 7L> 5,3 7L 6, and 4 7L> 6, implying
each of these pairs can be computed in parallel without any distance-1 conflicts. This parallelism
is not exposed at the first stage (s = 0) as vertices in Ly(i) are chosen such that they are distance-1
neighbors of Ly (i — 1), ignoring any vertex relations within Ly (i).

Recursion starts with the selection of a subgraph of the matrix, which is discussed in more detail
later (see Section 4.4.3). Here, we choose the subgraph induced by Ty(2). It can be isolated from
the rest of the graph, since the distance-1 coloring step in stage 0 has already produced indepen-
dent level groups. Now, we just need to repeat the three steps explained previously (Section 4.1-
Section 4.3) on this subgraph.

Figure 10 shows an illustration of applying the first recursive step (s = 1) on Ty(2), where we
extend the definition of the vertex numbering in Equation (6) to the following:

v — v e (Lo(i) NLiG) N La(k) N} ©)

At the end of the recursion (cf. Figures 10(d) and 10(e)) on Ty(2), we obtain parallelism for two more
threads in this case. The subgraphs might have “islands” (groups of vertices that are not connected
to the rest of the graph); e.g., vertex 3 and vertices 4,5,6 form two islands in Figure 10(b). Since
an island is disconnected from the rest of the (sub)graph it can be executed independently and

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:19

eeeooe @
- e
(b) (©)
Fig. 11. Two level groups generated by a distance-2 coloring (Figure 11(a)). Figure 11(b) shows the subgraph
induced by level group Ty (1). Level construction on the selected subgraph is shown in Figure 11(c). Forming

distance-2 independent level groups on these levels does not guarantee a distance-2 independence between
the newly generated level groups of the same color as seen in Figure 11(d).

(d)

(b)

Fig. 12. Correct procedure for distance-2 coloring of level group To(1). The subgraph as shown in Figure 12(b)
contains level group Tp(1) and its distance-1 neighborhood. A level construction step is applied to this sub-
graph in Figure 12(c). Distance-2 coloring by level aggregation leading to level groups of stage 1 is shown in
Figure 12(d); we get three level groups at the end of the recursion on Ty(1).

in parallel to it. To take advantage of this, the starting node in the next island is assigned a level
number with an increment of two, as seen in Figure 10(c). This allows for two different colorings
of the island, increasing the number of valid distance-1 configurations (cf. Figures 10(d) and 10(e)).
The selection of the optimal one will be done in the final load balancing step as described in
Section 4.3.

As this recursive process finds independent level groups (T;1) within a level group of the pre-
vious stage (T;), the thread assigned to T has to spawn threads to parallelize within T, ;.

4.4.2 Distance-k Dependencies with k > 1. In general, it is insufficient to consider only the sub-
graphs induced by level groups in the recursion step, as can be seen in Figure 11(a) for distance-2
coloring. Applying the three steps (see Figures 11(b) to 11(d)) to the subgraph induced by Ty(1)
does not guarantee distance-2 independence between the new level groups T;(0) and T;(2). It is
obvious that for general distance-k colorings two vertices a, b within a level group might be con-
nected by a shared vertex ¢ outside the level group. Thus, our three-step procedure must be applied
to a subgraph that contains the actual level group (T5(j)) as well as all its distance-p neighbors,
wherep =1,2,...,(k—1).

This ensures that there is no vertex outside the subgraph that can mediate a distance-k depen-
dency between vertices in the embedded level group (T;(j)). We can now construct the new levels
(Ls+1(:)) on this subgraph considering the neighborhood, but in L4 (:), we only store the vertices
that are in the embedded level group (75 (j)). Next, we apply distance-k coloring by aggregation of
the new levels, leading to a set of level groups Ts.1(:) within T (j). Figure 12 demonstrates this ap-
proach to resolve the conflict shown in Figure 11(d). Figure 12(b) presents the subgraph containing
the selected level group Tp(1) and its distance-1 neighborhood.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:20 C. Alappat et al.

@@ GO D BDOE
TG e

(2

5
o
!
9
6
©

.
o
o
o
o
o
y

N 0 0 T o T T o o T %
%%%m Initial Stage | Recursion
BB LBB LR GEee (=0 6=
SRsRRenniut |
)) X T T T) Y red e 5
SeSeBEBBBRLE
PR RRNDORCOLRRRD® -ttt 5
CERC SR R AR R R R SR MR 3
G T o) 0 R B @ B brown =
A I I ;
RS RO O® -----n---- TP
BB BB
BB e s S
S

Fig. 13. Graph coloring of the stencil example for eight threads. Recursion is applied on level groups Ty (4 — 7)
with two threads assigned to each. The parallel execution order is shown on the right. Horizontal red dotted
lines indicate synchronization and its extent. Vertical lines distinguish between level groups of different
stages (here Ty and T;) that can run in parallel.

Level construction is performed on the subgraph (Figure 12(c)), but the new levels only contain
vertices of Ty(1), i.e., L;(1) = {7>!}. Finally, distance-2 coloring by aggregation of two adjacent
levels is performed, leading to three level groups of the second stage s = 1 (Figure 12(d)), i.e.,
T1(0) = {L1(0) U L1(1)}. Now vertices 3 and 6 are mapped to level groups of different colors. Note
that the permutation step on the newly generated levels is not shown but is performed as well to
maintain data locality.

4.4.3 Level Group Construction and Global Load Balancing. The recursive refinement of level
groups allows us to tackle load imbalance problems and limited degree of parallelism, as we are no
longer restricted by the one thread per level group constraint. Instead, we have the opportunity
to form level groups and assign appropriate thread counts to them such that the load per thread
approaches the optimal value, i.e., the total workload divided by the number of threads available.
Pairs of adjacent level groups having different colors within a stage, i.e., T5(i) and T (i + 1) with
i=0,2,4,...,are typically handled by the same threads, so we assign an equal number of threads
to these level groups. We then apply recursion to the level groups with more than one thread
assigned. Starting with the original graph as the base level group (7-;(0)) to which all available
threads Ny(T_(0)) = N; and all vertices N;(T_1(0)) = N'°! are assigned, we perform the following
steps to form level groups Ts(:) at stage s > 0 to which we assign Ni(T;(:)) threads. To illustrate the
procedure, we use the 16 X 16 stencil example and construct a coloring scheme for eight threads
(see Figure 13).

(1) Assign weights to all levels at stage (s) of the recursion. Assuming that Ls(i) C Ts—1(j), its
weight is defined by

W) = BN ().

For a given level group (Ts-1(j)) that has to be split up (N¢(Ts-1(j)) > 1), the weight

describes the fraction of the optimal load per thread, i],i ((;;:((JI;; ,in the specific level (L; (i)).

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:21

Requesting Ny(T-1(0)) = 8 threads for the N;(T-;(0)) = 256 vertices of the stencil ex-
ample in Figure 13 produces the following weights for the initial (s = 0) levels:

(w(Zo(0)), (Lo (1)), w(Lo(2). .. .} = {%6 8, % 8, ;R s}

The above definition implies that if the weight is close to a natural number b, the cor-
responding workload is near optimal for operation with b threads. Thus, starting with
Ls(0), we aggregate successive levels until their combined weight forms a number a close
to a natural number b. Distance-k coloring is ensured by enforcing it to aggregate at least
2 - k levels, i.e., for distance-2 coloring at least four levels (two for red and two for blue).
Closeness to the natural number is quantified by a parameter € defined as

€ = 1—abs(a — b), where b = max(1, [a])
and [a] is the nearest integer to a,
and controlled by the criterion
€ > €5, where the ¢; € [0.5, 1) are user-defined parameters.

The choice of this parameter may be different for every stage of recursion. Once we find
a collection of successive levels satisfying this criterion, the natural number b is fixed. We
try to further increase the number of levels to test if there exists a number a’ > a that is
closer to b leading to an € value closer to one. We finally choose the set of levels with
the best € value and define them to form T;(0) and Ts(1), which are to be executed by
Ni(T5(0)) = Ni(Ts(1)) = b threads. In Figure 13, we choose €; = 0.6, which selects the first
seven levels to form Ty(0) and Ty(1). As their combined weight is % = 0.875, one thread
will execute these two level groups.

