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Abstract: A spectral acceleration approach for the spherical harmonics discrete ordinate method
(SHDOM) is designed. This approach combines the correlated k-distribution method and some
dimensionality reduction techniques applied on the optical parameters of an atmospheric system.
The dimensionality reduction techniques used in this study are the linear embedding methods:
principal component analysis, locality pursuit embedding, locality preserving projection, and locally
embedded analysis. Through a numerical analysis, it is shown that relative to the correlated
k-distribution method, PCA in conjunction with a second-order of scattering approximation
yields an acceleration factor of 12. This implies that SHDOM equipped with this acceleration
approach is efficient enough to perform spectral integration of radiance fields in inhomogeneous
multi-dimensional media.

Keywords: SHDOM; PCA; three dimensional radiative transfer

1. Introduction

The retrieval of trace gas products from UV/VIS spectrometers is strongly affected by the presence
of clouds. For the forward-model simulation of satellite measurements from instruments with high
spatial resolution, it is important to account for the sub-pixel cloud inhomogeneity, or at the least,
to assess this effect on the radiances at the top of the atmosphere, and so, on the retrieval results. For the
new generation of atmospheric composition UV–VIS-NIR sensors, such as Sentinel-5P, and Sentinel-4
and −5, fast and accurate models accounting for the cloud inhomogeneities are crucial.

The spherical harmonics discrete ordinate method (SHDOM) developed by Evans [1,2] is
one of the most efficient and widely used multi-dimensional deterministic (explicit) methods in
the atmospheric sciences. SHDOM adopts (i) both spherical harmonics and discrete ordinates
representation of the radiance field during different parts of the solution algorithm, and (ii) a sort
of successive order of scattering solution method (Picard iteration [3]). The spherical harmonics are
employed for computing the source function including the scattering integral, while the discrete
ordinates are used to integrate the radiative transfer equation spatially. Specifically, the radiative
transfer equation is solved iteratively by (i) transforming the source function from spherical harmonics
to discrete ordinates, (ii) integrating the product of the source function and transmission along discrete
ordinates, (iii) transforming the discrete ordinate radiances to spherical harmonics, and (iv) calculating
the source function from the radiance in the spherical harmonics space. To achieve higher accuracy
with a limited amount of memory, an adaptive grid is implemented. By this technique, regions where
the source function is changing more rapidly have a higher density of grid points.

The computation of the radiative transfer through an atmosphere consisting of gas molecules is
a demanding task because it requires an accurate modeling of the spectral absorption and scattering
signatures of the gases plus additional particulate material under consideration. SHDOM uses
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a correlated k-distribution approach [4] for the integration over a spectral band. Note that in the
version of March 1996, the parameterization of Fu and Liou [5] is the basis of the broadband integration
of the gaseous line absorption, while longwave and shortwave Rapid Radiative Transfer Model
(RRTM)-based k-distribution programs were added in 2003.

In addition to the k-distribution method, dimensionality reduction techniques applied on the
optical properties of an atmospheric system become a standard broadband acceleration tool for
one-dimensional radiative transfer [6–8]. Natraj et al. [9,10] designed a radiative transfer model based
on the principal component analysis, while Efremenko et al. [11] generalized this model to include
local linear embedding methods, as for example, locality pursuit embedding, locality preserving
projection, and locally embedded analysis.

The aim of this paper was two-fold. First, to extend the applicability range of dimensionality
reduction techniques to multi-dimensional radiative transfer, and second, to design a spectral
acceleration approach for SHDOM that combines the correlated k-distribution method with some
dimensionality reduction techniques. Although in the literature these methods are used separately,
we apply them together. In this way, we expect to increase the computation speed of the
k-distribution-based SHDOM.

2. The Spectral Acceleration Approach

Let us consider the solar radiative transfer in a rectangular prism of lengths Lx, Ly and Lz as
shown in Figure 1. The top and bottom faces of the prism are denoted by St and Sb, respectively,
while S1x (x = 0), S2x (x = Lx), S1y (y = 0), and S2y (y = Ly) correspond to the lateral
faces. The boundary-value problem for the total radiance at point r in direction Ω consists of the
inhomogeneous differential equation

dI
ds

(λ, r, Ω) = −σext(λ, r)I(λ, r, Ω) +
σsct(λ, r)

4π

∫
Ω

P(λ, r, Ω, Ω′)I(λ, r, Ω′)dΩ′, (1)

the top-of-atmosphere boundary condition

I(λ, rt, Ω−) =
F0(λ)

µ0
δ(Ω− −Ω0), rt ∈ St, (2)

and the Lambertian surface boundary condition

I(λ, rb, Ω+) =
A(λ)

π

∫
Ω−

I(λ, rb, Ω−)|µ−|dΩ−, rb ∈ Sb. (3)

