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Abstract. Lagrangian cloud models (LCMs) are considered
the future of cloud microphysical modelling. Compared to
bulk models, however, LCMs are computationally expen-
sive due to the typically high number of simulation parti-
cles (SIPs) necessary to represent microphysical processes
such as collisional growth of hydrometeors successfully. In
this study, the representation of collisional growth is explored
in one-dimensional column simulations, allowing for the ex-
plicit consideration of sedimentation, complementing the au-
thors’ previous study on zero-dimensional collection in a sin-
gle grid box. Two variants of the Lagrangian probabilistic all-
or-nothing (AON) collection algorithm are tested that mainly
differ in the assumed spatial distribution of the droplet en-
semble: the first variant assumes the droplet ensemble to
be well-mixed in a predefined three-dimensional grid box
(WM3D), while the second variant considers the (sub-grid)
vertical position of the SIPs, reducing the well-mixed as-
sumption to a two-dimensional, horizontal plane (WM2D).
Since the number of calculations in AON depends quadrati-
cally on the number of SIPs, an established approach is tested
that reduces the number of calculations to a linear depen-
dence (so-called linear sampling). All variants are compared
to established Eulerian bin model solutions. Generally, all
methods approach the same solutions and agree well if the
methods are applied with sufficiently high resolution (fore-
most is the number of SIPs, and to a lesser extent time step
and vertical grid spacing). Converging results were found for
fairly large time steps, larger than those typically used in the
numerical solution of diffusional growth. The dependence
on the vertical grid spacing can be reduced if AON-WM2D

is applied. The study also shows that AON-WM3D simu-
lations with linear sampling, a common speed-up measure,
converge only slightly slower compared to simulations with
a quadratic SIP sampling. Hence, AON with linear sampling
is the preferred choice when computation time is a limiting
factor.

Most importantly, the study highlights that results gener-
ally require a smaller number of SIPs per grid box for con-
vergence than previous one-dimensional box simulations in-
dicated. The reason is the ability of sedimenting SIPs to in-
teract with a larger ensemble of particles when they are not
restricted to a single grid box. Since sedimentation is consid-
ered in most commonly applied three-dimensional models,
the results indicate smaller computational requirements for
successful simulations, encouraging a wider use of LCMs in
the future.

1 Introduction

Clouds are a fundamental part of the global hydrological cy-
cle, responsible for the transport and formation of precip-
itation. While we expect a global increase in precipitation
due to climate change, our knowledge on its spatial distri-
bution, even including decreasing rainfall in some regions of
the globe, is still uncertain (Boucher et al., 2013). The forma-
tion processes of precipitation are, however, reasonably well
understood and contain mechanisms that increase the size of
hydrometeors. For liquid clouds, the coalescence of smaller
cloud droplets is essential to form precipitating raindrops.
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In ice clouds, diffusional growth can produce precipitation-
sized particles. The aggregation of ice crystals into larger
clusters, snowflakes, also occurs frequently. And in mixed-
phase clouds, ice crystals accrete supercooled liquid droplets
forming graupel or hailstones.

The representation of these microphysical processes in cli-
mate models is impelled by the available computational re-
sources, requiring necessary idealisations. Primarily, this is
the case for computationally efficient Eulerian bulk mod-
els that predict only a small number of statistical moments
for each hydrometeor class (e.g. Kessler, 1969; Khairoutdi-
nov and Kogan, 2000; Seifert and Beheng, 2001), with com-
mensurate limitations for the representation of clouds and
precipitation. Of course, more detailed cloud microphysics
models have also been developed: Eulerian bin models rep-
resent cloud droplets on a mass grid that consists of hun-
dreds of bins sampling the droplet size distribution (DSD)
(e.g. Berry and Reinhardt, 1974; Tzivion et al., 1987; Bott,
1998; Simmel et al., 2002; Wang et al., 2007). But even
these models exhibit limitations and idealisations. For in-
stance, the coalescence of droplets is modelled as a Smolu-
chowski (1916) process, describing the mean evolution of an
infinitely large, well-mixed droplet ensemble. But the under-
lying Smoluchowski equation (also called the kinetic collec-
tion equation or even the stochastic collection equation, al-
though the equation is deterministic) inherently neglects cor-
relations and stochastic fluctuations known to be an integral
part of the process chain that leads to precipitation (Gille-
spie, 1972; Bayewitz et al., 1974; Kostinski and Shaw, 2005;
Wang et al., 2006; Alfonso et al., 2008).

In the last decade, Lagrangian cloud models (LCMs)
emerged as a valid alternative to bin models (e.g. Andrejczuk
et al., 2008; Shima et al., 2009; Sölch and Kärcher, 2010;
Riechelmann et al., 2012; Arabas et al., 2015; Naumann
and Seifert, 2015; Hoffmann et al., 2019). These mod-
els use Lagrangian particles, so-called simulation particles
(SIPs) (Sölch and Kärcher, 2010) or super-droplets (Shima
et al., 2009), each representing an ensemble of identical
real droplets. Collisional growth in LCMs has recently been
rigorously evaluated in box model simulations by Unter-
strasser et al. (2017) (hereinafter abbreviated as U2017), who
compared three algorithms documented in the literature: the
remapping algorithm (RMA) by Andrejczuk et al. (2010),
the average-impact algorithm (AIM) by Riechelmann et al.
(2012), and the all-or-nothing algorithm (AON) concurrently
developed by Shima et al. (2009) and Sölch and Kärcher
(2010). RMA and AIM are deterministic algorithms and, in
theory, approach the Smoluchowski solution of a reference
bin model. The actual convergence of the algorithms, how-
ever, was found to depend significantly on properties of the
SIP ensemble and the chosen kernel. The probabilistic AON
indicated much better convergence properties given the sim-
ulation outcome is averaged over sufficiently many instances.
Furthermore, Dziekan and Pawlowska (2017) showed that
AON approximates the stochastically complete master equa-

tion including aforementioned correlations and stochastic
fluctuations (Gillespie, 1972; Bayewitz et al., 1974). In fact,
AON solutions are identical to the master equation solutions
(Alfonso and Raga, 2017) when the weighting factors (the
number of real droplets represented by a SIP) approach unity.
The name AON was introduced in U2017. Note that in the
literature, the term super-droplet method (SDM) is not used
to refer to the class of particle-based microphysics models
in general, but to the particular model introduced in Shima
et al. (2009). Hence, AON with linear sampling (this will be
explained later) is typically referred to as the SDM method
(Shima et al., 2020).

However, many aspects of this relatively young modelling
approach in cloud physics have not been tested thoroughly.
One important message of our previous box simulations in
U2017 was that the representation of collisional growth ex-
hibits considerably more freedom in setting up a simulation
than in bin models. Accordingly, in this study, we are going
to extend the box simulations of U2017 by analysing colli-
sional growth in a vertical column, including sedimentation,
as it has been done in previous studies for Eulerian bulk and
bin models (e.g. List et al., 1987; Tzivion et al., 1989; Hu and
Srivastava, 1995; Prat and Barros, 2007; Stevens and Seifert,
2008; Seifert, 2008). All simulations will use the AON algo-
rithm since it outperformed RMA and AIM in the box sim-
ulations, and we do not expect that this general behaviour
is reversed here. The simulations will be compared to estab-
lished Eulerian bin references. U2017 demonstrated that nu-
merical convergence is harder to achieve for typical liquid
cloud kernels (Long, 1974; Hall, 1980) than for a typical ag-
gregation kernel with constant aggregation efficiency. Hence,
the present study focuses on cloud droplet coalescence as a
benchmarking exercise. But we expect that the results can
be generalised for the LCM representation of ice crystal ag-
gregation and the accretion of supercooled droplets. We will
use the term collection, comprising coalescence, aggregation
and accretion, as we focus on the numerical treatment, which
is similar for all these processes, and not on their particular
physics.

The paper is structured as follows. First, Sect. 2 will give
an overview on the applied models, their foundations and ba-
sic set-up. The results are presented in Sect. 3 and divided
into highly idealised applications in which the column model
emulates a box model (Sect. 3.1), a process-level analysis of
the applied algorithms (Sect. 3.2) and finally realistic appli-
cations (Sect. 3.3). The paper is concluded in Sect. 4. Table 1
lists frequently used abbreviations. The Appendix presents
pure-sedimentation test cases. The Supplement contains ad-
ditional material and figures (enumerated as S1, S2, and so
on).
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Table 1. List of frequently used abbreviations.

AON all-or-nothing algorithm
BC boundary condition
DNC droplet number concentration
DSD droplet size distribution
GB grid box
LCM Lagrangian cloud model
LWC liquid water content
MC multiple collection
SIP Simulation particle
U2017 Unterstrasser et al. (2017)

2 Numerical model and set-up

Two column models, which consider collection and sedimen-
tation, have been implemented; the first one represents a tra-
ditional Eulerian bin scheme and the second model uses a
particle-based approach. Before we describe both models in
some detail, we will write down basic relations, which will
help disentangle the effects of particular parameter variations
later.

2.1 Basic relations and definitions

We use a column with nz grid boxes (GBs). Each GB has the
volume 1V and a height of 1z. The total column height is
thus

Lz = nz×1z. (1)

We define that the GB k with 1≤ k ≤ nz extends from zk−1
to zk := k×1z; hence the GB with k = 1 is the lowest GB.
The horizontal area of the column is given by

1A=1V/1z. (2)

Throughout this study, we implicitly assume that air density
ρair is constant in time and space.

The droplets are assumed to be spherical with a density
of ρw = 1000 kg m−3, and the mass–size relation is simply
given by

m=
4
3
πr3ρw. (3)

Following Gillespie (1972) and Shima et al. (2009), the
probability PWM3D

ij that one droplet with mass mi coalesces
with one droplet with mass mj inside a small volume δV
within a short time interval δt is given by

pWM3D
ij =Kij δt δV

−1, (4)

where the collection kernel Kij can be expressed as a
function of droplet radii, K(ri, rj ), or equivalently droplet
masses, K̃(mi,mj ). We suppose that δt is sufficiently small
in order to assure pWM3D

ij ≤ 1.

The hydrodynamic collection kernel, driven by differences
in the droplet vertical velocity, is given by

KWM3D(ri, rj )= Ec(ri, rj ) π(ri+rj )
2
|wsed,i−wsed,j |, (5)

where wsed is the size-dependent droplet fall speed and Ec =

E×Ecoal is the collection efficiency, which is the product
of the collision efficiency E and the coalescence efficiency
Ecoal. In this study, we use the wsed parametrisation of Beard
(1976) and the tabulated E values of Hall (1980), and the
coalescence efficiency Ecoal is assumed to be 1. The last
assumption is an oversimplification for large droplets with
radii & 500 µm, for which Ecoal is significantly smaller than
1 (Beard and Ochs III, 1984; Ochs III and Beard, 1984) but
does not limit the generality of our findings. For the compu-
tation of wsed, ρair = 1.225 kg m−3 is assumed analogously
to Bott (1998) as this enables conclusive comparisons with
bin and box model results.

The average number of collisions from νi droplets of mass
mi and νj droplets of mass mj (which are assumed to be
well-mixed in the volume δV ) within time δt is

νcoll =K
WM3D
ij νi νj δt δV

−1, (6)

or equivalently

νcoll = Ec(ri, rj )π(ri + rj )
2
|wsed,i −wsed,j |νi νj δV

−1δt.

(7)

By dividing the above equation by δV , we obtain the com-
mon relationship in terms of concentrations, given by n=
ν/δV ,

ncoll = Ec(ri, rj )π(ri + rj )
2
|wsed,i −wsed,j |ni nj δt. (8)

Sedimentation and collisional growth are the only processes
considered in this study, and any effects of diffusional growth
are neglected.

An exponential DSD is used to prescribe the cloud
droplets in the beginning

fm(m)=
DNC
m

exp
(
−
m

m

)
. (9)

As in U2017, Berry (1967) or Wang et al. (2007), we choose
by default a mean mass m= LWC/DNC that corresponds to
a mean droplet radius of rinit = 9.3 µm and a droplet num-
ber concentration DNCinit = 2.97× 108 m−3 (resulting in a
droplet mass concentration of LWCinit = 10−3 kg m−3).

The function fm(m) is the number density function with
respect to mass. The moments are defined as

λl(t)=

∫
mlfm(m, t)dm, (10)

with order l, which gives DNC= λ0, LWC= λ1 and Z =
λ2. We will refer to Z as radar reflectivity since the radar
reflectivity is proportional to λ2.

https://doi.org/10.5194/gmd-13-5119-2020 Geosci. Model Dev., 13, 5119–5145, 2020



5122 S. Unterstrasser et al.: Collisional growth in a particle-based 1D cloud model

Figure 1. Schematic plot of how a droplet size distribution is discre-
tised in a bin model and represented by a SIP (simulation particle)
ensemble in a Lagrangian cloud model (LCM). The red and green
stars shows two different realisations of a SIP ensemble.