We continue with subsequent pairs of level groups (T (i), Ts (i + 1);i = 2,4...) by applying
this procedure starting with the very next level. Finally, once all the levels have been
touched, a total of Ny(T;_;1(j)) threads have been assigned to the levels Ls(i) C T;5_(j).
For example, for Ty(4) and Ty(5) in Figure 13 two threads satisfy the criterion as the total
weight of the four levels included is g—g = 1.69.

The distribution between adjacent red and blue level groups that are assigned to the same
thread(s) as well as the final global load balancing is performed using a slight modification
of the scheme presented in Section 4.3 (shown at the beginning of Algorithm 4 in Sec-
tion A): Now the calculation of mean and variance must consider the number of threads
(Nt(Ts(j))) assigned to each level group. The worker array now has to be replaced by the
number of threads assigned to each level group (N¢(Ts(j))). The algorithm then tries to
minimize the variance of the number of vertices per thread in level groups. Ideally, after
this step the load per thread in each level group should approach the optimal value given
above.

Once the level group of stage s has been formed, the recursion and the above procedure are sep-
arately applied to all new level groups with more than one thread assigned. This continues until
every level group is assigned to one thread. The depth of the recursion is determined by the pa-
rameter €; and depends on the matrix structure as well as degree of parallelism requested.

For our stencil example in Figure 13 the inner four level groups of stage s = 0 required one stage
of recursion. This led to 16 level groups at stage s = 1, as we require four new level groups per
recursion to schedule two threads. In terms of parallel computation, first the red vertices will be
computed in parallel with the orange ones using four threads for both colors. Once the orange
vertices are done, each pair of threads assigned to Ty(4) and Ty (6) synchronize locally (i.e., within

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:22 C. Alappat et al.

[164,170]
id=5

d=5
7

Fig. 14. The internal tree structure of RACE representing the stencil example for domain size 16 X 16 and
eight threads. The range [. . .] specified in each leaf represents the vertices belonging to each level group and
the ID refers to the thread ID assigned to each level group assuming compact pinning . The last entry (fof)
gives the effective row count introduced in Section 5.

To(4) and T (6) separately). Then the pink vertices are computed followed by a global synchroniza-
tion of all threads. The scheme continues with the blue vertices and the brown/cyan ones, which
represent the two blue level groups to which recursion has been applied (see table in Figure 13).

The recursive nature of our scheme can be best described by a tree data structure, where every
node represents one level group and the maximum depth is equivalent to the maximum level (stage)
of recursion. The data structure for the colored graph in Figure 13 and its static® thread assignments
are shown in Figure 14. The root node represents our baseline level group T_;(0) composed of all
256 vertices and all eight threads (having unique id = 0, . .., 7). The first level of child nodes gives
the initial (s = 0) distribution, with each node storing the information of a level group including
its color. Threads are mapped consecutively to the level groups. The red Ty(4) level group, which
consists of vertices 66, . . ., 90 (omitting the superscript for level numbers), is executed by threads
with id = 2, 3. Applying recursion to Tp(4), this node spawns four new child nodes at stage s = 1,
i.e., level groups Ti(0,...,3) C Ty(4), to be executed by the two threads. Synchronization only
happens between threads having the same parent node after executing the same color. The actual
computations are only performed on the leaf nodes of the final tree.

5 PARAMETER STUDY

The RACE method has a set of input parameters {€s;s = 0,1, ...} that control the assignment of
threads to adjacent level groups. To determine useful settings, we analyze the interaction between
these input parameters, the number of threads used, and the parallel efficiency of the generated
workload distribution.

As the internal tree structure contains all information about the final workload distribution, we
can use it to identify the critical path in terms of workload and thus determine the parallel effi-
ciency. To this end, we introduce the effective row count for every node (or level group) N (T (i)),
which is a measure for the absolute runtime to calculate the corresponding level group. For level
groups that are not further refined (i.e., the leaf nodes) this value is their actual workload, i.e., the
number of rows assigned to them (N (T;(0)) = 15 in Figure 14). For an inner node, the effective
row count is the sum of the maximum workload (i.e., the maximum effective row count value) across

8The thread assignment is initially done in a static manner, which eliminates the overhead from dynamic work allocation
during execution and helps preserve data locality.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:23

each of the two colors of its child nodes:
NE(T, (1) = max (NS (T () € To(0))) + max (NS (o1 G+ 1) € T(0)))
forj=0,2,...

Such a definition is based on the idea that nodes at a given stage s have to synchronize with each
other and have to wait for their siblings with the largest workload in each color. Propagating this
information upwards on the tree until we reach the root node constructs the critical path in terms of
longest runtime taking into account single thread workloads, dependencies, and synchronizations.
Thus, the final value in the root node N*(T_;(0)) can be considered as the effective maximum
workload of a single thread. Dividing the globally optimal workload per thread, N!°'?!/N;, by this
number gives the parallel efficiency (1) of our workload distribution:

Ntotal
I
= ——m—.
NE(T_1(0)) x Ny
. . g _ 256 _ :
For the tree presented in Figure 14, the parallel efficiency is limited to 7 = ;325 = 0.73 on eight

threads, i.e., the maximum parallel speedup is 5.8.

5.1 Parameter Analysis and Selection

The parallel efficiency 7 as defined above can be calculated for any given matrix, number of threads
N, and choice of {e5;s = 0, 1,. . .}; it reflects the quality of parallelism generated by RACE for the
problem at hand. This way, we can understand the interaction between these parameters and
identify useful choices for the €;. Of course, running a specific kernel such as SymmSpMV on
actual hardware will add further hardware and software constraints such as attainable memory
bandwidth or cost of synchronization.

As a first step, we can limit the parameter space by simple corner case analysis. The smallest
possible value of €, is the maximum deviation of a real number from its nearest integer, which is 0.5.
However, the largest possible value is one. Setting all parameters () close to one requests high-
quality load balancing but may prevent our balancing scheme from terminating. In the extreme
case of {¢;, = 1;5 = 0, 1,.. .} the scheme may generate only two level groups (one of each color) in
each recursion, assign all threads to them, and may further attempt to refine them in the same way.
A range of [0.5,0.9] for the €, is therefore used in the following analysis. To ensure termination,
the default €5 value is chosen to be 0.5. Thus, even if sufficient parallelism cannot be found at
a user-specified €; value for the initial stages of recursion, the algorithm will choose the default
€5 = 0.5 in later stages and eventually terminate.

For an initial discussion, we have selected the inline_1 matrix (see Table 2), which has a rather
small amount of parallelism and thus represents an important corner case. In Figure 15, we demon-
strate the impact of different choices for €y and ¢; on the parallel efficiency for thread counts up
to 100, which is a useful limit for modern CPU-based compute nodes. For s > 1, we always set
the default value of e; = 0.5. The limited parallelism can be clearly observed in Figure 15(a), with
efficiency steadily decreasing with increasing thread count. At €; = 0.5 there is only a minor im-
pact of the parameter €, for small thread counts (N; < 30). In Figures 15(b) to 15(d) the interplay
between these two parameters is analyzed at different thread counts in more detail. We find that
up to intermediate parallelism (N; = 50) the exact choice has only a minor impact on the parallel
efficiency. For larger parallelism the interplay becomes more intricate, where too large values of
€p,1 may lead to stronger imbalance. Based on this evaluation, we choose €, = 0.8 and €; = 0.5 for
s > 1 for all subsequent performance measurements. The quality of this choice in terms of parallel
efficiency for all matrices is presented in Figure 16. Here, we plot the n value for all the matrices
over a large thread count. We find that our parameter setting achieves parallel efficiencies of 75%

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:24
0.8/ I S
|
0.6
o
0.4
I 6[):0.50
021 e = 070
E[):0.80
010 20 30 40 50 60 70 80 90 100

Ny

(a) versus N for inline_1 matrix, e = 0.5

1

)
0.8)]
s\/
0.6/
=
04f
€ = 0.50
0.2} | =€ =0.70
e = 0.80
~ ¢ = 0.90
U035 055 06 065 0.7 075 08 085 09
€0
(C) Ni=45

0.6

0.4

0.2

0.8

0.6

0.4

0.2

C.

Alappat et al.

€ =0.50
| |- =070
&1 = 0.80
—-¢e1 =0.90
05 055 0.6 065 07 0.75 08 08 09
€0
(b) Ny=25
e

e = 0.50
=¢; = 0.70
e = 0.80
~ ¢ = 0.90
5 055 06 065 0.7 075 0.8 08 09
€0
(d) N¢=100

Fig. 15. Parameter study on the inline_1 matrix. In Figures 15(b) to 15(d) each of the lines in the plot are
iso-€1 and impact of n with respect to € is shown. €; for s > 1 is fixed to 0.5.

