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ABSTRACT:

Synthetic Aperture Radar (SAR) images acquired by Earth observation satellites often constitute the only source of information for
monitoring the progression of flood events over larger regions. Particularly attractive are the SAR data acquired by the Copernicus
Sentinel-1 satellites because they are free and open, and combine a short revisit time with a good spatial and radiometric resolution.
In this contribution, we discuss how a Sentinel-1 data processing system should be designed to optimally benefit from the dense
Sentinel-1 time series and advanced algorithms such as change detection or machine learning methods. This was one of the questions
addressed by an expert group tasked by the Joint Research Centre of the European Commission to investigate the feasibility of an
automated, global, satellite-based flood monitoring product for the Copernicus Emergency Management Service. Drawing from
the expert group report, we distinguish three broad categories of data processing architectures, namely single-image, dual-image,
and data cube processing architectures. While the latter architecture is the most demanding in terms of large storage and compute
capacities, it is also the most promising to derive high-quality Sentinel-1 flood maps comprised not just of the flood mask but also
of data fields describing the retrieval uncertainty and masks showing where Sentinel-1 cannot detect floods due to physical reasons.
Therefore, we recommend to use data cube processing architectures and showcase the use of the Austrian Data Cube for monitoring
a small-scale flood event that occurred in Austria in November 2019.

1. INTRODUCTION

Sentinel-1 is a constellation of polar-orbiting radar satellites
operated by the European Space Agency (ESA) as part of the
European Union’s Copernicus programme. At present two Sen-
tinel-1 satellites (1A and 1B) are in orbit; preparations for the
launch of Sentinel-1C are on-going. Each of these satellites
provides day-and-night all-weather Snythetic Aperture Radar
(SAR) imaging capabilities at C-band (5.404 GHz). Unlike pre-
vious SAR missions, Sentinel-1 was designed to achieve sys-
tematic coverage in a limited number of acquisition modes that
meet most user requirements (Potin et al., 2012). Over land,
Sentinel-1 has been acquiring data almost exclusively in Inter-
ferometric Wide (IW) swath mode (250 km wide swath, VV
and VH polarisations) in pre-defined coverage patterns. A key
advantage of this systemic approach is that processing lines can
be streamlined and made fully automatic. Another important
advantage is that coverage is maximised, becoming de facto
mainly limited by the maximum duty cycle of the SAR instru-
ment which, in the case of IW mode, is about 25 min per 100
min orbit. As this precludes a uniform worldwide coverage,
acquisitions are prioritised according to region. As shown in
Figure 1, Sentinel-1A and 1B cover Europe exceptionally well,
providing SAR measurements every 2-3 days on average. Over
the other continents tectonic zones and agricultural areas are
also often well covered, with measurements taken every 5 to 10
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days. Least-prioritised regions, which are typically situated in
arid and cold environments, are covered every 10 to 15 days.

The systematic coverage undisturbed by clouds and lightning
conditions makes Sentinel-1 highly attractive for numerous ap-
plications. The high temporal sampling rate is not only be-
neficial for the mapping of urban areas (Lisini et al., 2018),
forests (Dostálová et al., 2018), rice (Bazzi et al., 2019) and
other land cover types, but even more so for the monitoring of
dynamic land surface variables such as soil moisture (Bauer-
Marschallinger et al., 2019), vegetation (Vreugdenhil et al.,
2018), snow (Lievens et al., 2019) and dynamic water bodies
(Huang et al., 2018). In this contribution we discuss how Sen-
tinel-1 can be used for systematic and fully-automatic monitor-
ing of flood events. Our prime interest is not in a specific al-
gorithm for turning an incoming Sentinel-1 image into a flood
map, but in the question of how to set up the data processing
system in such a way as to optimally benefit from the unique
properties of the Sentinel-1 data and novel algorithmic ap-
proaches such as change detection and machine learning mod-
els.