At the horizontal boundaries, periodic boundary conditions are assumed, i.e.,

I(λ, r1x, Ω) = I(λ, r2x, Ω), I(λ, r1y, Ω) = I(λ, r2y, Ω), (4)

for rix ∈ Six and riy ∈ Siy with i = 1, 2. In Equations (1)–(4), λ is the wavelength, σext(λ, r) and
σsct(λ, r) the extinction and scattering coefficients, respectively, P(λ, ·) the phase function, A(λ) the
surface albedo, Ω0 = (−µ0, ϕ0) with µ0 > 0, the solar direction, F0(λ) the solar flux, r2x = r1x + Lxi
and r2y = r1y + Lyj with (i, j, k) being the Cartesian unit vectors. Moreover, Ω+ and Ω− stand for an
upward and a downward direction, respectively, Ω is the unit sphere, while Ω+ and Ω− denote the
upper and lower unit hemispheres, respectively,

An instrument placed at point rm measures the radiance at the top of the atmosphere in direction
Ω0

m = (µ0
m, ϕ0

m), µ0
m > 0. Denoting by g(λ) the slit function of the instrument, s the slit width, and Stm

the footprint of the instrument on the top face St, the spectral signal measured by the instrument at
wavelength λm in the spectral interval [λmin, λmax] is given by
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I(λm) =
∫ λmax+s/2

λmin−s/2
g(λm − λ′)IFOV(λ

′)dλ′, (5)

where
IFOV(λ

′) =
∫

St
h(rt)I(λ′, rt, Ωm(rt))dSt, (6)

is the signal integrated over the field of view of the instrument at wavelength λ′, Ωm(rt) the unit
vector along the line connecting the points rt ∈ Stm and rm, i.e., Ωm(rt) = (rm − rt)/|rm − rt|
(see Figure 1), and

h(rt) =


1

Atm
, rt ∈ Stm

0, otherwise

, (7)

and Atm the characteristic function and the area of the instrument footprint, respectively. Assuming that
the distance from the top of the atmosphere to the instrument is large, we approximate I(λ′, r, Ωm(r)) ≈
I(λ′, r, Ω0

m) in Equation (6).
For an atmosphere consisting of gas molecules and a cloud, we suppose that

1. the optical coefficients of the gas molecules depend on the altitude level and the wavelength, and
2. the optical coefficients of the cloud depend on the spatial coordinates but not on the wavelength.

The extinction coefficient is then computed as

σext(λ, r) = σcloud
ext (r) + σmol

sct (λ, z) + σ
gas
abs (λ, z), (8)

where σcloud
ext (r) is the extinction coefficient in the cloud, σmol

sct (λ, z) the molecular scattering coefficient
due to Rayleigh scattering, σ

gas
abs (λ, z) the gas absorption coefficient, and (x, y, z) the Cartesian

coordinates of point r. For the scattering coefficient, we have a similar representation, namely,

σsct(λ, r) = ωcloudσcloud
ext (r) + σmol

sct (λ, z), (9)

where ωcloud is the single-scattering albedo of the cloud.
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Figure 1. Scheme of the radiative transfer problem.
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The goal of our analysis is to design an approach for accelerating the computation of the spectral
signal I(λm) at a set of Wm spectral points {λmw}Wm

w=1 characterizing the instrument. For this purpose,
we combine the correlated k-distribution method with some dimensionality reduction techniques.

2.1. Correlated k-Distribution Method

The correlated k-distribution method [4,12] is based on grouping spectral intervals according to
absorption coefficient strength. In this section we provide a description of the correlated k-distribution
method, which will enable us to connect this method with dimensionality reduction techniques.

Let {λk}W
k=1 be a discrete set of W equally spaced wavelengths in the interval

[λmin − s/2, λmax + s/2] with

λ1 −
4λ

2
= λmin −

s
2

and λW +
4λ

2
= λmax +

s
2

,

where 4λ the discretization step. The forward-model spectral set {λk}W
k=1 is finer than the

measurement spectral set {λmw}Wm
w=1; in practice, W is chosen as a multiple of Wm, i.e., W = cWm with

say, c being an integer greater than 20. The convolution integral giving the expression of the spectral
signal measured by the instrument can be approximated by

I(λm) =
∫ λmax+s/2

λmin−s/2
g(λm − λ′)IFOV(λ

′)dλ′ ≈
W

∑
k=1

g(λm − λk)
∫ λk+4λ/2

λk−4λ/2
IFOV(λ

′)dλ′. (10)

As gas absorption has stronger spectral variation than molecular and particulate scattering,
we write formally (at a given altitude level z) IFOV(λ) = IFOV(σ

gas
abs (λ)). The accurate technique

for computing the integral in Equation (10) is a line-by-line (LBL) calculation of the gas absorption
coefficient versus wavelength. Contrarily, the correlated k-distribution method is based on the fact
that for a homogeneous atmosphere, the transmission within a spectral interval is independent of
the LBL variation of σ

gas
abs with respect to the wavelength, but rather depends only on the distribution

of σ
gas
abs within the spectral interval [13]. In this regard, let F = F(σgas

abs,k) be the cumulative density
function of σ

gas
abs (λ) in the spectral interval [λk−4λ/2, λk +4λ/2], and σ

gas
abs,k(F) the quantile function

(i.e., the inverse function of the cumulative distribution function). The spectral signal measured by the
instrument can then be computed as