1 2ns
!ll L L : i
1 89,33 s :
E THITHTHI . : '
*Ciedpl ' I [H i : :
osf Rl p | i P H i : : 1
R l; . H l | ' |] . H
.. ..:o. 1] . H . H $ $ 1 i H
’ CLo . s H . i
0.6] . . . : . 1
= : : : .
04} L . : .
0.2} : . . i
O Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Ny

Fig. 16. Parallel efficiency n versus N; for all test matrices with €p,1 = 0.8 and €551 = 0.5.

or higher for 75% of the matrices up to an intermediate thread count of 40. Representing the upper
(lower) values in Figure 16 is the best (worst) case matrix Graphene-4096 (crankseg_1), exhibiting
almost perfect (very low) parallel efficiency at intermediate to high thread counts.

Finally, we evaluate the scalability of RACE using these two corner cases and the inline_1 matrix
as well as the parabolic_fem matrix. The latter is small enough to fit into the cache. In Figure 17, we

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:25

7 ! 20 e, 1 1
6 ; 18 e J0.9 0.9
16 08 08
5 14 0.7 0.7
sy 12 06 = 0.6

= =10 055 = 05
3 Jen 8 0.4 3 0.4
A0 6 0.3 6 0.3
2 . 4 0.2 ;) 0.2
- 2 o Nl P P el
0 4 8§ 12 16 20 T 8 12 16 2 T 8 12 16 2 T 8 12 16 20
Ni Ny N N
(a) crankseg 1 (b) inline_1 (c) parabolic_fem (d) Graphene-4096

Fig. 17. fof and 1 versus N for

runs. Nteﬂr is defined as 7 X Nj.

the four corner case matrices, with the same settings used in experiment

24
30 6.68 B — 30

=~ @ — 9
= . = 25| = ’
T 16 S T 20
= > 20 o
=12 £ 15 g1
é é o
g 8 o Y £ 10 § SNV £
< ~SymmSpMV ~SymmSpMV | £
~ 4 SpMV 5 - i\{lﬁ\?—c%py 5 / - ?{fl\?—g())py a5

~SymmSpMV 0 + RLM-load 0 + RLM-load

4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20
Nt Ny Nt t
(a) crankseg 1 (b) inline_1 (c) parabolic_fem (d) Graphene-4096

Fig. 18. Parallel performance measurements of SymmSpMV with RACE on one Skylake SP socket for the
four corner case matrices. The performance of the basic SpMV kernel is presented for reference. For the
matrices Figures 18(b) to 18(d) the maximum roofline performance limits Equation (1) are given using
the computational intensity Equation (3) for the two extreme cases of load-only memory bandwidth
(RLM-load) and copy memory bandwidth (RLM-copy). The measured full socket main memory data traffic
per nonzero entry of the symmetric matrix (in bytes) for the SymmSpMV operation is also shown, where
values below 12 bytes indicate caching of the matrix entries.

mimic scaling tests on one Skylake processor with up to 20 cores (i.e., threads) and plot the parallel
efficiency 7 as well as the maximum number of threads that can be “perfectly” used Nte‘:f (ie., Nfﬂ =
n X N;). The unfavorable structure of the crankseg 1 matrix puts strict limits on parallelism even
for low thread counts. The combination of small matrix size with a rather dense population (see
Table 2) leads to large inner levels when constructing the graph, triggering strong load imbalance
when using more than six threads. A search for better € slightly changes the scaling characteristic
but not the maximum parallelism that can be extracted. For the inline_1 matrix, we find a weak
but steady decrease of the parallel efficiency, which is in good agreement with the discussion of
Figure 15. The other two matrices scale very well in the range of thread counts considered.

The corresponding performance measurements for the SymmSpMYV kernel (see Section 3.2) on
a single Skylake SP processor chip with 20 cores are shown in Figure 18.” For the crankseg 1
matrix (see Figure 18(a)), we recover the limited scaling due to load imbalance as theoretically pre-
dicted. A performance maximum is at nine cores, where the maximum SpMV performance can be
slightly exceeded. However, based on the roofline performance model given by Equation (1) and

9For the benchmarking setup, see Section 6.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:26 C. Alappat et al.

Equation (3) together with the matrix parameters from Table 2, a theoretical speedup of approxi-
mately two as compared to SpMV can be expected for the full processor chip under best conditions.
Indeed, in case of the inline_1and Graphene-4096 matrices, performance scales almost linearly un-
til the main memory bandwidth bottleneck is hit. The saturated performance is in good agreement
with the roofline limits. Note that even though the inline_1matrix does not exhibit perfect theoret-
ical efficiency (1 =~ 0.85 at N; = 20), it still generates sufficient parallelism to achieve main memory
saturation: the memory bottleneck can mitigate a limited load imbalance.

The peculiar performance behavior of parabolic_fem (see Figures 17(c) and 18(c)) is due to its
smallness (~23 MB), which lets it fit into the caches of the Skylake processor (LLC size = 28 MB).
Thus, performance is not limited by the main memory bandwidth constraint and the roofline model
limits do not apply.

We have demonstrated that a simple choice for the only set of RACE input parameters {es;s =
0,1,...} can extract sufficient parallelism for most matrices considered in this study. Moreover,
the parallel efficiency as calculated by RACE in combination with the roofline performance model
is a good indication for scalability and maximum performance of the actual computations.

6 PERFORMANCE EVALUATION OF SymmSpMYV USING RACE

We evaluate the performance of the SymmSpMV based on parallelization and reordering per-
formed by RACE and compare it with the two MC approaches introduced above and the Intel
MKL. As a measure of baseline performance, we choose the general SpMV kernel and use the
performance model introduced in Section 3 to quantify the quality of our absolute performance
numbers. As the deviations between different measurement runs are less than 5%, we do not show
the error bar in our performance measurements.

6.1 Experimental Setup

All matrix data are encoded in the CRS format. For the SymmSpMYV only the nonzeros of the up-
per triangular matrix are stored. In the case of RACE and the coloring approaches every thread
executes the SymmSpMYV kernel Algorithm 2 with appropriate outer loop boundary settings de-
pending on the color (MC, ABMC) or level groups (RACE) to be computed. Balancing by number
of non-zeros (Ny,) is used for the load balancing step of RACE in all performance measurements.
To ensure vectorization of the inner loop in Algorithm 2, we use the SIMD pragma #pragma simd
reduction(+:tmp) vectorlength(VECWIDTH). Here VECWIDTH is the maximum vector width
supported by the architecture, i.e., VECWIDTH = 4 (8) for Ivy Bridge EP (Skylake SP).

The Intel MKL offers two choices for the two sparse matrix kernels under consideration: First,
CRS-based data structures are provided and are used in the subroutines (mk1_cspblas_dcsrgemv
for SpMV and mkl_cspblas_dcsrsymv for SymmSpMV) without any modification (MKL). This
mode of operation is deprecated from Intel MKL.v.18 update 2. Instead, the inspector-executor
mode (MKL-IE) is recommended to be used. Here, the user initially provides the matrix
along with hints (e.g., symmetry) and operations to be carried out to the inspector routine
(mk1_sparse_set_mv_hint). Then an optimization routine (mkl_sparse_optimize) is called
where the matrix is preprocessed based on the inspector information to achieve best performance
and highest parallelism for the problem at hand. The subroutine mk1_sparse_d_mv is then used
to do the SpMV or SymmSpMYV operations on this optimized matrix structure. This approach does
not provide any insight into which kernel or data structure is actually used “under the hood.”