This paper is a synthesis of selected sections from an ex-
pert group report that investigated the feasibility of introducing
an automated, global, satellite-based flood monitoring product
based on Sentinel-1, in order to complement and enhance the
capabilities of the Copernicus Emergency Management Ser-
vice (CEMS) for mapping and monitoring floods (Matgen et al.,
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Figure 1. Average revisit time achieved by Sentinel-1A and 1B over land in Interferometric Wide Swath mode, based on 2017 data
acquisitions.

2019). Based upon a short overview of scientific algorithms for
floodwater mapping in Section 2, we introduce three different
system architectures in Section 3 and discuss their requirements
in Section 4. The importance of choosing the right system ar-
chitecture is illustrated in Section 5 by analysing a recent flood
event that occurred in Austria in November 2019.

2. SCIENTIFIC METHODS

2.1 Flood Mapping Algorithms

Water bodies can be detected in SAR images because the
mirror-like reflection of microwave pulses by the water surfaces
leads to backscatter intensities that are much lower than for
most other land cover types. This physical mechanism renders
the mapping of open, calm water in principle rather straightfor-
ward. Therefore, even thresholding algorithms applied to single
images of flood events often produce quite satisfying results
(Manjusree et al., 2012). However, applying such algorithms
over larger regions in a fully automatic fashion is prone to er-
rors as there are many confounding effects that lead to signal
ambiguities (e.g. wind-induced waves, low signal contrast to
sand, asphalt or grassland, etc.) or even prevent the detection of
water at all (e.g. dense vegetation, urban regions, radar shad-
ows, etc.).

The impact of confounding effects can be minimised by using
change detection approaches that are less sensitive to the gener-
ation of false positives. Changes can thus be directly attributed
to sudden changes occurring on the ground. Using two or more
SAR images rather than a single-image transforms the flood
mapping issue to a classification problem between change and
no change. Following the computation of the difference image,
different histogram thresholding approaches (often in combina-
tion with image tiling and region growing methods) can be ap-
plied to generate a binary classification. These methods assume
that one type of change (i.e. a decrease of backscatter due to the
specular reflection on water bodies) dominates all others. For
example, O’Grady et al. (2011) showed that misclassifications
of non-water pixels due to low backscatter over dry regions can
be effectively reduced with the use of dual-image processing
approaches. The selection of adequate reference images is a
prerequisite for an efficient change detection. Different auto-

matic selection algorithms have been presented in the literature
to select a suitable reference image (Hostache et al., 2012).

The availability of many backscatter observations distributed
over time makes it possible to go one step further and to ap-
ply time series analyses in an attempt to understand and model
the seasonality of the backscatter coefficient (Schlaffer et al.,
2015). The rationale is that pixels can be classified as ‘flooded’
when they show a specific deviation from a seasonal trend in-
ferred from a statistical model. Time series analyses applied on
SAR data archives are also well suited to improve the charac-
terization of permanent water bodies (Santoro et al., 2015).

2.2 Error Characterisation

The value of Sentinel-1 flood data products can be much in-
creased when layers on the retrieval uncertainty are added, de-
scribing the retrieval uncertainty and areas where the sensors
and algorithms fail to detect flood affected areas for physical
reasons (forests, urban areas, radar shadow regions, etc.). This
is crucial for the usability of the flood data products, because
users can generally deal with known unknowns, but not with
unknown unknowns. For example, a quantification of the ex-
clusion areas and classification uncertainty is required when
assimilating such datasets into numerical models for improved
flood forecasting and monitoring. The identification of exclu-
sion areas can be done on the basis of the Sentinel-1 data them-
selves or through the use of topographic and land cover data.
For example, Huang et al. (2017) used Digital Elevation Mod-
els (DEMs) to compute two popular terrain indices that can
assist the masking of Sentinel-1 data in mountainous catch-
ments. The uncertainties in SAR-based flood mapping is often
the by-product of the classifier that was used for generating the
flood maps. Other methodologies produce uncertain flood maps
based on fuzzy set theory (Pulvirenti et al., 2011) and Bayesian
statistics (D’Addabbo et al., 2016).

