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Abstract—This is the pre-acceptance version, to read the final
version please go to IEEE Transactions on Cybernetics on IEEE
Xplore. Conventional nonlinear subspace learning techniques
(e.g., manifold learning) usually introduce some drawbacks
in explainability (explicit mapping) and cost-effectiveness (lin-
earization), generalization capability (out-of-sample), and repre-
sentability (spatial-spectral discrimination). To overcome these
shortcomings, a novel linearized subspace analysis technique
with spatial-spectral manifold alignment is developed for a
semi-supervised hyperspectral dimensionality reduction (HDR),
called joint and progressive subspace analysis (JPSA). The
JPSA learns a high-level, semantically meaningful, joint spatial-
spectral feature representation from hyperspectral data by 1)
jointly learning latent subspaces and a linear classifier to find
an effective projection direction favorable for classification; 2)
progressively searching several intermediate states of subspaces
to approach an optimal mapping from the original space to a
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potential more discriminative subspace; 3) spatially and spec-
trally aligning manifold structure in each learned latent subspace
in order to preserve the same or similar topological property
between the compressed data and the original data. A simple
but effective classifier, i.e., nearest neighbor (NN), is explored
as a potential application for validating the algorithm perfor-
mance of different HDR approaches. Extensive experiments are
conducted to demonstrate the superiority and effectiveness of
the proposed JPSA on two widely-used hyperspectral datasets:
Indian Pines (92.98%) and the University of Houston (86.09%)
in comparison with previous state-of-the-art HDR methods. The
demo of this basic work (i.e., ECCV2018) is openly available at
https://github.com/danfenghong/ECCV2018_J-Play.

Index Terms—Dimensionality reduction, hyperspectral data,
joint learning, manifold alignment, progressive learning, spatial-
spectral, semi-supervised, subspace learning.

I. INTRODUCTION

YPERSPECTRAL (HS) data are often characterized by

rich and diverse spectral information, which enables us
to locate or identify targets more easily. However, their high
dimensionality also raises some crucial issues that need to
be carefully considered, including information redundancy,
complex noise effects, need for large storage capacities and
high performance computing, and the curse of dimensionality.
A general way to address this problem is to compress the
original data to a low-dimensional and highly-discriminative
subspace with the preservation of the topological structure. In
general, it is also referred to as dimensionality reduction (DR)
or subspace learning (SL).

Over the past decade, SL techniques have been widely used
in remote sensing data processing and analysis [2], [3], [4],
[51, [6], [7], [81, [9], [10], [I1], particularly hyperspectral
dimensionality reduction (HDR) [12]. Li et al. [13] carried out
the HDR and classification by locally preserving neighborhood
relations. In [14], spectral-spatial noise estimation can largely
enhance the performance of dimensionality reduction, and the
proposed method not only can extract high-quality features but
also can well deal with nonlinear problems in hyperspectral
image classification. Authors of [15] introduced the sparseness
property [16] into the to-be-estimated subspace in order to
better structure the low-dimensional embedding space. Rasti
et al. [17] extracted the hyperspectral features in an unsuper-
vised fashion using the orthogonal total Variation component
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analysis (OTVCA), yielding a smooth spatial-spectral HSI
feature extraction. In [18], a spatial-spectral manifold (SSM)
embedding was developed to compress the HS data into a more
robust and discriminative subspace. Wang et al. [19] proposed
to select representative features hierarchically by the means of
random projection in an end-to-end neural network, which has
shown the effectiveness in the large-scale data. Very recently,
Huang et al. [20] followed the trail of drawbacks of spatial-
spectral techniques, and fixed them by designing a new spatial-
spectral combined distance to select spatial-spectral neighbors
of each HS pixel more effectively. In the combined distance,
the pixel-to-pixel distance measurement between two spectral
signatures is converted to the weighted summation distance
between spatially adjacent spaces of the two target pixels.

Despite the good performance of these methods in HDR,
yet most of them only adhere to either the unsupervised or
the supervised strategy, and fail to jointly consider the labeled
and unlabeled information in the process of HDR. Some recent
works for semi-supervised HDR have been proposed by the
attempt to preserve the potentially global data structure that
lies in the whole high-dimensional space. For example, Liao
et al. [21] simultaneously exploited labeled and unlabeled data
to extract the feature representation from the HSI in a semi-
supervised fashion, called semi-supervised local discriminant
analysis (SELD). Different from [2 1] that utilizes the similarity
measurement to construct the graph structure, in [22], the per-
formance of LDA is enhanced with the joint use of the labels
and “soft-labels” predicted by label propagation, yielding a
soft-label LDA (SLLDA) for semi-supervised HDR. A similar
semi-supervised strategy was presented in [23] to reduce
the spectral dimension of HSI by embedding pseudo-labels
obtained using the pre-trained classifier into LFDA, called
semi-supervised LFDA (SSLFDA). The use of “soft-labels” or
“pseudo-labels” is effective for the process of low-dimensional
embedding. Since more pixels considered can help us better
capture the global manifold of the data, even though these soft
or pseudo-labels could be noisy and inaccurate. It should be
noted that these techniques are commonly applied as a disjunct
feature learning step before classification, whose limitation
mainly lies in a weak connection between features by SL and
label space (see the top panel of Fig. 1). It is unknown which
learned features can accurately improve the classification. In
[24], the features can adequately exploited by using the t-
distributed stochastic neighbor embedding and a multi-scale
scheme, and the proposed neural network shows outstanding
and reliable performance in HS image classification.

A feasible solution to this problem can be generalized into
a joint learning framework [26] that simultaneously learns a
linearized subspace projection and a classifier, as illustrated
in the middle panel of Fig. 1. Inspired by it, a large amount
of work has been proposed for various applications, such as
cross-modality learning and retrieval [27], and heterogeneous
joint features learning [28]. Although these works have tried
to make a connection between the learned subspaces and
label information using regression techniques (e.g., linear
regression) to adaptively find a latent subspace in favor of
classification, they fail to find an optimal subspace. It is that
the representative ability only using a single linear projection
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Fig. 1. The motivation interpolation from separately learning subspaces and
training classifier [25], to jointly learning subspaces and classifier [20], to
joint and progressive learning multi-coupled subspaces and classifier again
[1]. The green bottom line from left to right indicates a gradual improvement
in feature discriminative ability. Ideally, the features (subspaces) learned by
our model are expected to have a higher discrimination ability, which benefits
from the proposed joint and progressive learning strategy.

remains limited for the complex transformation from the
original data space to the potential optimal subspace. Similar
to the joint learning model, deep neural networks (DNN) have
attracted increasing attention due to its powerful ability in
HS feature extraction. Chen er al. [29] designed a stacked
autoencoder (SAE) for feature extraction and classification
of HSIL. In [30], the authors investigated the performance of
self-taught feature learning (e.g., convolutional autoencoder
(CAE)) by jointly considering the spatial-spectral information
embedding with the application to HSI classification.