In the performance measurements the kernels are executed multiple times to ensure reasonable
measurement times and average out potential performance fluctuations. We use two ring buffers
(at least of 50 MB each) holding separate vectors of size N; to avoid vector data reuse across kernel

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:27

10 EMEM EMEM
9 | 1%} N3
8 L2 2
= deal SymmSpMV < Ideal SymmSpMV
=7
3
g O
Z 4
R
s 3 4L | = =M. =m..an | = o /S | | ENl ERi.=el. 8
2)
2
1 NN BTSN CNG
0 T N
1216 20 g e e
, N, e g
(a) SymmSpMV (b) Data traffic (c) SymmSpMV (d) Data traffic

Fig. 19. Performance (Figure 19(a)) and data traffic (Figure 19(b)) analysis for SymmSpMYV kernel with Spin-
26 matrix using MC, ABMC, and RACE on a single socket of lvy Bridge EP. The corresponding measurements
for a single socket of Skylake SP are shown in Figures 19(c) and 19(d). The roofline performance model (using
copy and load-only bandwidth) and the performance of the SpMV kernel is plotted for reference in scaling
plots Figures 19(a) and 19(c). The average data traffic per nonzero entry (Ny;) of the full matrix as measured
with LIKWID for all cache levels and main memory is shown together with the minimal value for main
memory access (horizontal dashed line) in Figures 19(b) and 19(d).

executions.!? After each kernel invocation, we switch to the next vector in the two buffers. We run
over these two buffers 100 iterations (times) and report the mean performance.

For all methods and libraries the input matrices have been preprocessed with RCM bandwidth
reduction using the Intel SpMP library [42]. This provides the same or better performance on all
matrices as compared to the original ordering. If not otherwise noted, we use the full processor chip
and assign one thread to each core. As we focus on a single chip and sub-NUMA clustering (SNC)
is not enabled on Skylake SP, no NUMA data placement effects impact our results. Simultaneous
multi-threading (SMT) is not used, since for most of the matrices in Table 2, the processor can
saturate the main memory bandwidth with one thread per core.

6.2 Results

Before we evaluate the performance across the full set of matrices presented in Table 2, we return
to the analysis of the SymmSpMYV performance and data traffic for the Spin-26 matrix that we have
presented in Section 3.3 for the established coloring approaches.

6.2.1 Analysis of SymmSpMYV Kernel Using RACE for the Spin-26 Matrix. The shortcomings in
terms of performance and excessive data transfer for parallelization of SymmSpMV using MC and
ABMC have been demonstrated in Figure 2. We extend this evaluation by comparison with the
RACE results in Figure 19. The figures clearly demonstrate the ability of RACE to ensure high
data locality in the parallel SymmSpMV kernel. The actual main memory traffic achieved is in line
with the minimum traffic for that matrix (see discussion in Section 3.3) and a factor of up to 4x
lower than the coloring approaches. Correspondingly, RACE SymmSpMYV performance is at least
3.3x higher than its best competitor and 25% better than the SpMV kernel on both architectures.
It achieves more than 84% of the roofline performance limit based on the copy main memory
performance. Note that the indirect update of the LHS vector will generate a store instruction for
every inner loop iteration (see Algorithm 2), while the SpMV kernel only does a final store at the
end of the inner loop iteration. In combination with the low number of nonzeros per row (N,,) of
the Spin-26 matrix, the “copy” induced limit poses a realistic upper performance bound.

¥Depending on the algorithm that the kernels are embedded in, its implementation, and the parameters of the matrix,
cache reuse may occur in practice. For a quantification of this effect, one can use the performance models (2) and (3).

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

C. Alappat et al.

16 |® RACE-SymmSpMV I MKL-IE-SymmSpMV ¢ MKL-SymmSpMV 4 MKL-SpMV—RLM
14
L]
oo [o ® °
12 . b
Zz ® \] ® e
=) [Py °
Y 10 ol °
8 °
Z 8 N ° °
S A A A A A A A o
£ & \ | AR R \.,‘AA ® &g & o 7N N
£ 6 "e o o ° A A A& /
3 & e
g
2
0 < =~ S = 5 i T S o IS S <
S S SN IS8T SIS EF58S85573538337598
O S i T L TS §FEs~N =S8 T s s30 58577 TF
L5 78 58S FFETEFEFEFES L LT 55 5LSFSAEFE &4
55 S FES T 5§55 58 S 9 3L $FZESPSALIZE S 5
g “ S 5 &< 57 I = O SsxgHF £95o8 0O = 5 58
S s Z SRS = fes] g 5 S&5 T 3 s 5 &5 5
5 @ fes] & s g S .9 z T 5
2 T < 9 = g < L
5 2 & 5 o
<3 ~ S
g [
I
g
T
(a) lvy Bridge EP
40 ° |® RACE-SymmSpMV " MKL-TE-SymmSpMV ¢ MKL-SymmSpMV 4 MKL-SpMV —RLM
35 »
3 [)
—
g 30 ° o o ®o o
S ° °
9]
8 ~ A] oo ol ®
=] N A
g2 o ®
g — & - ax & K a A A x A ®
=) o 5 a ° &
E15 o i L a ® a & ® o /A
& . .
10
5
00— < 5 -
D T T AN D TS TN I L oSN TS T O
S FESH R8T H LS FFTSFFSSFs 79823773888
s 2 A3 F IS I T L5 55y T ST 555 5TE ST
L5778 58S FFETEFEFEFES L LT 535S FSAFE &4
R 5 FIT S5 S8 5 S S S SFSESLSPS IS5
I =S S S5 S & O o&E & & =5 & < 5 59
3] S & SaN<S) =~ fes} L 3 ST 3 s 5 & F
5 Js] <3 T S IS 8 = s =
3 7 5 3 g T s
3, I3 Q:O ~ I<i G
g Q & 5
g S =
£ 5 3
= 4 £
E &
IS
g
T

(b) Skylake SP

Fig. 20. Performance of SymmSpMV executed with RACE compared to the performance model and Intel

MKL implementations. SpMV performance obtained using Intel MKL library is also shown for reference.
The model prediction is derived for bandwidths in the range of load and copy bandwidth and using the

measured asppy shown in Table 3.
6.2.2 Analyzing Absolute Performance of RACE. We now extend our RACE performance in-
vestigation to the full set of test matrices presented in Table 2. In Figures 20(a) and 20(b) the

performance results for the full Ivy Bridge EP processor chip (10 cores) and the full Skylake SP
processor chip (20 cores) are presented along with the upper roofline limits and the performance

of the baseline SpMV kernel using Intel MKL. The matrices are arranged along the abscissa ac-
cording to the ascending number of rows (N;), i.e., increasing size of the two vectors involved in
SymmSpMYV. Overall RACE performance comes close to or matches our performance model for

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:29

many test cases on both architectures. A comparison of the architectures shows that the corner
case matrices crankseg_1 and parabolic_fem have a strikingly different behavior for RACE. For
crankseg_1 this is caused by the limited amount of parallelism in its structures. Here, we refer to
the discussion of Figure 17(a) where best performance and highest parallelism (Nteﬁ) were achieved
at approximately 10 cores. Using only 9 cores on Skylake SP lifts the SymmSpMV performance of
crankseg_1 slightly above the SpMV level of the MKL. The parabolic_femhas been chosen to fit
into the LLC of the Skylake SP architecture to provide a corner case where scalability is not intrin-
sically limited by main memory bandwidth (see Figure 17(c)), and thus our roofline performance
limit does not apply for this matrix on Skylake SP. However, on Ivy Bridge EP the matrix data set
just exceeds the LLC, and the performance is in line with our model.

On both architectures a characteristic drop in performance levels is encountered around the
Flan_1565 and G3_circuit matrices, where the aggregate size of the two vectors (25 MB) ap-
proaches the available LLC sizes. For smaller matrices, we have a higher chance that the vectors
stay in the cache during the SymmSpMYV, i.e., the vectors must only be transferred once between
main memory and the processor for every kernel invocation. For larger matrices (i.e., larger N;)
the reuse of vector data during a single SymmSpMYV kernel decreases and vector entries may be
accessed several times from the main memory. This is reflected by the increase in measured as v
(assumed asymmspary) values for matrices with index 20 and higher in Table 3.

In short, RACE has an average speedup of 1.4x and 1.5X compared to SpMV on the Skylake SP
and Ivy Bridge EP architectures, respectively. On Skylake SP RACE SymmSpMYV attains on an aver-
age 87% and 80% of the roofline performance limits predicted using the copy and load bandwidth,
respectively, while on Ivy Bridge EP, we are 91% and 83% close to the respective performance
models.