I(λm) = 4λ
W

∑
k=1

g(λm − λk)
∫ 1

0
IFOV(σ

gas
abs,k(F))dF = 4λ

W

∑
k=1

g(λm − λk)
Nq

∑
l=1

vlIFOV(σ
gas
abs,k(Fl)), (11)

where {Fl , vl}
Nq
l=1 is a set of Nq quadrature points and weights in the interval [0, 1]. The σ

gas
abs,k(Fl) can

be computed by inverting the cumulative density functions of the LBL gas absorption coefficients,
or in the case of the “exponential sum fitting of transmittance” method [14], by solving a nonlinear
least squares problem.

In the final step, we define the sets of wavelengths and weights {λw}W
w=1 and {ωw}W

w=1 with
W = WNq, respectively, through the relations λw = λk and ωw = 4λ vl , where w = l + (k− 1)Nq for
k = 1, . . . , W, l = 1, . . . , Nq. Accordingly, we set σ

gas
abs (λw) = σ

gas
abs,k(Fl). Note that {λw}W

w=1 contains W
groups of Nq identical wavelengths. By this construction, Equation (11) becomes

I(λm) =
W

∑
w=1

ωwg(λm − λw)IFOV(σ
gas
abs (λw)). (12)

Note that Equation (12) is a quadrature rule for the convolution integral (10) in the case of the
correlated k-distribution method.
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The computation of the spectral signal by means of the correlated k-distribution method requires
the computation of the absorption coefficients σ

gas
abs (λw, z) at the set of wavelengths {λw}W

w=1, and so,
W monochromatic radiative transfer calculations. For applications with c ≥ 20 and Nq ≥ 4,
W = WNq = cWmNq can be in the order of hundreds, and a further acceleration is needed. This can be
achieved by applying dimensionality reduction techniques on the optical parameters.

2.2. Dimensionality Reduction of Atmospheric Optical Parameters

Following Ref. [11], the dimensionality reduction problem of the optical parameters can be
formulated as follows. For each wavelength λw, we define an N-dimensional vector xw by

xT
w =

[
ln σ

gas
abs,1(λw), ..., ln σ

gas
abs,L(λw), ln σmol

sct,1(λw), ..., ln σmol
sct,L(λw), ln F0(λw)

]
, (13)

where σ
gas
abs,k and σmol

sct,k are the optical coefficients in the kth level, N = 2Nz + 1, and Nz is the number
of altitude levels. For simplicity, the surface albedo A was not included in xw (we assumed that the
variations of A are negligible over the width of a molecular absorption band). Thus, the wavelength
variability of the optical parameters is encapsulated in the vector xw ∈ RN , and there is a one-to-one
correspondence between the discrete set of wavelengths {λw}W

w=1, and the discrete set of optical
parameters {xw}W

w=1. For the N-dimensional data set {xw}W
w=1, x = (1/W)∑W

w=1 xw is the sample
mean of the data. The goal of a dimensionality reduction technique is to find an M-dimensional
subspace (M < N) spanned by a set of linear independent vectors {ak}M

k=1, such that the centered data
xw − x belong to this subspace; that is,

xw ≈ x +
M

∑
k=1

ywkak = x + Ayw, w = 1, . . . , W. (14)

In Equation (14), the matrix A = [ak]
M
k=1 ∈ RN×M, encapsulating the column vectors ak, represents

the inverse transform from the low-dimensional space to the high-dimensional space, and ywk is the kth
component of yw ∈ RM. The vector yw is given by the forward transform from the high-dimensional
space to the low-dimensional space,

yw = A†(xw − x), (15)

where A† = (ATA)−1AT ∈ RM×N is the pseudoinverse of A.
An approximate model for estimating the integrated signal of the instrument at wavelength λ is

of the form

ln
IFOV(λ)

Ia
FOV(λ)

= f (λ), (16)

where Ia
FOV(λ) is the integrated signal computed by an approximate radiative transfer model, and f (λ)

a correction factor. The correction factor f (λ) can be calculated efficiently and accurately by means
of dimensionality reduction techniques applied on the optical parameters. Let us assume that the
scalar function f (xw) given by Equation (16) is not too nonlinear in xw. The computational process is
organized as follows.

