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Abstract

Seeing Through Models’ Eyes: Decomposing Latent

Representations of Convolutional Networks

Bartosz Jerzy Miselis

“To comprehend inner data representations constructed by convolutional networks” is an ambitious
task attracting a constantly growing number of researchers across the globe. The joint effort has
led to the broad space of interpretability techniques that roughly fall into two groups: attribution
and feature visualization. The former shines the light on “where” the algorithm looks, while the
latter reveals “what” the network sees. Combining them into rich interfaces provides new ways to
understand convolutional networks and develop deeper intuitions about their complex behavior.
In this thesis, two novel techniques are proposed to advance the analyses in the field of in-
terpretability: Latent Factor Attribution (LFA) and Distilled Class Factors Atlas. LFA identifies
distinct concepts in the activation tensor using matrix decomposition and estimates their influ-
ence on the classification result. Distilled Class Factors Atlas then agpregates these concepts and
presents them in an interactive, exploratory interface that makes it possible to see the entire class
of images through the model's eyes by leveraging feature visualization. Both techniques intro-
duced in this thesis extend the holistic view on latent representations of convolutional networks

by enabling the collective perspective on the patterns that recur in the activation tensors.
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Chapter 1
Introduction

By the Middle Ages, humanity tended to believe that everything that could be discovered had
mostly been already brought to light. The scientific revolution of the 1500s, though, undermined
the omnipresent confidence by introducing the concept of blank spots that began to emerge on
redrawn maps, rewritten manuscripts, and in the curious minds of future pioneers.

Surprisingly, certitude is not only the domain of the distant past. In July 1966, Seymour
Papert, professor at MIT, set up a summer project to construct “a significant part of a visual
system” [51]. The project was assigned to a student Gerald Sussman who was asked to coordinate
a group of 10 students to, as it is often phrased, “solve computer vision”. It is the year 2020, and
researchers still have not found the universal key to all the computer vision tasks that are a trifle
to an average homo sapiens individual. The only matter that appears to be certain for now is that
humbleness is an essential element of a scientific puzzle.

The 2000s and 20108 have seen a rapid growth of deep learning [32]—a subfield of the broader
discipline of machine learning—that became the de farto approach to complex, abstract tasks
like natural language processing [10], playing games [56], or image processing [63], to name the
few. Many junior and senior scientists relish exploring algorithms so effective that they appear to
magically solve all the computational challenges humanity has encountered for the last 50 years,
not infrequently surpassing human performance (!). As our species have always been characterized
by unparalleled curiosity, it is natural at this point to ask the question: how do deep learning
algorithms work, and why are they so effective?

An entire field of interpretability research emerged to address the aforementioned inquiry. How-
ever, as there exist tens or hundreds of challenges being tackled by deep learning, and the number

of specific techniques is even larger, it is not feasible to describe everything in a single thesis!.

In fact, it would not be possible to exhaunst that topic in a substantial tome.



Thus, this thesis focuses on the explainability of a single family of algorithms—convolutional neu-
ral networks (CNNs)—that was first introduced by Kunihiko Fukushima in 1980 [21], significantly
developed and improved by Yann LeCun in the 1990s [33] and brought to the state of wider
applicability by Alex Krizhevsky et al. in 2012 [30].

The concept of CNNs is elegant and [theoretically| straightforward. Nonetheless, the reality
showed that to design models that perform well without having hundreds of millions of parameters,
the task needs to be taken away from human researchers and rather tackled by yet another machine
learning model (!). Starting from the year 2018, Neural Architecture Search (NAS) [71] became
increasingly popular. The technique led to the automatic creation of CNNs that outperformed
previous human designs by a significant margin. The understanding debt, to call it such, grew
even larger—inner representations of simpler models were already hard to comprehend before NAS.

The author of this thesis strongly believes that it is the right time to start paying off the
understanding debt. Doing so will not only provide the answers to the important questions, but
will also broaden the depth of our understanding of homo sapiens’ visual cortex. As the language
gave a specific structure to human thoughts (proving its usefulness throughout the millennia),
carefully crafted interpretability interfaces can alter the way the mind thinks about CNNs.

1.1 Contributions of the Thesis

To define the contributions of the thesis, a nomenclature from [49] will be used. The reason for this
is the following: The Building Blocks of Interpretability (the cited article) is an indisputable inspi-
ration for the main idea introduced in this manuscript. Moreover, it is an exceptional resource that
illustrates the value of immersive interfaces that enable researchers to interact with visualizations
and, most importantly, provide new ways of thinking about the inner representations constructed

by CNNs. The contributions of this manuscript are as follows:

1. Latent Factor Attribution (LFA): new attribution technique that can be used by researchers
working on CNN interpretability as a building block in complex visualization interfaces. LFA
helps to understand the influence of high-level concepts on the image classification result (for
instance, how concepts similar to “mountain” or “lava” (when visualized) impact the CNN

classifying the image as “volcano™).

2. Activation Explorer, an online web interface that puts the LFA in a proper context, show-

casing its usability in concrete scenarios.



3. Distilled Class Factors Atlas, an extension of the Class Activation Atlas [12] technique, based
on matrix decomposition (to extract important abstractions from the images) and the LFA

(to quantify the importance of the extracted concepts).

4. An online web interface to conveniently interact with the generated atlases.

1.2 Thesis Outline

The thesis consists of five chapters. Chapter 1 describes a brief history of the field of interpretabil-
ity. Chapter 2 provides background for the techniques used further in the manuscript, establishing
the relationships with main related work. Chapter 3 explains the novel Latent Factor Attribution
technique, from the motivation, through the implementation details, to the discussion and limi-
tations. Chapter 4 elaborates on the proposed Distilled Class Factors Atlas interface, providing
examples of how the ideas introduced in this dissertation can be applied to develop new ways of
thinking about the inner data representations constructed by CNNs. Chapter 5 summarizes the

entirety of the thesis, presenting a few ideas for future work.



Chapter 2

Background and Related Work

Striving to understand machine learning models is an old concern, not strictly related to neural
networks themselves. It has been an area of active research for a very long time—feature impor-
tance analysis and input-dependent sensitivity analysis have been used in the field for many years
now, both aiming to provide human insight into how the trained model works. In [9], Breiman
comments on the interpretability of a few standard methods (decision trees, random forests, SVMs
and neural networks), discussing the differences between the two cultures in the use of statistical
modeling—either assuming that the data comes from a stochastic model (known data mechanism),
or using the algorithmic models instead (unknown data mechanism). Modern deep learning tech-
niques are, in the majority of the cases, the algorithmic models—they achieve superb performance,
but solve problems in a way that is not easy to explain using stochastic modeling.

The field of CNN interpretability has been continuously evolving from the year of 2009 when
Erhan et al. introduced the idea called activation mazimization [17]. Since then, the multitude
of explainability techniques has been gradually uncovering the world of neural networks’ latent
representations, shedding first light inside the mysterious “black boxes”.

This chapter provides a comprehensive overview of the existing CNNs interpretability ap-
proaches, with major attention put on its two core branches—feature visualization and attribution.
The former focuses on finding ways to effectively visualize features that highly activate defined
units of interpretability. The latter, on the other hand, tries to answer the following question:
which parts of the input tensor contributed the most to the algorithm’s prediction? Detailed analy-
ses described further in this chapter cover the vast majority of work done in the field, highlighting
the [slightly] underestimated value of the process of combining multiple different building blocks.
Hybrid interfaces, e.g. the ones presented in [12, 49|, bring remarkable value by putting things

into the human scale and enable meaningful explanations to complex hypotheses.



2.1 Holistic Understanding is What Science Needs

Since the AlexNet paper [30], CNNs have become wider [67], deeper [24], or both [63], gradually
finding richer, more complex data representations. Nowadays, progress led to a point where the
algorithms’ behavior can be comprehended by humans only to a very small extent. While for
the synthetic problems like MNIST [33] or ImageNet [16] it may not be crucial to provide the
exhaustive explanations of the algorithm’s predictions, the situation differs dramatically in the
fields like finance or healthcare. Here, no one would object that the system deciding whether
to grant a loan or make a diagnosis should be deployed only when it is fully understood by its
designers. Regulatory bodies seem to have already realized how urgent it is for the Al-based
systems to be interpretable. The European Union General Data Protection Regulation (GDPR)
is a good example of such. It grants each EU citizen a right to having the decision made by
intelligent systems explained, especially if it significantly influences a person’s life. Consequently,
the algorithms are required to provide human-interpretable outputs. Otherwise, it would be illegal
to deploy them in the real world.

The ability of convolutional networks to construct highly abstract representations from lower-
level features like curves or color splashes has been vastly unexplored over the years, most of the
time leading to superficial comparisons with the human visual cortex. In the short term, this
may not sound like the issue, but eventually, the field of computer vision will need the tools that
provide a comprehensive interpretation of what happens inside the “black box”. Without the right
toolbox, researchers will always lack proper intuitions behind algorithms’ behavior. However, the
skeptics of complete understanding may argue that superficial explanations are more than enough
to use deep learning models in practice, the same way as linear approximations are sufficient to
control complex dynamic systems. It is not a goal of this thesis to provide a counterargument to

that logic. Instead, let the following question be raised:

Is not science all about a thorough understanding of the nature of things,

with deep intuitions supporting further progress in the field?

As with many debates, the answer awaits in a reasonable common ground that will make it
possible to proceed with future research. The pursuit of the answers has already begun with an
initiative called the Circuits project [11]. Researchers from the OpenAl Clarity team, together
with volunteers from all over the world, are scrutinizing the neurons of CNNs one by one, layer by
layer, identifying the ways they interact and influence one another. Their discoveries have already
expanded our understanding of CNNs and appear to be a move in the right direction finally.



2.2 Core Data Representation: Activation Tensor

Activation tensor is a core data representation that is extensively referenced across multiple sections
of this thesis. In its original form [49], it corresponds to the output of a single layer [ of a CNN.
To phrase it differently, it is the input tensor | € Rhoxwoxdo  transformed by a series of functions
f(-) that mapped it into the activation tensor H) € Rhv<wixdi of layer I. Each tensor belongs to
the space Rrv<wxdi (height x width x depth), where i € {0,1,2,...,1,..., L}. Index “0” corresponds

to the input layer, [ denotes an arbitrary layer, and L is the total number of layers in the model.

ury

—— Individual Neuron Individual Channel
kg
£ ke
}\
S
By
Feature Column Group of Neurons Layer

Figure 1: Activation tensor H"”) of layer I (large white cube) consists of the activations of individual
neurons (small white cubes). The figure contains five examples that represent different slicing
approaches. They were provided to give a complete view of the basic units of interpretability.
The red color in each example indicates the unit of interpretability that is the focus of the given
method. Adapted from [49].



To express it in mathematical notation:
_f“] — H(”, f . ]Rhuchuxdu s Ehgxw:xdtt (1}

The second part of the eq. (1) is the core of CNN computation: it is basically a mapping from one
tensor into another. Activation tensor contains a huge amount of information that, when viewed
from the appropriate perspective, provides insights into the inner representation of the CNN.

To experiment with the aforementioned perspective, an idea of activation tensor slicing has
been introduced [49]. More specifically, by extracting arbitrary substructures from the original
tensor (e.g. individual neuron, isolated channel, feature column, group of neurons), it is possible
to obtain distinct views on the underlying data representation. Every perspective sheds a different

light on the processes that occur during computation. Please refer to Figure 1 for further details.

2.3 Attribution

Figure 2: Sample input image with a corresponding heatmap explanation. Left: input image
(object of class “red fox"). Right: attribution map. The brighter the region, the higher its
influence on the classification result. Green and red areas denote positive (increase a probability

of “red fox" class) and negative (decrease a probability of “red fox” class) influence, respectively.