The MKL implementations of SymmSpMV deserves a special consideration in this context.
Therefore, in Figure 20, we also compare our approach with the two Intel MKL options described
above. For the MKL-IE variant, we specify exploiting the symmetry of the matrix when calling the
inspector routine. On the Ivy Bridge EP architecture, RACE always provides superior performance
levels and the best performing Intel variant depends on the underlying matrix. On the Skylake SP,
however, MKL-IE always outperforms the deprecated MKL routine and is superior to RACE for
two matrices (crankseg-1,offshore). These are the same matrices where RACE is slower than
the MKL SpMV kernel (see Figure 20(b)). It can be clearly seen that the MKL-IE data for Symm-
SpMV are identical with the MKL SpMV numbers presented in Figure 20, i.e., the inspector calls
the baseline SpMV kernel and uses the full matrix, though it knows about the symmetry of the
matrix. One reason for that strategy might be that the parallelization approach used in the dep-
recated MKL implementation for SymmSpMYV is not scalable, which would explain the fact that
MKL is worse than MKL-IE for all cases on Skylake SP. As neither the algorithm used to parallelize
the SymmSpMYV nor its low-level code implementation is known, we refrain from a deep analy-
sis of the Intel performance behavior. In summary, we find that RACE is on average 1.4x faster
than the best Intel variant and can achieve speedups of up to 2x. Note that on Skylake SP the best
MKL variant is always MKL-IE, which has almost twice the memory footprint compared to the
SymmSpMV with RACE.

6.2.3 Single Core Performance. Although single core performance is often considered not to be
crucial for the full chip SymmSpMYV performance, we demonstrate that it is vital to explain some
of the performance behaviors. For example the drop in SymmSpMV performance for matrices like
Hubbard-12 and delaunay_n24 strongly correlates with the lower performance of the baseline
SpMV (see Figure 20). These matrices are characterized by a rather low Ny, and a larger aspav
value. The asprv (= assumed asymmspryv) measured for the SpMV kernel mainly accounts for
the RHS vector traffic and the actual asymmspryy may even be higher, as SymmSpMV requires

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

C. Alappat et al.

3.2
3 [®@ RACE-SymmSpMV 4 MKL-SpMV |
2.8 []
. \ o
2.6 ° A
& 24 o o 4 o0 4 o °
o, 2.2 A a4 A " o A- °
o 2 ; Pa A A A, Y A e
;1.8 i/ ‘A\ / : A A\ A
51 1‘6 N/ @ \,/ / ° A , A
ERN [b4 , e X
211 X e s
512 . ¥ I's
£ 1 ¢ w
A 0.8 []
0.6
0.4
0.2
0——= >
B = O~ ~ N o o0 O 3789 3 00 b & b v o0 oo Yo oo
S E S5 (SEC8 79 iS855S 85s7588757598
X AF SIS LTI LEESEsSs T T TSI SESNSSETELST
£E57E FSSEFSETSL S L L LT sSESSESRIE &8
5 = IS N 3T L9 F 58 55 T S §S5SFSLPS AT IS 5§
g = S 5852 57 °LF O .S i 95548 9 S5 58
& T & =g = m@omgmkmg SRS~
s g £ = < 3 S S =z T 5
< = S Z S = I
g, 5 S ~ g T =
.2 < Q3 = 5 O
k< 9 =)
o] S &
£ 5 ¢
T ~
S 3
g
5
1S,

Fig. 21. Single core performance of SymmSpMV on Skylake SP executed with RACE compared to SpMV

performance using Intel MKL.

12
- 10
—~
=
S
g
Z 6
é
= 4
A,
9 - SpMV
yd -~ SymmSpMV
ol SymmSpMV-Scalar

0 2 4 6 8101214 16 18 20
Ny

Fig. 22. Parallel performance of SymmSpMYV (with RACE) and SpMV (with Intel MKL) for the delaunay_n24
matrix on one socket of Skylake SP. To disable vectorization (SymmSpMV-Scalar), we set VECWIDTH = 1

when compiling the SymmSpMYV kernel.

two vectors to stay in cache concurrently. Moreover, for these matrices the inner loop lengths are
typically very short (approximately Ny, /2 on average) and consequently the SIMD vectorization
performed by the compiler may become inefficient. This leads to lower single core performance
as shown in Figure 21 for the Skylake SP architecture, where bad performance of SymmSpMV
and SpMV can often be correlated with a small N,,, value. For several matrices these combined
effects overcompensate the reduced matrix data traffic of the SymmSpMYV, leading to worse single
core performance than running SpMV with the full matrix. Using the delaunay_n24 matrix as a
representative for this class of matrices, we demonstrate the basic challenge for SymmSpMYV to
exploit its basic performance advantage over SpMV in Figure 22. Starting with an approximately
25% lower single core performance (0.75 GF/s versus 0.98 GF/s) but having a 50% higher roofline
performance limit (approximately 18 GF/s; see Figure 20(b)) than the SpMV, the SymmSpMYV is not

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:31

SymmSpMYV with RACE
14 ° ®RACE4 ABMC=MC]
13 ™ o %4 o
12 /
Z 11 * 2 Aaa o®
n 3 A o o Py
& 10 / ey ° ®
ISAN)
e 8 o ° e
§7 || f b o9 a A.. N A
z 0 A
o 4 A
3 A
2 A
1
0 = -
~ D X O ~ ~ N0 v 7Y 0L E 0oL TS
S E SN IS5 87355579897 7758¢
S 4 = ST 1y L T3 O 5 ~ ~ ~ S = 38 -0 5585 8 = 0 ¥
L5 %8 £ S8S55S8FS5LS ST 25538 FEFE 54
5 g 3 EITES T S 5 & T3 L S BFSOSTHSF S S
5 v S LSS5 F F5< &S TS » 205320 S5 5 9
5 S~ =457 = (S CAN] I ¥ = 7 5 <
S s g Sl = = < § ST 5 T F =2
g 0 = & S z S =1 z I I
S T < S o] g T &
D /
ks % g 5
£ S J5
<3 ~ <
g =
&
3
T
(a) vy Bridge EP
40 ° ®RACEA ABMCHMC]
35 2
—_ A
w ..
—
=30 ® ° o ® o ° 2
025 a A, & Yo A
— 25 A A A s e S
é , IS A e [] []
£20 /e ® '
= Lo A ®
=t ° L] A o
S 150 @ ® A ® «]
o A
A
10 A
5 by h | aA—AA
0 3 -
~ D X 2~ 7 55 990 TS T I ERnoSSLSYTSXT S
~ L ~ =~ T
HS ESH 28R ST T ESTSFFTFPTSTIFTLTILITIISYS
%Aqﬁ v,’:lkb*i.sﬁ’dﬂeﬁg,:‘é'\('\i’\i_&’?.s“—@v’SASL“:‘:’JV’
57 5SS FIETSE 5SSt EEESISFAIET 8
S @ e TS ESS FES ST SSE» 20483540 S8 58
g S E~XSS T x T~ U & S s § &<
o e g g~ = < § SIS = ¥ g
CUQC t’ ’E«L g 2 =] =~ O:’U\’
h <y ¥ F c&
k<) I, S ol
g S &=
~ o)
& ~ S
5}
5 <3
<
<
S

(b) Skylake SP
Fig. 23. Comparison of SymmSpMV performance between RACE and coloring variants MC and ABMC.
Matrices are arranged in increasing number of rows (Np).
able to saturate the main memory bandwidth of the Skylake SP on its 20 cores. As speculated above,
the single core performance is limited by inefficient SIMD vectorization of the extremely short
inner loop and switching back to scalar code does improve performance by 15% (see Figure 22).!* As

we are still substantially off the bandwidth limit, we see this benefit over the full chip. Using chips
with larger core counts would allow for further improving the SymmSpMV performance of this

matrix. The same arguments hold for the of fshore matrix, but here the effect compared to SpMV
performance is even more pronounced on Skylake SP. Here the full matrix can at least partially

11 A SIMD-friendly data layout [26, 50] and/or effective SIMD instructions [50] may improve the performance here. This is

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

left to future work.

19:32 C. Alappat et al.

be held in the large aggregate cache between successive kernel invocations, and its performance
is not limited by the main memory bandwidth. In terms of caching effects, we have also further
identified at least partial caching of the matrix for ship-003 and pwtk test cases by analyzing the
overall data traffic in the kernel invocations. This is in line with their higher performance levels
presented in Figure 20(b).