For an exponential DSD, the moments can be expressed
analytically as

λl,anal = (l− 1)! DNC ml . (11)

Using the terminology of Berry (1967), we introduce the
mass density function with respect to the logarithm of droplet
radius lnr:

gln r(r)= 3m2fm(m), (12)

taking into account the transformation property of distribu-
tions (fy(y)dy = fx(x(y))dx).

The DSD is usually discretised using exponentially in-
creasing bin sizes. In analogy to U2017, the bin boundaries
are defined by the masses

mbb,p+1 =mbb,p 101/κ . (13)

Note that many other studies use a factor of 21/s for dis-
cretisation. The parameters s and κ are related via s =

κ log10(2)≈ 0.3 κ .
In an LCM, real droplets are represented by simulation

particles (SIPs, also called super-droplets). Each SIP has a
discrete position (vertical coordinate zp in our column model
applications) and represents νp identical real droplets with an
individual droplet mass µp. The total droplet mass in a SIP
is then νpµp. In conjunction with SIPs, we define that the
terms “low” and “high” relate to the SIP vertical position,
whereas “small” and “large” relate to the droplet mass µp.
The number of SIPs in a GB is defined as NSIP,GB and the
total SIP number is given by NSIP,tot =

∑nz
k=1 NSIP,GB(k).

The moments λl of order l in a GB are computed via a
simple summation:

λl,SIP =

(
NSIP,GB∑
p=1

νp µ
l
p

)/
1V , (14)

Here and in the following, index p refers to any single bin
or SIP. If we want to stress that the combination of two SIPs
or bins matters, we use indices i and j . Index k is used for
altitude and l for the order of the moments by convention.

How does one represent an ensemble of droplets in an Eu-
lerian or Lagrangian cloud model? Their size distribution can
be uniquely described in a bin model by simply accounting
for each real droplet in its respective bin, where its bound-
aries are given by the bin model (see illustration in Fig. 1a).
In the Lagrangian approach, however, the weighting factor νi
and the droplet mass µi can be chosen independently. Ac-
cordingly, there is no unique SIP representation of an ensem-
ble of real droplets; two possible SIP ensemble realisations
are illustrated in Fig. 1b.

Various techniques to generate a SIP ensemble in an LCM
for a given (analytically prescribed) DSD exist (see Sect. 2.1
in U2017). In this study, we use a SIP initialisation technique
(termed “singleSIP-init” in U2017), for which Lagrangian
collection algorithms, and in particular AON, achieved the
best results in box model tests. In the singleSIP-init, the
DSD, more specifically fm, is discretised in exponentially in-
creasing mass intervals, and a single SIP is generated for each
bin (see Sect. 2.1.1 in U2017 for details). The SIP weight is
given by

νp = fm(µp) 1mbb,p1V, (15)

where µp is chosen randomly from the interval
[mbb,p,mbb,p+1). The generation of SIPs with νp be-
low some threshold is discarded. Due to the probabilistic
component, different realisations of SIP ensembles can be
created for the same prescribed DSD, and yet the initial-
isation technique guarantees that the moments λl,SIP are
close to λl,anal. The number of generated SIPs depends on
the width of the mass bins and hence on κ , as well as the
other parameters of the prescribed DSD. A change of the
“system size” 1V does not change the number of SIPs but
simply leads to a rescaling of the SIP weights νi . For the
exponential DSD given above, around

NSIP,GB = 5× κ (16)

SIPs are initialised (the scaling factor depends on the width
of DSD and the choice of the lower cut-off threshold). Fi-
nally note that if the DSD is prescribed in a specific GB, the
position zp of each SIP in this GB is randomly chosen from
[zk,zk+1). Furthermore, δt and δV of the conceptual model
take the values 1t and 1V in the numerical models.

2.2 Eulerian column model

Eulerian column models have been widely employed in
cloud physics, and the present bin implementation is concep-
tually similar to previous ones (e.g. Prat and Barros, 2007;
Stevens and Seifert, 2008; Hu and Srivastava, 1995). We use
exponentially increasing bin sizes as defined in Eq. (13). The
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smallest mass mbb,0 is chosen to be suitably small (corre-
sponding roughly to a droplet radius of 1 µm), and the grid
resolution parameter s sufficiently large (4 by default); i.e.
the mass doubles every four bins.

The variable gln m =
1
3gln r will be discretised in mass

space and used as a prognostic variable. The droplet mass
concentration in each bin p and height k is given by gp,k ×
d ln m and approximates

∫ mbb,p+1
mbb,p

gln m(m,zk)d ln m. For
each GB k, Bott’s exponential flux method (Bott, 1998, 2000)
is used to solve the Smoluchowski equation. Bott’s method is
a one-moment scheme and gln m is the only prognostic vari-
able. Alternatively, the collection algorithm by Wang et al.
(2007) is employed, which additionally employs a prognos-
tic equation for the droplet number concentrations in each
bin.

In a second step, the mass concentrations are advected ver-
tically according to the classical advection equation

∂ gln m

∂t
= wsed

∂ gln m

∂z
. (17)

For its numerical solution, two different positive definite
advection algorithms have been used. The first option is the
classical first-order upwind scheme (known for its inherent
numerical diffusivity). For wsed ≥ 0, it is simply given by

gp,k(t+1t)= gp,k(t)+
1t

1z
wsed(mbb,p)(gp,k+1(t)−gp,k(t)).

(18)

The above equation is solved independently for each bin p,
where wsed is evaluated at the arithmetic bin centre mbb,p =

0.5 (mbb,p+1+mbb,p). 1 A second option is the popular MP-
DATA algorithm, which is an iterative solver based on the up-
wind scheme and yet drastically reduces its diffusivity (Smo-
larkiewicz, 1984, 2006). By default, the basic MPDATA with
two passes is employed as described in Sect. 2.1 of Smo-
larkiewicz and Margolin (1998).

Irrespective of the chosen advection solver, the prediction
of the “new” gp,k depends on gp,k and gp,k+1 (i.e. the GB
above the one of interest). For the prediction of gp,nz at the
model top, it is necessary to prescribe the value gp,nz+1,
which defines the upper boundary condition (this is detailed
in Sect. 2.4).

If the prescribed 1t is too large and the Courant–
Friedrichs–Levy (CFL) criterion 1t

1z
wsed(mbb,p)≤ rCFL <

1 is violated, sub-cycling is introduced. As wsed(mbb,p)

does not change over the course of a simulation, the (bin-
dependent) number of subcycles nsubc,p is determined in the
beginning, such that rCFL = 0.5 holds for the reduced time
step 1t

nsubc,p
.

After one call of Bott’s algorithm, nsubc,p calls of the se-
lected advection algorithm with reduced time step 1t

nsubc,p
fol-

low for each bin p.
1Evaluatingwsed at the geometric bin centres did not change the

results.

The moments are computed by

λl,BIN =

NBIN∑
p=1

gp,k (m̃bb,p)
l−1 ln2

3 s
(19)

as given in Eq. (48) of Wang et al. (2007), where m̃bb,p =

mbb,p × 21/(2 s) is the geometric bin centre.

2.3 Lagrangian column model

In a Lagrangian model, the inclusion of sedimentation (obey-
ing the transport equation dz/dt =−wsed) is straightforward.
For each SIP the particle position is updated via

zp(t +1t)= zp(t)−wsed(µp(t)) 1t. (20)

Unlike in Eulerian methods, sedimentation in a Lagrangian
approach is independent of the chosen mesh, and the time
step is not restricted by numerical reasons. If zp becomes
negative at some point in time, the SIP crossed the lower
boundary and is removed.

For the collection process, it assumed that each SIP be-
longs to a certain GB k obeying zk−1 ≤ zp < zk and that
the real droplets of each SIP are well-mixed in the GB vol-
ume (WM3D). The collection process is treated with the
probabilistic AON algorithm. In the regular version (see
Sect. 2.3.1), AON is called for each GB and accounts for all
possible collisions among any two SIPs of the same GB. By
construction, the information on the vertical position is irrel-
evant inside the regular AON and is only used in the SIP-to-
GB assignment.

In the version with explicit overtakes (WM2D; see
Sect. 2.3.2), for any two SIPs (of the whole column) it is
checked if the higher SIP (i.e. with larger zp) overtakes the
lower SIP within the current time step. This may have sev-
eral advantages: First, only 2D well-mixedness in a horizon-
tal plane is assumed and possible size sorting effects within
a GB are accounted for. Moreover, in Lagrangian methods
the time step is not restricted by the CFL criterion and the
largest SIPs may travel through more than one GB. In the
classical approach, such a SIP can only collect SIPs from the
GB where it was present in the beginning of the time step.
In the second approach, collections can also occur across GB
boundaries (see Sect. 2.3.2).

In the remainder of this paper, the classical approach is
referred to as AON-regular and the new approach as AON-
WM2D. Figure 2 sketches how the SIP properties (location,
weighting factor, sedimentation speed) are interpreted in ei-
ther approach. For simplicity, a single GB with one SIP pair
is displayed.

AON is probabilistic and an individual realisation does not
usually reproduce the mean state as predicted by determinis-
tic methods like Eulerian approaches. The extent of devia-
tions from the mean state is exemplified in Fig. 15 of U2017
for a box model application of AON. Hence, the AON results
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Figure 2. Grid box with a SIP pair in the LCM world (a) and its
respective interpretation in the 2D well-mixed (WM2D, b) and 3D
well-mixed (WM3D, c) approach of the AON collisional growth
algorithm.

discussed in the present study are usually ensemble averages
over nrinst = 20 realisations.

Pseudo-code of both algorithm implementations is given.
For the sake of readability, the pseudo-code examples show
easy-to-understand implementations. The actual codes of the
algorithms are, however, optimised in terms of computational
efficiency. The style conventions for the pseudo-code exam-
ples are as follows: commands of the algorithms are written
in upright font with keywords in boldface. Comments appear
in italic font (explanations are enclosed by brace brackets {},
and headings of code blocks are in boldface).

2.3.1 Regular AON algorithm (AON-regular)

Here we basically repeat the AON description of U2017
(their Sect. 2.5).

“Figure 3 illustrates how a collection between two
SIPs is treated. SIP i is assumed to represent fewer
droplets than SIP j , i.e. νi < νj . Each real droplet
in SIP i collects one real droplet from SIP j .
Hence, SIP i contains νi = 4 droplets, now with
mass µi +µj = 15. SIP j now contains νj − νi =
8− 4= 4 droplets with mass µj = 9. Following
Eq. (7), only νcoll = 2 pairs of droplets would,
however, merge in reality. The idea behind this
probabilistic AON is that such a collection event
is realised only under certain circumstances in the
model, namely such that the expectation values of
collection events in the model and in the real world
are the same. This is achieved if a collection event
occurs with probability

pcrit = νcoll/νi (21)

in the model. Then, the average number of collec-
tions in the model,

νcoll = pcritνi = (νcoll/νi)νi, (22)

is equal to νcoll as in the real world. A collection
event between two SIPs occurs if pcrit> rand().
The function rand() provides uniformly distributed
random numbers ∈ [0,1]. Noticeably, no operation
on a specific SIP pair is performed if pcrit <rand().

Algorithm 1 Pseudo-code of the regular all-or-nothing
(AON) algorithm; style conventions are explained right be-
fore Sect. 2.3.1 starts; rand() generates uniformly distributed
random numbers ∈ [0,1). This AON version is called inde-
pendently for each grid box.

Geosci. Model Dev., 13, 5119–5145, 2020 https://doi.org/10.5194/gmd-13-5119-2020
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Figure 3. Treatment of a collection between two SIPs in the all-or-
nothing (AON) algorithm, partially adopted from Fig. 2 of Unter-
strasser et al. (2017).