The following quote from [48] briefly (vet very precisely) describes the essence of attribution:

“Attribution studies what part of an [input] example is responsible for the network

activating [in/ a particular way.”

The current section serves as an overview of the existing interpretability approaches that focus on
the signal /relevance flowing through the model. The vast majority of attribution techniques yield
heatmaps (often referred to as saliency maps). Please refer to Figure 2 for a concrete example
of such. The goal of these maps is to visualize the influence of single spatial locations in the
activation tensor on the final classification score. The helper question to be answered here is as
follows: what would happen to the final classification score if a particular spatial location in the
activation tensor responded more/less to the input stimulus?

Kindersman et al. [29] separated explanation approaches (technically speaking, what they call
the explanation is called the atfribution in this thesis) into three distinct groups: functions, signal
approzimators, and signal decomposers. In this work, however, based on their views, the afore-
mentioned groups were simplified into three distinet types of explanations that should be easier to

comprehend: input-space, feature-space, and non-heatmap explanations.

2.3.1 Input-space Explanations

Input-space explanations analyze how moving along the given direction in the input space affects
the classification result. To phrase it differently, input-space explanations show (in the form of
a heatmap) how altering individual pixels (brightening/darkening/changing color) changes CNNs’
output. Such modifications are, in fact, movements in the input image space, as the input image
is essentially a 3D tensor. Modifying some of its values comes down to shifting the tensor slightly
towards a particular direction. The shift direction is not random (though it can be if that is what
is being studied). Instead, it is calculated using one of a plethora of available methods. The most

interesting ones were briefly summarized below.

2.3.1.1 Gradient Family

The first group of input-space explanations is the gradient family. These techniques use a gradient
of the output (usually the output neuron associated with the highest predicted class) w.r.t. the
input image pixels as the core source of the attribution information. The very first approach of
this kind, based on a pure gradient, was initially called a saliency map [17, 57]. It illustrates how
directly altering input image pixels would affect CNN’s predictions. The idea of saliency maps is



elegant and quite powerful, yet in practice, it often struggles with a large amount of noise present
in the resulting explanations.

To mitigate the above problem, SmoothGrad (SG) [58] and VarGrad (VG) [1] methods
were proposed. Both SG and VG strongly reduce the noise in the output by computing the
saliency map for the given input multiple times and then averaging them (SG) or finding their
variance (VG) to obtain a single, smoothened explanation. However, the input is not the same in
all iterations—each image has the noise sampled from a normal distribution added to the original
pixels. SG and VG work very well in practice and can be combined with other gradient-based
methods to significantly improve their quality.

Shrikumar et al. [55] were the first ones to propose an idea called gradient ® input—an
extension of the pure gradient explanation that is essentially the element-wise product of the
input image with the computed gradients. The goal of this technique is to reduce visual diffusion
and increase the overall sharpness of the saliency maps.

Many researchers believe that the idea of averaging gradients is very powerful. While some
methods are based on injecting the noise into the input (as the aforementioned SmoothGrad and
VarGrad approaches), other ones alter the exposure of the original tensor from extremely low
(completely black input), up to its original, neutral value. Each time the exposure is varied, the
gradient of the output w.r.t. the input is computed. Next, all of the obtained saliency maps are
averaged to yield the final heatmap. Such a technique is called Integrated Gradients (IG) [60].

2.3.1.2 Input Perturbations

Contrary to the gradient family, input perturbations treat the algorithm as a black box system—
the only systematically altered factor is the input image itself, nothing else. Each time a change is
introduced to the original pixel values, the algorithm’s output is recorded to detect any deviations
from the baseline. A result of a perturbation method is the mask highlighting the regions that,
when covered, yield differences in the prediction. Two perturbation techniques that are most often

used are:
e Occluding parts of the image with solid color patches [68].
e Distorting original intensities by introducing strong noise and/or blurring the image [19, 20].

An interesting insight has been provided in [19]—the authors showed that by reformulating the
standard perturbation objective it is possible to identify channels in the intermediate layer of

a CNN that are salient for the classification of a given image.



2.3.1.3 Relevance Propagation

As defined in the original work on the topic [6], relevance is a pixel-wise contribution to the
prediction. By introducing a common mathematical notation, Ancona et al. [3] showed that Layer-
wise Relevance Propagation (LRP) [6], together with the € propagation rule—a method
called e-LRP—is equivalent to the gradient ® input, provided that the gradient update rule at
each computational node is modified (see [3] for details). The relevance is distributed across
the entire network: from the output neuron that activated the most, up to the input itself using
a backpropagation variant. In [40], the e-LRP was extended into the deep Taylor decomposition
approach that decomposes neuron’s activation into contributions from its inputs by using a first-
order Taylor expansion around zy, an arbitrarily chosen root point. Yet another technique called

PatternAttribution [29] solves the problem of choosing xy by directly learning it from the data.

2.3.2 Feature-space Explanations

Feature-space explanations, contrary to the input-space ones, do not explicitly show the attribution
of individual pixels. Instead, they find more abstract entities—mneurons—that activate significantly
(either supporting or inhibiting a given class). Neurons' activations are projected back onto the
input image space (pixels) to highlight the salient regions that influence the classification score
the most. A good example of a feature-space attribution technique can be seen in Figure 2, where
the features (neurons activations) from one of the hidden layers of the CNN were overlaid with
the input image to indicate the regions supporting (green) or inhibiting (red) the red for class. In

this subsection, several most important feature-space explanations were briefly summarized.

2.3.2.1 Deconvolutional Network

Deconvolutional network (Deconvnet) [68] maps chosen neuron’s activation “[...] back to the
input pixel space, showing what input pattern originally caused a given activation in the feature
maps” [68]. The aforementioned mapping is exactly the reason why Deconvnet should be seen as
a feature-space explanation: it is a projection of a feature map into the input-space, not the tensor

from the input-space itself. The procedure to obtain the explanation map is the following:
1. Feed the input image to a CNN to obtain the activation tensor at the chosen layer.

2. Keep only the activations of a single feature map (channel), zeroing out all the other channels

of the selected layer’s activation tensor.

10
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Figure 3: Comparison of the original backpropagation rule with the ones of two feature-space
explanations: Deconvnet [68] and guided backpropagation [59]. a) Illustration of the process of
zeroing out all but one channel from a feature map and using it for the reconstruction. b) Various

backpropagation rules. ¢) Backpropagation rules from b) formalized. Figure retrieved from [59].

3. Invert (approximately) the computational graph from the layer of interest back to the input
image to get an input reconstruction, this time a “compressed” one (because of keeping only

the channel of interest in the target layer).

In Figure 3 one can observe the differences between the standard backpropagation rule and the
ones of Deconvnet and guided backpropagation (described in the next subsection). Even though
these may appear to vary subtly, the explanations they produce can be very different visually and
change the explanation from “non-comprehensible” to “interpretable”.

2.3.2.2 Guided Backpropagation

Guided backpropagation [59] builds on the idea of Deconvnet [68] by slightly modifying its back-
ward pass: it extends it by adding additional guidance signal that unifies the standard backprop-
agation (all the locations that had negative gradient value in the backpropagation pass are set to
zero) and Deconvnet-style backpropagation (all the locations that had a negative unit response in

the forward pass are set to zero). Refer to Figure 3 for further details and a numerical example.
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2.3.2.3 PatternNet

PatternNet [29] is the equivalent of the gradient computation, yet “during the backward pass
the weights of the network are replaced by the informative directions” [29]. These “informative
directions” can be obtained by estimating the signal component of the data (overall, data is
assumed to contain two components: signal and distractor; the signal is the only component that
is correlated with the label). To obtain the final attribution map, the estimated signal is projected
back onto the input space—pixels.

2.3.2.4 Class Activation Mapping

Class Activation Mapping (CAM) is an entire family of approaches that vary slightly from one
another by merging the original CAM idea [69] with the methods like SmoothGrad [58] or guided
backpropagation [59]. This family of techniques was designed specifically for CNNs and, contrary
to Deconvnet and puided backpropagation, is class-discriminative, being able to highlight the
regions that contribute the most to the specific class (either arbitrary or the one with the highest
predicted value). The following quote from [69] provides an intuition on what CAM is:

“The class activation map is simply a weighted linear sum of the presence of these
[convolutional filters’ activations/ [...] at different spatial locations. By simply upsam-
pling the class activation map to the size of the input image, we can identify the image

regions most relevant to the particular category.”

Grad-CAM [54] generalizes original CAM, enabling the application of this method for a wider
set of CNNs (not only fully-convolutional ones) without the need to alter the model architecture.
It achieves this by finding a new way to combine feature maps from convolutional filters using
the gradient signal. Grad-CAM++ [13] extends the idea of Grad-CAM, focusing on improving
the results in scenarios with multiple object instances or poor object localization. To mitigate
these issues, the authors introduced a pixel-wise weighting of the gradients from the output w.r.t.
the concrete spatial position in the final convolutional layer. Smooth Grad-CAM++ [50] adds
SmoothGrad [58] to the original Grad-CAM++, further improving the obtained results.

2.3.2.5 Interpretable Basis Decomposition

Another way to think about the attribution is not only to use a CAM-like approach but also to
try to understand the underlying “subparts” that contribute to the prediction of a specific class.

In [70], authors designed a custom matrix decomposition called Interpretable Basis Decomposition
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(IBD)—a hybrid of Non-negative Matrix Factorization (NMF) [34] with positive latent spatial
factors and Principal Component Analysis (PCA) [52] with gradual creation of the decomposition
basis. The downside of IBD is that the introduced decomposition is tightly bound with the
Grad-CAM heatmap computation—it was designed to decompose the activation tensor of the
final convolutional layer of the architecture of interest. Hundreds of separate logistic regression
classifiers were trained, each to detect a specific concept feature column. The term concept is
defined here as a learned combination of channels in a single feature column. The aforementioned
custom decomposition approach does not perform arbitrary factorization. Instead, it tries to match
new feature columns to the concepts learned by the aforementioned linear classifiers and assign the
weights to each of them, while minimizing the residual concept (the amount of activation tensor
that is not covered by any known concepts). The contribution of each concept is the attribution
of the concept to the final classification result.

2.3.3 Non-heatmap Explanations

When making an overview of the attribution techniques, one should not forget about these that do
not yield visual results that could be displayed as a heatmap. Instead, they may provide numerical
measures to quantify the importance of some predefined abstractions in the classification task.

Below, the most interesting method has been presented because of its uniqueness in the field.

2.3.3.1 Conceptual Sensitivity

Testing with Concept Activation Vectors (TCAV) [28] was proposed to quantify the concept’s
importance for a chosen class in each layer of a CNN. Concept activation vector (CAV) is defined
as the vector normal to the decision boundary separating target activation tensors (concepts)
from the “rest” (all computation takes place in the space of the activation tensors). In [28], the
term concept means “the entire activation tensor”, contrary to the definition from [19], where it
denotes “a single feature column” (class-specific combination of channels). In the activation tensor
space, CAV points towards a cluster of similar abstractions—either it being “striped”, “dotted”
or “zigzagged”!. Learning a set of CAVs allows the later assessment of conceptual sensitivity for
the unseen activation tensors: a directional derivative in the direction of every known CAV is

computed to quantify the influence of learned concepts on the classification output.

Tt is not straightforward to decide on what should be called a concept. While it is relatively easy to agree that
textures/colors are good candidates for such, it is not that clear for more abstract terms like the entire objects.
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2.3.4 Are Heatmaps Reliable?

