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Abstract—The Sentinel-1 mission provides a freely accessible
opportunity for urban image interpretation based on synthetic
aperture radar (SAR) data with specific resolution, which is
of paramount importance for Earth observation. In parallel,
with the rapid development of advanced technologies, especially
deep learning, we urgently need a large-scale SAR dataset
supporting urban image interpretation. This paper presents
OpenSARUrban: a Sentinel-1 dataset dedicated to the content-
related interpretation of urban SAR images, including a well-
defined hierarchical annotation scheme, data collection, well-
established procedures for dataset compilation and organization
as well as properties, visualizations, and applications of this
dataset. Particularly, our OpenSARUrban collection provides
33,358 image patches of urban SAR scenes, covering 21 major
cities of China, including 10 different target area categories, 4
kinds of data formats, 2 kinds of polarization modes, and owning
5 essential properties: large-scale coverage, diversity, specificity,
reliability, and sustainability. These properties guarantee the
achievement of several goals for OpenSARUrban. The first one
is to support urban target characterization. The second one
is to help develop well-applicable and advanced algorithms for
Sentinel-1 urban target classification. The third one is to explore
content-based image retrieval for this kind of data. In addition,
dataset visualization is implemented from the perspective of
manifolds to give an intuitive understanding. Besides a detailed
description and visualization of the dataset, we present results of
some benchmarking algorithms, demonstrating that this dataset
is practical and challenging. Notably, developing algorithms to
enhance the classification performance on the whole dataset and
considering the data imbalance are especially demanding.

Index Terms—Sentinel-1 dataset, synthetic aperture radar,
OpenSARUrban, urban interpretation.

I. INTRODUCTION

SENTINEL-1 is an imaging radar mission providing con-
tinuous all-weather, day-and-night imagery of relatively

low-resolution C-band data [1]–[4]. Potentially imaging all
global landmasses, Sentinel-1 allows for comprehensive urban
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target interpretation [5], [6]. In particular, the interferometric
wide (IW) swath mode is the primary operational mode over
land. The data are publicly accessible and provide sufficient re-
sources for land cover applications, such as urban deformation
mapping [5], [7], or forest and agriculture monitoring [8]–[10].

Considering the explosion of Sentinel-1 satellite data, the
lack of urban data interpretation tools [11]–[17] as well as the
rapid development of new deep learning techniques [18]–[24],
the user community urgently needs a large-scale Sentinel-1
image dataset to develop more sophisticated and robust algo-
rithms for the interpretation of urban synthetic aperture radar
(SAR) images. The challenges are how the ever-increasing
data can be indexed, organized into a dataset, and utilized for
specific applications. These issues cause a crucial problem yet
to be solved.

There are already large-scale datasets, having been com-
piled in the optical remote sensing field to satisfy different
requirements. The existing literatures include the UC Merced
land use dataset (UC-Merced for short) [25], the local climate
zone (LCZ) dataset [26], the aerial image dataset (AID) [27],
AID++ [28], the dataset for object detection in aerial images
(DOTA) [29], and the EuroSAT dataset [30]. Because of
the clear visual appearance of optical images, any dataset
compilation is relatively easy to perform. On the contrary,
in the SAR community, a dataset compilation faces more
severe challenges. On the one hand, the non-intuitive visual
image appearance—caused by the active imaging of SAR—
poses the biggest obstacle in SAR image annotation. On
the other hand, the SAR data themselves are rather expen-
sive to acquire, which also is an important factor impeding
any SAR dataset compilation. Despite these difficulties, re-
searchers have developed several datasets in this field. For
instance, the Western North America Interferometric SAR
(WinSAR) Consortium (https://winsar.unavco.org/) acquires
SAR imagery aiming to promote the development and the
use of InSAR technology. Further, the moving and stationary
target recognition (MSTAR) dataset [31], covering different
aspect angles, depression angles, and target configurations,
is composed of ten types of military vehicle targets. The
dataset is extensively adopted to develop automatic target
recognition (ATR) algorithms for SAR images [32]–[34]. In
addition, the authors of [35] designed a large-scale TerraSAR-
X dataset based on very high resolution (HR) imagery, aiming
to promote information mining from HR and X-band SAR
images. In contrast, the authors of [36] developed a HR and
X-band land cover dataset for classification benchmarking
of temporal changes. Later, the OpenSARShip [37] image



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. X, NO. X, X 2

collection, containing 11,346 SAR ship chips, was designed
to promote Sentinel-1 ship interpretation. More recently, the
SEN1-2 dataset [38] is to foster deep learning research in
SAR-optical data fusion. However, none of these SAR datasets
can focus on the interpretation of urban Sentinel-1 images with
their relatively low resolution. This dataset benefits researchers
also due to the advantages of large coverage, fewer layovers,
and easity autmenting due to their freely accessible priority.

