Electricity price forecasts in agent-based energy system simulations

Felix Nitsch, Christoph Schimeczek

WAW Maschinelles Lernen 6

German Aerospace Center Institute of Engineering Thermodynamics Energy Systems Analysis Curiestraße 4, 70563 Stuttgart

Knowledge for Tomorrow

Price forecasts in agent-based electricity market modelling

- Multiple competing agents need price forecast
- Competition disrupts simple forecast
- Goal: integrate expected bidding behaviour

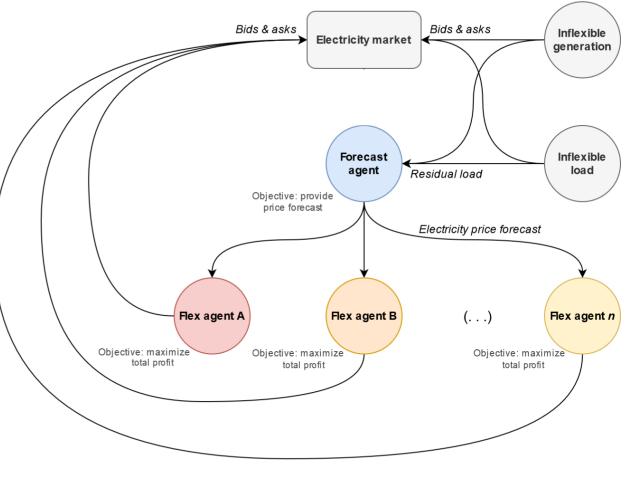


Fig.1: Agent providing forecasts for multiple flexibility options

The idea of a learning forecast agent

- Forecast agent learns bidding behaviour
- Architecture:
 - Feed-forward model
 - LSTM model
- Inputs:
 - Previous prices
 - Previous residual load
 - (Future residual load)
- Output:
 - Forecast for at least next 24 hours

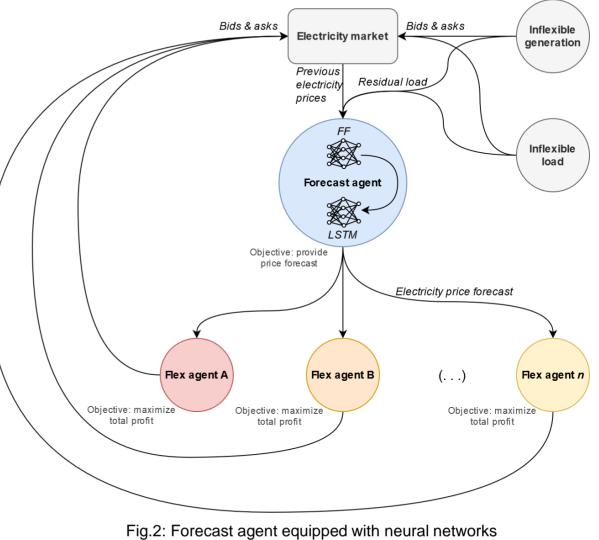


Fig.2: Forecast agent equipped with neural networks providing forecasts for multiple flexibility options

Electricity prices

In simulations

 <u>Without flexibility options:</u> price as function of residual load

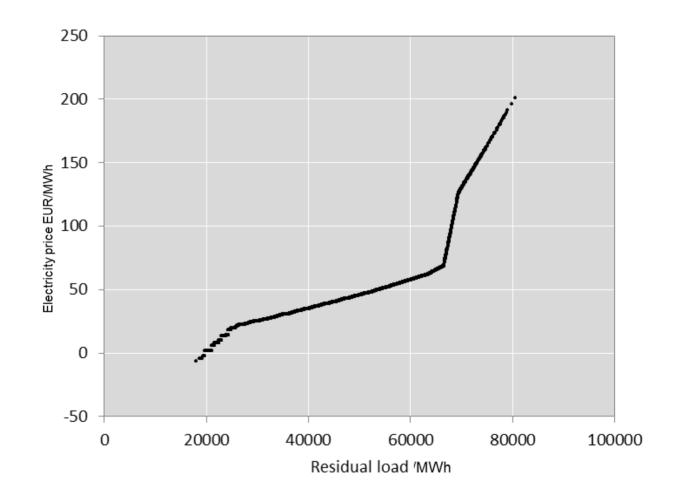


Fig.3: Electricity price without flexibility options

Electricity prices

In simulations

- <u>Without flexibility options:</u> price as function of residual load
- <u>With flexibility options:</u> more complex, time-dependent relation between residual load and prices