A. Motivation and Objectives

To sum up, these aforementioned methods can be ap-
proximately categorized into linear HDR and nonlinear HDR
techniques. Consequently, the strengths and weaknesses of the
two methods can be summarized as follows.

1) Theoretically, nonlinear HDR strategies, such as manifold
learning [31] and DNN-based DR methods (e.g., SAE and
CAE) [32], can over-fit the data perfectly, owing to their
powerful model learning capability. However, this type of
method is relatively sensitive to complex spectral variability
inevitably caused by complex noise, atmospheric effects, and
various physical and chemical factors in hyperspectral imag-
ing. Because the spectral variability tends to be absorbed by
the DNN-based methods [33], the discriminative ability of
dimension-reduced feature gets possibly hurt.

2) In turn, the linearized SL methods, such as principal com-
ponent analysis (PCA) [34], linearized manifold learning (e.g.,
locality preserving projection (LPP) [35]), local discriminant
analysis (LDA) [25], and local fisher discriminant analysis
(LFDA) [36]) can well address the above drawbacks, yet they
usually provide limited performance due to the defects of the
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model itself, that is, the single linearized model is lack of data
representation ability.

The above trade-off motivates us to develop a multi-layered
linearized SL technique for HDR with more discriminative
and robust data representation and to preserve the structural
consistency between the compressed data and the original data.

B. Method Overview and Contributions

To effectively pursue high spectral discrimination and
preservation of the spatial-spectral topological structure in
compressing the HS data, we propose a novel joint and
progressive subspace analysis (JPSA) to linearly find an
optimal subspace for the low-dimensional data representation,
as shown in the bottom panel of Fig. 1. A promising idea
of simultaneous SL and classification is used to form the
basic skeleton of the proposed JPSA model. In the framework,
we learn a series of subspaces instead of a single subspace,
making the original data space being progressively converted
to a potentially optimal subspace through multi-coupled in-
termediate transformations. To avoid trivial solutions, a self-
reconstruction (SR) strategy in the form of regularization is
applied in each latent subspace. Furthermore, we not only con-
sider structure consistency (topology) between the compressed
data and the original data in both spatial and spectral domains,
but also align the two (spatial and spectral) manifolds in each
latent subspace, yielding the SSM embedding in the process
of HDR.

Beyond previous existing works, i.e., [1], [37], the main
contributions of our work can be summarized as follow:

¢ We develop a novel semi-supervised HDR framework
(JPSA) for better learning the spatial-spectral low-
dimensional embedding by modeling relations between
superpixels and pixels in a joint and progressive fashion.

o With the SR term simultaneously performed on superpix-
els and pixels, the linearized JPSA shows its robustness
and effectiveness in handling the spectral variability over
many nonlinear HDR approaches, which will be well
demonstrated in the following experiment section.

o Spatial-spectral manifolds are preserved in each latent
subspace and are further aligned for spatial-spectral struc-
ture consistency between the compressed data and the
original data, where the manifold structure in spectral
space is computed by Gaussian kernel function, and the
spatial manifold structure is determined by superpixels,
e.g., simple linear iterative clustering (SLIC) [38].

o To avoid falling into bad local optimums, a pre-training
model, called auto-reconstructing unsupervised learning
(AutoRULe), is proposed as an initialization of JPSA to
jointly initialize the branches of pixels and superpixels.

« An iterative optimization algorithm based on the alternat-
ing direction method of multipliers (ADMM) is designed
to solve the newly-proposed model.

II. JPSA: JOINT & PROGRESSIVE SUBSPACE ANALYSIS

Fig. 2 illustrates the workflow of the proposed JPSA.
Intuitively, the JPSA is a two-stream multi-layered regres-
sion model involving the two input sources: pixel-wise

and superpixel-wise spectral signatures and the same output
(ground truth). In the learning process of the two-stream
model, the to-be-estimated parameters (projections) are shared
with a spatial-spectral alignment constraint in each latent
subspace. Moreover, each learned subspace is expected to
be capable of projecting back to its former high-dimensional
product, which is measured by the reconstruction loss.

A. Review of Joint Regression

Before introducing our JPSA, we first briefly introduce the
basis of developing our method: a joint regression model [26],
in which SL and classification are simultaneously performed
to reduce the gap between the estimated subspace and labels.
This model has been proven to be effective in extracting
the discriminative low-dimensional representation [39]. Let
X = [X1,.00y Xk, ..., Xn| € ROXN be a HS data matrix with
do bands by N pixels, and Y € {0,1}1*Y be the one-
hot encoded class matrix corresponding to labels, whose kth
column is defined as yi, = [Yi1, - Yit, -, Yir]T € REXL,
we then have

1 o
rlgginY—P@XH%nLgHPH% st. @0T =1, (1)

where ||o||r represents a Frobenius norm; P € RE*dm (d,,
denotes the dimension of the latent subspace) is regression
matrix to explicitly bridge the learnt latent subspace and
labels, and the projection ® € R4m*do js ysually called as
intermediate transformation and the corresponding subspace
®X is called as the latent subspace. It has been proven in
[40] that the feature is prone to be structurally learned and
represented in such a latent subspace.

Further, by considering the graph structure measured by an
adjacency matrix W € RY*¥ as a regularizor [41], the joint
regression model in Eq. (1) can be extended to the following
improved version [37]:

é TaT
5 r(OXLXTe") o

st. @071 =1,

1 o
win S|Y - POXI} + S [P +

where D;; = > j W, is defined as a degree matrix and the
Laplacian matrix L can be computed by L = D—W [42]. The
third term of Eq. (2), i.e., graph regularization, can provide
additional prior knowledge by modeling relations between
samples, thereby improving the regression performance.