1. For (cf. Equation (14))

4xw = xw − x =
M

∑
k=1

ywkak = Ayw, (17)

f (xw) is approximated by a second-order Taylor expansion around x; that is,

f (xw) ≈ f (x +4xw) ≈ f (x) +4xT
w∇ f (x) +

1
2
4xT

w∇2 f (x)4xw, (18)

where ∇ f and ∇2 f are the gradient and the Hessian of f , respectively.
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2. For ak = ||ak||âk and in view of Equation (17), the second and third terms in Equation (18) are
written as

4xT
w∇ f (x) =

M

∑
k=1

ywk||ak||
∂ f
∂âk

(x) (19)

and

4xT
w∇2 f (x)4xw =

M

∑
k=1

M

∑
l=1

ywkywl ||ak|| ||al ||
∂2 f

∂âk∂âl
(x), (20)

respectively.
3. The mixed directional derivatives in Equation (20) are neglected, while the first- and second-order

directional derivatives are approximated by means of central differences; that is,

∂ f
∂âk

(x) ≈ f (x + hâk)− f (x− hâk)

2h
, (21)

and
∂2 f
∂â2

k
(x) ≈ f (x + hâk)− 2 f (x) + f (x− hâk)

h2 , (22)

respectively.
4. For h = ||ak||, Equations (18)–(22) yield the computational formula:

f (xw) ≈ f (x) +
1
2

M

∑
k=1

[ f (x + ak)− f (x− ak)]ywk +
1
2

M

∑
k=1

[ f (x + ak)− 2 f (x) + f (x− ak)]y
2
wk. (23)

From Equation (23), it is apparent that the computation of f (xw) requires 2M + 1 calls of the exact
and approximate models, while the computation of IFOV(λw) requires, in addition, W calls of the
approximate model. In this regard and taking into account that M�W, we are led to a substantial
reduction of the computational time.

The most widely used dimensionality reduction techniques are the linear embedding methods
which are summarized below.

1. The principal component analysis (PCA) [15] performs a dimensionality reduction by projecting
the original N-dimensional data on the M-dimensional subspace spanned by the dominant
singular vectors of the data covariance matrix.

2. The locality pursuit embedding (LPE) [16] performs a principal component analysis on local
nearest neighbor patches to reveal the tangent space structure on the M-dimensional subspace.

3. The locality preserving projection (LPP) [17] solves a variational problem that optimally preserves
the neighborhood structure of the data set.

4. The locally embedded analysis (LEA) [18] uses an embedding strategy based on a linear
eigenspace analysis to minimize the local reconstruction error.

It should be pointed out that PCA preserves only the global structure of the data, and may fail to
preserve the local structure if the data lie on a nonlinear manifold. In contrast, LPE, LPP, and LEA are
local linear approaches, which optimally preserve local neighborhood information (the local structure
of the data) in a certain sense.

The PCA, LPE, LPP, and LEA methods are illustrated in Algorithms A1–A4 of Appendix A.
The outputs of these algorithms are the linear mapping A and the vectors of parameters yw,
w = 1, . . . , W. Note that in the PCA language, the column vectors ak, k = 1, . . . , M of A are the
so-called empirical orthogonal functions, while the vectors of parameters yw, w = 1, . . . , W are the
principal components.

A last problem which has to be solved is the choice of an approximate model. Two special features
of SHDOM facilitate this choice, namely, the use (i) of spherical harmonics and discrete ordinates
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to represent the radiance field, and (ii) of a sort of successive order of scattering solution method
(Picard iteration). In a first approximate model, we choose 2 zenith discrete angles per hemisphere to
represent the radiance field; analogous to the one-dimensional radiative transfer, the resulting method
is called the four-stream approximation. In a second approximate model, we consider only 2 steps of the
method of Picard iteration; the resulting method is called the second-order of scattering approximation.

In summary, the spectral acceleration approach includes two steps. The first step is
a pre-processing step, consisting in the computation of the sets of wavelengths {λw}W

w=1, the absorption
coefficients σ

gas
abs (λw, z), and the weighting factors {ωw}W

w=1 in the framework of the correlated
k-distribution method. The second step is a computational step, consisting of the calculation of

1. the data vectors xw, w = 1, . . . , W, the empirical orthogonal functions ak, k = 1, . . . , M, and the
principal components yw, w = 1, . . . , W in the framework of dimensionality reduction techniques,

2. the correction factor f (xw), w = 1, . . . , W, and the integrated signal IFOV(λw), w = 1, . . . , W
according to Equations (23) and (16), respectively, and finally,

3. the spectral signal measured by the instrument I(λmw), w = 1, . . . , Wm by means of Equation (10).

3. Numerical Analysis

Before presenting some numerical results, we describe an implementation of SHDOM that
is devoted to the retrieval of atmospheric trace gas concentrations from space-borne spectral
measurements of radiation reflected through the Earth’s atmosphere.