Since 2009 [17], the field of interpretability has seen a significant increase in the number of attribu-
tion methods available. As these explanations began to be more widespread in real-world settings
(e.g. for the interpretation of the lung cancer detection system [4]), they need to be trustworthy.
But are saliency maps reliable? This exact question has been asked and preliminarily answered
by Adebayo et al. in [2]. Some of their results can be observed in Figure 2 of [2]. The conclusions
are somewhat appalling—multiple widespread techniques (especially guided backpropagation and
guided GradCAM) cannot be trusted as they are agnostic to weights and labels randomization?.
It indicates that such explanations should be used with caution. At the very least, new attribu-
tion methods should be rigorously tested using weights randomization to ensure sensitivity to the

changes in weights. Such heatmaps could be seen as trustworthy and safe to use.

2.4 Feature Visualization

The following quote from [48] briefly (vet accurately) describes the topic of this section:

“Feature Visualization answers questions about what a network—or parts of the network—

are looking for by generating examples.”

Figure 4: Examples of feature visualization.

Over the years, a branch of the interpretability research that focuses on trying to understand
what selected parts of a CNN learn to recognize put a lot of effort into exploring the approach
called activation mazimization, originally introduced by Erhan et al. in [17]. The idea is, using

gradient ascent, to optimize for the input pattern that activates the chosen unit of interpretability

*Heatmaps are very similar even if the model’s weights are randomized or the training is conducted using random
labels. The expected behavior is that the more the weights are randomized, the less meaningful the heatmap is.

14



the most (from individual neurons, through single channels, up to the feature columns and the
entire groups of neurons). Feature visualization can complement other techniques like investigating
dataset examples to understand a given unit of interpretability. A good example was presented
in [31], where the activation maximization was used to generate synthetic stimuli and ensure a
neuron suspected to detect human faces indeed responded to such concept the most.

Major attention in the field has been put into maximizing the activation of neurons from the
final layer of a CNN, corresponding directly to the classes the network learns to classify (see [72]
for simple examples). The reason for this particular interest is that by maximizing the activation
of a class-specific neuron, the generated image depicts the ideal® input that the algorithm would
assign to a given category. Generally, this is seen as helpful—researchers often desire to understand
what it means for the image to be a “healthy tissue” or a *nodule” from the CNN’s perspective,
to give an example from a medical domain.

Feature visualization by optimization enables powerful and in-depth exploration of CNNs.
However, several aspects need to be taken care of to make it work properly. Some may wonder
why to put the effort to search for synthetic stimuli when dataset examples are at hand—they
could be searched over to find images or image patches that highly activate a given neuron, thus

providing a sufficient explanation. There are two strong arguments for feature visualization:

1. Flexibility: with activation maximization, even though it makes the problem much more
complex, it is possible to carry out the analyses that would not be possible with just the
images from the training data. For instance, experimenting with the interactions between
neurons (optimizing jointly for multiple units at the same time) or performing diversity study
(random starts or slightly varying image priors lead to uncovering multiple facets of a single
neuron) shines entirely new light on what the CNN may have learned to detect [46, 48)].

2. Clarity: when studying dataset examples that strongly stimulate a given unit of inter-
pretability, it is often challenging to come down to a single explanation for all the images
supporting the underlying abstraction. By leveraging the potential of feature visualization,
one can look at the problem from additional perspectives. The idea is not necessarily to
replace dataset examples but rather augment the available interpretability toolkit. By doing

s0, one can formulate the explanations that are not only coherent but also reliable.

*From a subjective point of view of a CNN.

15



2.4.1 Regularization

Regularization is an inherent element of every activation maximization task. A wide variety of
techniques that guide the optimization towards desired manifold regions? have been explored in the
past, gradually producing results of higher and higher quality. Feature visualization evolved from
the unregularized optimization [17] to the work of Nguyen et al. [43] based on generative models
priors that yield visually compelling outputs. However, one needs to be aware of the trade-off
between the strength of the regularization and the reliability of the synthesized image— strong
priors help penerate sublime visualizations almost by default, vet may distort the real nature
of the latent representations of a CNN and not reflect what the model truly responds to. On
one extreme, if no regularization is applied, visualizations (in some sense “pure”) often resolve
to adversarial examples [62]. On the other end, inducing strong prior by searching over patches
extracted from the dataset examples [59, 68] produces photorealistic results, but is only a very
rough approximation of the underlying representation that responds to a given stimulus.

A comprehensive review of the core concepts of regularizing feature visualization—frequency
penalization, transformation robustness, and learned prior—has been presented in [48] and was

briefly summarized in the following subsections.

2.4.1.1 Frequency Penalization

Figure 5: Regularization by frequency penalization using total variance technique. Left: unrep-
ularized feature visualization of a single neuron. Middle: moderate total variance regularization
(visible decrease in the high-frequency noise). Right: strong total variance regularization (high-
frequency noise almost removed from the visualization result).

{Regularization not only guides but also restricts the optimizer from entering certain areas of the space.

16



Unregularized optimization suffers from prominent high-frequency noise. A corner case of such
patterns is very similar to the idea of adversarial examples [62]—the optimization reaches an
easy, completely unintuitive solution that highly activates a given unit of interpretability (e.g. an
individual neuron). To mitigate this issue, multiple frequency penalization methods have been
proposed. Omne of them, called total variance [37], directly penalizes the variance between the
pixels that are close to one another. Figure 5 contains an example of how such noise can be reduced
using the total variance technique. As can be seen in the Figure, the stronger the regularization,
the smoother the resulting visnalization. It is also possible to regularize high-frequency noise by
blurring the image at each optimization step with a Gaussian kernel [45] or a bilateral filter [64].

The aforementioned methods address high-frequency patterns directly in the generated feature
visualization. It is, however, possible to mitigate the problem by regularizing the gradients flowing
through the model instead. The idea to transform the gradient is called preconditioning in the
field of optimization and has been deeply explored in several studies [41, 72]. Olah et al. [48]
introduced a regularization technique that operates in decorrelated color space by performing
gradient ascent in a Fourier basis, removing the majority of high-frequency patterns. Performing
the activation maximization task in such a basis does not change the local minima. Instead, it
alters the steepest directions and reshapes basins of attractions, thus helping the optimization

procedure converge more quickly.

2.4.1.2 Transformation Robustness

Figure 6: Regularization using transformation robustness technique. Left: no regularization.

Middle: moderate transformation robustness. Right: strong transformation robustness.
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The idea of transformation robustness is that before every step of the optimization, the current
state of the visualization is randomly scaled, rotated, or cropped. This is supposed to help find
the input patterns that not only strongly activate the chosen unit of interpretahbility but also do
so even after applying small geometrical transformations on them—hence the use of the term
transformation robustness. Figure 6 illustrates the desired effect the transformation robustness
has on the quality of the resulting visualization—the stronger the regularization, the higher the
quality. On a side note, the transformation robustness was first introduced in the DeepDream
project [41], where it helped to generate abstract, high-quality patterns that were not observed
in the feature visualization subfield before. Without transformation robustness, it would not be

possible to obtain such crisp visualizations.

2.4.1.3 Learned Prior

The natural extension of the aforementioned regularization techniques is to learn the model that
captures the real data distribution and enforce it in the feature visualization procedure. It is tempt-
ing to assume that the more precisely that model reflects the training data, the better. However,
this is not necessarily the case—well-fitted model often produces more realistic visualizations, yet
it is mo longer clear what part of the result is the true response to the stimuli and what part comes
from the learned prior itself. It is important to remember that there exists a trade-off between the
reliability of the results and the strength of the prior.

Wei et al. [65] introduced a way to regularize the color distribution of the visualization by
building the database of patches from training images and minimizing the distance between the
patches of the optimization output and those in the database. This can be seen as an approximation
of the natural image prior that is often captured by generative models.

Nguyen et al. [44] took a different approach and produced realistic visualizations by performing
gradient ascent in the latent space of a generator network to produce patterns maximizing the
activations of selected neurons of a separate classifier. The extension of their work [43] used

additional latent code prior, achieving state-of-the-art both in single sample quality and diversity.
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2.4.2 Diversity Study

Figure 7: Example of a diversity study. The unit of interpretability under investigation: Incep-
tionV1 model, the output of the mixed4a module, channel 97.

When considering the process of generating input patterns that highly activate a given unit of

interpretability, the following question often arises:

Is the resulting image a full picture of what has been learned by an indi-

vidual unit or is it only part of a bigger picture?

The answer is that a standard feature visualization approach reveals only a single facet of the
latent representation. The most straightforward way to mitigate this problem would be to use
dataset examples instead of feature visualization. However, as mentioned before, patches from the
training data are hard to comprehend when trying to extract common characteristics from, leaving
the researcher with a significant grain of uncertainty. Ideally, the feature visualization technique
would be used but in a way that would return multiple facets, not just a single one.

Early work by Wei et al. [65] explored intra-class variation inside a CNN by 1) noticing that the
network can capture two kinds of variations—location and content—and 2) leveraging this insight
to alter the optimization process and thus extract multiple facets of the visualized unit.

Nguyen et al. [46] approached the problem from a different angle and analyzed how to use
dataset examples directly as the optimization priors (concrete image serves as the initialization for
the entire procedure) and, as a result, achieve multifaceted feature visualization. Their contribu-
tions uncovered various patterns that are used by CNNs to represent classes of interest. Further
research [43] explored how class visualization can be used with generative models to yield visually
compelling, yet potentially misleading results (see section 2.4.1.3 for details).

Olah et al. [48] introduced a much simpler way of revealing multiple facets of a given unit of

interpretability: the “diversity term” was to the optimization objective to make the generated
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input patterns as diverse as possible. Their idea is very similar to the style transfer [23] and is
based on penalizing the cosine similarity between correlation matrices of the activations at a given
layer across all the images in a batch. And example of feature visualization with the “diversity

term” can be seen in Figure 7.

2.4.3 How to Generate Compelling Visualizations?

If one’s interest is to generate high-quality visualizations, it is vital to implement a very concrete
toolkit to achieve that goal. This section aims to provide more details on the set of techniques
that were used to generate all the feature visualizations in core parts of this thesis—chapter 3
and chapter 4. Table 1 contains a summary of the parameters that are considered essential to
reproduce the results presented in this work. The following sections provide further descriptions

of some of them.

Table 1: Essential feature visualization parameters used in this work.

Model InceptionV1 pre-trained on ImageNet
Input value range [-117.0, 138.0]

Dying ReLU prevention | Pre-ReLU tensors

Transparency Yes

Optimization steps 3000

Optimizer Adam with 0.01 learning rate
Parametrization Fourier basis, 128 x 128 x 4 tensor

Transform robustness Yes (details in the text)

Objective Neuron direction with transparency

2.4.3.1 Pre-RelLLU Tensors

When optimizing for a given unit of interpretability, one needs to provide the tensor that will be
used by the framework (e.g. TensorFlow) in the activation maximization procedure. If that tensor
is directly an output of a ReLU activation function, there is a risk that the preceding operation
(ReLU) will “die”"—mo matter the input values, it will always output 0.

The de facto approach to mitigate this problem (if there is no option to change the layer to
leaky ReLU [35] or ELU [15]) is to override the gradient computation of the ReLU operation so

that it does not get stuck. However, it was not possible to do that in TensorFlow 2.2° at the

3The framework used to implement the experiments in the thesis.
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time of preparing this thesis. Instead, the idea from lucid® library to use pre-ReLU tensors in the
optimization was followed. Pre-ReLU tensor is the tensor that is the input to the ReLU tensor.
Using it for the activation maximization not only prevents the generated image from converging to
an all-zero matrix but also [subjectively] improves the quality of the resulting input pattern when

compared to the standard feature visualization.