B. Problem Formulation

A single linear transformation is hardly capable of de-
scribing the complex mapping relationship between the data
and labels well, particularly for HS data suffering from a
variety of spectral variabilities. On the other hand, although
the nonlinear techniques (e.g., manifold learning or DL) hold
a powerful representation ability for the HS data, yet they
are usually vulnerable to the attack of spectral variability,
inevitably degrading the quality of dimension-reduced fea-
tures. As a trade-off, we propose to progressively learn multi-
coupled linear projections on the basis of the joint regression
framework. Thus, the resulting JPSA with necessary priors
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Fig. 2. The illustration of the proposed JPSA framework.

can be formulated as the following constrained optimization
problem:

min

1
pfan 3 YO SEPAO},) + gé({el}&)

n %\II(P)

st Xp =0, [[xulle 21, XJP =0, [[x7]2 =1,

where {©;}7, € R4*di-1 are defined as a set of intermediate
transformations, m is the number of subspace projections, and
{d;}}", stand for as the dimensions of those latent subspaces.
Moreover, X; denotes the [/-th layer subspace features, where
X, represents original data (X), while X;” denotes the
superpixel representation of X;. To effectively solve the two-
stream joint regression model in Eq. (3), several key terms are
featured in the following.

1) SR Loss Term Y ({©;}",): Without any constraints
or prior, jointly estimating multiple successive variables in
JPSA can hardly be implemented, especially when the number
of estimated variables gradually increases. This can be well
explained by gradient missing between the two neighboring
variables estimated in the process of optimization. In other
words, the variations between two neighboring variables ap-
proach to a tiny value or even zero. When the number of
estimated projections accumulates to a certain extent, most of
the valid values could only gather a few projections, making
other projections being close to identity matrix and become
meaningless. To address the issue mentioned above, a kind of
autoencoder-like scheme is adopted to reduce the information
loss in the process of propagation between two neighboring
spaces. The benefits of the scheme are two-folds. On the one

Ground Truth

e
&

—> Manifod Alignment

Recon Loss
m

N

Subspace

hand, this term can prevent over-fitting of the data to a great
extent, especially avoiding all kinds of spectral variabilities
from being considered, since we found that those variabilities
are difficult to be linearly reconstructed. On the other hand, it
can also establish an effective link between the original space
and the subspace, enabling the learned subspace to project
back to the former one as much as possible. Such a strategy
can be formulated by simultaneously considering pixels and
superpixels of HSI:

YHO) =D X1 X7] -0 e Xi1 X7 ]|
=1
“4)

Please note that we propose to utilize Eq. (4) in each latent
subspace to maximize the advantages of this term.

2) Prediction Loss Term E(P,{®,;}]",): This term is to
minimize the empirical risk between the original data and the
label matrix through a set of subspace projections and a linear
regression coefficient, which can be written as

E(P {6}Z) =Y Y]-PO,,...0,..0:[X X*7]|.

)
Theoretically, with the increase of the number of estimated
subspaces, the variations between neighboring subspaces are
gradually narrowed down to a very small range. In this case,
such small variations can be approximately represented via a
linear transformation. This allows us to find a good solution
in a simple way, especially for the non-convex model.

3) Alignment-based SSM Regularization ®({©;}]",): As
introduced in [43], manifold structure is an important prior
for compressing high-dimensional data, which can effectively
capture the intrinsic structure between samples. For this rea-
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Fig. 3. A showcase to illustrate the graph structure used in the alignment-
based SSM regularization term.

son, we not only embed the locally spectral manifold structure
computed between the pixels, but also model the non-local-
like spatial manifolds constructed by superpixels. Therefore,
the two graph structure can be formulated as

—[1Xi = X113 . .
ij _ expT7 if X; € or(X4); ©)
0, otherwise,
X7 =XFIE . e o
1,3
0, otherwise,
(N

where ¢ (X;) and ¢ (X:”) are the k neighbors of the pixel
X, and the superpixel X:”, respectively.

Additionally, we also align the spatial-spectral manifolds
in each learned subspace to enhance the model’s ability
to distinguish and generalize, further yielding the structure
consistency of the two-stream joint regression model. The
alignment operator can be expressed by the form of a graph:

. { 1, if X; € p(X3P);
ij = ) ()
0, otherwise,
where ¢(X3”) denotes the pixel set in the j-th superpixel.

By collecting the above sub-graphs, we have the final graph
structure (W7) by considering spatial and spectral neighbors
of each pixel as well as their alignment information:

— {wv Wa]

W WP ®

Thus, the resulting manifold alignment-based spatial-spectral
regularization can be written as

SO},) = > tr(O[X 1 X7 L (X, X717 e)),

=1
(10)

where Lf can be computed by Df — W7. In this study, each
pixel’s spatial neighbors are other pixels in the same segment
obtained by SLIC, while its k spectral neighbors are selected
with Euclidean measurement on a kernel-induced space. Fig. 3
illustrates the spatial-spectral graph structure.

Algorithm 1: JPSA: global algorithm

Input: Y, 5(, L7, and parameters «, 8, and maxIter.
Output: {©;}2;.
Initialization Step:
Greedily initialize ®@; corresponding to each latent subspace:
for {=1:m do
0! «— LPP(X; 1)
O, + AutoRULe(X; 1,0, L')
X+ ©X;1
end
Fine-tuning Step:
t=0,( =1le—4;
while ¢t > maxIter do
Update P by solving a subproblem in Eq. (16).
for i =1:m do
\ Update G)}f+1 by solving a subproblem in Eq. (18).
end
Compute the objective function value Obj**!
the convergence condition:
16 if\%}o"jt|<§“then
17 | Stop iteration;

o X NN R W N -

S < el
W N =D

and check

—
wm

18 else

19 | t—t+1;
20 end

21 end

4) Regression Coefficient Regularization ¥ (P): This reg-
ularization term ensures a reliable solution and improves the
generalization ability of the model, which is

¥ (P) = [P (11)

Hyperspectral data are non-negative either in radiance or
reflectance. To inherit this physical nature, we expect to
learn non-negative features with respect to each learned low-
dimensional feature (e.g., {X;}™; > 0). The hard orthogonal
constraint with respect to the variable ® could lead to non-
convergence of the model or reach a bad solution. To provide
a proper search space of the solution, we, therefore, relax
the constraint by imposing a sample-based norm constraint
[44] on each latent subspace as ||xjgll2 = 1,Vk = 1,..,N
and [ = 1,...,m. Note that these constraints are similarly
applicable to the superpixel-guided optimization problem.

C. Model Learning

Considering the fact that we need to successively estimate
multi-coupled variables in JPSA, which obviously results in
the increasing complexity and the non-convexity of our model,
a group of good initial approximations of subspace projections
{©,;}]", would greatly reduce training time and help finding
a better local optimal solution. This is a common tactic that
has been widely used to address this issue [45]. Inspired by
this trick, we pre-train our model by simplifying Eq.(3) as

1 )
min 3 Y(©)) + gcp(@l) st Xy = 0, |Rulls <1, (12)
1

where [X; X;”] is collectively rewritten as X; for conve-
nience of writing and model optimization.