6.2.4 Comparing RACE with MC and ABMC. Having well understood the performance charac-
teristics of SymmSpMV with RACE, we finally compare this with the performance achieved by the
two coloring methods in Figure 23. Here the underlying algorithm as well as implementation are
known and are closely related to our approach. Overall the MC is not competitive and provides
low performance levels for almost all the matrices on both architectures. The ABMC shows similar
performance characteristics as RACE until the two vectors involved in SymmSpMYV approach the
size of the caches (cf. discussion of Figure 20). For matrices with sufficiently small N; (left in the
diagram) the method can achieve between 70% and 90% of RACE performance in most cases. For
matrices in the right part of the diagram with their higher N; and a5,y values, the ABMC falls
substantially behind RACE. Here, the strict orientation of the RACE design towards data locality in
the vector accesses delivers its full power. See also the data transfer discussion in Section 6.2.1 for
the Spin-26 matrix. In total there are only three cases where ABMC performance is on a par with
or slightly above the RACE measurement. The average speedup of RACE is 1.5x and 1.65x for Ivy
Bridge EP and Skylake SP, respectively. Note that all three methods use the same baseline kernels
and thus performance differences between the methods do not arise from different low-level code
but from the ability to generate appropriate degrees of parallelism and to maintain data locality.

7 CONCLUSION AND OUTLOOK

In this article, we have developed RACE, a coloring algorithm and open-source library imple-
mentation for exploiting parallelism in algorithms with inherent dependencies. RACE generates
hardware-efficient distance-k colorings of undirected graphs and puts emphasis on data access
locality, load balancing, and parallelism that is adapted to the number of cores of the underly-
ing architecture. We demonstrated these benefits by applying RACE to SymmSpMV on modern
multicore architectures and compared its performance against standard multicoloring, algebraic
block multicoloring, and Intel MKL implementations. Average and maximum speedups of 1.4 and
2, respectively, could be observed across a representative set of 31 matrices on two modern Intel
processors. Our entire experimental and performance analysis process was backed by a parame-
terized roofline performance model, corroborating the optimality of the RACE approach in terms
of resource utilization and shedding some new light on the challenges of the SymmSpMV kernel
on modern hardware. We demonstrated that RACE runs very close to the roofline limit for most
of the 31 test cases. Outliers were analyzed and discussed in detail.

Similar to other coloring algorithms, the RACE method is not limited to the SymmSpMYV kernel
and can be used to efficiently parallelize solvers and kernels having general distance-k dependen-
cies. Moreover, due to the level-based formulation of RACE, the framework has an added advantage
that allows us to address other classes of problems. Future work with RACE will involve variants
of linear solvers and kernel operations like in-place matrix powers and polynomials, which are of
high interest in the scientific community.

ACRONYMS

L(i) ith level.
Lg(i) ith level at stage s.
Ny total levels in the graph.
N; number of rows.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE

Ni

Ny
NEymm

nzr

Nl’lZ

CRS

Intel MKL
LLC

MC

RACE

RCM

SNC

SpMV
SymmSpMV

APPENDIX
A ALGORITHMS

number of threads.
average number of nonzeros per row.

average number of nonzeros per row in symmetric matrix.

total number of nonzeros.

effective number of rows.

effective number of threads.

ith level group.

ith level group at stage s.
theoretical parallel efficiency.
single socket bandwidth.

stage number of recursion.
algebraic block multicoloring.
breadth-first search.

compressed row storage.

Intel math kernel library.

last level cache.

multicoloring.

recursive algebraic coloring engine.
reverse Cuthill McKee.

sub-NUMA clustering.

sparse matrix-vector multiplication.

symmetric sparse matrix-vector multiplication.

19:33

ALGORITHM 3: Construction of levels

1:
2:
3:
4:
5:
6:
7:
8

9

22:

integer :: root = n % Choose starting node
bool :: marked_all = false % Stopping criterion
integer :: N = nrows(graph)
integer :: distFromRoot[N] = {-1}
integer :: curr_children[] = {root}
integer :: currLvl = 0
while !marked_all do
marked_all = true
integer :: nxt_children[] = {}
for i = 1: size(curr_children) do
if distFromRoot[curr_children[i]] == —1 then
distFromRoot[curr_children[i]] = currLvl
for j in graph[curr_children[i]].children do
if distFromRoot[j] == —1 then
nxt_children.push_backj)

end if

end for
end if
end for

curr_children = nxt_children
currLol = currLol + 1

end while

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

19:34

C. Alappat et al.

ALGORITHM 4: Load balancing for distance-2, two colors

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

2
3
4
5:
6
7
8
9

if Section 4.3 then
integer :: nthreads = Ny
integer :: len = 2 x nthreads % number of level groups
integer :: worker[len] =1
integer :: T_ptr[len + 1] = linspace(0, N¢, len) % level group pointer

: else

integer :: nthreads = Ny(Ts—1(i)) % i is the index of level group in stage s — 1
% where recursion is applied.
integer :: len = 2 x nthreads % number of level groups
integer :: worker[len] = [Nt(T5(0)),...,Ni(Ts(len —1))] = b
integer :: T_ptr[len + 1] = linspace(0, N, len)
end if
bool :: exit = false
integer :: T_size[len], absRankIdx[len], rankIdx[len], currRank
double :: mean_r, mean_b, diff[len], var, newVar
while !(exit) do
T_size[:] = update(T_ptr[:]) % T_size contains nrows in each level group
integer :: T_size_worker[:] = T _size[:] ./ worker[:]
mean_r = sum(T_size_worker[0 : 2 : len — 1]) / nthreads % mean of red color
mean_b = sum(T_size_worker[1: 2 : len — 1]) / nthreads % mean of blue color
diff[0:2:1len— 1] =T_size_worker[0: 2 :len — 1] .— mean_r
diff[1:2:1len—1] =T_size_worker[1:2:len—1] .— mean_b
var = dot_product(diff,diff)/len % overall variance
absRankIdx = argsort(-abs(di ff)) % ranking according to absolute deviation
rankldx = argsort(diff) % ranking according to signed deviation
currRank = 0, newVar = var
integer :: old_T_ptr(len + 1] = T_ptr|[:], acquireldx, giveldx
while newVar > var do
T_ptr =old_T_ptr
bool :: fail = true
if diff[absRankIdx[currRank]] <0 then
for el in rankldx[(len — 1) : =1 : 0] do
if (T_Ptr[el + 1] — T_ptr[el]) > 2 then % Ensure distance-2coloring
acquireldx = el
fail = false
break
end if
end for
shift(T_ptr, acquireldx, currRank) % shifts T ptr by 1 from acquireldx
% to currRank if currldx < acquireldx else shift by -1
else if (T_ptr[currRank + 1] — T_ptr[currRank]) > 2 then
giveldx = rankIdx[0]
fail=false
shift(T_ptr, currRank, giveldx)
end if
if ! fail then
newVar = calculate_variance(T_ptr) % as seen in Line 17 to Line 23
end if

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

SymmSpMYV with RACE 19:35

54:
55:

if (currRank == (len — 1)) && (newVar > var) then
T_Ptr = old_T_ptr
exit = true
break
end if
currRank +=1
end while

56: end while

ACKNOWLEDGMENTS

The authors wish to thank Andreas Alvermann for providing access to his ScaMaC library, Thomas
Gruber for supporting our LIKWID measurements, and Moritz Kreutzer for helpful discussions.

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]

(7]
(8]
(9]

(10]

(1]
(12]

(13]

(14]

[15]

Andreas Alvermann. 2019. ScaMaC: The Scalable Matrix Collection. Retrieved from https://bitbucket.org/essex/
matrixcollection/.