2.4.3.2 Objective

The objective used for feature visualization is a modified variant of the one from [42] that encour-
ages the content to centralize in the middle of the generated image. Let h denote vector of shape
(1, 1, channels) that is a slice of the activation tensor Hyggne 2 widin/2,.- Let f denote a vector of the
same shape that represents a target linear combination of channels to compare the h with. It is
possible to define the so-called neuron direction objective (neuron because the h and f vectors are

compared only at a single spatial location, central by default) as follows:
obj(h, f) = h-f max(0.1 £} (2)
’ bl

In this case, a dot product h-f yields a scalar value. Note that to avoid optimizing for the negative
direction (both dot product and cosine similarity would be negative in this case) and to prevent
the process from getting stuck if vectors h and/or f were zero, a maximum of 0.1 and a cosine

similarity is taken.

2.4.3.3 Transparency

Figure & Influence of the transparency factors on the optimization objective. Left: standard

objective. Middle: simple transparency. Right: transparency with the “concentrated content”.

Shttps:/ /github.com/tensorflow /lucid
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This section describes how the transparency with the “concentrated content” assumption was
realized. Let I denote the current state of the image that is being optimized in the feature
visualization procedure. Its alpha channel can be expressed as I,. In order to encourage some

transparency, one can modify the objective from eq. (2) as follows [42]:
0bj, o = 0bj - (1 —mean(l,)). (3)

This would help the transparency develop properly, yet does not encourage the content to be
concentrated (middle visualization in Figure 8). For this, an objective should be further extended:

0bjgg = 0bj-[0.5- (1 —mean(I,)) + (1 - mean(I,))], (4)

where I, denotes an alpha channel of a randomly cropped image I. The objective from eq. (4) lets
the transparency have higher values around the cropped area (the 0.5 factor before it makes these
values influence the objective value to a lesser extent than the ones in the cropped regions). The

sample result can be seen in the image on the right-hand side of Figure 8.

2.4.3.4 Transtformation Robustness

There was a set of strong transformation robustness functions applied so that the resulting visu-
alizations are free of noise and higher quality. The following operations were applied in sequence:
padding with 16 pixels from each side; random scale from a range [0.96, 1.05]; random rotation
from range [-5, 5] degrees; random crop so that each dimension is 90% of its original value (0.9-128);
alpha blending with the noise standard deviation equal to 0.2.

2.5 Units of Interpretability

As mentioned in section 2.2, activation tensor can be sliced in many different ways, providing
multiple views on the underlying abstractions represented by CNNs. The problem with raw ac-
tivations, though, is that they are neither intuitive nor particularly interpretable—their analyses
commonly revolve around quantitative observations like: “n units fired at this spatial location”
or “top n units’ indices are...”. It would be helpful if one could describe the model’s behavior in
terms more abstract than just bare numbers.

Olah et al. [49] introduced the idea of semantic dictionaries to specifically address this problem
(refer to Figure 9 for an example). Semantic dictionaries leverage feature visualization to represent

each channel not as the index in the activation tensor but rather as a synthetic image that depicts
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a pattern that stimulates this particular channel the most. Moreover, the qualitative informa-
tion (visualization) is presented together with the quantitative one (response strength), providing
a hybrid interface that sheds new light on CNNs’ computation.

Naturally, semantic dictionaries are not only applicable to individual channels but can also
be successfully used to scrutinize more complex units of interpretability like feature columns or
groups of neurons. In the following sections, one can read about and compare the insights that
each of these methods provides. To a greater or lesser extent, feature visualization is presented
jointly with attribution in the form of informative interfaces that help develop deeper intuitions
about the studied algorithms. Such interfaces scale down the analyses and make them feasible to

be conducted by a single human researcher.

Figure 9: Sample semantic dictionary (model: InceptionV1, layer: mixed4d). Overlaid on the
input image one can see a small red square that indicates the current feature column that is
analyzed. At this particular location (layer mixed4d has a feature map of shape (14, 14, 528) so a
single feature column is of shape (1, 1, 528)), four channels that activated the most are presented
on the right-hand side of the figure. The higher the gray vertical bar, the stronger the response to
the stimulus. Code used to generate the figure adapted from Colab notebook published in [49].

2.5.1 Individual Pixels

The most basic method of studying attribution is to quantify the influence of individual pixels on
the classification result (see Figure 10 for details). This fundamental idea—called saliency map—
was first introduced by Simonyan et al. in 2013 [57] and has seen a dramatic improvement since
then. The multitude of available techniques has been described in section 2.3.

The major disadvantage of treating individual pixels as a unit of interpretability is that it
is not a suitable level of abstraction for computer vision analyses. To comprehend the scene,
systems need to be able to process more subtle concepts like textures, shapes of specific objects,
and complex high-level features like complete entities. Even though not being particularly useful,

per-pixel analysis is a very important introduction to the study of the units of interpretability.

23



Figure 10: Unit of interpretability: individual pixels. Left: schematic representation of what is be-
ing analyzed in this scenario (marked with red color—pixels of the input image). Middle: sample
input image of a red fox class. Right: saliency map representing the influence of individual pixels
on the classification result (white denotes high influence, gray indicates neutral—zero—importance,

and black represents a negative (decreasing the probability of a “red fox” class) attribution).

2.5.2 Individual Neurons

The first step to go one level of abstraction deeper than mere pixels is to pick an arbitrary neuron
of any channel (in any layer of a CNN) and use it as the optimization objective. As a result, the
input pattern that causes that particular unit to fire strongly is generated (refer to Figure 11 for
an example). That is exactly what has been mentioned before when introducing the idea of the
semantic dictionary—at this point, it is possible to characterize part of a CNN not only by a bare
number (activation value) but also by a “visual identifier” that makes it easier to conceptualize
what a specific unit responds to.

Another useful aspect of treating neurons as the units of interpretability is that, intuitively,
they tend to have more sense than naive pixels—if a neuron can represent a complex concept like
the “fox’s smout”, then maybe it could be seen as a building block of the interpretability toolkit
to study CNNs? Unfortunately, the truth appears to be much more compound. An attempt
to unravel some of its pieces was made in chapter 3, in the argument on the distributed coding
scheme, without rendering a definite answer, though. Nonetheless, the analyses of individual
neurons provide new insights on the representational capacity of the CNNs and are surely a step

in a plausible research direction, if properly extended.



Figure 11: Unit of interpretability: individual neurons. Left: schematic representation of what is
being analyzed in this scenario (marked with red color—single neuron in a given layer). Right:
5 different neurons from the same channel, yet with differing spatial locations (model: InceptionV1,
layer: mixed4d, channel: 493). Note the varying location of the core input pattern (fox's snout-like)

depends on the neuron that was chosen as the objective for the activation maximization.

2.5.3 Individual Channels

Maximizing the activation of the entire channel often leads to a better understanding of a specific
convolutional filter than when looking only at a single neuron—the resulting image contains more
potentially useful information (refer to Figure 12 for a concrete example). The undesirable side
effect, though, is that visualizing the entire channel can yield the same pattern being scattered
across multiple locations of the synthesized input, which can be very misleading. When the
objective includes the transparency term, however, the repetitive nature of the output is rarely
the case, making the channel a go-to objective over mere neuron.

Even though the majority of the research done in the fields of feature visualization and at-
tribution focuses mostly on the class-level optimization (finding image that would activate given
class the most), more fine-grained analysis of individual channels provides deep insights into the
latent representation of the data. Major contributions come from [48, 49|, yet the idea was also
used in [19] to reveal salient, class-specific channels and analyze their attribution to the output.

There is a significant negative aspect of the analysis of CNN's channels that makes it practically
unfeasible to accomplish: there are too many convolutional filters to study and visualizing all of
them is not suitable for efficient and effective human analysis. Hence the need to automate the

process of extracting the important substructures from the activation tensor as much as possible.
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Figure 12: Unit of interpretability: individual channels. Left: schematic representation of what is

being analyzed in this scenario (marked with red color—single channel of a given layer). Right:
top 3 channels that activated the most (when applying reduce mean operation on each channel
separately) for the red fox image. The top row contains feature visualizations of the channels. The
bottom row represents the attribution of the corresponding channel at a particular spatial location
of the image. The resolution of the heatmap is not equal to the resolution of the input image—it
is equivalent to the spatial dimension of the feature map of the layer of interest (mixed4d layer of
the InceptionV1 model) and in this example amounts to (14, 14). Colors do not have a particular

meaning here: the brighter the heatmap, the stronger the influence on the final classification result.

2.5.4 Feature Columns

Channels can be combined in multiple different ways: randomly, manually (e.g. by specifying
a set of neighboring ones), or automatically by leveraging techniques like matrix decomposition
to identify representative combinations that can be used for further analyses of the CNNs. While
the first two options do not differ significantly from previously described units of interpretability,
the use of automatic methods to extract meaningful linear combinations of filters is a far more
nuanced and complex topic.

In this work, the term concept is used to denote an individual, representative feature column,
understood as a linear combination of channels at a single spatial location of the activation tensor.
This definition is contradictory to the one presented by Kim et al. in [28]—in their work what they
call the “concept” is the entire activation tensor in this thesis’ nomenclature.

Linear combinations of channels can theoretically represent highly abstract objects like, to

provide a concrete example, something resembling a red fox snout (channels that seem to respond to
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Figure 13: Unit of interpretability: feature columns. Left: schematic representation of what is be-
ing analyzed in this scenario (marked with red color—single feature column extracted from a given
layer). Right: 3 examples of feature columns antomatically identified using matrix decomposition.
The top row contains their feature visualizations, while the bottom row depicts the attribution to
the classification result a specific feature column has at a given spatial location. At first glance,
the abstractions represented by feature columns do not appear to be more interesting or complex
than the ones of individual channels, yet more advanced studies reveal the differences between the
two approaches. Feature column is a generalization of the objective of the individual channel—it

can reduce itself into a single channel if beneficial for the optimization.

input patterns similar to red fur, ears, and snout are merged together to represent the concept that
is astonishingly alike a red fox snout). It has to be highlighted that every time a specific concept
is given a name, it is solely the author’s subjective interpretation of the generated visualization.
Please refer to Figure 13 for an example of feature columns’ visualization.

A key example of what insights and intuitions can be gained when conducting the analysis
on the feature column level was presented in [19]. Fong et al. maximized the dot-product of the
channel attribution vector and the activation tensor to unravel a subset of channels that is most
meaningful to the class of interest. They managed to automatically identify core concepts for a set
of classes and conduct compelling, previously unseen analyses.

Studying feature columns is one of the most underexplored branches of the interpretability
discipline (when it comes to feature visualization and attribution methods). Even though learned
combinations of channels were explored in some research in the past (“per-instance channel at-
tribution” and “class-specific channels” in [19], a building block of “neuron groups” in [49] and

“attribution graphs” in [25]), it is still a new term in the field and needs further contributions.

27



Figure 14: Unit of interpretability: nmeuron groups. Left: schematic representation of what is

being analyzed in this scenario (marked with red color—a group of neurons identified by the
matrix decomposition technique). Middle: 5 distinet groups of neurons from a red fox image
(visible in the back of the schematic on the left). Each color denotes a different group and matches
the labels of the feature visualizations on the right-hand side of the fizure. The intensity of a given
spatial location tells how much “present” the feature column associated with the concrete group
is in this area of the image. Right: all of the neuron groups that were identified in the activation
tensor by the matrix decompaosition. For each group, a color label, feature visualization, and the
mean attribution value were provided. Please note that the groups’ attribution has been scaled so
that the values range from —1 to 1. The normalization is not essential but it helps to compare the

impact of each group. Code used to generate the figure adapted from a Colab notebook from [49].

2.5.5 Groups of Neurons

An idea to optimize the activation of the entire group of neurons is unique to the work of Olah
et al. [49]. Their motivation was to design an interpretability interface that would be human-
scale, contrary to the overwhelming amounts of neurons, channels, or manually-identified feature
columns, all coming in the numbers of hundreds or thousands. What is more, neuron groups
try to follow the intuition that it should be possible to decompose the activation tensor into
multiple meaningful clusters that would be easily comprehensible and that would focus only on
the important concepts in the image, disregarding the distracting part of the available information.