We call the Eq. (12) as auto-reconstructing unsupervised
learning (AutoRULe). Given the outputs of AutoRULe to
the problem of Eq. (3) as the initialization, {®;}”, and P
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Fig. 4. Convergence analysis of J-Play and JPSA with different m values of 2,4, 6, 8 (left to right) was experimentally performed on the two HS datasets.

(a): Indian Pines Dataset. (b): University of Houston Dataset.

tend to obtain the better estimations. In details, Algorithm 1
summarizes the global algorithm of JPSA, where AutoRULe
is initialized by LPP.

We propose to use the ADMM-based optimization method
to solve the pre-training method (AutoRULe), hence an equiv-
alent form of Eq. (12) is considered by introducing multiple
auxiliary variables H, G, Q and S to replace X;, Oy, Xl+
and 5(?, respectively, where ()% denotes an operator for
converting each component of the matrix to its absolute value
and ()~ is a proximal operator that solves the constraint of

[|Xix|l2 = 1 [46]. Therefore, the resulting expression is
. 1,5 n S '3
@L,g}gl,Q,siHXl_l - GH|7 + 5 tr(©,X;-1 LX), ©])

s.t. X; = QZXl—h Q =0, HSkHQ < 1.
X, =H=Q=S, 0,=0G.

13)
The constrained optimization problem in Eq. (13) can be
converted to its augmented Lagrangian version by introducing
the Lagrange multipliers {A,,}*_, and the penalty parameter
1, where the non-negativity and norm constraint can be relaxed
by defining two kinds of proximal projection operators l;g (o)
and [ (e). More specifically, [};(e) can be expressed as

0
maz(e) = (.) : : Z 0, (14)
while % (e)) is a sample-based normalization operator:
o o lenllz -1
proxs(ey) ={ el (15)
! o . lorl2 =1,

where ey, is the k-th column of matrix e in our case.

Algorithm 2 lists the optimization procedures of Au-
toRULe, and the solution to each subproblem is detailed in
Appendix A.

Algorithm 2: AutoRULe: initialization step for JPSA

Input: Xi_1, ©Y L, and parameters 1 and mazIter.
Output: O;. _

1 Initialization: H® = ©9X,_;,G°=0,Q° =P° =0,A} =
O:AO =A3 = Ag :Omuo = le — 3, fhmaz = 1eb,p = 2,6 =
le—6,t =0.

2 while t > maxIter do

Fix H', G', Q", P’ to update ©!"' by Eq. (26).

Fix ©/"', G, Q", P’ to update H'™' by Eq. (28).

Fix H' !, @f“, Q!, P! to update G**! by Eq. (30).

Fix H™™, G™ @™ P’ to update Q"*' by Eq. (32).

Fix H™,G™ @™, Q" to update P™" by Eq. (34).

Update Lagrange multipliers using Eq. (35).

Update penalty parameter using p'™ = min(pp’, maz)-

Check the convergence conditions:

if HHthl — @§+1Xl,1||17 < € and ||Gt+1 — GEH—IHF <€

and | Q" — O/ X, _4||p < £ and

HPtJrl — ®f+1XI,1||F < ¢ then

Stop iteration;

R-REE- R L )

11

12 |
13 else
14 | t+t+1;
15 end

16

end

After running the AutoRULe, its outputs can be fed into
JPSA for the model initialization, and then the two subprob-
lems (solve P and {®;}™,) in Eq. (3) can be optimized
alternatively as follows:

Optimization with respect to P subproblem: Typically, this

is a Tikhonov-regularized least square regression problem,
which can be formulated as

L0 S
ngngllY—P®m...®l...@1X||%+%||P||%, (16)

where the variable Y is a collection of [Y Y] similar to the
variable X. Intuitively, the analytical solution of Eq. (16) can
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TABLE I
SCENE CATEGORIES, THE NUMBER OF TRAINING (TR) AND TEST (TE)
SAMPLES FOR EACH CLASS ON THE TWO DATASETS: INDIAN PINES AND
UNIVERSITY OF HOUSTON.

Indian Pines Dataset University of Houston Dataset

No. Class Name [ TR [ TE Class Name [ TR [ TE
1 CornNotill 50 | 1384 HealthyGrass 198 1053
2 CornMintill 50 784 StressedGrass 190 1064
3 Corn 50 184 Synthetic Grass | 192 505
4 GrassPasture 50 447 Tree 188 1056
5 GrassTrees 50 | 697 Soil 186 1056
6 HayWindrowed 50 | 439 Water 182 143
7 SoybeanNotill 50 918 Residential 196 1072
8 SoybeanMintill 50 | 2418 Commercial 191 1053
9 SoybeanClean 50 564 Road 193 1059

10 Wheat 50 162 Highway 191 1036
11 Woods 50 | 1244 Railway 181 1054
12 BuildingsGrassTrees | 50 330 Parking Lotl 192 1041
13 StoneSteel Towers 50 45 Parking Lot2 184 285
14 Alfalfa 15 39 Tennis Court 181 247
15 GrassPastureMowed | 15 11 Running Track 187 473
16 Oats 15 5 - - -

I Total [ 695 ] 9671 || Total [ 2832 [ 12197

be directly derived as
vv T T —1
P+ (aYV")(aVV"® +4I)7 (17)

where V is assigned to @m...®l...®1)~(,w =1,...,m.
Optimization with respect to {®,};" ;: When other variables

are fixed, the variable ®; can be individually solved, hence

the optimization problem for any ®; can be written in the

following general form:
1 - ~ o ~ -
H(i)mgnxl,1 -0/ X; |+ 5||Y - PO,,...0,X|%
1

+ g tr(@le_lLff(lT_l(a;f)

s.t. X3 =0,X;_1, X; =0, HilkHQ =< 1.

(18)
Likewise, the problem of Eq. (18) can basically be solved
by following the framework of Algorithm 2 (More details
regarding the variable optimization can be found in Appendix
A.). The only difference lies in the optimization of subproblem
with respect to H. Herein, we supplement the optimization
problem of the variable H as follows

1 o~
mﬁngllxz_l - GTH| + §||Y - PH|%

+AT(H-0,X; 1)+ gHH—QzXzle% (19)
st. Pr=P;_10;11, Po =P,
whose analytical solution is given by
H «+(aP/ P+ GG" + puI)™!
(P Py jay) (20)

x (aPTY + GX; 1 +pu©®, X, 1 — Ay).

Finally, the aforementioned optimization procedures are re-
peated until a stopping criterion is satisfied.