3. SYSTEM ARCHITECTURES

Considering the algorithmic approaches discussed above, we
propose to distinguish three broad categories of data processing
architectures, namely single-image, dual-image, and data cube
processing architectures. They are illustrated by Figures 2 to 4
and discussed in the following sub-sections.
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Figure 2. Single-image processing architecture for global flood monitoring using Sentinel-1 SAR image data.

Figure 3. Dual-image processing architecture for global flood monitoring using Sentinel-1 SAR image data, based on change
detection approaches using individual historic Sentinel-1 images as a reference.

3.1 Single-Image Processing Architecture

In the first, most basic single-image processing architecture
(Figure 2), the water mapping algorithm is applied to a single
Sentinel-1 image, using some ancillary data, such as a digital
elevation model, and maps of land cover and historical water
extent. In this case, the data flow is simple, whereby incoming
Sentinel-1 SAR Level-1 data are converted, step by step, to geo-
coded imagery and the flood mapping product. The algorithms
are designed to work with single SAR images, typically relying
on processing techniques that, for example, combine threshold-
ing with region-growing and noise reduction. From an engin-
eering point of view, the single-image processing architecture
is easily implemented. Drawbacks are: (a) It is difficult to deal
with spatial heterogeneity of the land surface, due to the limited
information content of single SAR images; (b) Training and cal-
ibration of algorithms is not naturally built into the processing
architecture, and so is usually done only for a limited number
of flood events.

3.2 Dual-Image Processing Architecture

Change detection approaches, which are based on a compar-
ison of flooded and non-flooded Sentinel-1 SAR images, enable
the detection of flooded areas more reliably than single-image
approaches. In the simplest case, change detection algorithms
can be implemented using a dual-image processing architecture
(Figure 3) that allows the comparison of the incoming SAR im-
age to an historic SAR image extracted from the Sentinel-1 data
archive. This historic image may e.g. be the most recent pre-
flood image or any image characteristic of non-flooding condi-
tions. This architecture is somewhat more difficult and costly
to implement than the single-image processing architecture, for
example due to the need to maintain an Sentinel-1 data archive,
and provide fast access to it. However, this architecture has
the important advantage that change detection algorithms are
better able to handle the spatial heterogeneity of the land sur-
face than single-image methods. This simply reflects the fact
that two custom-selected SAR images hold more information
than a single image. Additionally, change detection algorithms
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Figure 4. Data cube processing architecture for global flood monitoring using Sentinel-1 SAR image data, consisting of an NRT data
flow and off-line components.

are more easily applied to different geographic regions. Non-
etheless, a dual image processing architecture does not fully
solve the training and calibration problem, since region-specific
thresholds and / or model parametrisations are still required.

3.3 Data Cube Processing Architecture

The most sophisticated data processing architecture is based on
the “data cube” concept, whereby incoming SAR images are
geocoded, gridded and added as analysis ready data (ARD) to
an existing spatio-temporal SAR data cube (Figure 4). By us-
ing a data cube processing architecture, where the temporal and
spatial dimensions are treated alike, each incoming Sentinel-1
image can be compared with the entire backscatter history, in
a straightforward manner. The entire backscatter time series
for each pixel can then be analysed, in order to derive pixel-
specific backscatter statistics, which can then be used for ex-
ample to derive pixel-specific thresholds and model paramet-
erisations. Using this architecture, the full Sentinel-1 SAR in-
formation content is used (by analysing the entire backscatter
history) and standardised throughout the complete time series
(by also gridding the temporal dimension into a constant fre-
quency). Therefore, model training and calibration may be car-
ried out systematically for each pixel. Advantages are: (a) Al-
gorithms are better able to handle land surface heterogeneity;
(b) Uncertainties can be better specified; (c) Regions where
open water cannot be detected for physical reasons (e.g. dense
vegetation, urban areas, deserts), can be determined a priori.
Additionally, historic water extent maps are produced, essen-
tially as a by-product of the model calibration, which may serve
as a reference for distinguishing between floods and the normal
seasonal water extent.