With the goal of filling this gap and to advance interpretation
research with urban SAR images, in this study, we present a
benchmarking SAR dataset called OpenSARUrban, which has
been collected from 19 Sentinel-1 images, mainly covering
areas of 21 individual metropolises of China. In the very
beginning, a coarse-to-fine annotation scheme was proposed,
which was initially implemented according to the urban op-
eration functionalities and then hierarchically divided into
more detailed categories (see Fig. 2). The dataset, comprising
33,358 SAR image patches (i.e., image chips) with a size of
100× 100 pixels each, supports 10 different functional urban
types. The design of the OpenSARUrban dataset follows the
idea of annotation transition from the optical domain to the
SAR domain. Owing to five essential properties, namely large-
scale, diversity, specificity, reliability, and sustainability, Open-
SARUrban achieves several goals. The first one is to support
urban target characterization analysis. The second one is to
foster applicable and advanced classification algorithms for
Sentinel-1 urban targets. The third one is to explore content-
based image retrieval [39]–[42] of this kind of data. The
visualization of this dataset is performed from the perspective
of manifolds via a combination of fast compression distances
(FCDs) and t-distributed stochastic neighbor embedding (t-
SNE), which offers an intuitive way to understand the structure
within the given dataset. In the case of image classification of
this dataset, some representative benchmarking algorithms are
provided.

The three main contributions of this paper can be sum-
marized as follows. Firstly, a hierarchical coarse-to-fine an-
notation scheme for urban target interpretation is proposed,
which takes the urban requirements into account. Secondly, via
organizing and exploiting a rapidly growing set of Sentinel-1
SAR images, we compiled the OpenSARUrban dataset, which
is particularly applicable to urban target interpretation. Thirdly,
five essential properties were achieved and some benchmark-
ing experimental analysis was made, which contributes to the
practicality and the quality of this dataset.

The remainder of this paper is organized as follows. Section
II presents detailed procedures for compiling the OpenSARUr-
ban dataset. The layout and properties of OpenSARUrban
are illustrated in Section III and Section IV, respectively.
Section V visualizes the manifolds within this dataset. Sec-
tion VI provides some preliminary applications on urban target
classification of this dataset as benchmarking algorithms.
Finally, conclusions are drawn and future work is illustrated
in Section VII.

Fig. 1. Data source distributions of the OpenSARUrban dataset.

II. CONCEPTION AND COMPILATION OF THE
OPENSARURBAN DATASET

In this section, we present procedures for conceiving the
OpenSARUrban dataset; we also explain how these procedures
guarantee the properties of large-scale image data, their diver-
sity, specificity, reliability, and sustainability. The dataset com-
pilation can be explained from three aspects: data collection
and preprocessing, a well-defined annotation scheme, and the
step-by-step compilation procedures.

A. Data Collection and Preprocessing

Before compiling the dataset, it is necessary to collect some
typical original images from the Sentinel-1 data access hub,
and the corresponding preprocessing has to be done. In this
study, we focus on urban targets from major cities distributed
across China.

During a data collection phase, a large amount of initial
Sentinel-1 SAR images were selected and downloaded from
a SAR image archive, containing typical regions of interest
(RoIs). In our case and in this work, the selected Sentinel-
1 images cover areas of 21 major Chinese cities from 17
administrative provinces. Most of them are located around
provincial cities. Table I shows details of the dataset source
particularities. The geographical distribution of this dataset is
shown in Fig. 1. Notably, the red circles in this figure denote
the different cities. The green area, the blue colors, and the
gray-colored region are land areas, rivers, and ocean areas,
respectively.

In this study, we focus on Level-1 ground range detected
(GRD) data with IW swath products, typically regarded as
the default acquisition mode over land. These original im-
ages were downloaded from the official Sentinels Scientific
Data Hub (https://scihub.copernicus.eu/dhus/#/home), which
is freely accessible to researchers.

The original images and their radiometrically calibrated
versions are included in this dataset. It is notable that the pixel
values of radiometrically calibrated data can be directly related
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TABLE I
MAJOR CHINESE CITIES INVESTIGATED IN THIS STUDY

Imagery scene
(covered provincial areas) City name Image acquisition date

(Year/Month/Day)

Shanghai Shanghai 2017/02/03
Beijing Beijing 2017/02/01

Zhejiang Hangzhou 2017/03/28
Guangdong & Hong Kong Shenzhen, Guangzhou, Hong Kong 2017/02/28

Guangxi Nanning 2017/03/10
Yunnan Kunming 2017/02/05
Sichuan Chengdu 2017/04/13

Chongqing Chongqing 2017/05/02
Hubei Wuhan 2017/01/06
Hunan Changsha 2017/05/11
Jiangxi Nanchang 2017/03/02

Shandong Jinan, Weifang 2017/05/15
Hebei Shijiazhuang 2016/11/14

Shaanxi Xi’an 2017/03/05
Gansu Lanzhou 2017/05/15

Xinjiang Uygur Autonomous Region Urumqi 2017/02/06
Heilongjiang Harbin 2016/09/14

to the radar backscattering of the Earth’s surface. In contrast to
the qualitative usage of the original SAR data, their calibrated
version is essential for quantitative applications. We used
the SNAP 3.0 software to perform radiometric SAR image
calibration. For both uncalibrated data and their corresponding
calibrated version, we used GeoTIFF format images.