Doruk Bozdag, Umit Catalyiirek, Assefaw H. Gebremedhin, Fredrik Manne, Erik G. Boman, and Fiisun Ozgiiner. 2010.
Distributed-memory parallel algorithms for distance-2 coloring and related problems in derivative computation. SIAM
J. Sci. Comput. 32, 4 (2010), 2418-2446. DOI : https://doi.org/10.1137/080732158

Doruk Bozdag, Assefaw H. Gebremedhin, Fredrik Manne, Erik G. Boman, and Umit V. Catalyurek. 2008. A framework
for scalable greedy coloring on distributed-memory parallel computers. J. Parallel Distrib. Comput. 68, 4 (2008), 515—
535. DOI : https://doi.org/10.1016/].jpdc.2007.08.002

Aydin Bulug, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E. Leiserson. 2009. Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In Proceedings of the
21st Symposium on Parallelism in Algorithms and Architectures (SPAA’09). ACM, New York, NY, 233-244. DOI : https:
//doi.org/10.1145/1583991.1584053

Aydin Bulug, Samuel Williams, Leonid Oliker, and James Demmel. 2011. Reduced-bandwidth multithreaded algo-
rithms for sparse matrix-vector multiplication. In Proceedings of the IEEE International Parallel & Distributed Process-
ing Symposium (IPDPS’11). IEEE Computer Society, Washington, DC, 721-733. DOI : https://doi.org/10.1109/IPDPS.
2011.73

Umit V. Catalyurek and Cevdet Aykanat. 1999. Hypergraph-partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst. 10, 7 (1999), 673-693. DOI : https://doi.org/10.1109/71.
780863

Elizabeth Cuthill. 1972. Several Strategies for Reducing the Bandwidth of Matrices. Springer US, Boston, MA, 157-166.
DOI:https://doi.org/10.1007/978-1-4615-8675-3_14

Timothy A. Davis and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Softw.
38, 1, Article 1 (Dec. 2011), 25 pages. DOI : https://doi.org/10.1145/2049662.2049663

Josep Diaz, Jordi Petit, and Maria Serna. 2002. A survey of graph layout problems. ACM Comput. Surv. 34, 3 (Sept.
2002), 313-356. DOI : https://doi.org/10.1145/568522.568523

Athena Elafrou, Vasileios Karakasis, Theodoros Gkountouvas, Kornilios Kourtis, Georgios Goumas, and Nectarios
Koziris. 2018. SparseX: A library for high-performance sparse matrix-vector multiplication on multicore platforms.
ACM Trans. Math. Softw. 44, 3, Article 26 (Jan. 2018), 32 pages. DOI : https://doi.org/10.1145/3134442

David J. Evans. 1984. Parallel S.O.R. iterative methods. Parallel Comput. 1, 1 (Aug. 1984), 3-18. DOI : https://doi.org/
10.1016/S0167-8191(84)90380-6

Fujitsu. 2019. Retrieved from https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_
original_cpu_a64fx_powered_by_arm_isa.pdf.

Martin Galgon, Lukas Kramer, Jonas Thies, Achim Basermann, and Bruno Lang. 2015. On the parallel iterative solu-
tion of linear systems arising in the FEAST algorithm for computing inner eigenvalues. Parallel Comput. 49, C (Nov.
2015), 153-163. DOI : https://doi.org/10.1016/j.parco.2015.06.005

Assefaw H. Gebremedhin and Fredrik Manne. 2000. Scalable parallel graph coloring algorithms. Concurr.: Pract. Exper.
12, 12 (2000), 1131-1146. DOI : https://doi.org/10.1002/1096-9128(200010)12:12(1131::AID-CPE528)3.0.CO;2-2
Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. 2002. Parallel distance-k coloring algorithms for
numerical optimization. In Proceedings of the 8th International Euro-Par Conference on Parallel Processing (Euro-Par’02).
Springer-Verlag, London, UK, 912-921. Retrieved from http://dl.acm.org/citation.cfm?id=646667.699892.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

https://bitbucket.org/essex/matrixcollection/
https://bitbucket.org/essex/matrixcollection/
https://doi.org/10.1137/080732158
https://doi.org/10.1016/j.jpdc.2007.08.002
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1109/IPDPS.2011.73
https://doi.org/10.1109/IPDPS.2011.73
https://doi.org/10.1109/71.780863
https://doi.org/10.1109/71.780863
https://doi.org/10.1007/978-1-4615-8675-3_14
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/568522.568523
https://doi.org/10.1145/3134442
https://doi.org/10.1016/S0167-8191(84)90380-6
https://doi.org/10.1016/S0167-8191(84)90380-6
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu%27s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://doi.org/10.1016/j.parco.2015.06.005
https://doi.org/10.1002/1096-9128(200010)12:12<1131::AID-CPE528>3.0.CO;2-2
http://dl.acm.org/citation.cfm?id=646667.699892

19:36 C. Alappat et al.

[16]

(17]

(18]

(19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

[36]

Assefaw H. Gebremedhin, Duc Nguyen, Md. Mostofa Ali Patwary, and Alex Pothen. 2013. ColPack: Software for
graph coloring and related problems in scientific computing. ACM Trans. Math. Softw. 40, 1, Article 1 (Oct. 2013), 31
pages. DOI : https://doi.org/10.1145/2513109.2513110

Theodoros Gkountouvas, Vasileios Karakasis, Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. 2013. Im-
proving the performance of the symmetric sparse matrix-vector multiplication in multicore. In Proceedings of the IEEE
27th International Symposium on Parallel and Distributed Processing. 273-283. DOI : https://doi.org/10.1109/IPDPS.2013.
43

Willam D. Gropp, Dinesh K. Kaushik, David E. Keyes, and Barry F. Smith. 2000. Towards realistic performance bounds
for implicit CFD codes. In Parallel Computational Fluid Dynamics 1999, D. Keyes, J. Periaux, A. Ecer, N. Satofuka, and
P. Fox (Eds.). Elsevier, 241-248. DOI : https://doi.org/10.1016/B978-044482851-4.50030-X

Eun-Jin Im, Katherine Yelick, and Richard Vuduc. 2004. Sparsity: Optimization framework for sparse matrix kernels.
Int. J. High Perf. Comput. Applic. 18, 1 (2004), 135-158. DOI : https://doi.org/10.1177/1094342004041296

Intel. 2019. Intel Math Kernel Library. Retrieved from https://software.intel.com/en-us/mkl.

Takeshi Iwashita, Hiroshi Nakashima, and Yasuhito Takahashi. 2012. Algebraic block multi-color ordering method for
parallel multi-threaded sparse triangular solver in ICCG method. In Proceedings of the IEEE 26th International Parallel
and Distributed Processing Symposium (IPDPS’12). IEEE Computer Society, Washington, DC, 474-483. DOI: https://
doi.org/10.1109/IPDPS.2012.51

Mark T. Jones and Paul E. Plassmann. 1994. Scalable iterative solution of sparse linear systems. Parallel Comput. 20,
5 (May 1994), 753-773. DOI : https://doi.org/10.1016/0167-8191(94)90004-3

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput. 20, 1 (1998), 359-392. DOI : https://doi.org/10.1137/S1064827595287997

Kokkos. 2018. Kokkos C++ Performance Portability Programming EcoSystem: The Programming Model—Parallel
Execution and Memory Abstraction. Retrieved from http://trilinos.sandia.gov/packages/kokkos.

Moritz Kreutzer, Dominik Ernst, Alan R. Bishop, Holger Fehske, Georg Hager, Kengo Nakajima, and Gerhard Wellein.
2018. Chebyshev filter diagonalization on modern manycore processors and GPGPUs. In High Performance Comput-
ing, Rio Yokota, Michéle Weiland, David Keyes, and Carsten Trinitis (Eds.). Springer International Publishing, Cham,
329-349. DOI: https://doi.org/10.1007/978-3-319-92040-5_17

Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R. Bishop. 2014. A unified sparse matrix
data format for efficient general sparse matrix-vector multiplication on modern processors with wide SIMD units.
SIAM J. Sci. Comput. 36, 5 (2014), C401-C423. DOI : https://doi.org/10.1137/130930352

Marcin Krotkiewski and Marcin Dabrowski. 2010. Parallel symmetric sparse matrix-vector product on scalar multi-
core CPUs. Parallel Comput. 36, 4 (Apr. 2010), 181-198. DOI : https://doi.org/10.1016/j.parco.2010.02.003

C. Y. Lee. 1961. An algorithm for path connections and its applications. IRE Trans. Electron. Comput. EC-10, 3 (Sept.
1961), 346-365. DOI : https://doi.org/10.1109/TEC.1961.5219222

Ang Li, Weifeng Liu, Mads R. B. Kristensen, Brian Vinter, Hao Wang, Kaixi Hou, Andres Marquez, and Shuaiwen Leon
Song. 2017. Exploring and analyzing the real impact of modern on-package memory on HPC scientific kernels. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’17).
ACM, New York, NY, Article 26, 14 pages. DOI : https://doi.org/10.1145/3126908.3126931

Weifeng Liu and Brian Vinter. 2015. CSR5: An efficient storage format for cross-platform sparse matrix-vector mul-
tiplication. In Proceedings of the 29th ACM International Conference on Supercomputing (ICS’15). ACM, New York, NY,
339-350. DOI: https://doi.org/10.1145/2751205.2751209