Neuron group is an abstraction that integrates the “what” and “where” information. Matrix
decomposition is used to find feature columns” that represent the most frequent concepts in the

activation tensor. For each column, another piece of information—the “where” aspect—is provided

"Number of groups to decompose the activation tensor into can be determined either manually or automatically,
depending on the technique of choice.
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to illustrate how much of a given abstraction is present at a single spatial location of the activation
tensor. Coupling feature columns with spatial locations in such a way vields the results that are
often much easier to interpret than the visualizations obtained using other techniques. Please
refer to Figure 14 for an example). The original approach [49] leverages the NMF decomposition
technique to reduce an overwhelming number of neurons into a comprehensible set of groups.
Optimal parameters and the obtained visualizations are image-specific, though. It means that
matrix decomposition needs to be performed for each input separately, which can be perceived
as a major downside of the described method. Nonetheless, the influential explanations that it
enables are outstanding, clearly justifying its computational complexity.

Even though it might resemble the aforementioned saliency maps, the information on where and
how strongly the concept activates in the image does not represent the attribution. Preliminary
research on the neuron groups’ influence on the classification result was conducted by Olah et
al. [49]. Their results, however, were not presented as the attribution maps. Instead, they were
published as a single scalar value associated with each group separately, representing its influence
on the classification result (negative values denoting a decrease in target class’s probability, and

positive values denoting an increase in the target class’s probability).

2.6 Interpretability Interfaces

Even though feature visualization and attribution are usually studied in isolation, the research
that involved treating them as hybrid interfaces yielded both intriguing and compelling results
[12, 48, 49]. Thanks to such novel studies the researchers could develop deeper intuitions about
models’ behavior. It is truly encouraging to observe and makes one rethink the way the field of
interpretability has been using what is already available. It also paves new, exciting ways for

further exploration.

2.6.1 Network Dissection

One of the first interfaces that combined the “what” and “where” information is called Network
Dissection [8]. It is an alternative approach to feature visualization and attribution that revealed
the existence of neurons that respond to high-level abstractions like houses, airplanes, staircases,
or human heads (and many more), even though these concepts were not present as separate classes
in the training data. These neurons (or rather: channels of the convolutional layers) alone con-
tributed from 37% to 71% of the interpretable abstractions in the final conv5 layer of the AlexNet



architecture [8]. The remaining units did not appear to be comprehensible by human evaluators
without any doubts or inconsistencies, suggesting that the subjective impressions’ influence was

too strong to make reliable claims.

2.6.2 CNN Codes

Andrej Karpathy is one of the most recognizable fiures in the research on CNNs. In the CNN
Codes experiment, he “took 50,000 ILSVRC 2012 validation images, extracted the 4096-dimensional
fe7 CNN [...] features using Caffe and then used Barnes-Hut t-SNE to compute a 2-dimensional
embedding that respects the high-dimensional (L2) distances. In other words, t-SNE arranges im-
ages that have a similar CNN (fe7) code nearby in the embedding” [27]. To paraphrase his quote,
the goal was to cluster high-dimensional vectors and project them down onto the 2D space so that
they can be easily visualized. An interesting side effect of the t-SNE manifold projection technique
is that the vectors that are to some extent similar end up being close to one another in the 2D
space as well. By inspecting the projections, it is possible to visually capture the relations between
representations that a CNN builds for individual images and to evaluate whether the images that

contain similar concepts are close to one another according to the CNN Codes’ metric.

2.6.3 Activation Atlas

Carter et al. built on top of the ideas of clustering activation tensors and projecting them onto the
2D space [27, 46]. They went one step further and designed the highly interactive and informative
interface called the Activation Atlas [12]. Activation Atlas unifies the previous work done by
Karpathy and Nguyen ef al. in a very elegant way—the core rule is the same as in CNN codes
(clustering + projection), yet instead of using samples from the training data to attach visual
identifiers to the 2D projections, Carter et al. leveraged the potential of feature visualization (see
Figure 15 for an example). Additionally, they have identified the UMAP mapping technique [38]

to yield more plausible atlases than the ones generated using t-SNE.
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Figure 15: Sample activation atlas of the InceptionV1 model, trained on the ImageNet dataset.
Image retrieved from [12], licensed under CC BY 4.0.

31


https://creativecommons.org/licenses/by/4.0/

Chapter 3

Latent Factor Attribution

Finding an equilibrium between low-level (e.g. gradient [57]) and high-level (e.g. TCAV [28])
attribution techniques served as the core motivation for the research presented in this chapter.
There is a lot of space for new contributions in the domain of concepts’ attribution—according to
the author’s best knowledge, there are only two significant pieces of work on this topic [49, 70].
To fill the niche and, effectively, expand the space of mid-level interpretahbility interfaces, a novel
Latent Factor Attribution technique is proposed in this thesis.

LFA extends the holistic view on the attribution maps by enabling the collective perspective
on the entire groups of neurons’ influence on the score assigned to each class. What makes it
possible is the fact that, when using LFA, the classification output directly depends on the infor-
mation on “where” a given concept is present in the activation tensor and “how much” of it is
there. The strongest asset of the proposed method is that it enables backpropagation through the
computational graph—it is feasible to calculate the gradient of the classification score w.r.t. the
concepts identified using matrix decomposition, thus obtaining the attribution of concepts at each
spatial location of the generated heatmap. This is not the case for the existing techniques that
“disconnect” the computational graph—their attribution estimates are separate from the rest of
the calculations and serve as rather indirect heuristics for the factors’ importance. Latent Factor
Attribution can be used by researchers to have a closer look at their models from a very different
perspective—when exploring the latent representations of their CNN or reasoning about how it
comes to specific conclusions; they can glimpse into the model’s response to a given input (or
even the entire class of inputs), thus gradually building deeper intuitions about the algorithm’s
behavior. Ewven though concept analysis could theoretically be presented to the non-expert end
user in a form similar to a report, at this stage of the research as presented in this thesis, it is

rather not feasible (yet may be explored in the future).

32



In this work, the InceptionV1 network [61] was used (also known as GoogleNet). The model
was pre-trained on the ImageNet dataset [16], with the weights retrieved from the Lucid! library
and available? at the following URL: gs://modelzoo/vision/other_models/InceptionVi.pb.
For the analysis, mixed4a, mixed4b, mixed4c, mixed4d, mixed4e, mixed5a and mixed5b layers
were used (table 1 from the original paper on InceptionV1 [61] introduced the following naming
convention for the layers: inception(4a), inception(4b), inception(4c), etc. In this work, they are
called “mixed4a”, “mixed4b” etec., following the nomenclature from [12, 48, 49]). “Mixed” layers
are the outputs of the inception modules, concatenated to form a single activation tensor. The
analyses presented here begin at mixed4a layer’s output so that the underlying representation is
complex enough (see [47] for details on earlier layers of the InceptionV1 model). As a final note,

the auxiliary classifiers that were originally present in the network were not used in this work.

3.1 Distributed Coding Scheme

For many years now, neuroscientists have been making efforts to better understand how information
is encoded in the biological neurons in the visual cortex of the human brain. Two opposing
hypotheses arose: sparse coding scheme and distributed coding scheme. The former states that
it might be beneficial to have a dedicated unit for each feature to allow better disentanglement
of the incoming visual stimuli and, eventually, simplify the downstream processing [5, 7, 18].
As elegant as the sparse coding appears to be, the research suggests that it is not feasible for
the visual cortex to dedicate a distinct neuron to each higher-level concept the average human
encounters in everyday life [22]—one would quickly run out of neurons in such scenario. Rather,
a distributed coding scheme emerges as an alternative hypothesis. Even though it may not seem to
be as elegant or simple to analyze as its sparse counterpart, it theoretically enables the neurons to
encode exponentially more features than in sparse coding and, as a result, make the entire visual
processing feasible [14, 22, 39, 53, 66].

Network Dissection [8] revealed the existence of neurons that respond to high-level abstractions
like houses, airplanes, staircases, or human heads (and many more), even though these concepts
were not present as a separate class in the training data. These neurons (or rather: channels
of the convolutional layers) alone contributed from 37% to 71% of the interpretable abstractions
in the final conv5 layer of the AlexNet architecture. The remaining units did not appear to be

comprehensible by human evaluators without any doubts or inconsistencies, suggesting that the

L https:/ /github.com/tensorflow /Tucid
2At the time of preparing this manuscript.
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subjective impressions’ influence was too strong to make reliable claims. May it be true that
such an uninterpretable neural population participates in the distributed coding scheme inside a
CNN and thus is not explainable when analyzed per-unit? This would, indeed, correspond to the
emerging theory in neuroscience that there exists a truly distributed coding strategy in many areas
of the brain, including the visual cortex [14, 39]. Such structure deprecates the meaningfulness of
a single unit—an entire neural population would have to be analyzed as a whole to be able to draw
unbiased, objective conclusions. Such a theory would be an elegant explanation to the problem of
“polysemantic neurons” [11] (they do not seem to respond to a single feature, but rather a mixture
of unrelated concepts). Individual analysis of such units will not reveal their true nature—they
only make sense as a part of the greater structure. To verify the “polysemanticity” claim one
would have to manually inspect the activation tensors at every layer of a CNN of interest and
identify the latent patterns one by one. Such an approach would not be feasible to accomplish by
humans—it would take a lot of time and effort, not to mention the complexity of the analysis of
high-dimensional activation tensors.

A recent initiative called Circuits [11] attempts to manually reverse-engineer a single CNN—
InceptionV1— to understand how individual neurons interact with one another and, as a result
of these interactions, can represent complex abstractions. The Circuits experiment is still in an
early stage so it is hard to tell what the outcomes are going to be. Nonetheless, the initial
results suggest that the inner representations constructed by CNNs are incredibly rich and, most

importantly, comprehensible.

3.2 Vanilla Attribution

In the preceding parts of this thesis, the term “attribution map” has been introduced to denote
heatmaps that visually indicate the influence of activation tensor’s spatial locations on the clas-
sification score. From now on, the attribution map that is generated using standard techniques
(like pure gradient [57], gradient ® input [55] or Integrated Gradients [60]) will be referred to as
a vanilla attribution map. In this work, all the attribution experiments were based on pure gradi-
ent, gradient ® input, and Integrated Gradients. Such a decision was based on recent work that
has taken a closer look at the reliability of attribution methods [2], indicating that the results
yielded by the aforementioned techniques can be trusted.

The goal of the vanilla attribution maps is to help understand the influence of single spatial

locations in the activation tensor on the final classification score. Such visualizations allow the
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Figure 16: Vanilla attribution computation scheme. The classification score depends directly on
the activation tensor from the layer of interest. The direct relationship is what enables calculation

of the gradient of the score w.r.t the activation tensor to find its attribution to the model’s output.

following question to be answered: what would happen to the final classification score if a par-
ticular spatial location in the activation tensor fired more/less? At any layer of the model, it is
possible to calculate the gradient of the score (e.g., logit—final classification result before applying
softmax) w.r.t. the arbitrary activation tensor to better understand its complex relationship with
the prediction. The process of obtaining a 2D saliency map from the 3D activation tensor can be

expressed mathematically as follows:

depth

A= Z A..., A=Havylogit, (5)
a1

where A denotes the resulting 2D vanilla attribution map, A is the 3D attribution tensor and
H is the 3D activation tensor. Here, tensor A is the result of the element-wise product of the
activation tensor H and the gradient of the logit of class ¢ w.r.t. that activation tensor. The
element-wise product estimates the rate at which an increase in a neuron’s response influences the
logit tensor [12] and can be seen as the equivalent of the gradient ® input approach, with the input
being the activation tensor. The gradient can be calculated using, for instance, the Integrated
Gradients technique. Please note that the term Vylogit, in eq. (5) is only a placeholder for any
gradient calculation method, i.e., it does not reflect the actual method used to obtain the gradient.
Finally, to produce a 2D attribution heatmap A from 3D attribution tensor A, a sum reduction
function is applied along the depth axis. The entire vanilla attribution computation that has been

described above can be seen in Figure 16.
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3.3 Activation Tensor Decomposition

An alternative technique that can help to tackle the problem of uncovering the latent structure of
a CNN in an antomated (yet less-precise) way is called matrix decomposition. The matrix decom-
position idea emerged from the need to discover the latent structure of matrices. By factorizing
the activation tensor, one can identify groups of neurons (also known as neural populations) that,
in theory, jointly represent complex abstractions in a distributed fashion [49].