D. Convergence Analysis

The iterative alternating strategy used in Algorithm 1 is
nothing but a block coordinate descent, whose convergence
is theoretically guaranteed as long as each subproblem of Eq.
(12) is exactly minimized [47]. Each subproblem optimized in

Algorithm 2 is strongly convex, and thus the ADMM-based
optimization strategy can converge to a unique minimum when
the parameters are updated in finite steps [48], [49]. Moreover,
we experimentally illustrate to clarify the convergences of J-
Play and the proposed JPSA on the two HS datasets, where
the relative errors of objective function value are recorded in
each iteration (see Fig. 4).

III. EXPERIMENTS
A. Description of the Data

The experiments are performed on two different standard
HS datasets, corresponding to different contexts, different
sensors, and different resolutions.

1) Indian Pines AVIRIS Image: The first HS cube was
acquired by the AVIRIS sensor with 16 classes of vegetation. It
consists of 145 x 145 with the spectral 220 bands covering the
wavelength range from 400nm to 2500nm in a 10nm spectral
resolution. A set of widely-used training and test sets [1] with
the specific categories is listed in Table I. A false-color image
of the data is given in Fig. 5.

2) University of Houston Image: The second HSI was
provided for the 2013 IEEE GRSS data fusion contest. It was
acquired by an ITRES-CASI-1500 sensor over the campus
of the University of Houston, Houston, USA, with a size of
349 x 1905 x 144 in the wavelength from 364nm to 1046nm.
The information regarding classes as well as training and test
samples can be also found in Table I. The first image of Fig.
6 shows a false color image of the study scene.

B. Experimental Setup and Preparation

We learn the subspaces for the different methods on the
training set and then the test set can be simply projected
to the subspace where training and test samples can be
further classified by the nearest neighbor (NN). The reason for
selecting the simple but effective classifier in our case is that
the NN classifier tends to avoid the confusing evaluation, as it
is unknown whether the performance improvement originates
from either the classifiers or the features themselves if more
advanced classifiers are used.

Moreover, the original spectral features (OSF) without di-
mensionality reduction and ten popular and advanced methods
are compared with our JPSA, including

o Unsupervised HDR: PCA[34], OTVCA [17];
o Supervised HDR: LDA [25], LFDA [50], and J-Play [!];

¢ Semi-supervised HDR: SELD [21], SLLDA [22], and
SSLFDA [23];
e« DNN-based HDR: SAE [29], CAE [30].

Furthermore, we maximize the performances of the different
algorithms by tuning their parameters, such as dimension (d),
regularization parameters (c, /3, ), etc., using 10-fold cross-
validation on training data. Regarding the dimensions ({d;})
which are common parameters for all algorithms, they can
be selected ranging from 10 to 50 at an interval of 10.
For the number of nearest neighbors (k) and the standard
deviation of Gaussian kernel function (o) in those algorithms
that need to construct the graph structure (e.g., LFDA, SELD,
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SSLFDA, J-Play, and JPSA), we select them in the range of
{10, 20, ...,50} and {1072,10~%,10°,10%, 102}, respectively,
and three regularization parameters («,(3,y) in J-Play or
JPSA are all chosen from {1072,10~%, 10% 10*,102}. For
the OTVCA algorithm, we directly used the parameter setting
suggested in [17]: that is, d is equal to the number of classes,
and A can be automatically determined by 1% of the maximum
intensity range of the datasets.

We adopt three criteria to quantitatively assess the algorithm
performance, including Overall Accuracy (OA), Average Accu-
racy (AA), and Kappa Coefficient (k). They can be formulated
by using the following equations.

Ne

= — 21

04 =5 @
C .
1 N

AA = — —= 22

¢ Ny (22)

and

OA—-P,

= — 2

R (23)

where N. and N, denote the number of samples classified
correctly and the number of total samples, respectively, while
Ni and N} correspond to the N. and N, of each class,
respectively. P. in k is defined as the hypothetical probability
of chance agreement [51], which can be computed by

N} XN} + .. N} X Nji+---+ NE x NY
o N, x N, ’
where N} and N, denote the number of real samples for each

class and the number of predicted samples for each class,
respectively.

P, (24)

C. Results Analysis and Discussion

1) Indian Pines Dataset: Table II presents the classification
performances of the different methods with the optimal param-
eter setting tuned by cross-validation on the training set using
the NN classifier. Correspondingly, the classification maps are
given in Fig. 5 for visual assessment.

Overall, PCA provides similar performances with the base-
line (OSF), as the PCA more focuses on maximizing the infor-
mation but could fail to excavate the potential data structure
that lies in reality. By smoothing the spatial structure of HSI,
OTVCA enables better identification of the materials than OSF
and PCA. For the supervised HDR methods, the classification
performances of classic LDA are even lower than those
previously mentioned, due to the limited amount of training
samples. Holding a more powerful intra-class homogeneity
and inter-class separation, LFDA obtains more competitive
results by locally focusing on discriminative information,
which is obviously better than those of the baseline, PCA,
and LDA around 8%. However, the features learned by LFDA
are relatively difficult to be generalized, due to the small-size
labeled samples. Comparatively, SELD learns a robust low-
dimensional feature representation with a higher generalization
ability, since unlabeled samples are involved in the process of
model training. In SELD, the unlabeled information is embed-
ded by computing the similarities between samples, which is

more effective than that using the pseudo-labels (e.g., SLLDA
and SSLFDA) to some extent. However, these semi-supervised
methods are still bad at handling noisy data. A direct proof can
be shown in Fig. 5 that there exist obvious salt-and-pepper-like
noises in classification maps of SELD, SLLDA, and SSLFDA.
Likewise, although the SAE holds a strong nonlinear learning
ability in data representation, its performance is still limited by
complex spectral variability and pixel-wise feature embedding.
Thanks to the spatial information modeling, CAE locally
extracts the spatial information and thus obtains a relatively
smooth classification result. With the benefit of a multi-linear
regression system, the J-Play algorithm performs much better
(at least 7% OAs) than DNN-based nonlinear HDR (SAE and
CAE). Such a strategy makes the learned features more robust
against various spectral deformation and degradation, in spite
of without accounting for the spatial information.

The performances of the proposed JPSA are superior to the
other methods, which indicates that JPSA can learn a more
discriminative and robust spectral embedding. The alignment-
based SSM embedding enables us to identify the materials at
a more accurate level on a small-scale training set. As shown
in Fig. 5, the classification map obtained by JPSA is smoother
than others, demonstrating that our method is capable of
effectively aggregating the spatially contextual information in
the process of HDR by means of superpixels. It is worth
noting that the JPSA not only outperforms others from the
whole perspective, but also obtains highly competitive results
for each class, particularly for Corn, Soybean-Notill, Soybean-
Mintill, Soybean-Clean, and Building-Grass-Trees that have a
dramatic improvement of about 10% in classification accuracy.