Weifeng Liu and Brian Vinter. 2015. Speculative segmented sum for sparse matrix-vector multiplication on hetero-
geneous processors. Parallel Comput. 49, C (Nov. 2015), 179-193. DOI : https://doi.org/10.1016/j.parco.2015.04.004
Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. 2013. Efficient sparse matrix-vector multiplica-
tion on x86-based many-core processors. In Proceedings of the 27th International ACM Conference on Supercomputing
(ICS’13). ACM, New York, NY, 273-282. DOI : https://doi.org/10.1145/2464996.2465013

Hao Lu, Mahantesh Halappanavar, Daniel Chavarria-Miranda, Assefaw H. Gebremedhin, Ajay Panyala, and Ananth
Kalyanaraman. 2017. Algorithms for balanced graph colorings with applications in parallel computing. IEEE Trans.
Parallel Distrib. Syst. 28, 5 (May 2017), 1240-1256. DOI : https://doi.org/10.1109/TPDS.2016.2620142

Michele Martone. 2014. Efficient multithreaded untransposed, transposed, or symmetric sparse matrix-vector multi-
plication with the recursive sparse blocks format. Parallel Comput. 40, 7 (July 2014), 251-270. DOI : https://doi.org/10.
1016/j.parco.2014.03.008

James McQueen, Marina Meild, Jacob VanderPlas, and Zhongyue Zhang. 2016. Megaman: Scalable manifold learning
in Python. J. Mach. Learn. Res. 17, 148 (2016), 1-5. Retrieved from http://jmlr.org/papers/v17/16-109.html.

Piotr Mironowicz, Adam Dziekonski, and Michal Mrozowski. 2015. A task-scheduling approach for efficient sparse
symmetric matrix-vector multiplication on a GPU. SIAM 7. Sci. Comput. 37, 6 (2015), C643-C666. DOI : https://doi.org/
10.1137/14097135X

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

https://doi.org/10.1145/2513109.2513110
https://doi.org/10.1109/IPDPS.2013.43
https://doi.org/10.1109/IPDPS.2013.43
https://doi.org/10.1016/B978-044482851-4.50030-X
https://doi.org/10.1177/1094342004041296
https://software.intel.com/en-us/mkl
https://doi.org/10.1109/IPDPS.2012.51
https://doi.org/10.1109/IPDPS.2012.51
https://doi.org/10.1016/0167-8191(94)90004-3
https://doi.org/10.1137/S1064827595287997
http://trilinos.sandia.gov/packages/kokkos
https://doi.org/10.1007/978-3-319-92040-5_17
https://doi.org/10.1137/130930352
https://doi.org/10.1016/j.parco.2010.02.003
https://doi.org/10.1109/TEC.1961.5219222
https://doi.org/10.1145/3126908.3126931
https://doi.org/10.1145/2751205.2751209
https://doi.org/10.1016/j.parco.2015.04.004
https://doi.org/10.1145/2464996.2465013
https://doi.org/10.1109/TPDS.2016.2620142
https://doi.org/10.1016/j.parco.2014.03.008
https://doi.org/10.1016/j.parco.2014.03.008
http://jmlr.org/papers/v17/16-109.html
https://doi.org/10.1137/14097135X
https://doi.org/10.1137/14097135X

SymmSpMYV with RACE 19:37

(37]

(38]

(39]

(40]

(41]

(42]
(43]

[44]

[45]
[46]

(47]

(48]
[49]

[50]

[51]

Chao-Wei Ou and Sanjay Ranka. 1997. Parallel incremental graph partitioning. IEEE Trans. Parallel Distrib. Syst. 8, 8
(Aug. 1997), 884-896. DOI : https://doi.org/10.1109/71.605773

Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sundaram, and Pradeep Dubey. 2014. Sparsifying synchronization
for high-performance shared-memory sparse triangular solver. In Proceedings of the 29th International Conference on
Supercomputing (ISC’14), Vol. 8488. Springer-Verlag New York, Inc., New York, NY, 124-140. DOI : https://doi.org/10.
1007/978-3-319-07518-1_8

Jongsoo Park, Mikhail Smelyanskiy, Karthikeyan Vaidyanathan, Alexander Heinecke, Dhiraj D. Kalamkar, Xing
Liu, Md. Mosotofa A. Patwary, Yutong Lu, and Pradeep Dubey. 2014. Efficient shared-memory implementation of
high-performance conjugate gradient benchmark and its application to unstructured matrices. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis. 945-955. DOI : https:
//doi.org/10.1109/SC.2014.82

Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems (2nd ed.). Society for Industrial and Applied Mathemat-
ics. DOI:https://doi.org/10.1137/1.9780898718003

Toby Simpson, Dimosthenis Pasadakis, Drosos Kourounis, Kohei Fujita, Takuma Yamaguchi, Tsuyoshi Ichimura, and
Olaf Schenk. 2018. Balanced graph partition refinement using the graph p-Laplacian. In Proceedings of the Platform
for Advanced Scientific Computing Conference (PASC’18). ACM, New York, NY, Article 8, 11 pages. DOI: https://doi.
org/10.1145/3218176.3218232

SpMP Development Team. 2015. Sparse Matrix Pre-processing Library. Retrieved from https://github.com/IntelLabs/
SpMP.

Sivan Toledo. 1997. Improving the memory-system performance of sparse matrix-vector multiplication. IBM 7. Res.
Dev. 41, 6 (Nov. 1997), 711-726. DOI : https://doi.org/10.1147/rd.416.0711

Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A lightweight performance-oriented tool suite for
x86 multicore environments. In Proceedings of the 1st International Workshop on Parallel Software Tools and Tool In-
frastructures. DOI : https://doi.org/10.1109/ICPPW.2010.38

Ulrike von Luxburg. 2007. A tutorial on spectral clustering. Stat. Comput. 17, 4 (01 Dec. 2007), 395-416. DOI : https:
//doi.org/10.1007/s11222-007-9033-z

Richard Vuduc, James W. Demmel, and Katherine A. Yelick. 2005. OSKI: A library of automatically tuned sparse matrix
kernels. J. Phys.: Conf. Series 16, 1 (2005), 521. Retrieved from http://stacks.iop.org/1742-6596/16/i=1/a=071.

Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James Demmel. 2009. Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel Comput. 35, 3 (Mar. 2009), 178-194.
DOI : https://doi.org/10.1016/j.parco.2008.12.006

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An insightful visual performance model
for multicore architectures. Commun. ACM 52, 4 (Apr. 2009), 65-76. DOI : https://doi.org/10.1145/1498765.1498785
Albert-Jan N. Yzelman. 2011. Fast Sparse Matrix-Vector Multiplication by Partitioning and Reordering. Ph.D. Disserta-
tion. Utrecht University, Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/210147.

Albert-Jan N. Yzelman. 2015. Generalised vectorisation for sparse matrix-vector multiplication. In Proceedings of the
5th Workshop on Irregular Applications: Architectures and Algorithms (IA3’15). ACM, New York, NY, Article 6, 8 pages.
DOI:https://doi.org/10.1145/2833179.2833185

Albert-Jan N. Yzelman and Rob H. Bisseling. 2009. Cache-oblivious sparse matrix-vector multiplication by us-
ing sparse matrix partitioning methods. SIAM 7. Sci. Comput. 31, 4 (2009), 3128-3154. DOI : https://doi.org/10.1137/
080733243

Received June 2019; revised January 2020; accepted April 2020

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 19. Publication date: June 2020.

https://doi.org/10.1109/71.605773
https://doi.org/10.1007/978-3-319-07518-1_8
https://doi.org/10.1007/978-3-319-07518-1_8
https://doi.org/10.1109/SC.2014.82
https://doi.org/10.1109/SC.2014.82
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1145/3218176.3218232
https://doi.org/10.1145/3218176.3218232
https://github.com/IntelLabs/SpMP
https://github.com/IntelLabs/SpMP
https://doi.org/10.1147/rd.416.0711
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
http://stacks.iop.org/1742-6596/16/i=1/a=071
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1145/1498765.1498785
https://dspace.library.uu.nl/handle/1874/210147
https://doi.org/10.1145/2833179.2833185
https://doi.org/10.1137/080733243
https://doi.org/10.1137/080733243