4. SYSTEM REQUIREMENTS

The system resources required for a worldwide Sentinel-1 flood
monitoring product depend primarily on the volume of Sen-
tinel-1 SAR data, the computation time per image, and the
user requirements regarding product timeliness and availabil-
ity. While the exact specifications of the flood data product

are important, probably the most important drivers of costs are
the data pre-processing efforts, the spatial sampling of the flood
product, and the need to provide historic data that are consistent
(e.g. regarding format, software version) with the near real-time
(NRT) data stream. The selected data formats, data latencies
(time delays), and system availability also play a role. In the
following, we discuss some of the requirements arising from a
fully automatic, worldwide Sentinel-1 data service that aims to
deliver flood data to users within 8-12 hours after sensing (Fig-
ure 4).

4.1 Sentinel-1 Data Access

A fundamental requirement for the NRT generation of products,
is a fast, uninterrupted access to input data. In the present con-
text, the lowest data latencies (i.e. 1-2 hours) would be achieved
by receiving the Sentinel-1 data at local ground receiving sta-
tions. However, costs for running dedicated reception services
at one or more ground receiving stations are probably large,
and coverage would be limited to a few regions worldwide. Ac-
ceptable data latencies (i.e. 8-12 hours) should also be attain-
able by downloading the data from the Copernicus Service Data
Hub and Collaborative Nodes. Already now Sentinel-1 data are
provided via these hubs with different data latencies. Besides
the standard non-time-critical Sentinel-1 data products there is
also a “Fast24h” data stream that provides ground range detec-
ted Sentinel-1 Level 1 data on a world-wide basis within about
6 hours on average. Over Europe and some other selected re-
gions there is even a “NRT-3h” data stream that disseminates
Sentinel-1 Level 1 to users in under 3 hours. In this scenario for
data access, costs arise due to high bandwidth internet access,
to allow downloading several Terabytes per day, and dedicated
efforts to ensure a fast, uninterrupted data stream for down-
loading. These costs might be reduced by accessing Sentinel-1
data at one of the Copernicus Data and Information Access Ser-
vices1 or at equivalent Earth observation cloud platforms such
as EODC Earth Observation Data Centre2.

1 https://www.copernicus.eu/en/access-data
2 https://www.eodc.eu
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Figure 5. Data flow and envisaged data latencies (time delays) from the Copernicus Service Data Hub to the CEMS data distribution
facilities. Note that the indicated timeliness of 8-12 hours represents the total time from Sentinel-1 data acquisition to flood

monitoring product distribution to users.

4.2 Storage Capacity

Depending on the product specifications and system set-up, the
storage required for data processing and archiving can be sub-
stantial. The Sentinel-1 Ground Segment operations generate
about 250 terabytes (TB) of Interferometric Wide Swath (IW)
mode - Level 1 - Ground Range Detected (GRD) data per year
(i.e. about 0.7 TB per day). For NRT processing of incom-
ing Sentinel-1 data, at its most basic level it is sufficient to
have storage capacity for processing only one day of Sentinel-1
data (e.g. a few TB to store Levels 1, 2, and intermediate data
products). In practice however, such minimalistic requirements
are not realistic, as users wish to have access to historical data,
which implies keeping at least one copy of the derived flood
maps and ancillary internal data - leading to a requirement of
a few hundreds of TB per year. In the event that users want
the NRT- and historical data to be consistent (in terms of data
format or software versions used along the entire processing
chain), storage needs to be large enough to hold also the Level
1 data, in order to allow for regular re-analysis efforts (which
ensures that algorithmic updates can also be applied to historic
data). In such a scenario, the required storage space to store
all data (Levels 1, 2 and intermediate data) is about two to four
times that of the Level 1 data volume. Hence, the required stor-
age capacity would be about 0.5 to 1 petabytes (PB) per year.