The treatment of the special case νcoll/νi > 1 needs
some clarification. This case is regularly encoun-
tered when SIPs with large droplets and small νi
collect small droplets from a SIP with large νj . The
large difference in droplet masses µ led to large
kernel values and high νcoll with νi < νcoll < νj .
[. . . ] If pcrit > 1, we allow multiple collections, as
each droplet in SIP i is allowed to collect more
than one droplet from SIP j . In total, SIP i col-
lects νcoll droplets from SIP j and distributes them
on νi droplets. A total mass of νcollµj is trans-
ferred from SIP j to SIP i and the droplet mass
in SIPs i becomes µnew

i = (νi µi + νcoll µj )/νi .
The number of droplets in SIP j is reduced by
νcoll and νnew

j = νj − νcoll. Keeping with the ex-
ample in Fig. 3 and assuming νcoll = 5, each of
the νi = 4 droplets would collect νcoll/νi = 1.25
droplets. The properties of SIP i and SIP j are
then νi = 4, µi = 17.25, νj = 3 and µj = 9. [. . . ]
So far, we explained how a single i–j combina-
tion is treated in AON. In every time step, the full
algorithm simply checks each i− j combination
for a possible collection event. To avoid double
counting, only combinations with i < j . Pseudo-
code of the algorithm is given in Algorithm (1).
The SIP properties are updated on the fly. If a cer-
tain SIP is involved in a collection event in the
model and changes its properties, all subsequent
combinations with this SIP take into account the
updated SIP properties. [. . . ] For the generation
of the random numbers, the well-proven (L’Ecuyer
and Simard, 2007) Mersenne Twister algorithm by
Matsumoto and Nishimura (1998) is used.”

The AON treatment of collection of droplets within one
SIP, as well as the collection of two SIPs with equal weight-
ing factors, is described in U2017. In the simulations pre-
sented here these aspects are not relevant and thus omitted.

The current implementation differs in several aspects from
the version in Shima et al. (2009). First, they use a linear
sampling approach (which will be described in Sect. 2.3.3).
Second, the weighting factors are considered to be integer
numbers, whereas we use real numbers ν. Integer values are
appropriate in discrete test cases of small sample volumes
such as the validation test case in Sect. 3 of Dziekan and
Pawlowska (2017). For comparing AON with bin model ref-
erences, usually continuous DSDs are prescribed. Then a SIP
ensemble with real-value weighting factors is more appro-
priate in our opinion. Third, multiple collections (MCs) are
differently treated. For pcrit = (νcoll/νi) > 1, either bpcritcνi
or dpcriteνi droplets of SIP j merge with νi droplets of SIP i
depending on the probability pcrit−bpcritc. This maintains
the integer property of the SIP weights. As the latter fea-
ture is not required in our approach, we deterministically
merge pcritνi = νcoll droplets from SIP j with νi droplets
of SIP i. This is computationally more efficient than the
integer-preserving implementation. Test simulations showed
that both MC treatments produce similar results.

2.3.2 AON algorithm with explicit use of vertical
coordinate (AON-WM2D)

We now introduce the AON version based on an idea by
Sölch and Kärcher (2010) where the vertical position zp of
the SIPs is explicitly considered. The approach and its im-
plications will be detailed next. Pseudo-code of this AON
version (“WM2D”) is given in Algorithm 2.

Unlike the classical case where 3D well-mixedness has
to be assumed, droplets of a SIP are now assumed to be
well-mixed on the x–y plane at z= zp within the GB (hor-
izontally well-mixed instead of the traditional well-mixed
assumption for the entire three-dimensional GB) and repre-
sent a “concentration” of n2D = ν/δA (units L−2, where L
is a length scale). We introduce an adapted kernel definition
where the relative velocity term |wsed,i −wsed,j | is dropped
from Eq. (5):

KWM2D
ij := Ec(ri, rj )π(ri + rj )

2. (23)

The AON algorithm is split into two steps:

1. Based on the evaluation of the vertical positions zi and
zj at times t and t +1t , a check is made to see if SIP i
overtakes SIP j within a time step 1t . Given zi(t)≥
zj (t) (otherwise swap i and j ) an overtake takes place
in the time interval 1t if zi(t +1t) < zj (t +1t).

2. In case of such an overtake: compute the average num-
ber of droplet collections by

νcoll =K
WM2D
ij νi νj 1A

−1. (24)
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Algorithm 2 Pseudo-code of the AON-WM2D algorithm;
style conventions are explained right before Sect. 2.3.1 starts;
rand() generates uniformly distributed random numbers ∈
[0,1). This AON version is called once for the total column.

Analogous to the classical implementation, a collection
in the model is performed with a probability νcoll/νi and
SIP i may collect νi from SIP j (in this step i and j are
chosen such that νi < νj ).

Similarly to the WM3D version, it happens that νcoll is
larger than νi , and multiple collections are also considered in
AON-WM2D.

Specifically to WM2D, it is also possible that a SIP inter-
acts with other SIPs located in not only one but several GBs.
Accordingly, it is not only necessary to check overtakes of
other SIPs in the original GB (more specifically, SIPs that lie
in the same GB at time t), but also the SIPs that are located
underneath, depending on the prescribed time step.

In a Lagrangian model, the time step choice is not numer-
ically restricted by the CFL criterion and in particular the
largest collecting drops may fall through several GBs during
the time period 1t . Hence, their collections are underrated
unless potential overtakes are checked among allNSIP,tot SIPs
of the entire column. Even if the CFL criterion is obeyed,
SIPs close to the lower GB boundary will mostly collect SIPs
from the GB underneath. Hence, seeking collision candidates
only in the present GB is never a good choice.

In a naive implementation, this would dramatically in-
crease the computational costs. In the regular (WM3D) ver-
sion, nz calls of AON with O(NSIP,GB

2) (for simplicity
lets assume NSIP,GB is the same in all GBs) give a to-
tal cost of nz×O(NSIP,GB

2). Contrarily, AON-WM2D is
called once for all SIPs of the column. Hence the cost is
1×O(NSIP,tot

2)= n2
z ×O(NSIP,GB

2) and a factor nz higher
than the regular AON version. However, the WM2D version
can be sped up by first sorting all SIPs by their position (if
sorting is done independently in each GB, the complexity
is nz×O(NSIP,GB log(NSIP,GB))), and second by taking into
account that the final position zi(t +1t) of the potentially
overtaking SIP i must be below the initial position zj (t) of
SIP j . Finding possible candidates for SIP i within the sorted
SIP list can be stopped once a SIP j with zj (t) < zi(t +1t)
is encountered (see condition in line 10 of Algorithm 2).

For the smallest SIPs, which often travel only a small dis-
tance inside a GB, the list of SIPs that may be overtaken is
commensurately small and overtakes have to be checked for
a fraction of SIPs of the GB only (that means the actual com-
putational work is smaller than in the regular version). On
the other hand, imagine the largest SIPs travel through three
GBs – then overtakes have to be tested for roughly 3 times
more SIPs than in the regular version. Moreover, testing for
overtakes (step 1) is computationally less demanding than
calculating the potential collections (step 2). In WM3D we
always have the workload of step 2 for all tested combina-
tions, whereas in WM2D only the cheaper step 1 is executed
in case of no overtake.

Besides the weaker assumption of 2D well-mixedness, the
present approach is actually more intuitive (even though it
may first be regarded counter-intuitive by those who are
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familiar with traditional Eulerian grid-based approaches).
Moreover, this approach complies better with the Lagrangian
paradigm of a grid-free description (the present approach is
independent of nz and 1z, and yet some horizontal “mixing
area”1A has to defined, over which the droplets of a SIP are
assumed to be dispersed). In the regular AON, the aspect ra-
tios of the grid box do not matter, and only the grid box vol-
ume 1V enters the computations. In WM2D, on the other
hand, the value of 1V is insignificant, and 1A enters the
computations. In a column model with sedimentation, results
also depend on 1z as it determines the travel time through
a grid box. Note that a variation of 1z can also implicitly
change 1V or 1A.

For more sophisticated kernels, including for example
turbulence enhancement, the present approach may not be
adopted easily as the driving mechanism for collisions to oc-
cur in the current model is differential sedimentation. Related
to this are studies on cylindrical vs. spherical formulations of
kernels in Saffman and Turner (1956) and Wang et al. (1998,
2005). A possible route to consider the effects of sub-grid
motions on collision in LCMs has recently been presented
by Krueger and Kerstein (2018). Their one-dimensional ap-
proach is able to represent droplet clustering and turbulence-
induced relative droplet velocities in a realistic manner, and
its implementation in already applied LCM sub-grid-scale
models (e.g. Hoffmann et al., 2019; Hoffmann and Feingold,
2019) is deemed straightforward. However, further research
is required on how the limited number of SIPs in current
LCM applications may corrupt the correct representation of
such processes.

Finally, we briefly summarise the differences between the
WM2D and WM3D approach. The standard kernel KWM3D

as given by Eq. (5) has units L3/T (where L and T are a
length scale and timescale, resp.). Multiplying it by concen-
trations ni and nj (units L−3), one obtains the rate of a con-
centration increase in merged droplets (L−3/T ) which is fi-
nally multiplied by δt (unit T ) to obtain ncoll (see Eq. 8).
Since SIPs represent droplet concentrations of ni = νi/δV
and nj = νj/δV , Eq. (7) follows. In the WM2D approach,
the kernel KWM2D as given by Eq. (23) has units L2. Mul-
tiplying it by “2D” concentrations n2D,i and n2D,j (units
L−2) one obtains the collected 2D concentration n2D,coll
(units L−2). Since SIPs represent “2D” droplet concentra-
tions of n2D,i = νi/δA and nj = ν2D,j/δA, Eq. (24) fol-
lows. A collection can only occur if a larger droplet (or
SIP) i overtakes a smaller droplet (or SIP) j . First, zi > zj
and wsed,i >wsed,j must hold and second the overtake time
1tOT := (zi−zj )×(wsed,i−wsed,j )

−1 must fulfil1tOT ≤ δt .
One can define the overtake probability pOT being 0 for
1tOT > δt and 1 for 1tOT ≤ δt , and the “2D” collection
probability pWM2D

ij =KWM2D
ij δA−1. Simulations in the Sup-

plement demonstrate that the WM2D and WM3D formula-
tions are statistically equivalent; i.e. pOT

×pWM2D equals
pWM3D, under certain conditions (see Fig. S9).

From a technical point of view, it might be challenging to
implement the WM2D version in full 2D/3D cloud models,
as one has to keep track of all SIPs in a grid box column.
If domain decomposition is used in a vertical direction, col-
lision candidates had to be searched across multiple proces-
sors.

2.3.3 Linear sampling version (AON-LinSamp)

The regular AON version can be sped up by introducing a
linear sampling technique (LinSamp) as done in Shima et al.
(2009) or Dziekan and Pawlowska (2017). bNSIP/2c com-
binations of pairs i− j are randomly picked, where each
SIP appears in exactly one pair (if NSIP is odd, one SIP is
ignored). As only a subset of all possible combinations is
numerically evaluated, the extent of collisions is underesti-
mated. To compensate for this, the probability pcrit (or equiv-
alently νcoll) is upscaled by a scaling factor

γcorr =NSIP(NSIP− 1)/(2 bNSIP/2c) (25)

to guarantee an expectation value as desired. Clearly, this re-
duces the computational complexity of the algorithm from
O(NSIP

2) to O(NSIP). Multiple collections are more likely
than in the regular AON version. The LinSamp version be-
comes the preferred choice if NSIP is large.

If νcoll is larger than both νi and νj , all AON versions as
introduced so far would produce negative weights. In order
to prevent this, νcoll is artificially reduced to νj in such a case
(let us assume that νi < νj ). The standard procedure would
then produce a SIP j with zero weight, which allows the up-
dated SIP i with weight νi (the weight νi remains unchanged
during the update) to be split into two SIPs. We choose a
60 %–40 % partitioning, and the operations are as follows.

µj := (νi µi + νj µj )/νi (26a)
µi := µj (26b)
νj := 0.6 νi (26c)
νi := 0.4 νi (26d)

The Supplement demonstrates that how the limiter is im-
plemented is critical. We thank reviewer Shin-ichiro Shima
for pointing us to a better limiter implementation, which
has been already described in Shima et al. (2009). There,
a 50 %–50 % partitioning was implemented. We avoid this
equal splitting as it produces two identical SIPs. In our im-
plementation with floating point weights, SIPs with identi-
cal weights are extremely rare and no special care is taken
for this. Hence, including an operation that produces iden-
tical weights is unfavourable. The dependence of the AON-
LinSamp performance on the limiter definition is showcased
in the Supplement (Figs. S3–S7, S15 and S16 and Table S1).

Employing a limiter is recommended for all AON versions
(even though we never encountered a limiter event in Quad-
Samp simulations), but it is particularly significant in the Lin-
Samp version due to the upscaling of pcrit. Moreover, note
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that LinSamp can be reasonably used only in conjunction
with AON-WM3D, not AON-WM2D.

In addition to the favourable linear computational com-
plexity, LinSamp can be easily parallelised, in particular
on shared-memory multi-processor architectures as used by
Arabas et al. (2015) or Dziekan et al. (2019). Once the SIP
pairs are determined in the beginning of each time step,
each processor treats a subset of SIP pairs. After a collec-
tion event, SIP properties are updated on the fly. Note that
the need to do updates on the fly precludes simple paralleli-
sation strategies in the quadratic sampling version, where all
SIPs are interconnected.