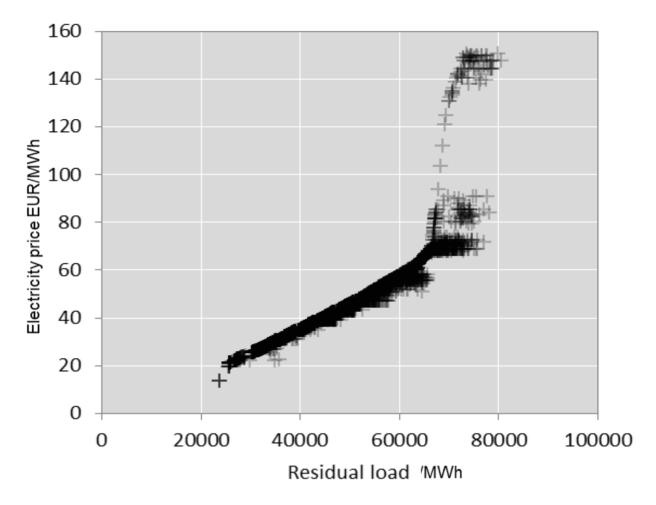


Fig.4: Electricity price with significant capacities of flexibility options

Feed-forward model I

- Map residual load on day-ahead price
- Artificial scenario with no storage capacity
- Therefore no unforeseen deviations
- Architecture:
 - Input: Residual_load(t)
 - Output: Price(t)
 - 3 hidden layers [100, 50, 30]
 - 48 epochs
 - batch size of 32
- Fit:
 - R2 0.9999
 - MAE 0.26 EUR/MWh
 - Max. abs. error 2.39 EUR/MWh

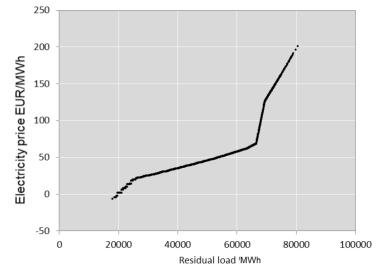
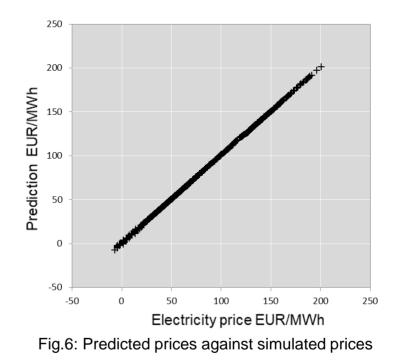
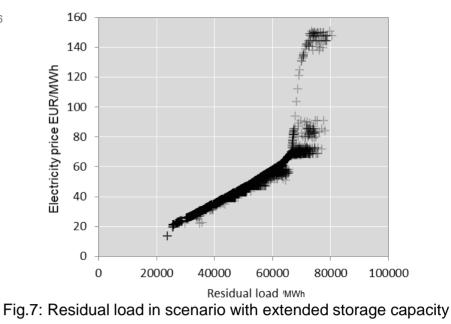


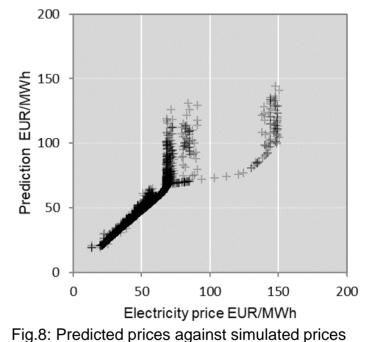
Fig.5: Residual load in scenario with no storage capacity



Feed-forward model II

- · Map residual load on day-ahead price
- Artificial scenario with extended storage capacity,
- Leads to various unforeseen deviations due to storage dispatch
- Architecture:
 - Input: Residual_load(t)
 - Output: Price(t)
 - 3 hidden layers [100, 50, 30]
 - 48 epochs
 - batch size of 32
- Fit:
 - R2 0.9482
 - MAE 1.52 EUR/MWh
 - Max. abs. error 58.66 EUR/MWh