4.3 NRT Data Processing

The NRT data processing system must have the capability
to handle all daily acquisitions of Sentinel-1 data. A typ-
ical flood mapping processing chain includes pre-processing
of SAR scenes (calibration, noise removal, terrain correction,
geo-referencing), and water mapping. Computational perform-
ance solely for the Sentinel-1 pre-processing (i.e. to generate
geometrically and radiometrically corrected images on a 10x10
metres rastergrid), based on evaluations done with ESA’s Sen-
tinel-1 Toolbox, is about 5 megabits (Mbit) per second - equi-
valent to 1.6 seconds per megabyte (MB) - using a high per-
formance computing node (i.e. two processors of Intel Xeon 2.6
GHz each having 8 cores). For example, for pre-processing 0.7
TB of daily Sentinel-1 data, based on a performance factor of
5 Mbit per second, 311 node-hours are required (e.g. 20 nodes
running for 16 hours daily). The computation effort required
for flood mapping (which varies depending on the selected al-
gorithm) must be added to this estimate, but is typically (much)
less effort that is needed for the pre-processing. Therefore, a
conservative estimate of the computing resources needed to run

the NRT service is 30-40 computing nodes. (A certain overhead
is needed to handle fluctuations in the incoming Sentinel-1 data
stream).

4.4 Offline Data Processing

In order to either allow a regular re-processing of the historic
flood maps, or to support a data cube processing architecture
(Section 3.3), an off-line high performance computing (HPC)
environment is needed in parallel to the NRT system. Data pro-
cessing in such an environment is not as time-critical as in NRT,
in that the requirements for hardware availability are not strin-
gent. However, sufficient HPC resources are required to per-
form analysis over hundreds of TB of historical Sentinel-1 data.
Hence, the HPC facilities must be large enough to be capable
of providing in the order of millions of core hours per month in
order to complete re-processing efforts in reasonable time peri-
ods (i.e. a few weeks to months per re-analysis cycle). For ex-
ample, when using compute nodes with 2 processors, each with
8 cores, then 87 compute nodes are needed to provide 1 million
core hours per month. In practice, re-processing jobs should
be run on 200-500 compute nodes, so the HPC system must
consist of several hundred to a few thousand compute nodes to
provide sufficient resources when needed. Such HPC resources
are e.g. available at the EODC which connects its worldwide
Sentinel-1 data archive with the Vienna Scientific Cluster3 via
a high-bandwidth network fabric.

4.5 System Bandwidth

An important characteristic of any Sentinel-1 data processing
environment - whether online or off-line - is the bandwidth
between the processing components and the storage. High
bandwidth is needed, as data transfer rate must be high in order
to parallelise the computations of the Sentinel-1 data. In view
of the Sentinel-1 data volume acquired per day, the network
bandwidth capacity between the computation units and storage
must be several tens of gigabits (Gbits) per second, in order to
generate flood maps seamlessly, with no input / output restric-
tion. Similarly, a high bandwidth is crucial when re-processing
historical Sentinel-1 data.

4.6 Metadatabase

Metadata contain information for understanding, interpreting,
and managing the data, which is needed for correct and effect-
ive data processing. For any system capable of the automated
3 http://vsc.ac.at/
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processing of global Sentinel-1 data, the availability of an act-
ive metadatabase, suitable for steering processing efforts, is a
prerequisite. Throughout the data processing chain, different
kinds of information must be gathered to set up configurations
for accessing and processing various data sources. A fast and
reliable querying of both input and output data products, should
be available, based on region of interest, acquisition time, and
satellite data specifications (acquisition mode, polarization, or-
bit, etc.). The query results are used to make decisions, select
the right model parameters, and read relevant information from
auxiliary data sources (e.g. land cover, historical flood maps,
advisory flags, and masking layers). The metadatabase should
be automatically updated as soon as a data product is generated,
in order to keep track of processed and non-processed data-files
in near real-time.