3.1. SHDOM Implementation

For an atmosphere consisting of gas molecules, we have to consider a domain of analysis with a
large vertical extent, especially when dealing with trace retrievals. The reason is that gas molecules
have a vertical concentration profile up to several tens of kilometers. Unfortunately, for large problems,
SHDOM is limited by the amount of memory available for calculation, in particular on smaller
computers. To handle this problem, in our implementation of SHDOM, we divide the domain of
analysis into a number of subdomains along the vertical direction, and for each subdomain, we store
the radiance and source function in separate files. The optical properties and the direct solar beam
are calculated at each point on the base grid of the entire domain of analysis, while (i) the radiative
transfer equation integration along each discrete ordinate during the solution iterations and (ii) the
integration along the viewing directions for the intensity output are done successively moving from
one subdomain to the neighboring one. Each subdomain has its own grid obtained by the cell
splitting (adaptive grid) procedure. At the boundaries of a subdomain, the radiances are calculated
not only at the grid points of the subdomain itself, but also at the grid points corresponding to the
boundaries of the neighboring subdomains (Figure 2). This is done by integrating the radiative transfer
equation and by applying the standard interpolation approach (the entering and exiting values of the
extinction and extinction-source function product are computed using bilinear interpolation of the
four gridpoint values of the faces pierced by a ray). To ensure the continuity condition for the radiance
field, the boundary values of the radiance are passed between the neighboring subdomains. The data
are transferred to and from files.

This implementation of SHDOM does not give exactly the same results as the standard
implementation because of (i) the splitting decision for the cells situated at the boundaries of a
subdomain, and (ii) the differences between the rays along which the radiative transfer equation
is integrated (a ray is traced backward until the transmission falls below some minimum specified
value only inside a subdomain). However, as compared to the overall accuracy of the algorithm,
these errors are small. On the other hand, this implementation increases the computation time by the
times which are needed (i) to write and read data to and from files, and (ii) to compute the radiances
at the additional grid points on the boundaries of each subdomain. It should be pointed out that the
number of subdomains is set by the user and depends on the problem to be solved.
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The code can be reformulated as a parallel code by using the Message Passing Interface (MPI).
In this context, it should be pointed out that a parallel implementation of SHDOM, but in which the
domain of analysis is divided along the horizontal directions, has been described in Ref. [19]. However,
in the case of horizontal splitting, the transfer of data between different neighboring subdomains is
more challenging for the implementation.

A B C D

subdomainsubdomain

subdomain

k+1

k

downward
recurrence

Figure 2. At the lower boundary of the subdomain k + 1, the downward radiances are also computed at
the points A, B, C, and D, which are grid points on the upper boundary of the subdomain k. During the
downward iteration step, these boundary values are passed to the subdomain k.

3.2. Numerical Results

The computational domain is a rectangular prism of lengths Lx = Ly = 15 km and Lz = 40 km.
The discretization steps along the horizontal directions are4x = 4y = 0.5 km; thus, the corresponding
numbers of base grid points are Nx = Ny = 30. Along the vertical direction, the domain is
discretized into 8 subdomains; the corresponding altitude levels and discretization steps are listed
in Table 1. The cloud is homogeneous in the vertical direction and is placed between 3 and 4 km
(second subdomain). The cloud extinction field is modeled as

σcloud
ext (x, y) = σ0 f (x, y),

where σ0 = 6 km−1 and f (x, y) is the indicator function taking the values f (x, y) = 1 inside the
cloud and f (x, y) = 0 inside the clear sky region. The indicator function f (x, y) is generated by a
two-dimensional broken cloud model [20] with a cloud fraction of about 0.4. In order to avoid abrupt
changes of the extinction field in the horizontal plane, σcloud

ext (x, y) is smoothed at the boundary of a
cloudy region (by linear interpolation along two discretization steps in each direction). To simplify the
analysis, a Henyey–Greenstein phase function with an asymmetry parameter g = 0.8 is considered,
while the single-scattering albedo is chosen as ωcloud = 0.99. The number of discrete zenith and
azimuth angles are Nµ = 16 and Nϕ = 2Nµ, respectively, the solar and instrument zenith angles are
θ0 = 60◦ and θ0

m = 30◦, respectively, the relative azimuth angle is ∆ϕ = 0, and a Lambertian reflecting
surface with the surface albedo A = 0.2 is assumed. The footprint of the detector is considered to be a
square of length 2a = 10∆x centered at x0 = y0 = Lx/2, and z0 = Lz. The calculations are performed
for a mid-latitude summer atmosphere [21] and a wavelength-dependent slit function corresponding
to the TROPOspheric Monitoring Instrument (TROPOMI).

SHDOM is run by using an adaptive grid with a splitting accuracy of 10−4. The solution accuracy
is 10−4, and the simulations are performed for periodic boundary conditions by using the delta-M
approximation along with the untruncated phase function single-scattering solution (TMS correction
of Nakajima and Tanaka [22]). The dimensionality reduction parameter M, which determines the
approximation accuracy of the linear embedding methods, is chosen as M = 4. The simulations were
performed on a computer Intel Core i5-3340M CPU 2.70GHz with 8 GB RAM.