2.4 Boundary condition

At the lower boundary, droplets leave the domain according
to their fall speed. Using the LCM, the moment outflow Fl,out
is determined by accumulating the contributions νp(µp)l of
all SIPs p that cross the lower boundary z= 0 m. Due to the
discreteness of the crossings, instantaneous fluxes are actu-
ally averages of the past 200 s. Using the bin model, Fl,out is
diagnosed by

Fl,out =

NBIN∑
p=1

gp,k=1 (m̃bb,p)
l−1wsed(m̃bb,p)

ln10
3 κ

. (27)

At the model top, the simplest condition is to have a zero
influx. In this case, the column-integrated droplet mass will
decrease once a non-zero flux across the lower boundary oc-
curs. To implement a zero-influx condition in the Eulerian
model, the mass concentrations at the ghost cell level nz+ 1
are simply set to zero. In the Lagrangian model, a zero in-
flux condition is naturally implemented when no new SIPs
are created at the top of the column.

In both models, a non-zero influx at the model top can
also be prescribed. One option is to use periodic boundary
conditions. In the Lagrangian approach this is done by in-
creasing the altitude zp of an affected SIP by Lz, once zp
drops below 0. In the Eulerian model, gp,nz+1 is identified
with gp,1. A second non-zero influx option is a prescribed
size distribution that is advected into the domain with its re-
spective fall speed. In the bin model, the prescribed DSD
simply defines the gi,nz+1 values. In the Lagrangian model,
new SIPs have to be introduced close to the model top. For
this, a new SIP ensemble is drawn from the prescribed DSD
at each time step using the SingleSIP-init method. In order to
place the SIPs in the column, the greatest distance it would
fall from the model top during one time step is considered:
z1(p)= wsed,p ×1t . In a straightforward implementation,
one would create one SIP from each bin with a position
znew,p uniformly drawn from [Lz,Lz−z1(p)) and weighting
factor νnew,p = νp × (z1(p)/1z). This implementation has,
however, several undesirable side effects. For small, slowly
falling SIPs z1(p) is much smaller than 1z. Applying this
procedure in every time step leads to 1z/z1(p) SIPs per

Table 2. Summary of AON versions.

AON feature QuadSamp LinSamp

WM3D AON-reg AON-LinSamp
WM2D AON-WM2D not applicable
WM3D, noSedi AON-noSedi AON-LinSamp-noSedi

GB in the end. Hence, we refine this procedure by creat-
ing a SIP with probability pinit,p := z1(p)/1z, a weighting
factor νnew,p = νp and znew,p ∈ [Lz,Lz−z1(p)). Note that if
pinit,p > 1, then either bpinit,pc or dpinit,pe SIPs are created
depending on the probability pinit,p −bpinit,pc. This estab-
lishes a similar spatial SIP occurrence across the size spec-
trum with one SIP per GB and bin on average. Moreover, SIP
numbers do not scale any longer with 1t .

2.5 Terminology

Before we start discussing the results, we outline the ter-
minology of the various model versions. On a first level,
we differentiate between Eulerian (“BIN”) and Lagrangian
approaches (“LCM”), which can be both applied in a box
(“0D”) or column model (“1D”) framework. By default, BIN
uses the MPDATA advection algorithm (clearly only in 1D)
and Bott’s collection algorithm. Alternatively, MPDATA can
be replaced by the first-order upstream scheme (“US1”) and
Bott’s collection algorithm by Wang’s algorithm (“Wang”).
The Lagrangian model versions differ only in the way AON
is employed. The various model versions are summarised
in Table 2. By default, 3D well-mixedness (“WM3D”) is
assumed and a quadratic sampling (“QuadSamp”) of the
SIP combinations is used. Those simulations are referred to
as “regular”. A second type of QuadSamp simulation as-
sumes 2D well-mixedness (“WM2D”). Linear sampling of
SIP combinations (“LinSamp”) can be alternatively used
for the WM3D version. Accordingly, the terms “regular”,
“WM2D” and “LinSamp” each refer to one specific AON
version. On the other hand, “QuadSamp” and “WM3D” each
denote two AON versions: “QuadSamp” comprises “regular”
and “WM2D”, whereas “WM3D” comprises “regular” and
“LinSamp”.

By switching off sedimentation in the column model
source code (as partially done in Sect. 3.1), box model re-
sults are produced in each GB. In order to distinguish the
latter simulations from AON box model results in U2017
they are referred to as “noSedi”. In LCM1D-noSedi simu-
lations, the vertical position is not updated from time step to
time step. Hence, this implicitly calls for the usage of AON-
WM3D, as AON-WM2D relies on checking overtakes based
on the vertical SIP positions. Simulations with switched-on
sedimentation are the default; for better discrimination from
the noSedi case we refer to all such simulations optionally as
“full” simulations.
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If the space in figure legends is limited, abbreviations “LS”
and “nS” are used for “LinSamp” and “noSedi”, respectively.

3 Results

Before we start comparing collisional growth in column
model applications, we should first demonstrate that the dif-
ferences introduced by the different numerical treatment of
the sedimentation process are small to negligible. This exer-
cises is deferred to the Appendix.

We find the discrepancies introduced by the different sed-
imentation treatments small enough as long as the MPDATA
advection algorithm is employed in BIN. Hence, all follow-
ing BIN simulations rely on MPDATA and we can attribute
the differences that we may see in the following validation
exercises to the different numerical treatment of collisional
growth.

3.1 Box model emulation simulations

In this section, we choose a column model set-up that is sup-
posed to produce results that are similar to box model results.
For this, we initialise the default DSD in all GBs of the col-
umn and use periodic boundary conditions. In LCM1D, dif-
ferent SIP ensemble realisations of this DSD are initialised
in each GB.

The deterministic BIN1D model predicts identical DSDs
in all GBs, as in each GB the divergence of the sedimentation
flux is zero. Hence, for this specific set-up, the BIN1D results
attained are identical to those of a corresponding BIN0D
model or the data of Wang et al. (2007, see their Tables 3
and 4).

In LCM1D, the combination of homogeneous initial con-
ditions and periodic BCs results in statistically identical re-
sults across all GBs. However, the averaged results may not
be the same as in LCM0D, as lucky droplets or SIPs (Telford,
1955; Kostinski and Shaw, 2005) can collect other droplets
or SIPs not only from a single GB as in LCM0D, but from
any GB (depending on how fast they fall), creating poten-
tially larger and/or faster-growing lucky droplets/SIPs than in
LCM0D. In other words, the number of SIPs interacting with
each other is increased in LCM1D. This, as we will show be-
low, accelerates the convergence of the simulations.

Within the LCM1D model, pure box model results can be
obtained by switching off sedimentation (“noSedi”). Without
sedimentation, the GBs of the column are not interconnected
and the collisional growth process proceeds independently.

All figures related to the box model emulation set-up start
their caption with the label “BoxModelEmul set-up”.

By default, we use nz = 50 GBs with 1z= 10 m (giving
a column height of Lz = 500 m), 1V = 1 m3, 1t = 10 s and
κ = 40 throughout Sect. 3.1. The results are averaged over
nrinst = 20 independent realisations. Hence, the present AON
application can be viewed as a Monte Carlo method.

Figure 4. BoxModelEmul set-up: temporal evolution of column-
averaged moments λ0 and λ2 over 1 h for various time steps 1t
(see inserted legend for1t values) for the regular AON version. All
other parameters take the default values as given in the caption of
Fig. 5.

Moreover, we use the Long kernel (Long, 1974) as default
in BoxModelEmul simulations, as U2017 revealed that nu-
merical convergence is harder to reach for the Long kernel
than for the Hall kernel or a hydrodynamic kernel with con-
stant aggregation efficiency typically used for cirrus simula-
tions (Sölch and Kärcher, 2010).

3.1.1 Regular AON version

This subsection presents results obtained with the regu-
lar AON, i.e. with quadratic sampling of SIP combinations
(“QuadSamp”) and 3D well-mixed assumption (WM3D).
Sedimentation is switched on unless noted (for better dis-
crimination from the “noSedi” cases, these simulations will
be referred to as “full”).

Figure 4 shows the temporal evolution of column-averaged
LCM1D moments λl (l = 0 and 2) over 1 h for various time
steps 1t . The box model data serve as orientation in this
and following Figs. 5–7. We find that in terms of λ0 and
λ2 LCM1D results converge for 1t ≤ 10 s. The noSedi sim-
ulations show a similar time step dependence (not shown).
Hence, AON works well even for large time steps, a fact that
was already shown with the AON box model (see Fig. 18 of
U2017).

Next, we discuss the sensitivity to further physical and nu-
merical parameters. Generally, we find faster convergence for
higher moments than for λ0 (not shown). Hence in the fol-
lowing, we confine our analysis to the most “critical” quan-
tity, and Fig. 5 displays the λ0 evolution for various sensi-
tivity experiments. Even though we analyse the results in
some detail, we want to mention that the observed differ-
ences are in principle not substantial. In fact, results differ
much more due to a different collection kernel or slightly var-
ied initial DSDs (see Sect. 3.1.4). Nevertheless, the analysis
will help to understand more deeply how collisional growth
works in an LCM with AON. This pronounced effort is jus-

https://doi.org/10.5194/gmd-13-5119-2020 Geosci. Model Dev., 13, 5119–5145, 2020



5130 S. Unterstrasser et al.: Collisional growth in a particle-based 1D cloud model

Figure 5. BoxModelEmul set-up: temporal evolution of column-
averaged moment λ0 (i.e. droplet concentration) over 1 h for the
regular AON version. The default setting is nz = 50, nrinst = 20,
1V = 1 m3,1t = 10 s,1z= 10 m, κ = 40 and Lz = nz×1z. The
microphysical parameters of the initial exponential droplet size
distribution are LWCinit = 1 g m−3, rinit = 9.3 µm and DNCinit =
297 cm−3 as in many previous studies (Berry, 1967; Wang et al.,
2007). The parameter or parameter pair that is varied is added in
a purple box to each panel and the legend lists the parameter val-
ues for the different colours. If further parameters (besides the var-
ied parameter) take non-default values, it is indicated inside a black
rectangle. In any case, the total number of GBs is nrinst×nz = 1000.
By default, sedimentation is switched on. Simulations without sed-
imentation and independent rain formation in each GB (identical to
a box model treatment) are labelled as “noSedi” (appear only in the
left column). The panels on the right use a shortened time range.

tified, as precipitation initiation is still not fully understood
and a well-validated Lagrangian approach may lead to new
insights (Dziekan and Pawlowska, 2017; Grabowski et al.,
2019).

In a first simple step, we vary nz (see Fig. 5a and b), which
changes two aspects of the numerical set-up: the number of
GBs over which interactions can occur and the height of the
column. This implicitly changes the time it takes for SIPs to
fall through the total column and hence changes the ”recy-
cling” timescale Lz/wsed. Together with nz, nrinst is varied
such that nz× nrinst is always 1000. Accordingly, all sim-
ulation results are averaged over the same number of GBs,

and we avoid cases of simulations with smaller nz producing
noisier data.

In the noSedi simulations (panel a), the moment evolution
is not affected by varying (nz, nrinst). This is trivial, as in
any case the average is taken over 1000 independent GBs. At
least, these results demonstrate that averaging over that many
GBs suffices by far to produce robust averages. In the full
simulations (panel b), the λ0 decrease is more pronounced,
and the various set-ups produce nearly identical results (ex-
cept for the case with nz = 2, which is in between the other
full simulations and the noSedi simulations). From this find-
ing alone one may argue that the collisional growth process
is more efficient in LCM1D than in LCM0D.

The second row shows a variation of κ which reveals qual-
itatively different convergence properties of the noSedi sim-
ulations (panel c) and the full simulations (panel d). In the
noSedi simulations, an increase in κ (andNSIP; see extra leg-
end for corresponding NSIP values) leads to a faster decrease
in λ0. Large differences between κ = 5 and κ = 40 simula-
tions are apparent; above κ = 40, an increase in κ leads only
to marginal improvements. Also, for the highest κ , the λ0
values remain above the BIN0D reference. For the smallest κ
value, only 24 SIPs are created according to Eq. (16), and in-
teractions among those few computational particles overem-
phasise the impact of correlations. It is well-known that for
small ensembles of real droplets correlations become impor-
tant (Bayewitz et al., 1974; Wang et al., 2006). Analogously,
we introduced correlations in our numerical approach by us-
ing too few computational particles. We speculate that this
hinders the formation of lucky droplets and fewer droplets
get collected (hence λ0 is larger for smaller κ). Another more
technical explanation is that the νp distribution of the SIP
ensemble is such that the formation of lucky SIPs is not sup-
ported. Ideally, there is a reservoir of SIPs with small ν val-
ues that can become lucky SIPs. There might be too few SIPs
with small ν for small κ .