Long-short term model (LSTM)

- Artificial scenario with extended storage capacity,
- LSTM should account for time-dependent deviations due to storage operation and therefore correct the FF prediction
- Architecture:
 - Input: Past_simulated_prices(t-24, ..., t-1), Delta_from_FF(t-24, ..., t-1)
 - Output: Price(t)
 - 3 hidden layers [100, 50, 30]
 - 72 epochs
 - batch size of 32
- Fit:
 - R2 0.9945
 - MAE 2.25 EUR/MWh
 - Max. abs. error 48.92 EUR/MWh

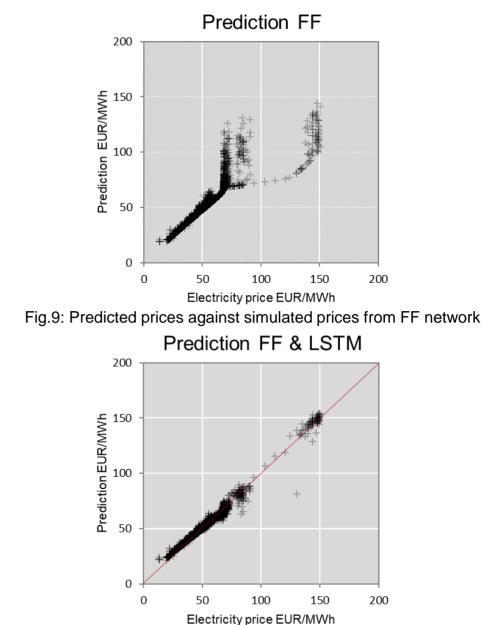


Fig.10: Predicted prices against simulated prices from LSTM network using FF predictions and simulated prices as input

Comparison of predictions

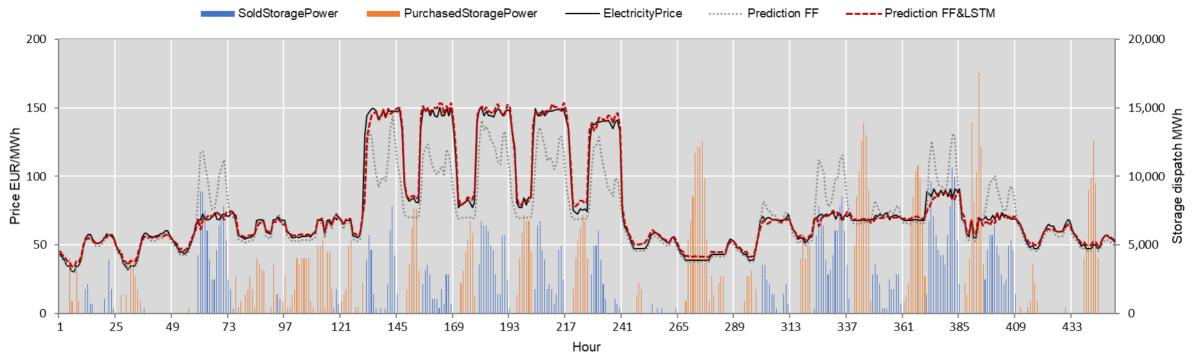


Fig.11: Comparison of simulated prices (black), FF prediction (grey dotted), FF&LSTM prediction (red dashed) and storage dispatch over time

Conclusion & outlook

- Price forecasts in energy system models must consider competition amongst market actors
- Provide forecasts using multi-stage neural networks to integrate bidding behavior of actors:
 - Basic estimate: Feed forward model
 - Time-dependent corrections: LSTM
- First results look promising
- Questions on deployment and training:
 - Generalization of training data (e.g. different power plant park)?
 - Many specialized sub-models vs. comprehensive general model?