2) The University of Houston Dataset: Fig. 6 shows a
visual comparison among the different algorithms, and the spe-
cific classification accuracies for various compared methods,
which were optimally parameterized by a cross-validation as
listed in Table III.

Generally, there is a basically consistent trend in classi-
fication performance between OSF and PCA: around 72%
OA as a baseline. For another unsupervised HDR method,
OTVCA approximately yields a 2% improvement on the basis
of OSF and PCA. Owing to the use of total variation operator
in OTVCA (see the smooth classification map in Fig. 0),
it shares similar performances with discriminant analysis-
based approaches such as LDA and LFDA. This reason why
the unsupervised OTVCA is comparable to the supervised
HDR methods could be, to some extent, two-fold. On one
hand, local smoothing strategy is a good fit for HS feature
extraction and HDR tasks; on the other hand, the small-
size training set hinders the supervised LDA and LFDA
finding a generalized or transferable discriminative subspace.
Nevertheless, LFDA is capable of steadily performing better
than OTVCA owing to the consideration of local manifold
structure. This might be seen as indirect evidence to show
the effectiveness of the manifold embedding in HDR. More
intuitively, the performance of semi-supervised methods is
superior to that of those only considering the labeled samples,
where the SSLFDA achieves the best classification results.
This demonstrates the effectiveness of embedding unlabeled
samples in improving the generalization ability of the learned
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Fig. 5. A false color image, the distribution of training and test sets with category names, and classification maps of the different algorithms obtained using

the NN classifier on the Indian Pines dataset.

TABLE I
QUANTITATIVE PERFORMANCE COMPARISONS OF DIFFERENT ALGORITHMS ON THE INDIAN PINES DATASET WITH THE OPTIMAL PARAMETER
COMBINATION IN TERMS OF OA, AA, AND K, AS WELL AS THE ACCURACY FOR EACH CLASS. THE BEST ONE IS SHOWN IN BOLD. JPLAY4 MEANS A
FOUR-LAYERED J-PLAY MODEL (m = 4), WHILE JPSA4 DENOTES A FOUR-LAYERED JPSA MODEL (m = 4).

Method || OSF | PCA | OTVCA|| LDA | LFDA || SELD | SLLDA | SSLFDA || SAE | CAE || JPlays | JPSA,
d 220 20 16 15 15 15 15 20 20 20 20
k - - - - 10 - 5 - - 10 10
o - - - - 0.1 0.01 - 0.1 - - 0.1 0.1
o — — — — — — — — — — 1 1
B - - - - - - - - - 0.1 0.1
vy — — — — — — — — — 0.1 0.1
OA 6589 | 6540 | 68.87 [[ 64.14 [ 73.86 [ 75.81 [ 70.93 [ 75.26 7139 [ 76.89 || 83.92 [ 92.98
AA 7571 | 7543 | 79.04 || 7452 | 8559 | 8337 | 8220 | 8591 78.88 | 84.94 | 89.35 | 95.40
K 0.6148 | 0.6097 | 0.6490 || 0.5964 | 0.7042 || 0.7265 | 0.6713 | 0.7200 | 0.6765 | 0.7379 || 0.8169 | 0.9197

Class1 || 51.66 [ 5079 | 5455 [ 5145 | 67.77 [ 7240 | 57.73 | 70.23 60.62 | 6647 [ 79.05 | 91.04

Class2 || 5740 | 57.14 | 59.69 | 4847 | 6505 | 6569 | 59.69 | 67.35 5651 | 72.19 || 80.74 | 90.18

Class3 || 70.65 | 69.02 | 69.57 | 69.57 | 83.15 | 83.15 | 7174 | 87.50 82.07 | 86.96 || 8587 | 99.46

Class4 || 88.14 | 87.92 | 90.60 | 90.60 | 9530 | 9530 | 94.63 | 94.85 9038 | 94.63 | 94.63 | 95.08

Class5 || 81.78 | 81.64 | 8422 | 86.80 | 94.55 | 91.68 | 8852 | 93.54 88.95 | 90.10 || 9024 | 91.25

Class6 || 95.90 | 95.67 | 9567 | 97.95 | 97.95 | 98.63 | 9841 | 9841 9499 | 9932 || 9658 | 99.77

Class7 || 66.56 | 67.32 | 77.89 | 5806 | 70.81 || 7495 | 7320 | 75.16 73.09 | 7331 || 8137 | 97.39

Class8 || 55.21 | 54.18 | 5529 || 4297 | 5294 | 5749 | 5443 | 5521 5778 | 6352 || 76.51 | 87.80

Class9 || 53.01 | 5230 | 5496 || 7145 | 79.61 | 8227 | 6844 | 78.01 72.34 | 8156 || 8440 | 93.26

Class10 || 98.15 | 98.15 | 9815 || 99.38 | 9938 | 9938 | 9938 | 9938 || 9630 | 99.38 || 99.38 | 99.38

Class11 || 82.88 | 8240 | 86.90 || 8553 | 89.79 || 88.18 | 87.94 | 89.87 86.58 | 89.31 || 9341 | 98.63

Class12 || 5091 | 5121 | 6121 || 77.88 | 83.03 || 8273 | 8121 | 8152 73.03 | 8212 || 79.09 | 96.06

Class13 || 97.78 | 97.78 | 97.78 || 97.78 | 97.78 || 100.00 | 97.78 | 97.78 97.78 | 9556 | 100.00 | 100.00

Classl4 || 79.49 | 79.49 | 87.18 || 74.36 | 92.31 || 8205 | 82.05 | 94.87 5897 | 84.62 | 9744 | 87.18

Class15 || 81.82 | 81.82 | 90.91 || 100.00 | 100.00 || 100.00 | 100.00 | 90.91 7273 | 100.00 || 9091 | 100.00

Class16 || 100.00 | 100.00 | 100.00 || 40.00 | 100.00 || 60.00 | 100.00 | 100.00 || 100.00 | 80.00 || 100.00 | 100.00

model. Although these semi-supervised methods show the
discriminative power between different classes, yet there is
still room for improvement in spatial information modeling
and model learning ability. As a member of deep learning,
SAE is capable of better reducing the gap between the original
data and compressed data, thus yielding better classification
performance. Another DL-based technique for HDR is CAE,
which can extract a low-dimensional spectral representation
with the attention of spatial contextual information. As a
result, CAE performs better than the pixel-wise SAE with an
about 1% slight increase of OA. Due to the lack of modeling
spectral variability, SAE or CAE fails to transfer the trained
model to out-of-sample (i.e. test set) effectively, even though
there is a powerful learning ability in SAE and CAE. Unlike
them, J-Play adopts a multi-linear modeling strategy with the

SE constraint in order to remove the spectral variabilities
effectively and maintain the learned features as discriminative
as possible, which results in basically the same results with
CAE and slightly higher than SAE.