Table 1. Discretization of the domain of analysis along the vertical direction.

Subdomain 1 2 3 4 5 6 7 8

Altitude levels [km] 0–3 3–4 4–7 7–10 10–14 14–22 22–30 30–40
Discretization step [km] 0.5 0.1 0.5 0.5 1.0 2.0 2.0 5
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3.2.1. Oxygen A-Band Test Problem

In our first example, we consider, in addition to the scattering and absorption by a cloud,
molecular Rayleigh scattering, and the absorption in the Oxygen A-band. The measurement spectral
grid contains 107 spectral points between 758 nm and 771 nm, while the number of spectral points
for the correlated k-distribution method is W = 936. For this test, a two-dimensional slice at y = 7
km is selected from a three-dimensional broken-cloud field (Figure 3). Figure 4 illustrates the spectral
signal computed by using SHDOM with the correlated k-distribution method. Using these results as a
reference, we show in Figure 5 the relative differences in the spectral signal corresponding to the linear
embedding methods, and in Table 2, the RMS of the relative difference and the computational time
in hours, minutes, and seconds. The computation time of SHDOM with the correlated k-distribution
method was 36 minutes and 28 s. Several conclusions can be formulated:

1. For the dimensionality reduction parameter M = 4, the relative differences are smaller than
1.25× 10−3 over the entire spectral domain, while the RMS values are smaller than 6.4× 10−4.

2. The computation time corresponding to the second-order of scattering approximation is smaller
than that corresponding to the four-stream approximation.

3. For the second-order of scattering approximation, the fastest linear embedding method is PCA
and the most accurate is LPP.

4. Relative to the correlated k-distribution method, the acceleration factor is of about 7–12.

Figure 3. Upper panel: indicator function f (xi, yj) with xi = i∆x and yj = j∆y for the O2A-band test
problem. Lower panel: a slice of the indicator function f (x) at y = 7 km.
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Figure 4. Spectral signal for the O2A-band test problem. The differences between SHDOM with
the correlated k-distribution method with and without linear embedding methods are not visible in
this plot.

Figure 5. Relative differences in the spectral signal for the linear embedding methods and the O2A-band
test problem. The plots in the left panel correspond to the four-stream approximation, while the plots
in the right panel correspond to the second-order of scattering approximation.
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Table 2. Root mean square (RMS) of relative difference and the computational time (CPU) in
hours:minutes:seconds corresponding to the linear embedding methods for the O2A-band test problem.

Method Four-Stream Second-Order Scattering

PCA RMS 6.37× 10−4 5.19× 10−5

CPU 0:04:21 0:03:01

LEA RMS 5.69× 10−4 4.00× 10−5

CPU 0:04:45 0:03:17

LPE RMS 5.37× 10−4 3.29× 10−5

CPU 0:04:35 0:03:05

LPP RMS 6.00× 10−4 3.14× 10−5

CPU 0:05:01 0:03:53

3.2.2. NO2-Test Problem

In the second example, the absorption of NO2, ozone (O3), oxygen dimer (O4), and water vapor is
considered. The measurement spectral grid contains 119 spectral points between 425 nm and 450 nm,
while the number of spectral points for the correlated k-distribution method is W = 268. Note that
in the correlated k-distribution method, the auxiliary gases are treated as weak absorbers meaning
that for these gases, the average values of the LBL cross sections are used in the calculation. The test
problem is three-dimensional, and the indicator function of the broken cloud is illustrated in Figure 6.
In Table 3, we indicate the amount of memory required for storing the radiance and source function
for each subdomain. As a result that the domain of analysis is not excessively large, the total amount
of disk memory is 3.168 GB. As a result, we infer that SHDOM can be also run without splitting the
domain of analysis. Taking these results as a reference, we found that the relative errors due to the
domain splitting procedure are smaller than 10−3. The spectral signal computed by using SHDOM
with the correlated k-distribution method is shown in Figure 7, the relative differences in the spectral
signal corresponding to the linear embedding methods are plotted in Figure 8, and finally, the RMS of
the relative difference and the computational time in hours, minutes, and seconds are given in Table 4.
For this test example, the computation time of SHDOM with the correlated k-distribution method was
12 h, 18 min, and 32 s. As in the first test example, we see that

1. for the dimensionality reduction parameter M = 4, the relative differences are smaller than
5× 10−4 over the entire spectral domain, while the RMS values are smaller than 2.2× 10−4;

2. the second-order of scattering approximation is faster than the four-stream approximation;
3. for the second-order of scattering approximation, the fastest linear embedding method is PCA

and the most accurate is LPE;
4. the acceleration factor is about 9–12.
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Figure 6. Indicator function f (xi, yj) with xi = i∆x and yj = j∆y for the NO2-test problem.

Table 3. Amount of memory required for storing the radiance and source function for each subdomain.