Contact: Felix Nitsch, Christoph Schimeczek

German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Department of Energy Systems Analysis, Curiestraße 4 | 70563 Stuttgart, felix.nitsch@dlr.de

Appendix

Knowledge for Tomorrow

Retrospective: INREC 2019

- Analysis of commercial day-ahead price forecast
- Identification of key error components
 - Merit Order gradient
 - 24h cycle characteristic (e.g. PV & demand)
 - Autocorrelation
 - Random fluctuations
- Construction of artificial day-ahead price forecasts
- Application in agent-based electricity market model AMIRIS (Deissenroth et al., 2017)
- Enabling of modelling more realistic agentbehaviour due to similar error characteristics as found in the industry

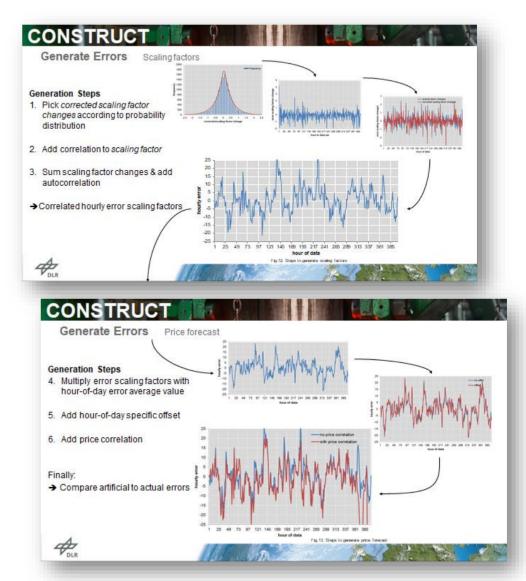


Fig.2: Summary of presentation at INREC 2019 (Schimeczek and Nitsch, 2019)

Forecasts in energy system simulations

- Background: agent-based model AMIRIS developed at DLR Stuttgart (Deissenroth et al., 2017) simulating German electricity market
- Supply:
 - Conventional power plants bid with marginal costs (operation, fuel, CO₂, etc.)
 - Renewables follow provided generation profiles
 - Flexibility options rely on price forecasts for optimizing operational strategy

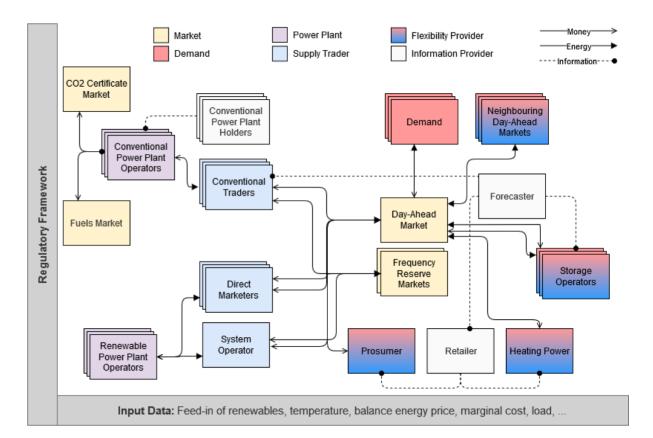
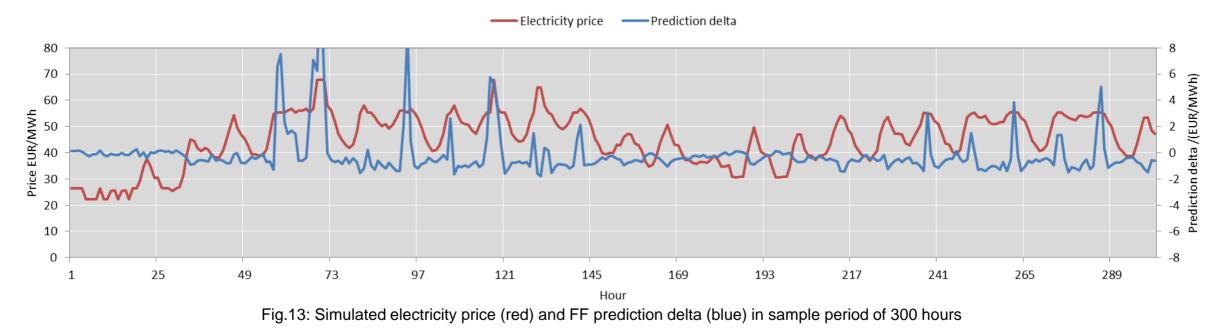


Fig.1: Schematic model overview of the agent-based model AMIRIS

Extract flexibility option signal



- Task: predict delta for forecasted price deviation of FF network to account for time-dependent dispatch by flexibility options
- Prediction delta (and past simulated electricity price) should be used as input for LSTM