4.7 System Redundancy and Product Availability

Timely and reliable delivery of data products is an essential as-
pect of the NRT system. The system should be reliable enough
to provide a non-stop (24 hours per day, seven days a week)
service operation, with a high product availability. Therefore,
a monitoring system must be in place, to automatically detect
failures and to recover data processing instances, using redund-
ant system components, including the following:

• Access node redundancy: In the event of failing to access
input data or auxiliary data, Sentinel-1 data should be ac-
cessed from alternative data hubs or cloud platforms.

• NRT hardware redundancy: In the event of any failure of
the storage or computing nodes needed for the NRT pro-
cessor, a redundant NRT processor should take over

• Software redundancy: The processing chain should be im-
plemented in redundant environments ready for running
identical code. Furthermore, a protocol is required to steer
the switching between the individual processing chains.

5. DISCUSSION

From the above discussion of system requirements it is clear
that the data cube processing architecture is the most demand-
ing approach in terms of storage, compute, bandwidth, and sys-
tem maintenance capacities. However, as already noted in Sec-
tion 3.3, it brings important benefits that makes this architecture
attractive for operational users and scientists alike.

5.1 Scientific Benefits of Data Cube Architecture

From a scientific perspective, the key advantage of the data
cube architecture is that it provides fast access to Sentinel-1
time series. Therefore, it becomes possible to implement ad-
vanced algorithms such as change detection (Schlaffer et al.,
2015) or machine learning (Kreiser et al., 2018) methods that
require model training. Since the data cube provides access to
the backscatter time series of each land surface pixel, it is even
possible to parameterise the models for each pixel separately.
This simplifies the task of coming up with algorithms that are
transferable across geographic domains. Moreover, this implies
that retrieval uncertainties and exclusion areas may also be de-
rived on a per pixel basis.

Note that these scientific tasks are further simplified when the
Sentinel-1 data are pre-processed to higher-value data formats

that allow compare the backscatter data across space and time.
At the very least, Sentinel-1 stored in the cube have been geo-
coded and local incidence angles are provided. But to better
deal with changes in the imaging geometry related to the or-
bit number and pass direction, it is preferable to work with
radiometrically corrected, terrain-flattened backscatter (Small,
2011). This was for example recognised by the Committee on
Earth Observation Satellites (CEOS) in their definition of the
ARD format for radar backscatter4.

5.2 User Benefits of Data Cube Architecture

Users of the Sentinel-1 flood data products will directly bene-
fit from the improved accuracy, robustness and characterisation
of data quality that one can expect from per-pixel trained wa-
ter body mapping algorithms. But equally important for many
users is that they do not just received the latest flood images, but
have also access to the complete historic data record. This al-
lows them to validate and calibrate their flood forecasting mod-
els, and assess the severity of flood events. Last but not least,
historic water extent maps can be produced, essentially as a
by-product of the calibration of the water mapping algorithm.
These historic maps can then serve as a reference for distin-
guishing between inundation areas caused by the flooding and
the normal seasonal water extent. This reference or baseline
information is best obtained directly from historical Sentinel-1
time series, in order to ensure high consistency with the NRT
data product. The use of other global datasets, such as those
derived from optical satellite imagery - e.g. the Global Sur-
face Water Explorer5, developed by Pekel et al. (2016) - would
be problematic for this purpose, given that surface water areas
seen by optical sensors are not identical to those seen by Sen-
tinel-1 SAR. Therefore, subtracting an optical reference water
map from an Sentinel-1 water extent map would produce sys-
tematic errors in the derived flood inundation area. This prob-
lem also applies to datasets derived from other SAR sensors,
operating at different wavelengths, polarisations or spatial res-
olutions from Sentinel-1.

5.3 Use Case

Let us illustrate the benefits of the data cube architecture by
discussing the experiences made with using either single Sen-
tinel-1 images or the complete Sentinel-1 data cube for doc-
umenting a recent smaller-scale flood event in Austria. This
event happened in November 2019 and was caused by severe
weather which mainly affected northern Italy and south-eastern
France but also brought record snow- and rainfall to the south-
ern parts of Austria. While Austria was spared a major disaster,
many creeks, rivers and lakes overflowed. Together with the ac-
companying mudflows and landslides, the flooding caused sig-
nificant damage to public infrastructure (roads, railway, electri-
city, etc.) and private property (housing, agricultural land and
forests). Just for the federal state of Carinthia alone, the eco-
nomic damages are estimated to be in the three-digit million e
range6.