Annotating SAR images directly by expert inspection is a
very laborious and time-consuming task. Apart from this, the
relatively low image resolution causes great difficulty in target
type determination. In order to overcome these challenges, the
optical images from Google Earth Engine provide an optimal
solution, which fills to a great extent the gap between the hu-
man visual system (HVS) [43] and the radar’s active imaging
mode. Firstly, the optical images can be easily recognized by
human observation, which directly leads to qualified annota-
tions. Secondly, geographical annotations can be generated by
91 Weitu [44], which can be imported into SNAP 3.0 and then
matched geographically with the corresponding SAR images.
Thirdly, several petabytes of optical remote sensing images are
also provided by 91 Weitu, which is achieved by plugging in
the Google Earth Engine.

B. Discernible Categories

The annotation scheme proposed in this paper is actually
a coarse-to-fine hierarchical scheme, confirmed by two fac-
tors. The first one is related to the different visual patterns
in Sentinel-1 SAR images, which are confirmed by several
SAR experts. Even though there are subtle differences, most
categories from different images are distinguishable. The other
factor is the different use of urban areas, i.e., business areas,
residential areas, industrial areas, and others. Fig. 2 shows
our annotation scheme. The first level is differentiated by
the overall functionality. In what follows, the second level
gives more detailed semantic sub-categories, which have to be
annotated individually. The annotation scheme is defined based
on the data collection from major Chinese cities. However,
this will not limit the generation of the dataset. Firstly, our

dataset is mainly composed of urban buildings, which vary a
lot between China and other countries, like France we have
already investigated, but where we found that it doesn’t work.
Considering this, we cannot give a uniform annotation scheme
from a worldwide perspective. Secondly, the buildings in
Chinese cities vary a little, but not too much. So the annotation
scheme is relatively easy to define. Thirdly, the dataset is large
enough to support our research.

For instance, skyscrapers are a representative building type
in business areas, which often consist of extremely bright
pixels in SAR images. In contrast, residential areas can be
described by four sub-categories, i.e., general residential areas,
high-rise buildings, dense and low-rise residential areas, and
villas. General residential areas in today’s China contain as
the most common buildings those with not more than six
floors. On the contrary, high-rise areas consist of residences
with tens of floors and the distance between the buildings is
usually very large. Dense and low-rise areas are commonly
very crowded and their buildings are very low. Generally,
villas are located in suburbs and they are often surrounded
by trees, vegetation, and lakes, while a storage area is a
typical category in industrial areas, usually located at the
city periphery. Playing a paramount role in any municipal
transportation system are its hubs, including airports, railways,
and highways that are essential for the city operation. It is
worthwhile to point out that highways are also an important
indicator of overpasses in urban areas. In addition, another
indispensable category needed in urban areas is vegetation.
Fig. 3 illustrates typical examples of optical samples and their
corresponding SAR samples, covering all our 10 categories.
The colored masks on each example are actually the main
surface cover of the current category. It can be seen that the
labeled areas have different shapes between the optical images
and their corresponding SAR images. The reasons can be
attributed to three points. Firstly, the imaging mechanisms of
SAR and optical instruments are different. Specifically, SAR is
an active imaging technique which transmits and receives the
reflected signals, whereas optical sensors work in a passive
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Fig. 2. Our two-level hierarchical annotation scheme.

mode, which receives the reflected signals of the natural
illumination. Therefore, the geometrical distortions in SAR
images are very common, and are not in accordance with our
human visual experience. In contrast, optical images are more
easily recognized by human observers. Secondly, a SAR sensor
may observe the Earth’s surface from different directions, thus
accetuating the phenomenon. Thirdly, the depression angle
can also call for a rotation or a flipping of the images when
comparing them with optical images. Even though there are
significant differences between optical images and their corre-
sponding SAR images, the geographical information plays an
important role during image co-registration. These differences
can make the interpretation of SAR images rather difficult.

C. Dataset Compilation

Fig. 4 displays the overall workflow of the OpenSARUrban
dataset compilation. The annotation of this dataset was imple-
mented by a transition from optical space to SAR space. In
particular, targets were firstly annotated in our optical images
with the assistance of the 91 Weitu software package [44].
The optical annotations were then saved in a “.shp” file
together with their geographical information, which serves as a
bridge linking the optical images with their corresponding (i.e.,
overlapping) SAR image counterparts. The time gap between
optical images and SAR images was eliminated by aligning the
image acquisition times recorded in the meta-data files. The
target coordinates within the SAR images can be obtained
by using the Sentinel-1 application platform (SNAP 3.0)
software [45]. Finally, with the availability of the generated
SAR annotations, the original SAR images were tiled into
image patches separately for each land cover category. It is
worth noting that the validity of the OpenSARUrban data is
accurately monitored in every step and is provided in several
data formats to satisfy different user requirements. The core
procedures can be explained by nine steps as follows:

Step 1: Information Querying
In the meta-data file of Sentinel-1 packages, the geographi-

cal location, i.e., the longitude and latitude, of the image’s four
corners can be easily queried. In addition, the image acquisi-

tion date/time can also be obtained from this file, formatted as
“Date-Month-Year” plus the coordinated universal time (UTC)
of the acquisition.