Activation tensor H has shape (height, width, channels). A slice H, . of shape (1, 1, channels),
where z € X = {0,1,2,...,height} and y e ¥ = {0,1,2,..., width}, is called a feature column and can
be interpreted as a linear combination of channels at a particular spatial location. Thus, one
can say that the activation tensor H is made of height = width feature columns. After flattening,
tensor H becomes a 2D matrix of shape (height x width, channels) (denoted as H) that can
be factorized to explore whether there exist repetitive patterns in the feature columns (i.e., if
there are multiple columns that roughly represent a similar combination of channels). Matrix
H of shape (height x width, channels) can be decomposed into two matrices: S that contains
latent spatial factors and is of shape (height x width, #factors) and F with latent factors
(distinct combinations of channels) of shape (#factors, channels). Latent factor is a mathematical
representation of a concept, discovered automatically by the matrix decomposition. Latent spatial
factor, on the other hand, is a mathematical representation of the information on “where” a given
concept is present in the activation tensor and “how much” of it is at every spatial location,
identified automatically with the matrix decomposition as well. Both latent factors and latent
spatial factors can be visualized in order to be better understood: feature visualization is used for
the former one (generating a synthetic superstimulus that activates the latent factor the most is
equivalent to doing this for a feature column), while the latter can be displayed as heatmaps.

Matrix decomposition technique that is widely used across this thesis is called the Non-negative
Matrix Factorization. If finds latent factors and latent spatial factors by iteratively minimizing

the following optimization objective:
1
argmin §||Hr - SF|3, S,H:=0. (6)
S F

||-/|3- denotes a Frobenius norm and is equal to || M|} = ¥, , M2, , with M being an arbitrary matrix.
Note that the product SF is called a reconstruction and is an approximation of matrix H. In the
NMF decomposition’s multiplicative update technique, § and F' are iteratively updated according

to the following rules:
STH HFT

FeFoo—\ S<So——.
STSF SFFT

(7)



That is the moment when neurological theories meet machine learning, facilitating the rise of
an attractive research avenue. Uncovering combinations of neurons that act together is just part
of the story though—it is important to be able to not only discover the existence of abstractions
like neuron groups but also to understand what they represent and how they attribute to the
visual processing output. Since the linear combination of channels can be seen as a direction in an
n-dimensional space, it is possible to generate a synthetic input image that would result in a strong
response of the neuron group [49]. Once both latent spatial factors (where the abstraction is located
in the activation and how much of it is there) and the abstraction feature vectors themselves are
available, the final step is to quantify their attribution.

The commonly accepted approach to quantify the attribution when working with CNNs is
realized by generating so-called attribution maps that quantify the saliency of input image pixels
[57]. This idea is based on a rather questionable assumption that an individual pixel is the right unit
to analyze the attribution. Human intuitions are utterly different in this domain: we perceive the
underlying objects in the image, not the single RGB intensities at each spatial location. Moreover,
input space is just a fraction of the CNNs’ representation capacity, hence it would be interesting to
produce attribution maps for every layer of the network. With the intermediate layers’ attribution

maps, though, many new questions arise:

1. Do all the spatial locations in the attribution map indicate the presence/absence of a target

class concept or rather something more specific?

2. Is there a way to decompose the activation tensor into subparts that would explain the bigger

idea up to a predefined precision?
3. Do the hypothetical subparts appear repetitively across the images of the same class?

4. Is it possible to estimate subparts’ attribution to the classification result for each of them

separately? How reliable would such a measure be? How could this information be used?

Fortunately, matrix decomposition of the activation tensor makes it possible to answer all of the
above questions, filling the niche in the space of latent factors interpretability. With all of the
above, one would get a detailed overview of what information is encoded in every layer of the
CNN, how it is represented, and what is its influence on the visual processing output.

To obtain the results presented in Figure 17, the activation tensor from the mixed4d layer of
the InceptionV1 model was analyzed using the Non-negative Matrix Factorization technique. An
alternative matrix decomposition approach—Principal Components Analysis—was also evaluated
in this work. Sample results for PCA can be observed in Figure 18. In both Figure 17 and Figure 18,
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Figure 17: An example of the LFA using NMF matrix decomposition as a base for computation.
First row: visualizations of distinct latent factors identified using NMF. Second row: corre-
sponding latent spatial factors. Third row: LFA attribution map. Green and red areas denote

positive and negative influence on the predicted class, respectively.

the latent spatial factors and LFA intensities have been globally normalized (each row separately)
to highlight the absolute importance of single factors. Ewven though a per-factor normalization
would yield more vivid visualizations, the relative importance information would be lost.

Please note that at this point in the narrative, both examples in this section were provided to
visualize a kind of result that LFA yields. The intention is also to help the reader build visual
intuitions about the problem being discussed, not to compare the LFA with the existing techniques

or to comprehend its inner mechanism.

3.4 Latent Factor Attribution

The goal of LFA is to understand the influence of the most significant latent factors in the factorized
activation tensor on the final classification score. The objective is similar to the one of vanilla
attribution, yet it focuses on a more abstract unit of interpretability—latent factors. The question
to be answered with LFA is the following: what would happen to the final classification score
if a particular latent factor was more/less present in the activation tensor? The LFA technique

consists of three stages (presented as a schema in Figure 19) that are executed sequentially:
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Figure 18: An example of the LFA using PCA matrix decomposition as a base for computation.
First row: visualizations of distinct latent factors identified using PCA. Second row: corre-
sponding latent spatial factors. Third row: LFA attribution map. Green and red areas denote

positive and negative influence on the predicted class, respectively.

1. Decompose The activation tensor H, flattened into an activation matrix H is decomposed
into N latent spatial factors S (every column in S is a distinct latent spatial factor) and N
latent factors F' (every row in F' is a distinct latent factor) using standard matrix decom-

position techniques. In this work, NMF and PCA ones were evaluated.

2. Reconstruct There are IV pairs of factors available in the form (concept, where it is in the
activation tensor). The core idea of the LFA computation is to reconstruct the original acti-
vation matrix H into a compressed activation matrix H , but using only distinct factors
that jointly constitute to the majority of the information encoded in the latent representa-
tion. Selecting a subset of factors means selecting only the columns S* (in case of S) and
rows F'* (in case of F') that represent distinct concepts, discarding the rest. The resulting
number of factors to be kept depends on the target value of the reconstruction error and/or a
predefined number of factors a researcher would like to obtain and is equal to N*. H contains

a piece of the original information, represented solely by the most significant factors.

3. Compute the attribution As can be seen in Figure 19, the classification score depends

directly on the distinet factors. That direct relationship is what makes it possible to calculate
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Figure 19: Latent Factor Attribution technique consists of three stages that are executed sequen-
tially: decomposition, filtering and compression, and attribution computation. Since in this setup
a score depends directly on the factors, one can backpropagate through the computational graph

to obtain the gradient of the score w.r.t the factors and yield an attribution map for each of them.

the gradient of the score logit, w.r.t. the filtered latent spatial factors and, thus, find their

influence (attribution) on the result of the classification:
A{F:\,:} = 5::1"_ = ?s:t:_n]_ugtcj (8}

where A(Fr:) denotes the attribution of the concept F'} S denotes a matrix S* reshaped
so that its shape is (height, width, #factors), and n = {0,1,2,..., N*} is an index of the arbi-
trary concept. Here, the element-wise product ® between the latent spatial factor associated
with the n-th concept and the gradient of the score w.r.t. that factor plays the same role as
in eq. (5). When estimating the importance of the n-th concept F ., we are not interested
in getting the information about how altering the concept itself (F7 ) would influence the
classification score. Rather, what is important is how increasing /decreasing a given concept
at spatial locations would influence the output of a CNN. That is exactly the kind of informa-
tion the ?si:mlug‘itc term represents. Changes in the S, | affect the reconstructed activation

tensor I:I, thus influencing the classification score.



3.5 Differences with the Existing Techniques

The field of interpretability has already seen the techniques that compute the attribution of the
latent factors found by the matrix decomposition of the activation tensors: The Building Blocks
of Interpretability [49] and Interpretable Basis Decomposition (IBD) [70].

In [49], preliminary research on neuron groups was presented. After an activation tensor H
(see eq. (6)) is decomposed into IV factors (from which N* ones are selected based on an arbitrary
criterion), neuron groups are to be formed. Let g(ﬂl denote the n-th latent spatial factor S,
broadeast in such a way that éfn; = 5:’::,,,_? i.e. every arbitrary channel d is equal to the latent
spatial factor S, ,. Also, let £™ denote the n-th latent factor F'; . (concept) broadcast in such
a way that Iiinj = F';, ., i.e. feature column at every arbitrary spatial location (z,y) of the tensor
F[ﬂ} is equal to F'] .. To obtain a neuron group G'™) associated with the n-th factor, the following

formula can be used:
G[ﬂ-} — gftﬂ'] @ F{n], {g)

where ® denotes an element-wise multiplication of tensors. To estimate the influence of a neuron
group on the classification result, a group tensor G is multiplied element-wise with the vanilla

attribution tensor A as follows:
AC™) - G™ oA, A=Ho Valogit, (10)

where A") denotes an attribution of a given group. For example, an attribution of a group related
to the n-th concept would be denoted as AG™) Originally, neuron groups’ attribution does not
come in a form of 2D heatmaps [49]. Instead of applying a reduction function along the channel
dimension, all the elements of the neuron groups’ attribution tensor are summed together, yielding

a single scalar value for each group tensor, according to the following formula:

height width depth
o 3 e
=1 y=1 d=1

If, in place of global sum reduction, a channel-wise variant was used, a 2D neuron group’s attribu-
tion heatmap would be computed. A compelling side-effect of such an approach would be that it
could be directly compared with LFA maps. That is exactly what was done in this thesis in order
to obtain a 2D neuron groups’ attribution AE™) and, effectively, juxtapose the two methods:

depth
{n) g™
AE™) _ Z AC), (12)
d=1
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The core distinction between the LFA and the neuron groups’ attribution manifests itself in
the way how they handle both latent spatial factors and latent factors. By embedding factor’s
selection in the main computational graph (by introducing the idea of compressed activation tensor
reconstruction), LFA makes it possible to backpropagate through the computational graph up to
the latent spatial factors and, as result, directly compute their attribution to the target class. On
the other hand, neuron groups’ attribution technique does not perform any computation of this
kind, instead using the broadcasting trick and element-wise product with the vanilla attribution
tensor as the base for the concepts’ importance estimation. By comparing both techniques (with
neuron groups’ attribution in the expanded form) side-by-side one can see that they are, in fact,

very different:

depth
AC™) _ Z (E‘."‘“’ oF™oHo ?Hlﬂgjtc) . AR - (5* o Vglogit,).., . (13)

d=1 .

LFA attribution A" is much more elegant, concise, and, most importantly, provides a direct
estimate for the concepts’ importance, contrary to its counterpart.