Contrarily, the full simulations (panel d) give nearly iden-
tical results independent of κ . We obtain converged results
with as few as 24 SIPs in each GB. Compared to κ = 200
with 1000 SIPs, the simulations are a factor of 402 faster. The
reason for the much faster convergence in terms ofNSIP,GB is
that the GBs are interconnected, which effectively raises the
number of potential collision partners. Drops with radii of
100 and 500 µm have fall speeds of around 0.7 and 4 m s−1,
respectively. Thus it takes them around 14 and 2.5 s to fall
through a1z= 10 m GB and they enter a new GB every time
step or every few time steps given 1t = 10 s.

How strongly SIPs are interconnected across GBs in
LCM1D should also depend on geometrical properties of
the column. In the next set-up, we investigate the κ sensi-
tivity in a column with nz = 10 and 1z= 100 m instead of
nz = 50 and1z= 10 m (panel e). Then, SIP interactions can
occur only across 10 GBs, and overall 5 times fewer SIPs are
present in the column than for the default case with nz = 50.
Moreover, the domain is stretched by increasing1z to 100 m,
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which increases the residence time of a SIP in a GB by a fac-
tor of 10, additionally slowing down SIP interactions across
GBs. Those two changes introduce a weak κ dependence,
and yet it is much weaker than in the corresponding noSedi
simulations (panel c).

In an even more academic experiment, sedimentation is
turned off, but SIPs are randomly redistributed inside the col-
umn after each time step (panel f) similar to Schwenkel et al.
(2018). Again, we find converged results for small κ values
as small as 5 (panel f). This elucidates that convergence is
improved once some process exchanges SIPs between GBs,
be it for physical reasons like sedimentation or by an artificial
operation such as the randomised SIP re-location. We spec-
ulate that in full 2D/3D LCM simulations turbulent motions
and sedimentation increase the SIP exchange across GBs and
hence may additionally increase the performance of AON.
The two last simulation series are promising, as they suggest
that in a column model (and probably also 2D or 3D mod-
els) convergence is potentially reached with fewer SIPs per
GB than in a box model. Nevertheless the tests also highlight
that convergence with κ depends on many circumstances and
convergence tests are a prerequisite to any LCM simulation
with AON.

In bin models, the Smoluchowski equation, which is
strictly valid only for an infinite volume and hence an infi-
nite number of well-mixed droplets, is solved. Accordingly,
only concentrations are prescribed in bin model algorithms.
Neither 1V nor the absolute number of droplets is consid-
ered in this approach. At least in the limit of all SIPs having
weighting factor ν = 1, the AON algorithm solves the mas-
ter equation (Dziekan and Pawlowska, 2017), which takes
into account1V , and results may depend on the actual num-
ber of involved droplets. Clearly, correlations (which are ac-
counted for in the master equation) are larger in smaller vol-
umes (Bayewitz et al., 1974; Wang et al., 2006; Alfonso and
Raga, 2017).

For our SIP-initialisation procedure, NSIP,GB depends
solely on the chosen κ values and is independent of 1V . By
construction, a 1V variation does not affect at all the simu-
lation results, as all SIP weights are simply rescaled. Indeed,
we obtain nearly bit-identical results for a 1V variation. To
explore the 1V sensitivity in our LCM1D, the SIP-init pro-
cedure has to be adapted. In the adapted version the SIP num-
ber increases proportionally with 1V as it would in reality.
As computational requirements increase quadratically with
NSIP,GB, the variation of 1V and NSIP,GB can be performed
only for a small range of 1V values. 1V is increased by
a factor of 5 or 10. As a base case, we use the simulations
with κ = 20 and κ = 100 and define1V := 1 m3. The fourth
row shows results for the noSedi (panel g) and the full sim-
ulations (panel h). Apparently, the noSedi simulations with
larger1V converge to the solution we obtained before by us-
ing a sufficiently large κ . In full simulations, a 1V variation
has basically no effect. The κ = 100, 1V = 10 m3 simula-
tion considered on average collisions between 5000 SIPs in

each GB. Yet, the results are basically identical to the case
κ = 5, 1V = 1 m3 with 24 SIPs in each GB (which runs
nearly 40 000 times faster).

In the present simulations, where SIPs with weights ν > 1
are used, variations of the numerical parameter κ and the
physical parameter 1V are interconnected and their effects
cannot be disentangled. Hence, the AON algorithm can only
answer whether correlations matter in systems with a cer-
tain number of SIPs. These correlations are not necessarily
the correlations one would see in a real system with millions
to billions of real droplets. Nevertheless, the last sensitivity
series implies that at least in our model system the impor-
tance of correlations is likely the same as in a system with
NSIP,GB = 24 and with NSIP,GB ≈ 5000. Assuming that the
importance of correlations in a real system with billions of
droplets is similar to that of a system with 5000 SIPs, the
latter finding demonstrates that LCMs can capture the colli-
sional growth process with astonishingly few SIPs.

The noSedi κ sensitivity series as shown in panel (c) was
already presented in Fig. 18 of U2017. There we found that
for high enough κ the LCM0D results lie below the BIN0D
reference contradictory to the present noSedi simulations.
The reason for this inconsistency is a programming bug in
the LCM0D-AON version used in U2017. The Hall and Long
kernel values are stored in look-up tables and were wrongly
accessed (overestimating the actual mass of the involved
droplets by 2 %). Hence, the collisional growth process pro-
ceeded more rapidly in U2017. Despite this flaw, the main
findings of U2017 remain valid. Yet, the more rapid colli-
sional growth of LCM0D-AON in U2017 should clearly not
be attributed to conceptual differences of AON and BIN al-
gorithms.

In the discussion of the subsequent sensitivity studies, we
refrain from showing time series of λ0 as done in Fig. 5. In-
stead we only evaluate λ0 at t = 1 h as this is a suitable metric
for the algorithm performance in the BoxModelEmul set-up.
Figure 6 comprises 1t and κ sensitivity series of all subse-
quent BoxModelEmul simulations. The black dotted (hori-
zontal) line depicts the reference BIN result obtained with
Wang’s algorithm with s = 16 and 1t = 1 s and was already
added in Fig. 5 for orientation.

3.1.2 AON with linear sampling

This subsection discusses the AON version with linear sam-
pling. Both full simulations and noSedi simulations have
been carried out. The first row of Fig. 6 shows sensitivity of
λ0(t = 1h) to κ (a) and1t (b), respectively. The grey curves
repeat the regular AON results (i.e. with quadratic sampling);
they show the endpoints of curves shown in Fig. 4 (top) and
Fig. 5c and d. We find that the qualitative behaviour does not
differ between LinSamp and regular AON.

In the full simulations (solid lines), simulations converge
for any κ , whereas for the noSedi simulations (dotted, “nS” in
the legend) convergence is reached only for the largest κ val-
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Figure 6. BoxModelEmul set-up: this figure summarises results of many sensitivity studies for various AON versions and BIN simulations
by displaying DNC after 1 h as a function of resolution κ (or analogously s in BIN models) or time step 1t . The default parameter settings
are listed in Fig. 5 and the horizontal black dotted curve shows the BIN benchmark reference. For example, the information of Fig. 5c and d
is compressed into the two grey curves in panel (a). Panels (a) and (b) additionally show AON simulations with linear sampling (as described
in Sect. 2.3.3), unless “reg” in the legend indicates regular AON with quadratic sampling. “nS” is short for “NoSedi”. The second row shows
simulations with explicit overtakes and a 2D well-mixed assumption (“WM2D”, as described in Sect. 2.3.2). Again, the regular AON with
WM3D serves as reference. In the simulation labelled “WM2D(GB)”, overtakes are considered only between SIPs inside the same GB,
whereas “WM2D” checks overtakes in the full column. Panel (e) shows a scenario with (increased) LWCinit = 1.5 g m−3 and (f) uses the
Hall kernel instead of the Long kernel. Note that the y ranges are different in the third row. The fourth row shows BIN results with Bott’s
and Wang’s algorithms. The default parameters are s = 4 and 1t = 10 s.
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ues. Using the default time step 1t = 10 s, the LinSamp re-
sults (orange curves) are slightly further away from the BIN
reference (black dots) than the regular results. A second Lin-
Samp series with1t = 1 s (blue) produces better results than
the regular AON version with 1t = 10 s.

The1t sensitivity series shown in the right panels of Fig. 6
demonstrates that LinSamp results are slightly worse than
the regular results for the default resolution κ = 40. Using
LinSamp with a finer resolution of κ = 100 produces better
results than the regular AON with κ = 40. In LinSamp sim-
ulations with large time steps, limiter cases occur quite often
and one may expect that the artificial reduction of collection
events strongly deteriorates the model outcome. However, we
see that the performance in the high-1t range drops similarly
in the LinSamp and regular AON version.

3.1.3 AON version with explicit overtakes

Next, we will discuss the results of the AON-WM2D version
with explicit overtakes. Results are presented in Fig. 6c and
d. For the chosen set-up with homogeneous initial conditions
and periodic boundary conditions, 3D well-mixedness of the
SIPs is expected to be maintained over the course of the sim-
ulation. Hence, the AON-WM3D and AON-WM2D version
are supposed to produce similar outcomes.

The dotted, green curve in panel (d) shows results for the
version where only intra-GB overtakes are considered. Re-
sults are far off the benchmark curve; only for the smallest
time step of 1t = 0.5 s do they become close to the refer-
ence. The solid, green curve shows a 1t variation (down
to 1t = 2 s) for the version where overtakes are considered
across the full column. In the present example, it was also
necessary to check for overtakes across the periodic bound-
ary. Then, convergence is reached for1t ≤ 10 s, very similar
to the regular (WM3D) version (see grey curve for compar-
ison). Panel (c) shows a slight dependence on κ , and yet the
performance of AON-WM2D is almost comparable to that of
the regular AON results.

Overall, we can conclude that the feasibility and correct
implementation of the WM2D version was demonstrated,
with the caveat that overtakes have to be considered in the
full column. Checking for overtakes outside of the “own”
GB can cause some computational overhead in implement-
ing the WM2D version in higher-dimensional cloud models,
which are typically parallelised. If the chosen time step for
collection obeys the CFL criterion (as argued in Shima et al.,
2020), SIPs can at most travel from one GB to the one right
below. Then, potential collision partners can only appear in
two different GBs.

As noted in Sect. 2.3.2, the WM2D version can only be
used in conjunction with kernels where the differential sed-
imentation term |wsed,i −wsed,j | is explicitly included and
can be dropped. Typically, this is not fulfilled for kernels ac-
counting for turbulence enhancement, in which motions in all
spatial directions need to be accounted for. Turbulence in cir-

Figure 7. BoxModelEmul set-up: sensitivities to the initial size dis-
tribution parameters LWCinit, rinit and DNCinit are summarised by
showing Tcross, which is defined as the time when λ0 drops be-
low 107 m−3. LWCinit is varied (the x axis shows the scaling fac-
tor LWCvar relative to the default LWCinit) for either fixed DNCinit
(dashed lines) or rinit (dotted lines). The solid lines depict a DNCinit
variation for fixed LWCinit. Again, the scaling factor DNCvar is de-
picted on the x axis. Five different model versions, as indicated in
the top-left legend, are used: regular AON (reg), AON-WM2D, reg-
ular AON with noSedi (“nS”), AON with LinSamp (“LS”) and BIN.

rus clouds is often weak. Moreover, cirrus clouds often show
a strong layering by ice crystal size, possibly making the 3D
well-mixed assumption overly simplistic. Hence, the WM2D
version appears to be a reasonable alternative to the regu-
lar (WM3D) version. Furthermore, the mixed-phase LCM of
Shima et al. (2020) used for the simulation of a cumulonim-
bus employs a hydrodynamic kernel. Hence, the WM2D ver-
sion would be applicable in this context as well.

3.1.4 Microphysical and bin model sensitivities

So far, all simulations were initialised with the same initial
DSD and the same collection kernel, and the results have al-
ways been compared to the same BIN reference simulation.

Accordingly, in this section, we perform simulations with
modified LWCinit, rinit and DNCinit. Moreover, we highlight
the effect of the employed kernel on the AON performance.
And finally, we also present BIN sensitivities (namely, we
switch from Bott’s algorithm to Wang’s algorithm and vary
the bin resolution and the time step).