JPSA outperforms other HDR algorithms significantly,
which indicates that the proposed method is capable of ef-
fectively approximating an optimal mapping from the original
space to the label space by fully considering a trade-off
between spectral discrimination and subspace robustness, thus
providing a robust and discriminative low-dimensional feature
representation. Further, the embedding of spatial-spectral in-
formation enables semantically meaningful object-based HS
classification results. Notably, JPSA is able to more effectively
eliminate the effects of shadow covered by clouds in image
acquisition, compared to other methods as shown in Fig. 6.
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Fig. 6. A false color image, the distribution of training and test sets with category names, and classification maps of the different algorithms obtained using
the NN classifier on the University of Houston dataset.

TABLE III
QUANTITATIVE PERFORMANCE COMPARISONS OF DIFFERENT ALGORITHMS ON THE UNIVERSITY OF HOUSTON DATASET WITH THE OPTIMAL
PARAMETER COMBINATION IN TERMS OF OA, AA, AND K, AS WELL AS THE ACCURACY FOR EACH CLASS. THE BEST ONE IS SHOWN IN BOLD. JPLAY3
MEANS A THREE-LAYERED J-PLAY MODEL (m = 3), WHILE JPSA3 DENOTES A THREE-LAYERED JPSA MODEL (m = 3).

Method || OSF | PCA | OTVCA|| LDA | LFDA || SELD | SLLDA | SSLFDA || SAE | CAE || JPlays | JPSAg

d 144 20 15 14 14 14 14 14 30 30 30 30
k - - - - 20 20 - 30 — - 10 10
o - - — - 0.1 0.1 — 0.1 - - 0.1 0.1
« - — — - — - — - - - 1 1
B - - - - - - - - - - 0.1 0.1
bl - — — — — — — — — — 0.1 0.1

OA 72.83 72.75 74.18 74.18 75.52 77.45 77.18 78.94 79.52 80.68 80.13 86.09
AA 76.16 76.09 77.61 79.04 79.10 80.40 79.59 82.09 82.45 83.23 82.99 87.90
K 0.7079 | 0.7071 | 0.7228 || 0.7374 | 0.7355 || 0.7555 | 0.7537 | 0.7716 0.7789 | 0.7905 || 0.7845 | 0.8490

Classl 82.15 82.15 82.24 81.67 81.96 81.29 81.96 82.43 82.53 82.15 82.72 81.10
Class2 81.86 81.86 82.05 82.14 82.99 83.46 83.36 82.14 83.27 83.74 82.61 84.68
Class3 99.60 99.60 99.60 100.00 | 100.00 || 100.00 | 100.00 | 100.00 99.80 99.80 100.00 | 99.41
Class4 91.76 91.76 91.86 90.44 91.00 93.75 91.57 92.42 88.83 91.48 96.78 94.89
Class5 97.06 97.06 97.73 97.25 97.82 99.34 98.01 99.05 98.11 99.91 99.62 99.72
Class6 95.10 95.10 94.41 99.30 99.30 100.00 | 94.41 99.30 95.10 97.90 96.50 96.50
Class7 73.60 73.60 79.10 72.57 81.72 81.34 72.76 85.73 79.10 78.64 80.50 78.17
Class8 36.37 36.37 36.56 59.92 40.65 42.17 50.71 42.55 43.59 64.20 52.23 76.35
Class9 66.19 66.29 67.14 57.60 74.13 72.33 63.74 73.84 74.41 74.22 77.15 79.70
Class10 || 49.23 49.03 48.26 57.53 42.95 45.08 57.92 49.52 58.30 51.25 53.28 81.95
Classll || 67.74 67.55 70.68 74.76 74.19 82.64 81.02 81.50 79.22 85.77 75.81 74.00
Class12 || 54.27 53.60 57.64 58.79 59.46 69.36 69.55 75.60 84.53 75.70 77.52 97.31
Class13 || 51.93 51.93 58.95 56.49 62.81 58.60 51.93 69.82 71.58 68.77 72.63 80.00
Classl4 || 97.57 97.57 99.19 99.19 99.19 99.19 99.19 99.19 100.00 | 100.00 98.79 | 100.00
Class15 || 97.89 97.89 98.73 97.89 98.31 97.46 97.67 98.31 98.31 94.93 98.73 94.71
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TABLE IV
CLASSIFICATION PERFORMANCE (OA, AA, AND k) WITH THE DIFFERENT

NUMBER OF LEARNT PROJECTIONS (m) ON THE TWO DATASETS.

Indian Pines University of Houston
Method —52—Taa | & OA [ AA | &
JPSA; | 87.41 93.13 | 0.8565 | 81.75 83.82 | 0.8019
JPSA; | 90.74 94.58 | 0.8942 | 82.27 84.35 | 0.8074
JPSAz | 92.28 9497 | 09116 | 86.09 87.90 | 0.8490
JPSA, | 9298 95.40 | 0.9197 | 84.82 86.88 | 0.8353
JPSAs | 91.35 95.02 | 09012 | 84.20 86.10 | 0.8285
JPSAq | 92.76 9523 | 09173 | 82.89 85.19 | 0.8143
JPSA; | 89.74 9421 | 0.8831 | 82.44 84.56 | 0.8094
JPSAg | 90.79 94.43 | 0.8948 | 81.54 82.97 | 0.7997

Accordingly, JPSA also shows the superiority in identifying
different materials, as quantified in Table III, especially for
those challenging classes, such as Commercial, Highway, and
Parking Lotl.

D. Parameter Sensitivity Analysis of JPSA

The quality of low-dimensional feature embedding, to some
extent, depends on the parameter selection, it is, therefore,
indispensable to investigate the sensitivity of parameter setting
in JPSA. Five main parameters involved in the JPSA, which
need to be emphatically analyzed and discussed, would result
in a significant effect on dimension-reduced features and even
final classification results. They include three regularization
parameters («, 5, and ) in Eq. (3), subspace dimension (d),
and the number of layers (m).