In Figures 20 to 28, neuron groups’ attribution maps have been juxtaposed with the LFA ones.
Please note that each factor has been individually normalized so that its values fall into [0, 255]
range. This was done to highlight the differences between the two methods (global normalization
would yield dimmer attribution maps that would make visual comparison infeasible). One can
observe that LFA produces sparser heatmaps that appear to be more coherent with the underlying
latent spatial factors than the ones obtained using neuron groups’ attribution. LFA attribution
maps have an important feature of isolating the per-factor attribution information better than
their counterpart—if some region of the vanilla attribution map clearly dominates over the others,
its information “leaks” into every groups’ attribution map, making it harder to understand them
in isolation. A wvery good example of this phenomenon is easily noticeable in Figure 24. This

problem is not visible when computing factors’ attribution using the proposed LFA technique.
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Figure 20: Comparison of LFA and neuron groups’ attribution maps for a red fox target class
(predicted class: red fox, with a 51.06% confidence).. First row: feature visualizations of the
distinet latent factors identified using NMF. Second row: corresponding latent spatial factors.
Third row: LFA attribution maps. Fourth row: neuron groups’ attribution maps. Green and
red areas denote positive and negative influence, respectively. Code used to compute the fourth

row of the figure adapted from a Colab notebook published in [49].
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Figure 21: Comparison of LFA and neuron groups’ attribution maps for a giant panda target class
(predicted class: giant panda, with a 95.55% confidence). First row: feature visualizations of the
distinet latent factors identified using NMF. Second row: corresponding latent spatial factors.
Third row: LFA attribution maps. Fourth row: neuron groups’ attribution maps. Green and
red areas denote positive and negative influence, respectively. Code used to compute the fourth

row of the figure adapted from a Colab notebook published in [49].



Figure 22: Comparison of LFA and neuron groups’ attribution maps for an analog clock target
class (predicted class: analog clock, with a 57.87% confidence). First row: feature visualizations
of the distinct latent factors identified using NMF. Second row: corresponding latent spatial
factors. Third row: LFA attribution maps. Fourth row: neuron groups’ attribution maps.
GGreen and red areas denote positive and negative influence, respectively. Code used to compute

the fourth row of the figure adapted from a Colab notebook published in [49].



Figure 23: Comparison of LFA and neuron groups’ attribution maps for a brown bear target class

(predicted class: brown bear, with a 82.98% confidence). First row: feature visualizations of the

distinet latent factors identified using NMF. Second row: corresponding latent spatial factors.
Third row: LFA attribution maps. Fourth row: neuron groups’ attribution maps. Green and
red areas denote positive and negative influence, respectively. Code used to compute the fourth

row of the figure adapted from a Colab notebook published in [49].



Figure 24: Comparison of LFA and neuron groups’ attribution maps for a dam target class (pre-
dicted class: dam, with a 84.22% confidence). First row: feature visualizations of the distinct
latent factors identified using NMF. Second row: corresponding latent spatial factors. Third
row: LFA attribution maps. Fourth row: neuron groups’ attribution maps. Green and red areas
denote positive and negative influence, respectively. Code used to compute the fourth row of the
figure adapted from a Colab notebook published in [49].



Figure 25: Comparison of LFA and neuron groups’ attribution maps for a lipstick target class
(predicted class: lipstick, with a 99.61% confidence). First row: feature visualizations of the
distinet latent factors identified using NMF. Second row: corresponding latent spatial factors.
Third row: LFA attribution maps. Fourth row: neuron groups’ attribution maps. Green and
red areas denote positive and negative influence, respectively. Code used to compute the fourth
row of the figure adapted from a Colab notebook published in [49].
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Figure 26: Comparison of LFA and neuron groups’ attribution maps for a space shuttle target
class (predicted class: space shuttle, with a 99.55% confidence). First row: feature visualizations
of the distinct latent factors identified using NMF. Second row: corresponding latent spatial
factors. Third row: LFA attribution maps. Fourth row: neuron groups’ attribution maps.
GGreen and red areas denote positive and negative influence, respectively. Code used to compute

the fourth row of the figure adapted from a Colab notebook published in [49].
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Figure 27: Comparison of LFA and neuron groups’ attribution maps for a teapot target class
(predicted class: teapot, with a 95.78% confidence). First row: feature visualizations of the
distinet latent factors identified using NMF. Second row: corresponding latent spatial factors.
Third row: LFA attribution maps. Fourth row: neuron groups’ attribution maps. Green and
red areas denote positive and negative influence, respectively. Code used to compute the fourth

row of the figure adapted from a Colab notebook published in [49].



Figure 28: Comparison of LFA and neuron groups’ attribution maps for a volcano target class
(predicted class: volcano, with a 99.97% confidence). First row: feature visualizations of the
distinet latent factors identified using NMF. Second row: corresponding latent spatial factors.
Third row: LFA attribution maps. Fourth row: neuron groups’ attribution maps. Green and
red areas denote positive and negative influence, respectively. Code used to compute the fourth
row of the figure adapted from a Colab notebook published in [49].

Concept contribution [70] is another technique similar to LFA. At its core lies a custom ma-
trix decomposition—Interpretable Basis Decomposition. IBD is a hybrid of NMF (positive latent
spatial factors) and PCA (gradual creation of decomposition basis). Here, the actual attribution
estimation is very similar to one of the neuron groups: first, latent spatial factors are multiplied

element-wise with the corresponding feature vectors to get the equivalent of group tensors. Next,
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Figure 29: Estimation of the number of factors in the NMF matrix decomposition. Multiple runs
with varying number of factors were carried out and the matrix reconstruction error was then

plotted. From such, an “elbow” was identified —a point where the function begins to flatten.

“oroup tensors” are multiplied element-wise with the activation tensor, yielding concept contribu-
tion. As IBD is tightly bound with the Grad-CAM heatmap computation (designed to decompose
the activation tensor of the final convolutional layer of a CNN of interest), it is not suitable for
computing intermediate layers’ attribution maps. Consequently, it has been excluded from the

visual comparisons presented in the aforementioned web interface.

3.6 Determining the Number of Factors

Having looked at Figure 17 and Figure 18, a question may arise: why are there exactly 5 latent
factors presented in each example? Is the number of factors for NMF and PCA always equal? The
fact that these numbers are the same for both NMF and PCA is a coincidence—the number of
factors is determined individually for each image and depends on the decomposition technique.
For PCA, it is by definition possible to determine the importance of any latent factor—each

has the explained variance ratio value assigned to it that indicates how much of total variance in
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the decomposed matrix is represented by this particular factor. Explained variance ratio values
range from 0 (exclusive—the existence of a factor with zero explained variance would not make
sense) to the value of 1 (entire variance explained by a single factor). For the experiments in this
thesis, a threshold for the total summed explained variance ratio has been set to be at least 0.7 (all
the factors, starting from the most explanatory one, are gradually added to the pool until their
total explained variance ratio reaches 0.7).

In the NMF case, the problem of factor selection is non-tractable—there does not exist a straight-
forward technique to determine how many latent factors should the matrix be “optimally” decom-
posed to. Instead, a novel, relatively robust estimate was proposed in this thesis. It makes it
possible to automatically determine the number of latent factors in the NMF procedure by ana-
lyzing how the matrix reconstruction error changes as a function of a number of components used
for the decomposition. As an example, to generate the data for Figure 29, NMF decomposition
has been run multiple times (gradually increasing the number of components from 1 to 10). In
each iteration, a matrix reconstruction error was recorded to eventually determine a reasonable

number of factors to use by identifying an “elbow” —curve flattening point.

3.7 Activation Explorer

The author of this dissertation believes that the interpretability field exists for two reasons:

1. It serves as a torch that is used to lighten the dark nooks and crannies of black-box neural

networks and thus, to some extent, explain what makes the models produce specific outputs.

2. It helps humans develop new intuitions about the inner data representations that are con-

structed in these models during their training procedures.

Sometimes it is the bare numbers that researchers need. Sometimes, though, it is an interactive
interface. In this work, since LFA was designed with image data in mind and that the experiments
yielded the results in a quantity too high to navigate through with tables or simple grids of images,
a clear web application was designed. It facilitates data exploration and enables interactive controls
over the available parameters. Not only does it make a side-by-side comparison of LFA and
neuron groups’ attribution possible but, most importantly, it puts LFA in the functional context.
The interface is called Activation Ezxplorer and is available for the public at the following URL:
https://bmiselis.github.io/explorer.html.
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Figure 30: Activation Explorer is a supplementary web interface that was designed to enable

— o

convenient overview of the results generated by the experiments presented in this chapter.

An overview of the interface will begin with the default pane (see Figure 31)—a zoomable and
draggable panel that allows the user to inspect basic visualizations in greater detail. It presents
how the activation tensors evolve in the consecutive inception modules (starting from the mixed4a
one; see the current chapter’s introduction for justification on this). Each 2D activation map
was obtained by applying a sum reduction over the channel dimension of the activation tensor H.
Target class and the image sample can be picked by the user after clicking on the input image at
the top of the graph. The data for the following classes is available: red fox, giant panda, brown
bear, analog clock, dam, lipstick, space shuttle, teapot and volcano. Three sample images were

chosen for each class from the , ensuring that the predictions match the ground-truth.
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Figure 31: Default view of the Activation Explorer interface. It presents how the activation
tensors evolve in the consecutive inception modules (starting from the mixed4a one; see the current
chapter’s introduction for justification on this). Each 2D activation map was obtained by applying
a sum reduction over the channel dimension of the activation tensor H. Target class and the image

sample can be picked by the user after clicking on the input image at the top of the graph.



Activation Tensor Factorized Activation Tensor Vanilla attribution

Figure 32: A snapshot of the Overview section, extended view panel. Left: sum-reduced activation
tensor. Middle: latent spatial factors from NMF, overlaid. Right: vanilla attribution map.

After clicking on an arbitrary 2D grayscale image of any activation tensor, the ertended view
panel is presented to the user (visible in the left-hand side of Figure 30). It is the core element of
the interface that lets the user explore how the information flowing through the CNN is represented
at the layer of interest. The extended view panel is divided into three sections: Overview, Controls
and a scrollable grid of detailed results of the decomposed activation matrix H.

The Overview section provides background information, required to comprehend the forthecom-
ing visualizations: sum-reduced activation tensor H, factorized activation tensor (overlaid latent
spatial factors S) and the vanilla attribution map. Please refer to Figure 32 for an example. It
is worth mentioning that the latent spatial factors in the factorized activation tensor image are
colored randomly when NMF decomposition is used—all values are by definition positive so there
is no need to differentiate them with “green” and “red” to indicate positive and negative areas
in latent spatial factors. For PCA, though, the green-red coloring has been used to make it clear
which areas depict positive presence and which negative presence of each factor.

After the Overview, there is the Controls section. It is split into the controls that manipulate
global behavior (applicable to all attribution data in the panel) and the controls that enable precise
configuration of each column of a grid further down individually:

e Score tensor lets the user choose the node in the computational graph that will be used in
the attribution calculation. It is either softmaz2_pre_activation (before softmax activation)

or softmaz2 (after softmax activation).

e Attribution technique has two options: gradient or Integrated Gradients.
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o Attribution variant allows to select either gradient-based or the gradient ® activation-based
attribution calculation.

e Normalization gives the user a choice on whether the heatmaps are normalized per-factor
(each heatmap is normalized individually so that its minimum value is 0 and maximum is
255) or globally (a minimum wvalue across all heatmaps is 0 and maximum is 255). Please
note that if the global normalization option is picked, it gives the user a chance to see
the absolute importance of each factor, maintaining the relative differences between the
individual heatmaps. Per-factor normalization may be helpful when conducting an individual
analysis of each factor’s importance, yet should not be used when building holistic intuitions.

e Brightness is a slider that controls how dim/bright the pixels in the column below it are.
The intention is to let the user make the vague areas pop up for a more fine-grained analysis,

whenever needed.