In a first experiment, we increase LWCinit by a factor of 1.5
and repeat the κ sensitivity test; see Fig. 6e. We keep DNCinit
fixed and hence the mean radius is rinit = 9.3µm×1.5(1/3) =
10.7 µm. Compared to the base case with LWCinit = 1 g m−3,
λ0 starts to decrease after 20 min (instead of 40 min; see
Fig. S10). Eventually, λ0 decreases below 104 cm−3 (instead
of 106 cm−3). In the full simulations (all solid curves), we
again find results nearly independent of κ for all tested AON
versions (regular, LinSamp and WM2D). In the noSedi sim-
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ulations (grey, dotted curve), fewer SIPs are necessary to ob-
tain reasonable results compared to the base case in panel (a).

In a next step, the characteristics of the initial DSD are
more systematically varied for fixed κ = 40. For such a κ
value the noSedi simulation of the base case was consider-
ably off the reference. LWCinit = λ1(t0) is varied, for either
fixed droplet number or fixed mean radius. The default value
is scaled by a factor of 1.5,2.0 or 2.5. Similarly, DNCinit is
varied by a factor of 0.5,0.7 or 1.5 keeping LWCinit constant.

A more detailed presentation of simulation results with
time series of the mean diameter, λ0 and λ2 over 100 min
is deferred to the Supplement (see Fig. S11). Here, we focus
on a single metric again. We define Tcross as the time, when
λ0 drops below 107 m−3. The smaller Tcross, the faster pre-
cipitation sets in. Figure 7 shows Tcross for all three sensitiv-
ity series (see lower left legend for the various line styles).
Simulations with the BIN are contrasted with the regular
AON, AON-WM2D, AON-noSedi and AON-LinSamp (see
the top-left of the Fig. 7 for the various colours). Tcross and
with it precipitation onset changes strongly with LWCinit and
DNCinit. Generally, we find a similar behaviour across all
tested models. The AON-noSedi version features the largest
Tcross values. This is consistent with previous noSedi results
in Fig. 5 where the decrease in λ0 lags behind. All other AON
versions match well and are close to the BIN results. Only
for the largest DNCinit value does some spread in Tcross ex-
ist. Figure S11 shows that BIN predicts in all cases slightly
lower droplet numbers similar to what we already observed
for the default microphysical initialisation in Fig. 5. Never-
theless, we can confirm the very good agreement of BIN and
all full AON simulations.

As a last AON sensitivity study, the default Long kernel
is replaced by the Hall kernel. Figure 6f shows the corre-
sponding results. The decrease in λ0 occurs at a slower rate
(the y scale now uses a linear scale). For the full simulations
(solid curves), we obtain perfect agreement for any chosen
κ value and for all three model versions. Moreover, conver-
gence with κ in the noSedi simulations (dotted curve) is less
critical than in the base case (compare with panel a again)
and results converge for κ ≥ 40. Time series of λ0 of all Hall
kernel simulations are shown in Fig. S12.

So far, all reference BIN results were obtained with
Wang’s algorithm, using a time step 1t = 1 s and resolu-
tion s = 16. We conclude the box model emulation section
by showing the sensitivities of two BIN versions. For this,
we vary the bin resolution s and the time step for the base
case with LWCinit = 1 g m−3 and Long kernel and apply ei-
ther Bott’s or Wang’s algorithm. The default time step is
1t = 10 s as in the AON simulations and the bin resolu-
tion is s = 4. Figure 6g–h show results obtained with Bott’s
and Wang’s algorithm, respectively. Again, λ0 time series of
these BIN simulations are shown in Fig. S13.

We find that Bott’s algorithm converges for s ≥ 2 (Fig. 6g).
Wang’s algorithm, on the other hand, does not produce stable
results for higher resolutions and 1t = 10 s. Thus, the time

step had to be reduced (see inserted legend, for the combi-
nation of s and 1t). For s ≥ 8 results have converged to the
reference. Figure 6h shows the time step dependency for a
medium resolution of s = 4. While Bott yields stable results
for 1t ≤ 100 s, the results only converge for 1t ≤ 20 s. We
can even see a slight dependence of λ0(t = 1h) on 1t . As
a side note, this is a clear indication that the BIN reference
values used for orientation so far should not be interpreted
as absolute reference, and it would be premature to discredit
AON results being slightly above the BIN reference.

Wang’s algorithm, on the other hand, requires 1t ≤ 10 s
for stable results, and convergence is reached for 1t ≤ 5 s.
Overall, we can conclude that both algorithms converge to
basically the same values, given a sufficiently high s and
small 1t is chosen. As Bott’s algorithm appears to be more
robust than Wang’s algorithm, all following BIN simulations
are carried out with this algorithm.

Comparing the various collisional growth algorithms, we
find that Bott’s algorithm has the least requirements in terms
of bin resolution and time step as we have converged results
for t up to 100 s and s as low as 2. AON simulations may
converge for κ = 5 (corresponds roughly to s = 2) and 1t =
10 s if GBs of the column are sufficiently interconnected and
averaging over several realisations is done. Wang’s algorithm
produces correct solutions for s = 4 and 1t = 5 s, and yet
increasing the bin resolution has to be done hand in hand
with a reduction of the time step.

3.2 Algorithm profiling

Now, we turn the attention to an algorithm profiling of the
various AON versions.

Figure 8 and Table 3 give an example of how often collec-
tions occur in the model. For AON-WM2D, the number of
overtakes is also given. The listed numbers give a rough in-
dication of the importance of the various events (overtake, no
collection, single collection, multiple collection, limiter), and
yet we want to note the caveat that the relative importance
changes with a change of the parameter set-up. Here, results
are shown for the specific set-up with nz = 20, nrinst = 10,
1V = 1 m3, 1t = 5 s, 1z= 50 m and κ = 40. The figure
shows qualitatively the number of occurrences as a function
of time, whereas the table gives aggregate values for three
20 min blocks and the total 60 min simulation period. In both
WM3D versions (regular and LinSamp), the number of tested
SIP combinations Ncomb is constant over time. Clearly, the
LinSamp value is smaller by a factor of 200 (=NSIP) and
implies a faster execution. For the WM2D version, on the
other hand, Ncomb increases over time as the DSD gets more
mature and larger droplets fall faster. Relative to the regular
(WM3D) version, Ncomb of WM2D is at any time smaller.
In the beginning of the simulation, possible overtakes oc-
cur among relatively few SIPs; much fewer on average than
there are in a GB; hence the total Ncomb is around a factor
of 60 smaller (in the first 20 min; 9.44× 107 vs. 1.49× 106).
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Figure 8. BoxModelEmul set-up: time series of a number of events in the various AON versions. Shown are the number of tested SIP
combinations, of overtakes, of no collection, of a single collection and of a multiple collection in every time step. Additionally, the number
of limiter cases, where νcoll had to be artificially reduced, is shown (occurs only in the LinSamp panel). The parameter set-up is given in the
text. In the WM2D panel, the dotted lines show the case with1z= 10 m. In the LinSamp panel, the dotted lines show the 1 s simulation. The
displayed numbers can be below unity, as averages over 20 instances are shown.

Table 3. BoxModelEmul set-up: a number of events for various AON versions for the parameter set-up given in the text.Ncomb is the number
of tested SIP combinations and NLI is the number of limiter cases, where νcoll had to be artificially reduced. Moreover, ηOT, ηNO, ηSI and
ηMU specify the number of overtakes, no collections, single collections and multiple collections divided by Ncomb. The two last columns
shows summed-up pcrit (summed over all times and SIP combinations and overtakes) and the average pcrit. For each AON simulation, the
first three rows show aggregate values over three time periods (0–20, 20–40 and 40–60 min) and the fourth row values for the full time period.

Model version Tested SIP Overtakes No Single Multiple Limiter
∑
pcrit pcrit

combinations collection collection collection event
Ncomb ηOT ηNO ηSI ηMU NLI

9.44×107 – 100.0 % 0.0 % 0.0 % 0 2.91×104 3.08×10−4

Block no. 1 9.44×107 – 97.0 % 1.2 % 1.8 % 0 4.25×107 4.50×10−1

AON-WM3D 9.45×107 – 91.2 % 2.5 % 6.3 % 0 1.95×108 2.06×100

2.83×108 – 96.1 % 1.3 % 2.7 % 0 2.38×108 8.38×10−1

1.49×106 13.9 % 12.7 % 0.8 % 0.3 % 0 2.70×104 1.30×10−1

Block no. 2 3.83×106 34.7 % 11.9 % 4.5 % 17.8 % 0 3.64×107 2.74× 101

AON-WM2D 1.77×107 44.1 % 12.1 % 6.4 % 25.3 % 0 2.15×108 2.75× 101

2.30×107 40.6 % 12.2 % 5.8 % 22.5 % 0 2.52×108 2.69× 101

3.64×106 28.6 % 27.7 % 0.7 % 0.0 % 0 2.85×104 2.74×10−2

Block no. 3 1.53×107 43.9 % 22.0 % 6.5 % 14.9 % 0 3.62×107 5.37×100

AON-WM2D, 1z= 10 m 8.89×107 47.5 % 23.9 % 8.4 % 15.0 % 0 1.79×108 4.24×100

1.08×108 46.4 % 23.8 % 7.9 % 14.5 % 0 2.15×108 4.31×100

4.76×105 – 97.9 % 1.6 % 0.5 % 0 2.95×104 6.20×10−2

Block no. 4 4.76×105 – 90.9 % 2.2 % 6.9 % 11 3.59×107 7.55× 101

AON-WM3D, LS 4.76×105 – 78.7 % 2.6 % 18.7 % 87 2.55×108 5.35×102

1.43×106 – 89.2 % 2.1 % 8.7 % 99 2.91×108 2.04×102

2.38×106 – 99.3 % 0.6 % 0.1 % 0 3.34×104 1.41×10−2

Block no. 5 2.38×106 – 92.9 % 1.7 % 5.4 % 0 4.39×107 1.84× 101

AON-WM3D, LS, 1t = 1 s 2.38×106 – 85.0 % 2.0 % 12.9 % 0.40 1.95×108 8.20× 101

7.14×106 – 92.4 % 1.4 % 6.2 % 0.40 2.39×108 3.35×101
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Even towards the end of the simulation, many SIPs are still
small and travel through a small fraction of the GB. Only a
few SIPs grow to raindrop size and travel distances of order
1z. The table shows that the total (time-integrated) Ncomb is
more than a factor of 12 smaller for WM2D than for WM3D
(2.30× 107 vs. 2.83× 108). This demonstrates the numeri-
cal efficiency of the current WM2D implementation despite
a theoretically unfavourable computational complexity with
a factor of nz higher Ncomb compared to the regular WM3D
version.

Moreover, the workload per time step is constant in both
WM3D versions and determined solely by NSIP. In the
WM2D version, the workload depends additionally on the
properties of the DSD and also on 1z. If 1z is reduced by
a factor of 5 (see block no. 3 in the table), Ncomb roughly
increases by the same factor. Similarly, we found a longer
execution time of WM2D in the LWCup series than in the
base case (not shown).

In the table, the ratios ηNO, ηSI and ηMU specify the num-
ber of no collections, single collections and multiple collec-
tions divided by Ncomb and add up to 100 % for both WM3D
versions. In the regular WM3D version, only 1.3 % and 2.7 %
of all tested combinations lead to a single or multiple col-
lection. So, for most combinations pcrit is close to zero and
makes a collection unlikely. On the other hand, for favourable
SIP combinations pcrit can be far above 1 (imagine a SIP
combination with νi = 106, νj = 102 and νcoll = 104 yield-
ing pcrit = 100). This also explains the somewhat surprising
fact that the average pcrit is close to unity (= 0.83; see right-
most column). The PDF (probability density function) of all
pcrit values is strongly right-skewed (not shown). In the Lin-
Samp case, single and multiple collections occur in 2.1 %
and 8.7 % of the tested combinations. Collections are more
likely as pcrit is larger due to the upscaling. Moreover, νcoll
had to be artificially reduced in NLI ≈ 100 cases. Note that
such limiter cases do not appear in any QuadSamp version
(regular and WM2D). In the LinSamp version, NLI can be
cut down by choosing a smaller time step (see fifth block in
table). Using 1t = 1 s leads to 5 times smaller pcrit values,
increases ηNO, and decreases ηSI and ηMU. Limiter cases are
now an extremely rare event. For clarification, pcrit of a sin-
gle SIP combination scales with 1t−1; from this, however,
does not follow that the listed pcrit values of the two Lin-
Samp simulation differ by a factor of 5, as the DSDs and SIP
ensembles and weights evolve differently in the two simula-
tions.