Significantly, we start to analyze the effects of different m
for JPSA. With the different number of learnt projections,
we successively specify the proposed model as JPSA4, ...,
JPSA,, ..., JPSA,,, VI = 1,...,m. To investigate the trend
of OAs, m is uniformly set up to 8 on the two datasets. We
experimentally set the number of clusters in SLIC as 10% of
the total samples. As listed in Table IV, with the increase of
m, the performances of JPSA with SSM embedding steadily
increase to the best with around 3 layers for both datasets
and then gradually decrease with a slight perturbation. This
might be explained by over-fitting and error accumulation of
the model in the multi-layered regression process, since our
model is only trained on a limited number of samples. Note
that more results about the JPlay in terms of the parameter m
can be found in [1], and the code is openly available from the
link: https://github.com/danfenghong/ECCV2018_J-Play.

Apart from the parameter m, the regularization parameters
and subspace dimension also play a crucial role in improv-
ing the model’s performance. More specifically, the resulting
quantitative analysis of the two datasets is given in Fig. 7,
where the parameter combinations of (a« =1, § =0.1, v =
0.1, d = 20) and (« = 1, 8 = 0.1, v = 0.1, d = 30)
achieve the best classification performance on the test sets
for the first and second datasets, respectively. The resulting
parameter selection for the two sets of datasets is basically
consistent with that determined by 10-fold cross-validation on
the training set (please see Section III.LB for more details).
The cross-validation is, therefore, an effective strategy to
automatically determine the model’s parameters so that other
researchers are able to produce the results for their own tasks.

TABLE V
ABLATION ANALYSIS OF JPSA WITH A PROGRESSIVE COMBINATION OF
DIFFERENT TERMS ON THE TWO DATASETS.

Terms Indian Pines University of Houston
OA [ AA | & OA [ AA | &
None 87.92 93.16 | 0.8623 | 82.22 84.74 | 0.8068
SR 89.40 93.81 | 0.8791 84.44 86.60 | 0.8310
SR+SSM |  92.98 95.40 | 0.9197 | 86.09 87.90 | 0.8490

More specifically, the optimal parameters can be determined
by testing all of the parameter combinations. Furthermore, we
only show the two-dimensional figures (see Fig. 7) for the
convenience of visualization, where other variables are set to
be the optimal ones except for the current investigated variable.
Moreover, we can observe from Fig. 7, that with the increase
of d, the JPSA’s performance increases to the optimal value
with the dimension of 20 for the Indian Pines dataset and
30 for the University of Houston dataset, respectively, then
starts to reach a relatively stable state, and finally decreases
with a slight perturbation when the subspace dimension is
approaching to that of original spectral signature. For the
variable « that mainly controls the prediction errors between
the input data and labels, it is a very important factor that
needs to be carefully considered in the model learning, since
the setting of « is sensitive to the feature embedding and even
to the final classification results. Similarly, the terms of SR
and SSM alignment also have great effects on the classification
performance, which indicates the importance of the two terms.
What’s more, the subspace dimension is a noteworthy factor as
well, although the OAs with different dimensions are relatively
stable when the variable d reaches a larger value (e.g., 10).

E. Ablation Studies of JPSA

Additionally, we analyze the performance gain of JPSA
by step-wise adding the different components, i.e., SR term,
SSM alignment term, etc. Table V details the increasing
performance when different terms are fused. As it turns out
successively embedding each component into the JPSA would
lead to a progressive enhancement in feature representation
ability. This demonstrates the advancement and effectiveness
of the proposed JPSA model for HDR.

IV. CONCLUSION

In this paper, we proposed a joint and progressive subspace
analysis (JPSA) technique to learn an optimal mapping for
effective HS data compression along the spectral dimension.
JPSA is expected to find a discriminative subspace where
the samples can be semantically (label information) and
structurally (SSM or topology perseveration and alignment)
represented and thereby be better classified. Oriented by as-
sessing pixel-wise HS classification performances, we conduct
extensive experiments using JPSA in comparison with some
previous state-of-the-art HDR methods. The desirable results
using JPSA demonstrate its superiority and effectiveness,
particularly in handling various complex spectral variabilities
compared to other nonlinear DR techniques (e.g., DL-based
methods). In the future, we will further develop and apply the
JPSA framework to the multi-modality learning.
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Fig. 7. Parameter sensitivity analysis of JPSA for three regularization parameters (c«, 3, and ) and the subspace dimension (d) on the two datasets.

APPENDIX A
SOLUTION TO AUTORULE

The solution to problem (12) can be transferred to equiva-
lently solve the problem (13) with ADMM. Considering the
fact that the object function in Eq. (13) is not convex with
respect to all variables simultaneously, but it is a convex
problem regarding the separate variable when other variables
are fixed, therefore we successively minimize .Z), (Eq. (13))
with respect to ©;, H, G, Q, S, {A,, }1_, as follows:

©; problem: The optimization problem for ® is

min g tr(@lil,lLfXT,le)lT)+%||H — 0%,
l

+AT(H - GIXl—l)“"gHG — 07 +A3(G - ©)) )
+51Q - O [2+AT(Q - ©Ki-1)+1(Q)

+51S - OXi R +AT(S - @K1 +I5(9),
which has a closed-form solution:
pHX |+ uG + pQX) | + pPX]
+AXT Ay + AKX+ AKX

X (X LX) + 3K X ) + pl)
(26)
H problem: The variable H can be estimated by solving
the following problem:

@l<—

1,5 I S
in-||X;,_; — GTH||2 + Z||H — ©,X,_4||?
min 2| Xi1 — GTH|E + Z[H - X1l

- 27)
+ AT (H-0,X,_1),
its analytical solution is given by
H <« (GGT 4+ uI) " Y(GXi_1 + p©,;X;_1 — Ay).  (28)

G problem: The optimization problem can be written as

méng||c;—®z||%+A§(G—®z), (29)
which can be effectively solved as
G« (HH" 4+ uI) ' (HX; + 4O, — Ay).  (30)

Q problem: The optimization problem of Q is

min 71Q ~ @K1} + AT(Q - ©Kiy) + 1(Q).
G1)

Here the update rule for Q can be expressed as

Q + max(©,X;_1 — As/p,0). (32)

S problem: The variable S is estimated by solving
min £S — @K1 [ + AT(S - ©X,1) + I5(S), (33)

whose solution can be updated in each iteration by the vector-
based projection operator of Eq. (15):

S « proxf(G)lf(l,l — Ay/p). (34)
Lagrange multipliers ({A;}}_,) update: Before stepping
into the next iteration, Lagrange multipliers are updated by

A=A+ puH-0,X,_1), Ay = Ay + (G — ©,),

Az =Az+u(Q—-0;X; 1), Ay = Ay + u(P — eixl—ig-
(35)
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