Subdomain 1 2 3 4 5 6 7 8
Memory [MB] 549 924 549 486 228 228 228 52
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Figure 7. Spectral signal for the NO2-test problem.
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Figure 8. Relative differences in the spectral for the linear embedding methods and the NO2-test
problem. The plots in the left panel correspond to the four-stream approximation, while the plots in
the right panel correspond to the second-order of scattering approximation.

Table 4. RMS of relative difference and the computational time (CPU) in hours:minutes:seconds
corresponding to the linear embedding methods for the NO2-test problem.

Method Four-Stream Second-Order Scattering

PCA RMS 3.84× 10−5 1.25× 10−4

CPU 1:21:24 1:02:56

LEA RMS 7.41× 10−5 1.34× 10−4

CPU 1:22:18 1:03:48

LPE RMS 3.73× 10−5 1.12× 10−4

CPU 1:21:53 1:03:21

LPP RMS 7.22× 10−5 1.26× 10−4

CPU 1:22:43 1:04:09

4. Conclusions

A spectral acceleration approach for SHDOM has been designed. This approach combines the
correlated k-distribution method and the linear embedding methods PCA, LPE, LPP, and LEA.

We have performed a numerical analysis of these techniques for a two-dimensional atmosphere in
the Oxygen A-band, and a three-dimensional atmosphere consisting of nitrogen, ozone, oxygen dimer,
and water vapor in a spectral interval ranging from 425 nm and 450 nm. The main conclusions of our
analysis are as follows.

1. SHDOM with the correlated k-distribution and linear embedding methods has a sufficiently high
accuracy. The relative differences in the spectral signal are smaller than 1.25× 10−3 (over the
entire spectral domain) in the case of a two-dimensional atmosphere, and 5.0× 10−4 in the case
of a three-dimensional atmosphere. In three of the four cases, the most accurate linear embedding
method is LPE.

2. The linear embedding methods based on the second-order of scattering approximation are faster
than those based on the four-stream approximation. Specifically, in the case of a two-dimensional
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atmosphere, the computation time of the linear embedding methods is on average about 4 min
and 30 s for the four-stream approximation, and 3 min and 20 s for the second-order of scattering
approximation, while in the case of a three-dimensional atmospheres, the corresponding times
are 1 h and 21 min for the four-stream approximation, and 1 h and 2 min for the second-order
of scattering approximation. The fastest linear embedding methods is PCA followed by
LPE. For the test examples considered in our numerical analysis, PCA in conjunction with
a second-order of scattering approximation yields an acceleration factor of 12 relative to the
correlated k-distribution method.

In conclusion, from the point of view of accuracy and efficiency, it appears that LPE based on
the second-order of scattering approximation is the most suitable acceleration method. Note that
the accuracy and efficiency of the linear embedding methods are determined by the dimensionality
reduction parameter M (as the accuracy and the computation time increase with M, an optimal value
for M should be a compromise between accuracy and efficiency).

SHDOM equipped with the spectral acceleration approach can be used to analyze the impact of
cloud inhomogeneities on trace gas retrievals [23]. In particular, for a specific cloudy scene, a spectral
signal can be simulated by SHDOM and then included in a one-dimensional retrieval algorithm to
derive for example, the total column amount of a trace gas. By comparing the retrieved total column
with the true value, a bias due to cloud effects can be deduced [24,25], and possible correction strategies
can be explored. Going one step further, a multi-dimensional trace gas retrieval algorithm can be
designed. In this case, the spectral acceleration approach should be adapted to a linearized version of
SHDOM (based on a forward or a forward-adjoint approach as described in Ref. [26]). This is the topic
of a companion paper.
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writing—original draft preparation, A.D.; writing—review and editing, D.S.E. and T.T. All authors have read and
agreed to the published version of the manuscript.
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Appendix A

The PCA, LPE, LPP, and LEA methods are described in Ref. [11]. For convenience of the reader,
the related algorithms are summarized below.

Algorithm A1: PCA.

Step 1. Stack all centered data xw ← xw − x, w = 1, . . . , W, into the columns of a matrix
X ∈ RN×W , i.e., X = [xw]Ww=1.

Step 2. Calculate the covariance matrix Cx = (1/W)XXT ∈ RN×N .
Step 3. Calculate a singular value decomposition of the covariance matrix Cx = UΣUT ,

where Σ = diag[σk]
N
k=1 ∈ RN×N is the diagonal matrix of the singular values

σ1 > σ2 > . . . > σN > 0, and U = [uk]
N
k=1 ∈ RN×N is the orthogonal matrix of the

singular vectors uk.
Step 4. Take A = UM = [uk]

M
k=1 ∈ RN×M yielding A† = UT

M ∈ RM×N , or alternatively,
consider the scaled orthogonal vectors uk =

√
σkuk, and take

A = UM = UMΣ1/2
M ∈ RN×M yielding A† = U†

M = Σ−1/2
M UT

M ∈ RM×N ,
with ΣM = diag[σk]

M
k=1.