Step 2: Geo-Referencing of the Corresponding Optical Re-
mote Sensing Images

With the information about location and image acquisition
time being available, one can search the RoIs in optical remote
sensing images, which are mostly in line with the HVS,
making any semantic annotation much easier. Specifically, the
image location is defined by the boundaries of the current
imaging area and the exact image acquisition time can be
traced. Here, the 91 Weitu software provides an optimal way
to make this step.

Step 3: Creating a New Directory
Before annotating a specific category, we routinely create

a new directory, naming it with the category name, such
as “high-rise building”. In the following steps, the human-
readable annotations belonging to this category can be auto-
matically saved in this directory on condition that the directory
has been successfully activated.

Step 4: Annotating Optical Remote Sensing Images
With a relatively low resolution of about 20 m for Sentinel-

1 images, directly annotating SAR images is very challenging
for image analysts. In order to overcome this problem, the
optical images, being directly understandable by human obser-
vation, provide an optimal way to accurately annotate a given
image. The optical images from Google Earth Engine have a
resoluiton of 0.13 m both along azimuth and range directions.
The annotations are marked with a series of polygons using
the “Polygon Annotation” tool provided by the 91 Weitu
software. The geographical locations of the annotated polygon
vertices are also stored in the annotation file. Thus, with the
geographical information as a bridge, annotations in optical
images can be easily matched with co-aligned SAR images.

Step 5: Saving the Optical Annotations
This step is to save the optical annotations in a “.shp”

file, which contains the geographical information of each
annotation. The “.shp” annotation file is to be saved in the
directory created in Step 3.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 3. Optical examples and their corresponding SAR examples for each category. The first row and the second row show optical and SAR examples
of skyscraper, dense and low-rise residential buildings, high-rise buildings, villas, and general residential areas, respectively; The third row and the fourth
row show optical and SAR examples of storage areas, airports, railways, highways, and vegetation, respectively. The colored masks are the main land cover
locations of the given category.

Step 6: Checking the Optical Annotations
When all the categories in the optical images have been

annotated and the corresponding “.shp” files have been created,
these annotations should be checked in the optical domain with
the assistance of the 91 Weitu software. During this process, if
the targets are correctly annotated, these files are saved into a
directory named “Optical Annotation”. Otherwise, the optical
annotations should be corrected before saving.

Step 7: Image Co-Registration
With the geographical information being available, the opti-

cal annotations can be easily matched with the corresponding
SAR images with the help of SNAP 3.0 desktop. In particular,
the Sentinel-1 images should be opened first by the SNAP
3.0 software. In this study, the selected image is usually
a VH polarized image, because of its better visual quality
when comparing it with VV polarization. The better visual
appearance of VH polarization can be demonstrated in this
step. Then, the optical annotations, formatted with “.shp” files,
are imported into SNAP. The annotations will be checked
and matched with the corresponding SAR image by using

this software, where the Sentinel-1 image and the optical
annotations are co-aligned automatically.

Step 8: Exporting SAR Annotations

With the help of the SNAP 3.0 toolbox, the annotation
information of SAR images is stored in a “.txt” file in the
“SAR Annotation” directory. Actually, the SAR annotation
contains the coordinates of the categorical locations in the
Sentinel-1 images. More specifically, the coordinates are the
locations of the annotated polygon vertices.

Step 9: Generating SAR Image Patches with Different For-
mats

In this step, SAR image patches of each category are
generated with MATLAB. Using the polygon annotations, we
tile them into image patches with a size of 100× 100 pixels.
Here, the overlap of the annotated polygons and the tiled image
patches is set to be larger than a given pixel margin. The
overlap computation mechanism is illustrated in Fig. 5. In this
figure, the purple square and the yellow polygon represent a
tiled image patch and an annotated SAR polygon, respectively.
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Fig. 4. The workflow of compiling the OpenSARUrban dataset.

Fig. 5. Our overlap computation mechanism. The purple square and the
yellow polygon represent a tiled image patch and an annotated SAR polygon,
respectively. If their overlap is larger than a pre-set margin, the corresponding
image patch is saved into the dataset.

III. THE LAYOUT OF THE OPENSARURBAN DATASET

The OpenSARUrban dataset is organized in different fold-
ers for different image categories and formats. For a given
Sentinel-1 SAR image, the content of the generated dataset
is illustrated in Fig. 6. When it comes to the formats of
image patches, each of them consists of four different for-
mats, i.e., the original data, the visualized data in gray-scale
representation, the visualized data in pseudo-color, and the
radiometrically calibrated data. Image patches with different
formats are provided in different subfolders. Different formats
shall achieve the goal to satisfy different user requirements.
At present, ten different target categories are stored separately.
Each image patch is named by the combination of its category
name, pixel coordinates, polygon index, and the polarization
mode, thus supporting the patch retrieval.