For this event, the CEMS Rapid Mapping service was activ-
ated (EMSR4147). The Rapid Mapping service operates in a

4 http://ceos.org/ard/index.html#slide3
5 https://global-surface-water.appspot.com/
6 https://www.diepresse.com/5729310/nach-unwettern-versicherungen-

rechnen-mit-schaden-in-millionenhohe
7 https://emergency.copernicus.eu/mapping/list-of-

components/EMSR414
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Figure 6. Progression of the November 2019 flooding along the river Drau near Weißenstein in Carinthia for the period 15 to 23
November 2019. The flood extent maps were derived from a sequence of six Sentinel-1 images by comparing each SAR image (in VV
polarisation) to a Sentinel-1 composite image depicting normal (i.e. non-flooding) conditions during this part of the year. The images

show an overlay of the Sentinel-1 derived water extent maps on top of a Sentinel-2 image. The SAR differences images were
post-processed (filtered, classified) and cleaned for outliers.

way that, once activated, the CEMS team collects available op-
tical and radar imagery acquired before, during and after the
event, and carries out an expert interpretation of these images
to delineate inundated areas. For the November 2019 flood-
ing the CEMS team used mostly pre- and post-event Sentinel-1
and Sentinel-2 imagery to document the size (magnitude and
extent) of the event, but failed to detect inundation area in the
Sentinel-1 images (“No impact detected”). Only in one post-
event image acquired by the COSMO-SkyMed satellite over a
region in Carinthia some inundation areas could be detected.

To better understand why the EMRS14 activation did not result
in Sentinel-1 flood maps, we analysed analysis-ready Sentinel-1
data made available via the Austrian Data Cube (ACube). The
ACube has been developed within a research project funded
by the Austrian Space Application Programme, and is envi-
sioned to become an open government data service. It hosts
Sentinel-1 and Sentinel-2 data pre-processed with state-of-the
art algorithms according to standards (cartographic projection,
terrain model, definition of output variables, etc.) as agreed
upon by the Austrian public user community. Our own ana-
lysis of the 2019 flood event confirmed that it is indeed diffi-

cult to depict inundation areas for this localised and short-lived
flood event for which the extent of affected areas is often not
much larger than the size of individual Sentinel-1 pixels (10-20
m). Moreover, the flood took place in a mountainous region,
which meant that topographic effects and the presence of wet
snow further complicated the analysis. Nonetheless, by bene-
fiting from the complete Sentinel-1 data cube and calculating
anomalies, inundated areas started to emerge. After some post-
processing and clearing for erroneously classified areas, we ob-
tained for the Carinthia region covered by the EMSR414 activa-
tion a realistic, and temporally dense (every 1-3 days) sequence
of inundation maps (Figure 6).

6. SUMMARY

Floods are the most frequent and costliest natural disasters
worldwide. State-of-the-art scientific methods for automatic-
ally detecting and identifying flood events, based on a global,
continuous supply of all-weather, day-and-night SAR images,
such as those provided by Europe’s Copernicus Sentinel-1
satellites, are now mature and in principle ready for opera-
tional implementation. Nonetheless, transferring the science al-
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gorithms into an operational setting is challenging and requires
careful attention to the way of how the processing system is de-
signed. Whilst many published algorithms could be implemen-
ted in processing architectures designed to work with single or
two images (one flood and one non-flood image), we recom-
mend to use data cube processing architectures. This allows
to train advanced change detection or machine-learning meth-
ods on a per pixel basis, which can be expected to improve the
accuracy, transferablity and data quality characterisation of the
flood data products. Additionally, users benefit from a historic
data record for training their flood forecasting models and for
assessing how the current water extent compares to regular sea-
sonal fluctuations and past flood events.
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