Step 5. Compute the vectors of parameters yw = A†xw for w = 1, . . . , W.
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Algorithm A2: LPE.

Step 1. Stack all centered data xw ← xw − x, w = 1, . . . , W, into the columns of a matrix
X ∈ RN×W , i.e., X = [xw]Ww=1.

Step 2. For each w = 1, . . . W, consider the sets X (w) = {x(w)
N(j)}

k
j=1 containing the k nearest

neighbors to xw with respect to the Euclidean distance.
Step 3. Set L = 0 ∈ RW×W .
Step 4. For w = 1, . . . W, compute the diagonal matrix Dw = diag[Iv∈X (w)]

W
v=1 ∈ RW×W ,

where the indicator function Iv∈X (w) is defined by Iv∈X (w) = 1 if xv ∈ X (w),
and Iv∈X (w) = 0 otherwise.

Step 5. For all w = 1, . . . W, update the matrix L recursively as L← L + Dw − (1/k)Dw11TDT
w,

where 1 ∈ RW is a column vector taking 1 at each entry.
Step 6. Calculate the symmetric and positive semi-definite matrix A = XLXT ∈ RN×N ,

compute a singular value decomposition of A, A = UΣUT , and as in Algorithm A1,
take A = UMΣ1/2

M ∈ RN×M and A† = Σ−1/2
M UM ∈ RM×N .

Step 7. Compute the vectors of parameters yw = A†xw for w = 1, . . . , W.

Algorithm A3: LPP.

Step 1. Stack all centered data xw ← xw − x, w = 1, . . . , W, into the columns of a matrix
X ∈ RN×W , i.e., X = [xw]Ww=1.

Step 2. For w = 1, . . . W, consider the sets X (w) = {x(w)
N(j)}

k
j=1 containing the k nearest

neighbors to xw with respect to the Euclidean distance.
Step 3. For w, v = 1, . . . W, compute the elements Wwv of the sparse matrix W ∈ RW×W as

Wwv = exp(−||xw − xv||2/t) if xv ∈ X (w), and Wwv = 0 otherwise. Alternatively,
chose Wwv = 1 if xv ∈ X (w), and Wwv = 0 otherwise.

Step 4. Calculate the elements Dv of the diagonal matrix D = diag[Dv]Wv=1 ∈ RW×W as
Dv = ∑w Wwv, and the Laplacian matrix L = D−W ∈ RW×W .

Step 5. For A = XLXT ∈ RN×N and B = XDXT ∈ RN×N , solve the generalized eigenvalue
problem Azk = λkBzk as follows: (i) compute a singular value decomposition of the
matrix B = UΣUT , (ii) calculate the matrix D = Σ−1/2UT ∈ RN×N and its inverse
D−1 = UΣ1/2 ∈ RN×N , and finally, (iii) compute the matrix C = DADT ∈ RN×N and
its singular value decomposition C = VΛVT . The eigenvalues λk are the singular
values of C, while the eigenvectors zk are given by zk = DTvk, where vk are the
singular vectors of C.

Step 6. Construct the matrix VM = [vk+N−M]Mk=1 ∈ RN×M, where vk is the kth column vector
of V ∈ RN×N , and take A = D−1VM ∈ RN×M and A† = VT

MD ∈ RM×N .
Step 7. Compute the vectors of parameters yw = A†xw for w = 1, . . . , W.
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Algorithm A4: LEA.

Step 1. Stack all centered data xw ← xw − x, w = 1, . . . , W, into the columns of a
matrix X ∈ RN×W , i.e., X = [xw]Ww=1.

Step 2. For each w = 1, . . . W, consider the sets X (w) = {x(w)
N(j)}

k
j=1 containing the k nearest

neighbors to xw with respect to the Euclidean distance.
Step 3. Calculate the elements of the sparse matrix W ∈ RW×W as follows: (i) for w = 1, . . . W,

calculate the elements Gij of the matrix G ∈ Rk×k as Gij = (xw − x(w)
N(i))

T(xw − x(w)
N(j)),

and (ii) set WwN(j) = wj with wj being the elements of the column vector
w = G−11/(1TG−11) ∈ Rk.

Step 4. Calculate the elements Dv of the diagonal matrix D = diag[Dv]Wv=1 ∈ RW×W as
Dv = ∑w Wwv.

Step 5. As in Algorithm A3, solve the generalized eigenvalue problem Azk = λkBzk,
for A = X(D−W)T(D−W)XT ∈ RN×N and B = X(DTD + WTW)XT ∈ RN×N ,
and let C = VΛVT .

Step 6. Construct the matrix VM = [vk+N−M]Mk=1 ∈ RN×M, where vk is the kth column vector
of V ∈ RN×N , and take A = D−1VM ∈ RN×M and A† = VT

MD ∈ RM×N .
Step 7. Compute the vectors of parameters yw = A†xw for w = 1, . . . , W.
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