The original data is stored in 32-bit format, which is in
line with the original data format of Sentinel-1. Considering
the GRD format of a Sentinel-1 image, each image patch is
stored in a two-channel matrix, where each one contains the
amplitude values of the pixels with VH and VV polarizations,
respectively. Based on the original image patches, image
enhancement is applied to visualize the data in gray-scale as
unsigned 8-bit integers (UINT8) for VH and VV polarizations.
The radiometrically calibrated data, obtained by using the
SNAP 3.0 software, are stored in a matrix, which contains
the normalized radar cross section (NRCS) σ0 [46] data for
VH and VV polarizations. Fig. 7 shows an example for each
category of VH and VV polarizations with UINT8 format.
The visualization of pseudo-color image is implemented by
using the MATLAB function ‘imagesc’. The values of the
image elements are indexed into the current ColorMap (jet),
determining the pixel color. A color bar is provided to illustrate
the radiometric boundary of each pseudo-color image patch.

The detailed information about each image patch, its SAR
signatures, and the generated messages provided by their meta-
data are listed in an XML-file named “Annotation.xml”. The
annotation information, including the annotation times, the
locations, etc., is also provided in this file. Via the pixel
coordinates contained in the name of each image patch, the
corresponding information can be easily retrieved in the XML-
file.
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Fig. 6. Data organization of the OpenSARUrban dataset.

IV. THE PROPERTIES OF OPENSARURBAN

A. Large-Scale

The original data cover 21 Chinese major cities, related
to 17 political provinces. Consequently, the OpenSARUrban
dataset provides as much as 33,358 image patches, where each
image patch includes 4 different kinds of image formats and
2 different kinds of polarization modes.

B. Diversity

• Data Format Diversity
For each image patch, there are four different formats avail-

able, i.e., the original 32-bit image, the enhanced gray-scale
image, the radiometrically calibrated image, and the pseudo-
colored radiometrically calibrated image. These four different
formats are generated to satisfy different requirements.

• Geographical Diversity
The original extent of OpenSARUrban comprises data from

21 Chinese major cities in 17 administrative provinces. The
image patches from each city are separately stored in the
corresponding folders. Fig. 8 explains the image patch distri-
butions across different cities. In this figure, bars with different
colors represent different categories and image patches are
grouped according to the cities they come from. In this figure,
Guangzhou actually represents image patches jointly collected
from the city of Guangzhou, Shenzhen, and Hong Kong,
because of the wide-swath capability of Sentinel-1.

• Categorical Diversity
Related categories in this study and the validity of the anno-

tation scheme are illustrated in Section II-B. All these typical
categories comprise the OpenSARUrban dataset’s categorical
diversity. The dataset distributions among different categories
are illustrated in Fig. 9. The categories of transportation hubs
are very limited in this dataset, calling for more research on
data imbalance.

• Polarization Diversity

For each image patch in this dataset, VH- and VV-polarized
data are included. Different polarizations, conveying different
scattering signatures and visual effects, have different poten-
tials in describing different kinds of urban types.

C. Specificity
This study provides a large-scale C-band urban categorical

dataset with a resolution of 20 m. This dataset essentially
aims to provide a theorem study on SAR signatures and the
characteristics of different urban categories, as well as paving
the way for applications of this kind of data. Specifically, the
OpenSARUrban dataset is designed to: 1) study characteristics
and potentials for different urban areas by using Sentinel-1
SAR images; 2) develop sophisticated urban target interpreta-
tion algorithms for this kind of data; 3) support content-based
image retrieval.

To the best of our knowledge, representative C-band urban
target data for SAR images with a resolution of 20 m are not
yet available for users to study their characteristics. Therefore,
we created the OpenSARUrban dataset, expecting to fill this
gap.

D. Reliability
Initially, the OpenSARUrban dataset was annotated by an-

alyzing optical remote sensing images, which can provide
annotators with visually clearly understandable information;
furthermore, the optical images can give annotators some
additional understandings about the Earth’s surface. The image
co-registration between optical images and their corresponding
SAR images is supported by geographical information, which
is very helpful when verifying the annotation coordinates,
and the image acquisition dates, which eliminates the time
gap between optical images and SAR images effectively.
Moreover, some confused classifications can be corrected by
the additional information. Thus, the annotation quality of this
dataset can be improved.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. X, NO. X, X 8

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 7. Image patches for each category with UINT8 format. The first row shows VH-polarized examples of skyscrapers, general residential areas, high-rise
building blocks, dense and low-rise residential areas, and villas; the second row shows the corresponding VV-polarized examples; the third row displays
VH-polarized data of airports, railways, highways, industrial storage areas, and vegetated areas; the fourth row exhibits the corresponding VV-polarized
patches.

Fig. 8. Dataset distributions among different cities. Differently colored bars represent the number of image patches from different categories. Image patches
are grouped according to the city distribution.

E. Sustainability
The optical annotations recorded as “.shp” files can be used

for further co-registration with newly available SAR data. The

geographical information contained in the optical annotation
files can be regarded as an effective bridge linking new SAR
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Fig. 9. Dataset distributions among different categories.

images located in the same area and acquired at the same date.
Thus, the manual labeling effort can be greatly reduced, more
Sentinel-1 SAR datasets can be easily generated, and more
urban categories can be added to the dataset. In these cases,
the process makes the OpenSARUrban dataset to be enriched
in a relatively simple way.