Finally, we focus on the WM2D version (block no. 2).
Here, the sum of ηNO, ηSI and ηMU yields ηOT, the num-
ber of overtakes divided by Ncomb, and not 100 % as before.
In the end, around 40 % of all tested SIP combinations un-
dergo an overtake. This quite large fraction comes from the
fact that the DSD (or more precisely the size distribution
of the SIPs) features a strong bimodal spectrum. So most
tested combinations are combinations between a large col-
lector SIP i and a small SIP j with zi > zj . These tested SIP

combinations fulfil by design zi(t +1t) < zj (t). For small
SIPs j , zj (t+1t)= zj (t)−ε holds. As ε is a small distance,
it is likely that zi(t +1t) < zj (t +1t) is fulfilled; i.e. SIP i
overtakes SIP j . In more than every second overtake, a mul-
tiple collection occurs (i.e. ηMU/ηOT = 0.56). In one-eighth
(one third) of the overtakes a single collection (no collection)
happens. So the relative importance of the various events is
quite different compared to the regular AON and also pcrit
is 3 times larger (2.69 vs. 0.83). Note that changing 1z in
the WM2D simulation (block no. 3) also affects the relative
occurrences of no collection, a single collection and multiple
collections. In the WM3D versions, the overall workload is
proportional to1t−1. This is different in the WM2D version.
With an increasing time step, droplets travel longer distances.
Hence, the number of tested combinations and overtakes per
time step increases.

Note that the relative occurrence frequency of pcrit values
may depend also on the spectrum of given νp values (i.e. on
the SIP initialisation method), which is not elaborated here.

Figure S14 demonstrates that all five AON simulations
converge and show a basically identical time evolution of λ0.
The analysis here shows that in the end more multiple col-
lections than single collections appeared. Clearly, the occur-
rence of multiple collections in a simulation does not neces-
sarily deteriorate the simulation results. It is certainly not the
case that the time step choice or adaptation must be such that
multiple collections barely appear in a simulation. Beyond
that, limiter events that occurred in the LinSamp simulation
with 1t = 10 s did not avert convergence. So even a certain
amount of limiter events seems to be acceptable in terms of
performance. Figure 6b showed that even for1t = 100 s Lin-
Samp and regular AON produce similarly good results, albeit
off from the reference.

Several of the above findings may hold only for the spe-
cific set-up used here. To put the findings into a broader
context, we next derive scaling relations for basic numeri-
cal quantities and, in particular, discuss their sensitivity to
the time step and the number of SIPs. For a simplified pre-
sentation, we limit ourselves to the regular and LinSamp ver-
sion and assumed converged simulation results and no limiter
events. Moreover, we assume that an increase in NSIP leads
to a uniform decrease in all SIP weights νp.

For the following basic quantities we have

νp ∝
1
NSIP
; nt ∝

1
δt
; Ncomb ∝NSIP

α
; γcorr ∝NSIP

β ,

(28)

where γcorr is the correction factor defined in Eq. (25). For
QuadSamp α = 2, β = 0 and for LinSamp α = 1, β = 1.
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Accordingly,

νcoll ∝
1

NSIP
2 × δt, (29a)

νsum :=

nt, Ncomb∑
(νcoll γcorr)∝

NSIP
α+β

NSIP
2 = 1, and (29b)

pcrit :=
1

Ncomb nt

nt, Ncomb∑
(νcoll/νp γcorr)∝NSIP

β−1 δt.

(29c)

In both versions, νsum is independent of NSIP and δt . Clearly,
νsum should have the same value (not only the same asymp-
totic behaviour) across all AON versions in order to ob-
tain consistent results. The average probability pcrit scales,
not surprisingly, linearly with δt . For QuadSamp, pcrit is
inversely proportional to NSIP and an increase in NSIP de-
creases the occurrence of multiple collections and limiter
events. In the LinSamp case, pcrit is independent of NSIP
(as already pointed out by Shima et al., 2009, end of their
Sect. 5.1.3) implying that an increase in NSIP does not de-
crease the number of multiple collections and limiter events.
Nevertheless, an NSIP increase is also beneficial in LinSamp
as it increases the number of trials and reduces the variance
of the results.

3.3 Realistic column model simulations

The box model emulation simulations presented in Sect. 3.1
used an academic and unrealistic set-up, not yet exploiting
the capabilities of a column model framework. The following
two subsections treat realistic set-ups.

3.3.1 Half domain set-up

We initialise droplets in the upper half of a 4 km column.
In each GB the mean radius of the DSD is fixed at the de-
fault value rinit = 9.3 µm. LWCinit (and with it DNCinit) de-
creases linearly from 3 g m−3 at the model top to zero at
z= 2 km. At the model top, a constant influx of a DSD
with LWCinit = 3 g m−3 is prescribed, which guarantees a
smooth profile over time. Otherwise, a discontinuity would
occur at the top-most GB which may cause problems in the
BIN model. The further settings are nz = 400, 1z= 10 m,
1t = 10 s, nrinst = 20, κ = 40. All figures related to this set-
up start their caption with the label “HalfDomLinDec set-
up”.

Figure 9 shows the temporal evolution of the mean diam-
eter and the moments λ0, λ1 and λ2. Due to the influx con-
dition, the total mass increases during the first 10 min, barely
visible in the third panel. During this period, however, colli-
sional growth is already efficiently reducing the droplet num-
ber. This is accompanied by an increase in the mean diame-
ter and radar reflectivity. Soon after, the first droplets reach
the surface, the mass declines rapidly, and the whole column
is more or less washed out after 30 min. We find an excel-

Figure 9. HalfDomLinDec set-up: temporal evolution ofDmean and
column-averaged moments λ0,λ1 and λ2 for various model ver-
sions (see inserted legend; “LS” is short for linear sampling).

lent agreement among the four model versions BIN, AON-
regular, AON-WM2D and AON-LinSamp.

Figure 10 shows vertical profiles of DNC, LWC, Z and
NSIP,GB for times t = 0, 10, 20, 30 and 60 min. In the upper
half, droplet number is roughly homogeneously distributed
and decreases over time. In the lower half, droplet number
concentrations are several orders of magnitude smaller than
in the upper half and increase over time. The profile of the
radar reflectivity shows the highest values after 10 min with
a pronounced peak in the middle of the domain. Soon after,
the Z profiles become smooth and increase monotonically
towards the surface. The sedimentation flux also increases
towards the surface, and hence λ2 values decrease over time.

In the upper half, NSIP,GB is fairly constant over altitude
and time with around 200 SIPs. As the LWC is initially high-
est at the model top, collisional growth is most frequent there.
Most likely, SIPs from that layer turn into collector SIPs,
meaning they fall through the total column and collect many
other SIPs. Consistently, NSIP,GB decreases over time close
to the model top. Yet overall, only a small fraction of the
SIPs becomes raindrops eventually (see for example Fig. 4
in U2017) and hence the SIP number is substantially smaller
in the lower half. There, each GB is populated by roughly
10 SIPs. Despite this rather small value, convergence in DNC
and Z seems to be ubiquitous.
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Figure 10. HalfDomLinDec set-up: vertical profiles of moments λ0, λ1, λ2 and NSIP,GB for various model versions (AON-WM3D, AON-
WM2D, BIN; see colour legend in left-most panel) and times (0, 10, 20, 30, 60 min; see line style legend in right-most panel).

Figure 11. HalfDomLinDec set-up: size distribution glnr for vari-
ous model versions and times as in Fig. 10 (see legends there).

Figure 11 depicts column-averaged DSDs for various
points in time. The precipitation mode develops rapidly, and
2 to 3 mm sized drops are produced within 10 min. Those
drops soon reach the surface and remove a significant amount
of liquid water from the column. Due to this wash-out effect,
the raindrops cannot grow that large any longer and the pre-
cipitation mode peaks at smaller sizes at later times.

For a cleaner presentation, AON-LinSamp results were not
shown in Figs. 10 and 11, but we confirm that these are very
similar to those from AON-regular and AON-WM2D.

Overall, the agreement between the four model versions
is remarkable given the completely different numerics of the
Eulerian and Lagrangian approach.

Next, the vertical resolution1z is varied in the model ver-
sions AON-regular, AON-WM2D and BIN (see Fig. S17).
Even though this may look like a trivial sensitivity study, the
effect of a 1z variation has different implications in the var-
ious models and AON versions. The differences are rather
subtle. First, 1z affects the number of GBs nz and with it

the total SIP number NSIP,tot (as NSIP,GB is unchanged with
the standard SIP-init technique). To eliminate this unwanted
numerical side effect in LCM1D, we increase NSIP,GB pro-
portionally to 1z (analogous to the 1V sensitivity tests in
Sect. 3.1). Second, the advection by sedimentation changes
in BIN as the CFL number changes and the subcycling has to
be adapted. In LCM1D, the SIP transport by sedimentation
is independent of the assumed grid and clearly unaffected by
a 1z variation. Third, there is a physical effect as 1z deter-
mines the layer depth of the well-mixed volume (effective
only in AON-regular and BIN).

It follows that the results of the AON-WM2D version
should be independent of 1z. Moreover, the AON-regular
version can be used to determine if the size (more specifically
the depth) of the well-mixed volume is a crucial parameter.
In bin models in general, this sensitivity could not easily be
singled out as sedimentation numerics also change with 1z.

Given a constant column height Lz = 4 km, 1z takes the
values 2, 10, 50 or 100 m and we find λ0(t) to be independent
of 1z (see Fig. S17). As expected, the AON-WM2D simu-
lations are not at all affected by 1z. In particular, the AON-
regular simulations are insensitive to a change in1z and im-
ply that the depth of the well-mixed volume has a negligi-
ble impact on the extent of collections in the present set-up.
Interestingly, the 1z= 10 m simulation uses NSIP,GB = 200
and the 1z= 100 m simulation NSIP,GB = 2000. Hence, a
factor of 100 more SIP combinations are tested for possi-
ble collections in the latter case, yet with no effect on the
physical evolution.

3.3.2 Empty domain set-up

In this section, the 4 km deep column is initially devoid of
droplets and a time-constant influx of a DSD with rinit =

16.9 µm and LWCinit = 6 gm−3 is prescribed. As in the
box model emulation set-up, the corresponding DNCinit is
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Figure 12. EmptyDom set-up: vertical profiles of moments λ0, λ2, Dmean and NSIP,GB for various model versions (see legend). Depicted
are the times t = 30 and 60 min (solid, dotted).

297 cm−3. All figures related to this set-up start their caption
with the label “EmptyDom set-up”.

Over time the column fills with droplets, a distinct size
sorting is established and DSDs at a specific altitude are ex-
pected to be rather narrow. Hence, choosing a vertical res-
olution that is too coarse may result in overestimating col-
lections as the droplets are not supposed to be well-mixed
within such deep GBs. In such a case, the AON-WM2D
version has a conceptional advantage as it does not assume
well-mixedness in the vertical direction. The chosen set-up
specifically aims to demonstrate the possible improvement
by this. Again, the further parameter settings are nz = 400,
1z= 10 m, 1t = 10 s, nrinst = 20, κ = 40.

Figure 12 shows vertical profiles at t = 30 and 60 min for
AON-regular, AON-WM2D and BIN. After 30 min the cloud
roughly covers the top half of the column. Below z= 2 km,
fewer than 0.1 SIPs are present in each GB of LCM1D.
This implies that only in 1 or 2 out of the 20 realisations
do SIPs grow sufficiently large to fall that far. This also ex-
plains the jagged λ2 profiles in the lower part. Below a cer-
tain altitude, no SIPs are present at all and hence no mean
droplet diameter could be diagnosed. BIN produces non-zero
mass and number all the way down to the bottom and al-
lows a smooth Dmean profile to be computed. As the pre-
dicted droplet masses and concentrations become vanish-
ingly small, the derived Dmean values in the lower part are,
however, meaningless. Anyhow, this small discrepancy be-
tween BIN and LCM1D is a transient phenomenon. Once
the cloud is fully developed, the profiles match perfectly (see
dotted curve for t = 60 min). The fact that on average well
below 10 SIPs populate GBs in the lower domain half is re-
markable. Nevertheless, the LCM1D results seem to be con-
verged. SIPs at those altitudes are large (Dmean > 400 µm)
and fall fast, which fosters a strong SIP exchange across GBs
and is beneficial to convergence (see Sect. 3.1). The AON-
LinSamp simulation (not shown) produces again very similar

Figure 13. EmptyDom set-up: temporal evolution of Dmean and
column-averaged moments λ0 and λ2 for various model versions
(see legend).

profiles. This is even more remarkable, as on average only 5
SIP pairs are tested for collections per GB in the lower half.

Figure 13 shows the temporal evolution of the mean di-
ameter, column-averaged DNC and Z; here AON-LinSamp
curves are added. Within the first 10 min, DNC increases
quickly. Soon after, collection becomes effective and DNC
reaches a quasi-steady state. The radar reflectivity increases
within the first 60 min and then also reaches a quasi-steady
state. The only discrepancies between the various models are
slightly larger DNC values by all AON versions. The reason
for this is elucidated next.