V. VISUALIZATION OF THE OPENSARURBAN DATASET

To illustrate the data manifolds within OpenSARUrban, the
algorithms of FCD [47], showing its advantages when apply-
ing a remote sensing dataset, and t-SNE [48] are combined to
visualize this dataset. The idea behind this is to convert similar-
ities between data points to joint probabilities and attempting
to minimize the Kullback-Leibler (KL) divergence [49] be-
tween the joint probabilities of the low-dimensional manifolds
and the high-dimensional data. This method is a parameter-free
and thus unbiased data analysis technique, performing well on
preserving the complete local structure and some global struc-
tures of the data points. The visualization and interpretation are
based on a Vega style interactive tool. Users are able to zoom
in, zoom out, and pick out datasets from OpenSARUrban.
The visualization procedures are depicted in Fig. 10, including
raw data extraction, dictionary extraction, pair-wise distance
computation, dimension reduction, and visualization. Further
details can be found in [50].

Fig. 10. Flowchart of the visualization procedure.

Considering the computational load of this method, in an
experiment, we picked out 300 samples randomly from each

category, including the 2 polarization modes. The visualization
results are analyzed in the manifold space, which provides
an intuitive way to understand the dataset. Fig. 11(a) and
Fig. 11(b) exhibit the category visualization results for VH and
VV polarization, respectively. Different colors in these figures
represent different urban categories. From the visualization
results, one can observe that:

• The VH-polarized images are generally more clearly
distinguishable than the VV-polarized data.

• The transportation hubs, including airports, railways, and
highways, have their distinct manifold spaces, both for
VH and for VV polarization. This is due to their specific
image patterns and the large functional distances between
them.

• The business areas, represented by skyscrapers in this
dataset, dominate their own manifold space for both
VH and VV polarization modes. The performance seems
better for VH polarization than for VV polarization.

• The functional areas of residential regions, including
general residential areas, high-rise building areas, dense
and low-rise areas, and villas, are mostly assembled in
one cluster, following the manifolds of the VH-polarized
dataset. As for the VV-polarized results, they are some-
times mixed up with other urban categories.

• In this dataset, comprising the manifold spaces of the
VH- and VV-polarized datasets, the vegetation areas
can be well clustered. However, this cluster is close to
industrial areas, represented by the storage category, from
the perspective of manifold visualization.

• Both figures pose great challenges in distinguishing the
10 categories.

VI. EVALUATION OF OUR URBAN CATEGORIZATION AND
DISCUSSIONS OF OPENSARURBAN

It is generally acknowledged that urban categorization for
SAR images is very challenging. The difficulty is further
increased when encountering such a relatively low resolution.
As explained before, these challenges always exist and are
rather severe for OpenSARUrban interpretation. We assume
that the OpenSARUrban dataset classification is demonstrably
reliable as shown by some prevailing deep learning methods
and some traditional SAR image classification techniques, e.g.,
a combination of representative traditional feature descriptors
of SAR images and a linear support vector machine (SVM)
classifier [51].

A. Benchmarking Algorithms for Urban Categorization

In order to demonstrate the distinguishability of target area
categories and to provide some representative benchmarking
algorithms for this dataset, we carried out urban target cate-
gorization on our OpenSARUrban dataset. In order to achieve
this task, we comprehensively analyzed the prevailing deep
learning algorithms developed in recent years and several rep-
resentative hand-crafted feature descriptors for SAR images.

The reason for using deep learning algorithms in this
study were the astonishing achievements they have achieved.
In particular, densely connected convolutional networks
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(a) VH-polarized dataset visualization (b) VV-polarized dataset visualization

Fig. 11. Urban target visualization of the OpenSARUrban dataset.

(DenseNet) [52], the deep residual network with 50 resid-
ual blocks (ResNet50) [53], SqueezeNet [54], very deep
convolutional networks with 19 layers (VGG19) [55], and
AlexNet [56] were evaluated for the classification of this
dataset.

For the evaluation of traditional methods, six prevail-
ing SAR image descriptors, including local binary patterns
(LBPs) [57], LogGabor features [58], Gabor features [59],
Weber local descriptors (WLDs) [60], histograms of oriented
gradients (HoGs) [61], and principle component analysis
(PCA) [62], were selected to evaluate the usefulness of
OpenSARUrban. The number of scales and orientations for
Gabor features and LogGabor features were set to 6 and 4,
respectively. Then, a PCA feature descriptor reduces each
image patch to a 30-dimensional vector. For simplicity and
giving a fair comparison, a linear SVM was chosen as a
classifier in each experiment.

B. Implementation Details and Evaluation Metrics

During the process of implementing urban target classifica-
tion with this dataset, it was split into a training part and a
testing part. Among them, 60% of each category was chosen
randomly for training, and the remaining data were used for
testing and evaluation. In order to overcome the training data
imbalance among the different categories, different Gaussian
noise was added to augment the training data. In addition,
the OpenSARUrban data were evaluated comparatively with
different polarization modes [63].

The network training for deep learning techniques was
started with an initial learning rate of 0.001 and the learning
rate changes were set in accordance with the “poly” descend-
ing policy described in [64]. The parameters were iteratively
updated until convergence was reached.

Without loss of generality, the overall accuracy (OA) [65],
[66] and a confusion matrix [27], [28] were applied to evaluate
the performance of the available benchmarking algorithms.

C. Overall Performance of OpenSARUrban for Urban Target
Categorization

The OA of the OpenSARUrban dataset by each benchmark-
ing algorithm is shown in Fig. 12. In this figure, the purple
bar and the yellow bar indicate the performances of the VH
and VV polarization modes of this dataset, respectively. One
can observe from this figure that:

• Generally speaking, deep learning methods surpass tradi-
tional methods by a large margin, except for LBP.

• The best performance for both VH polarization and VV
polarization, in terms of OA, can be given by VGG19,
being 89.49% and 89.53%, respectively.

• Among the traditional methods, LBP, with 71.06% and
70.82% of OA for the VH and VV polarization modes, is
far more advantageous than the other methods and even
surpasses some deep learning techniques.

In real situations, the categorization depends on the qual-
ity of the samples, the feature selections, etc.. However,
in general, the VH-polarized man-made structures perform
better than VV-polarized ones. We would like to explain this
phenomenon from three different perspectives. Firstly, this can
be understood from the perspective of radar backscattering
theory. The categories related to this study are mostly man-
made structures, except for the category of vegetation. It has
been demonstrated that VH-polarized data contributes the most
to the classification of man-made structures [67]. The second
viewpoint is to explain the phenomenon from the perspective
of visual appearance. A comparison of visual appearance
between VH-polarized images and VV-polarized images is
shown in Fig. 7. By human observations, it is visually clear
that the VH-polarized images show more intuitive details than
the VV-polarized ones. Thirdly, we attempt to give some
explanations from the perspective of manifold visualization.
The even more separable visual intuitive details of VH-
polarized images can also be demonstrated by the manifold
visualization results, shown in Fig. 11(a) and Fig. 11(b).
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The easier separation between different categories of VH
polarization shows us that the VH-polarized images are more
distinctive than the corresponding VV-polarized ones.

Fig. 12. Overall classification accuracy of the whole dataset.

In order to give a comprehensive explanation of this dataset,
we provide the confusion matrices of the best investigated
deep learning method (i.e., VGG19) and the best investigated
traditional method (i.e., LBP) for the overall classification of
this dataset. The confusion matrices produced by VGG19,
including both VH and VV polarizations, are depicted in
Fig. 13(a) and Fig. 13(b), respectively. Observers can easily
conclude from these two confusion matrices that the urban tar-
gets in this dataset can be well distinguished by using VGG19,
even though their visualization contains some confusions (for
comparison, see Fig. 11(a) and Fig. 11(b)). However, even
with the VGG19 algorithm, there are still some categories,
e.g., general residential areas (Gen.Res. for short), storage
areas, and dense and low-rise residential areas (simplified as
denselow) that cannot achieve a highly satisfactory classi-
fication accuracy, indicating potentials for developing more
advanced classification algorithms on this kind of data.

Figure 14(a) and Fig. 14(b) represent the confusion matrices
obtained by the combination of an LBP feature descriptor
and a linear SVM classifier. These figures are based on the
following points: 1) Most categories can be well categorized
except for three typical building types: general residential
areas, industrial storage areas, and high-rise buildings, which,
comparatively, are better distinguishable by using the VGG19
method; 2) These three most challenging building types are
very prone to be confused with each other; 3) An LBP de-
scriptor performs almost the same for both VH and VV polar-
izations. The inadequacies of LBPs, for one thing, demonstrate
the limitations of hand-crafted feature descriptors. For another
thing, the transportation hubs, i.e., airports, railways, and
highways, are easy to be distinguished because of the great
differences in image patterns with urban buildings.

To further explore the effectiveness of LBP features on the

three dominating challenging building types, i.e., Gen.Res.,
storage areas, and high-rise buildings, we picked them out
from the whole dataset and carried out a classification run
purely on these three categories. The classification accuracy
for each category is shown with their confusion matrices
depicted in Fig. 15(a) and Fig. 15(b). These two figures are
for VH polarization and VV polarization, respectively. It is
concluded that an LBP feature descriptor has very limited
capability for recognizing general residential areas, industrial
storage areas, and high-rise buildings, which greatly reduces
the overall performance of LBPs in differentiating this dataset.

D. Analysis of Specific Urban Functionalities

1) Residential Area Evaluation: The classification accuracy
of residential areas, including general residential areas, high-
rise building areas, dense and low-rise residential areas, and
villas, is shown for each algorithm in Fig. 16. Among which,
Fig. 16(a), Fig. 16(b), Fig. 16(c), and Fig. 16(d) denote the
accuracy of general residential areas, high-rise building areas,
dense and low-rise residential areas, and villas, respectively.
The purple bar and the yellow bar in these figures illustrate
the results of VH and VV polarization, respectively. Based on
these figures, some conclusions can be drawn as follows:

• Traditional methods are seriously limited for recognizing
general residential areas and high-rise buildings.

• AlexNet is solely effective for high-rise building areas,
while it has very limited capabilities for recognizing other
residential areas.

• LBPs show that they are advantageous for dense and low-
rise areas and villa areas.