Fig. 14 shows the 1z dependence of the DNC evolution
in the different models. For 1z= 50 and 100 m, the SIP
numbers in AON simulations have been upscaled to main-
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Figure 14. EmptyDom set-up: temporal evolution of column-averaged moments λ0 and λ2 for various model versions (AON-WM2D, a;
AON-WM3D, b; BIN, c). Each panel shows a variation of the vertical resolution 1z (see legend in the left panel). In LCM simulations, SIP
numbers for 1z= 100 and 50 m simulations are increased to the level of the 1z= 10 m simulation.

tain NSIP,tot values comparable to the 1z= 10 m simulation
(as already done in the HalfDom set-up). The Z evolution
(see Fig. S19 for a time series) is found to be basically inde-
pendent of1z in all three models. For the DNC evolution, we
find also no1z dependence in the WM2D model as intended.
However, in AON-regular and BIN models, DNC levels off
at different values depending on 1z. This behaviour is most
likely caused by an interaction of the unresolved size sorting
and the hence larger range of potential collection partners
in AON-regular and BIN. Apparently, this results in changes
in the rate with which the smallest droplets are collected by
larger droplets, as indicated by the substantial effect of this
process on DNC, but not on Z.

The1z dependence persists in AON-LinSamp simulations
and in further AON-regular simulations, where we reduced
the time step to 1t = 1 s or decreased NSIP,tot (see Fig. S20).

This undesired 1z dependence in BIN and AON-regular
seems to showcase the superiority of the AON-WM2D ver-
sion. However, the1z dependence does not affect higher mo-
ments of the DSD, e.g. Z (as shown in the Supplement) or
the accumulated size distribution of all droplets that crossed
the lower boundary (Fig. S21). Accordingly, precipitation-
related quantities seem to be unaffected by changes in the
vertical grid spacing. On the other hand, most of the 1z ef-
fect can be attributed to changes in the DNC within the top-
most 100–200 m of the column (Fig. 12). Anyhow, based on
the presented results, we cannot definitely answer the ques-
tion of whether using the AON-WM2D approach has in gen-
eral any practical benefits over the classical 3D well-mixed
approaches. Further research in this direction is required.

4 Summary and conclusions

Collection, i.e. the coalescence, accretion and aggregation of
hydrometeors, is an important process for the development of
precipitation in liquid-, mixed- and ice-phase clouds, respec-
tively. The correct representation of these processes in cloud
microphysical models is, therefore, of utmost importance. In
this study, we investigated and validated the representation
of collection in LCMs, a relatively new approach that uses
simulation particles, so-called SIPs or super-droplets, to rep-
resent cloud microphysics.

This study is a continuation of U2017, in which we anal-
ysed various representations of collisional growth algorithms
in LCMs using zero-dimensional box model simulations.
Here, this analysis is extended to one-dimensional column
simulations that allow the effects of sedimentation to be ex-
plicitly considered. This study focuses on the AON algorithm
(Shima et al., 2009; Sölch and Kärcher, 2010) that outper-
formed other collection algorithms, as assessed in our pre-
vious study (U2017). Two versions of AON are applied that
differ in the assumed distribution of droplets represented by a
SIP: in the regular AON version, the droplets are assumed to
be well-mixed within a three-dimensional volume (which is
typically identical to the GB of the dynamical model coupled
to the LCM). In WM2D, the height coordinate of each SIP is
used explicitly, and the droplets represented by a SIP are as-
sumed to be well-mixed only within a two-dimensional, hor-
izontal plane. Accordingly, collections are only considered if
a SIP overtakes another one during a time step.

Furthermore, two variants of AON-WM3D are tested that
differ in the number of SIP combinations that need to be
tested during collection. In its simplest form, AON-WM3D
depends quadratically on the number of SIPs since every SIP
may interact with any other SIP inside a GB (QuadSamp).
Additionally, Shima et al. (2009) introduced an approach
that depends only linearly on the number of SIPs by ap-
propriately scaling collection probabilities (LinSamp). What
we call here AON-LinSamp is also referred to as the SDM
(super-droplet method) algorithm in the literature.

All results are compared to established Eulerian bin model
results (Bott, 1998; Wang et al., 2007). Accordingly, the ca-
pability of Lagrangian and Eulerian approaches to advect
a droplet ensemble due to sedimentation is tested first –
neglecting the influence of collection. Since numerical dif-
fusion is inherent to any Eulerian advection problem, i.e.
also sedimentation, its impact might impede any conclusions
drawn from the collection simulations. However, by using
an appropriate advection scheme (MPDATA, Smolarkiewicz,
1984), numerical diffusion can be reduced to an acceptable
degree in the sense that the present simulations focus on the
differences driven by collection numerics.

As a first step and link to U2017 simulations, box model
simulations are emulated in the column model. This is done
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by initialising each GB of the column with the same droplet
size distribution and applying cyclic boundary conditions at
the surface and the top. By using this framework, we were
able to show that sedimentation increases the model con-
vergence rate significantly compared to box model simula-
tions without sedimentation; i.e. fewer SIPs per GB are re-
quired in the column model. The reason for this behaviour
is that the largest and hence fastest-falling droplets are no
longer confined to the same GB and to the same potential
collection partners, which increases the ensemble of poten-
tial collection partners. A similar observation has been made
by Schwenkel et al. (2018), who used randomised motions
between individual GBs. Overall, these results indicate that
a simulation with only 24 SIPs per GB can yield reasonable
results if (i) these SIPs are able to move between GBs and
(ii) the SIP weighting factors are ideally chosen in the begin-
ning by using an appropriate SIP initialisation technique.

In general, a remarkably good agreement of the LCM re-
sults with the bin reference has been found for all AON
versions (regular AON, AON-WM2D and AON-LinSamp).
AON-LinSamp results are only slightly worse compared to
regular AON simulation of the same time step and SIP num-
ber. However, these stronger restrictions on the time step do
not at all outweigh the computational benefit gained by the
favourable linear computational complexity, making the Lin-
Samp version the preferred choice if computation time is a
critical factor. In an operational setting, the QuadSamp ap-
proach is a valuable alternative to LinSamp as long as the
number of SIPs is not prohibitively high.

We further compared the computational requirements for
the WM2D and WM3D implementations of AON. We found
that WM2D requires checking for overtakes in the entire col-
umn, not only in the GB in which the SIP is located, as is
the case for WM3D. However, this seeming disadvantage is
turned into an advantage, since only a minority of SIPs over-
takes other SIPs. Accordingly, the overall number of calcu-
lations necessary for the application of WM2D is reduced
compared to WM3D. The physical reason for this effect is
the typical bimodal structure of droplet spectra, which con-
sist of only a few large droplets that sediment and collect
other droplets efficiently, while the remaining droplets are
usually too small to sediment and collect other droplets.

Finally, we applied the various AON versions to two more
realistic column cases. While both cases use a prescribed in-
flow of droplets from the top, the first case is initialised with
a linearly increasing liquid water content, and the second
case is completely devoid of any initial droplets. Overall, the
agreement of AON-regular, AON-WM2D, AON-LinSamp
and the bin references is remarkable. Only in the second case,
which is designed to be heavily prone to size-sorting, is a de-
pendence on the vertical grid spacing detectable for WM3D
and the bin reference, which both assume droplets to be well-
mixed within a GB, while the WM2D results are found to be
completely independent of the vertical grid spacing.

In all AON variants, simulation results converge for fairly
large time steps 1t > 10 s. For such high 1t values, the
largest droplets routinely travel distances larger than the ver-
tical resolution 1z during one time step (as noted above).
Whereas in Eulerian advection this would violate the CFL
criterion and cause a numerical break-down, Lagrangian nu-
merics do not fail. In higher-dimensional full microphysi-
cal models with diffusional growth included and gradients
in moist thermodynamic fields, physical reasons also render
it appropriate to apply a time step criterion in the spirit of
the CFL condition in Lagrangian approaches. Solving dif-
fusional growth usually sets stricter bounds on 1t (Arnason
and Brown, 1971). Moreover, the interplay of diffusional and
collisional growth, which was not studied here, may raise the
time step requirements of AON for physical reasons. For ex-
ample Dziekan et al. (2019), using AON with linear sampling
in 2D and 3D LCM simulations, found convergence only for
a rather small time step of 1t = 0.1 s.

All in all, this study has shown that the representation of
collisional growth in LCMs using AON successfully repro-
duces established Eulerian bin results. This ability, of course,
depends foremost on the number of SIPs and the applied time
step as already indicated in previous zero-dimensional box
model studies. Compared to these zero-dimensional studies,
the application of an LCM in a column decreases the required
number of SIPs significantly. The consequently lower com-
putational costs raise hopes to use LCMs more frequently in
large-scale, multidimensional models in the future.
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Appendix A: Pure sedimentation test cases

This Appendix presents pure sedimentation test cases that
are suited to demonstrating that minor differences are intro-
duced by the different numerical treatment of the sedimenta-
tion process. Two simple set-ups with an influx of an expo-
nential DSD with rinit = 50 µm are tested. In the first case,
the domain is initially empty and fills over time (Empty-
Dom) as in Sect. 3.3.2. In the second case, the upper half
of the domain is filled, with LWCinit and DNCinit decreasing
linearly to zero from the domain top to the domain middle
(HalfDom) like in Sect. 3.3.1. Figure A1 shows the vertical
profiles of normalised zeroth (a and c) and second (b and d)
moments for EmptyDom (a and b) and HalfDom (c and d).
Because of the lack of numerical diffusion, the solid LCM
curves show the exact results, except for the error introduced
by discretising the influx DSD with a probabilistic approach.
Each panel showcases a convincing agreement between the
Eulerian and Lagrangian approach. Only the BIN-US1 solu-
tions are slightly smeared out. The small wiggles in the LCM
curves originate from the probabilistic influx condition. Even
though the above agreement is favourable, it might be that
the advection errors of differently sized droplets compensate
each other in the Eulerian approaches. Hence, in a second
validation step, the computation of mass profiles is confined
to certain droplet size ranges. Figure A2 shows such ver-
tical profiles for EmptyDom. We see that for all four size
ranges, the BIN results are smeared out relative to LCM.
For the smallest size ranges both BIN versions are equally
“bad” (panel a). For the three remaining panels, the MP-
DATA curves (dashed) are closer to the LCM reference than
the US1 curves (dotted). On the other hand, the MPDATA
curves in panel (d) show some wiggles. Overall, the agree-
ment between LCM and BIN-MPDATA is good. The dis-
crepancies introduced by the different sedimentation treat-
ment appear to be small enough to warrant a focus on the col-
lisional growth process and its implementations in the main
part of the paper.

Moreover, we tested the sensitivity to rCFL and 1t as both
parameters in combination determine the local CFL num-
ber of each grid box. BIN simulations were carried out for
the HalfDomLinDec set-up and with switched-on collisional
growth (i.e. the set-up of Sect. 3.3.1). Figure S18 demon-
strates that this has no impact on the prediction of the total
moments.

Figure A1. Pure sedimentation test case: comparison of BIN and
LCM (solid) advection. BIN uses either MPDATA (dashed) or
first-order upstream scheme (dotted). EmptyDom (a, b) and Half-
Dom (c, d) set-ups are used with an exponential distribution with
rinit = 50 µm as influx condition. Displayed are vertical profiles of
normalised zeroth and second moment at the indicated points in
time.

Figure A2. Pure sedimentation test case: comparison of BIN and
LCM advection. EmptyDom set-up with an exponential distribution
with rinit = 50 µm as influx condition. Displayed are vertical pro-
files of normalised mass within specified size ranges (see the head-
ing of each panel) at the indicated points in time. Note that most
panels use different y-axis ranges and do not show all six points in
time.
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Code and data availability. The source code of the La-
grangian column model is hosted on GitHub (https:
//github.com/SimonUnterstrasser/ColumnModel, last ac-
cess: 22 October 2020) and released under Apache License
2.0. The (frozen) code version used to produce the sim-
ulation data of this study can be obtained from Zenodo
(https://doi.org/10.5281/zenodo.4031214, Unterstrasser, 2020a).
The data of the BIN and AON simulations, together with all plot
scripts that are necessary to reproduce the figures of this study, are in
a second Zenodo data set (https://doi.org/10.5281/zenodo.4030878,
Unterstrasser, 2020b). The source code of the bin collection
algorithms by Bott (1998) and Wang et al. (2007) have been
obtained from Andreas Bott and Lian-Ping Wang, respectively. We
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