• For the recognition of villa areas, DenseNet, VGG19, and
LBP stand at a comparably favorable position, showing
almost the same level of classification accuracy for both
VH and VV polarizations.

2) Transportation Hub Evaluation: Fig. 17 exhibits the
classification accuracy of transportation hubs by applying the
prevailing five deep learning methods and six traditional meth-
ods. Both VH and VV polarizations are compared and eval-
uated. In particular, the classification accuracies of airports,
railways, and highways are shown in Fig. 17(a), Fig. 17(b),
and Fig. 17(c), respectively. The results demonstrate that: 1)
The deep learning algorithms, LBPs, and PCA features have
relatively satisfactory capabilities for interpreting both VH
and VV polarized transportation hubs; 2) The PCA feature
representation is simple yet powerful for transportation hub
description, achieving results as good as deep learning meth-
ods.

3) Business Area Evaluation: The classification accuracy
of skyscrapers, including VH and VV polarizations, is shown
in Fig. 18. Notably, skyscrapers are the most representative
building types in business areas, which are chosen for anno-
tation in the OpenSARUrban dataset. We can observe that: 1)
The algorithms of VGG19 and LBP show great superiority
over others, and for both of them, the VH polarization per-
forms slightly better than VV; 2) The performance differences
between VH and VV for DenseNet and ResNet50 are very
striking, precisely being 43% and 41%, respectively.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. X, NO. X, X 12

(a) VGG19 for VH (b) VGG19 for VV

Fig. 13. The confusion matrix of VGG19 when classifying the whole dataset containing different polarizations. ‘Gen.Res.’ denotes general residential areas.

(a) LBP for VH (b) LBP for VV

Fig. 14. The confusion matrix of LBP when classifying the whole dataset containing different polarizations. ‘Gen.Res.’ denotes the general residential areas.

(a) LBP for VH (b) LBP for VV

Fig. 15. Confusion matrix of the three typical building types by using LBP features. Both VH and VV polarization modes are evaluated.

4) Industrial Area Evaluation: Fig. 19 depicts the classifi-
cation accuracy of each benchmarking algorithm for industrial
storage areas, where both VH and VV polarizations are

included. For the identification of this category, the results
listed in this figure tell us that: 1) The deep learning algorithms
show their advantages over traditional methods, both for VH
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(a) general residential area (b) high building area

(c) dense and low residential area (d) villas

Fig. 16. Classification accuracy of residential areas, including general residential areas, high-rise building areas, dense and low-rise residential areas, and
villas, by using eleven benchmarking algorithms. Both the VH and VV polarizations are compared and evaluated.

and VV polarizations; 2) DenseNet, ResNet50, and VGG19
can achieve almost the same classification accuracy for VH
polarization mode, being roughly 78%; 3) DenseNet and
ResNet50 have the most powerful capability to identify this
category of VH polarization (with an accuracy of 86%) and
VV polarization (with an accuracy of 81%), respectively.

5) Urban Vegetation Evaluation: The classification accu-
racy for identifying urban vegetation areas, which account for
a large amount of land covers in urban areas, by utilizing
each benchmarking algorithm is illustrated in Fig. 20. This
figure can be summarized based on the following points: 1) A
satisfying performance can be achieved by using SqueezeNet,
VGG19, AlexNet, and LBP for both VH and VV polarizations;
2) VGG19, which obtains the most convincing results for
both polarizations of this category, is more suitable for VV
polarization. The accuracy gap with results from VH-polarized
data amounts to roughly 10%.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes a Sentinel-1 dataset for urban inter-
pretation, called OpenSARUrban. The dataset is comprised of
10 different urban categories, including 4 kinds of formats
and 2 kinds of polarization modes for each image patch, and
covering 21 major cities of China. Specifically, the image
formats of the original data, the visualized gray-scale data,
the visualized data in pseudo-color, and the calibrated data
are included. The polarization modes include VH and VV
polarizations. With the five essential properties of large scale,
diversity, specificity, reliability, and sustainability, the goals of
this dataset can be achieved. The dataset structure is visualized
from the perspective of data manifolds by using the FCD and
the t-SNE. Finally, some benchmarking algorithms and exper-
imental results are presented to demonstrate the practicality
and the quality of this dataset. It is believed that developing
methods enhancing the performance for the whole dataset is
very challenging and the dataset is also expected to foster
research on data imbalance. In the era of big data for the SAR
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(a) airport

(b) railway

(c) highway

Fig. 17. Classification accuracy of transportation hubs, including airports,
railways, and highways, by using eleven benchmarking algorithms. Both VH
and VV polarizations are compared and evaluated.

community, OpenSARUrban is expecting to provide a dataset

Fig. 18. Classification accuracy of business areas, represented by skyscrapers.
Both VH and VV polarizations are compared and evaluated.

Fig. 19. Classification accuracy of industrial areas, represented by storage
areas. Both VH and VV polarizations are compared and evaluated.

for developing much more advanced algorithms for Sentinel-1
urban interpretation and to foster the characterization of this
kind of data. In future, this work will be extended throughout
the world and also the time-series data.

The OpenSARUrban dataset can be found at
https://pan.baidu.com/s/1D2TzmUWePYHWtNhuHL7KdQ.
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