The last and vet the most important element of the extended view panel is the grid of distinct
visualizations of the data resulting from the matrix decomposition of the activation tensor H.
Here, each row is dedicated to a single factor. In the case of PCA, the rows are sorted so that
the explained variance ratio of the consecutive factors decreases (hovering over the latent spatial
factor reveals the precise value of the explained variance ratio). However, NMF decomposition
does not provide any information on the factors’ importance, so the rows in this situation are
sorted randomly.

The first column contains the latent spatial factors. They are presented to help the user identify
what input stimuli the factor is responding to if the factor visualization is ambiguous—information
on “where” the concept is located is often helpful in comprehending the underlying abstraction.
The second column includes factor visualizations generated using the knowledge acquired from a
series of Distill articles [12, 42, 48, 49]. All the parameters that are essential to reproduce the
results from this column have been summarized in section 2.4.3. The third and fourth columns
contain the neuron groups’ attribution maps (denoted as “Factor - Attribution”) and the LFA

attribution maps, respectively. Here, the user can visually compare both methods.

3.8 Discussion and Limitations

LFA is a mid-level attribution technique that operates on the abstractions produced by the hidden

layers of a CNN. It provides a holistic view on the latent representation of the intermediate tensors
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in the visual processing of the model, yet does not enable a global view on CNN's behavior
in the current form. Consequently, the forthcoming discussion refers to per-image observations.
Nonetheless, the observed repetitive patterns were mentioned where possible.

The main question to be answered in this chapter was whether LFA vyields the results more
insightful than the ones of the existing techniques. From the examples presented in Figures 20 to 28,
the initial hypothesis was that it is indeed the case: the LFA produces sparser attribution maps that
are more coherent with the underlying latent spatial factors than the ones obtained using neuron
groups’ attribution—LFA attribution maps appear to be more “concentrated” around the target
concept and isolate the per-factor attribution information better than their counterpart. It should
not come as a surprise since LFA attribution is tightly bound with the underlying latent factors,
much more than the one of neuron groups. The strong correlation of LFA with corresponding
latent spatial factors, together with the fact that it reacts well to global normalization is what
makes it beneficial for the fine-grained analysis of factors’ attribution.

In the Controls section of the Activation Explorer interface, multiple parameters enable exten-
sive exploration of the data from the experiments by various intuition-building interactions. The
score option allows the user to choose between pre-softmax and after-softmax tensor w.r.t. which
the gradient is computed. The pre-softmax tensor (known as logit) can be seen as a “class score”.
After applying softmax, the resulting value is rather a probability of a class given the class score
(class posterior) [48]. Because the class posterior can be maximized by minimizing other class’
posteriors (other class’ posteriors are in the denominator of the softmax equation), it is benefi-
cial to choose a pre-softmax tensor to concentrate the optimization procedure only on the target
class [57] (each score is independent of the others in such a scenario). When interacting with the
attribution variant, the users are encouraged to begin with the Gradient option and then switch
to Gradient ® Activation, while carefully observing what happens to the attribution maps (both
for neuron groups and LFA). What can be observed is that the element-wise multiplication with
the activation tensor is equivalent to “having a spotlight” that “shines more light” on the areas
of the gradient that influence the class score more, at the same time “casting a shadow” on the
insignificant ones. When it comes to the attribution technique, the differences in the resulting
maps are not that prominent. The main distinction is that the Integrated Gradients technique
tends to produce less noisy heatmaps than the vanilla gradient approach.

All of the parameters mentioned in the preceding paragraph have a noticeable impact on the
resulting visualizations. However, the dominant changes are introduced by altering the matrix
decomposition technique. Primary dissimilarity comes from the fact that PCA yields latent factors
that are much harder to comprehend with human intuitions than the ones obtained with NMF—the
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PCA’s assumption that the concept can be “positive” in some areas of the image and “negative” in
the others is unintuitive and impedes the reasoning about the meaning of a particular abstraction.
For instance, while a concept of a “snout” is comprehensible, what would a “negative smout” mean?

After examining multiple image samples, the impact of LFA is quickly noticeable: it helps to
navigate through the multitude of factors, especially when investigating PCA decomposition in
the “mixed4*” layers. The interpretation of the abstractions they represent is especially hard,
though, since the underlying concepts are rather low- to mid-level. In this case, NMF yields
much more spatially coherent and, most importantly for the sake of interpretability, all-positive
maps, being a method of choice for this part of the InceptionV1. In the mixed5b activation
tensors, however, PCA tends to robustly identify factors of very high importance (their explained
variance ratios are usually above 0.5 for a single factor). It appears to be able to decompose the
underlying representation into a concise set of abstractions, perceptibly more compelling than the
ones obtained with NMF. It cannot be said for sure whether such limitation of NMF is because
the wrong number of factors were picked by the “elbow-locator” method introduced in section 3.6,
or whether it is an imperfection of the decomposition method itself.

The impact LFA has on the interpretability of the factors’ attribution maps becomes genuinely
noticeable in the last two layers of the InceptionV1: mixed5a and mixed5b. The most interesting
results can be observed when the gradient ® activation variant is used—vanilla gradient-based
visualizations collapse into a plain-colored square for the mixed5b layer, making their analysis futile
in this case. The collapse is the result of backpropagating through the global average pooling layer,
located close to the end of the InceptionV1 model—the resulting pradient has the same average
value distributed across all spatial locations®. That problem does not oceur for the mixed5a layer
since the computation includes backpropagating through the entire mixed5b layer as well. For
both layers, LFA yields results that are less correlated with the vanilla attribution map than the
ones obtained with the neuron groups’ attribution technique. The reduced correlation is a positive
feature, for the vanilla attribution maps tend to be very diffused in mixed5a and mixed5b. Their
scattered nature makes neuron groups’ attribution even more spread and harder to comprehend.

The final interesting feature of LFA that can be noticed when analyzing the attribution maps
from the mixed5b layer (using gradient ® activation variant) is that each heatmap is merely a latent
spatial factor, uniformly scaled by the gradient value. The scaling can be discarded by applying
per-factor normalization, though, to reveal an interesting fact: for the mixed5b layer, the LFA

maps are equivalent to the corresponding latent spatial factors.

*One might notice that in some cases the vanilla attribution map is plain-red, while the neuron groups’ attribution
maps and the LFA ones are plain-green. This 1= both fine and expected—multiplying a uniform gradient tensor
ps plain-gr p plying gr
with the heterogeneous activation tensor has a strong influence on the channel-reduced attribution maps.

59



Chapter 4

Distilled Class Factors Atlas

Experiments from the previous chapter indicate that latent factors are an interesting unit of
interpretability to study CINNs. Not only do they provide higher-level abstractions to think about
hidden data representations of the algorithms, but they also reduce the overwhelming amount of
available information, scaling it down for feasible human analysis. The natural question that arises
while reflecting on this topic is whether matrix decomposition could be applied analogously, but
to yield a much more complex interface than just the LFA attribution maps?

Extending the research scope from image-specific to model-specific analyses is a non-trivial
objective. Projects like Network Dissection [8], CNN Codes [27] or Activation Atlas [12] provided
invaluable insights on how to work with vast, complex manifolds that CNNs construct. These
rich, intuitive interfaces were the inspiration for the research presented in this chapter. Here,
a second novel interface—Distilled Class Factors Atlas—is introduced. It unifies the idea of Class
Activation Atlases [12] with matrix decomposition and LFA to yield a specialized form of the atlas
that enables in-depth analyses of concepts that are repetitively used by a CNN to predict a given
class. A word distill stands for “extracting the essential meaning or most important aspects of”.
It was used to indicate the process of filtering out the factors whose attribution towards a class of
interest is low (or even negative) while keeping only the ones that support the prediction.

The closest work that resembles Distilled Class Factors Atlas is the Class Activation Atlas [12].
In the original method, 1 million randomly selected feature columns!, collected from all ImageNet
images, were filtered out to keep only the ones that attribute the most to the target class. The
core difference is that Distilled Class Factors Atlas does not select columns randomly—it utilizes
matrix decomposition to identify factors specific to a given class. Moreover, it uses the LFA to

estimate concepts’ attribution, instead of the gradient ® input from the preceding research.

! The terms feature column, activation vector and linear combination of channels are equivalent.
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4.1 Humans Do Not Scale

In principle, CNNs are exceptionally large when compared with other machine learning algorithms.
Their number of parameters often exceeds 5-10 million, reaching hundreds of millions in some
cases [26]. Even though interpretability researchers typically study structures more abstract than
raw weights, they still keep the amount of other potential units of interpretability (neurons, chan-
nels, feature columns) on an overwhelmingly high level. As an example, the familiar InceptionV1
CNN has been overviewed in the next paragraph.

InceptionV1 [61] is a 22-layer CNN with 6.7977 million parameters, which makes it a sizable
deep neural network (see Figure 34 for a detailed overview of its architecture). The most interesting
parts of the model are the inception modules: mixed3a, mixed3b, mixed4a, mixed4b, mixed4e,
mixed4d, mixed4e, mixed5a, and mixed5b, described in details in the introduction of the chapter 3.
As mentioned previously, the output tensors of these modules are high dimensional. For instance,
if the input tensor of the InceptionV1 is of shape (224, 224, 3), then the output of the mixed4d
module is of shape (14, 14, 528). 528 channels are a lot, and each of them denotes a unique filter,
sensitive to a more or less sophisticated abstraction. Not to mention the fact that for mixed4d
output tensor, there are 196 neurons in a single channel, potentially detecting fine-grained variants
of the same concept w.r.t. the spatial location.

To analyze all of the channels of the mixed4d module at the same time, a spritemap with feature
visualizations can be generated. An example of such can be seen in Figure 33. The first thing that
catches the eye of the observer is the number of icons (528) and the variety of concepts they repre-
sent. The analysis of spritemaps offers a significant benefit by bringing closer the understanding of
the model as-is, conditioned only on its weights, not the concrete input tensor, making it a more
general interpretability approach. There are, however, two major issues with it: 1) the amount of
data to examine, even for just a single layer, begins to be overwhelmingly high and 2) the icons
are presented in a strongly unstructured way (by the order the corresponding convolutional filters
appear in a given layer of a CNN). While the first problem is rather indisputable, this is not the
case for the second one. After all, how could the abstractions that channels detect be grouped to
provide additional insights about behavioral patterns of a CNN7?

It turns out there exist techniques that extract additional information from the manifold con-
structed by a CNN and then use that information to span an intuitive 2D “scaffolding” that
clusters the available visualizations in a compelling, explanatory way. Activation Atlas [12] is one
of such techniques—that is the main reason it was used in this chapter as a base for designing
more specialized interfaces, like the aforementioned Distilled Class Factors Atlas.
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Figure 33: A spritemap with icons from all the channels of the mixed4d layer of the InceptionV1

model. The visualizations are presented in the order the corresponding convolutional filters appear

in the layer. Best seen digitally.
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Figure 34: InceptionV1 architecture (best seen digitally). Figure retrieved from [61], with the
green-text annotations added by the author of this thesis for clarity.
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Figure 35: An example of image-specific model analysis technique: neuron groups. Code used to
generate the figure adapted from a Colab notebook published in [49].

On the other end of the spectrum lie image-specific techniques. An example from Figure 35 has
already been presented in chapter 2. Earlier, it was provided to offer an interesting perspective on
the latent representation of a CNN. In this section, however, where the focus is put on the manifold-
centric methods, neuron groups are revisited to undermine their applicability as an interface to
understand the patterns in the functioning of an algorithm as a whole. To justify this claim,
consider the following example: there are 1851 images of a red fozr class in the ImageNet dataset.
For each image, there are, on average, 6-8 reasonable latent factors to decompose the activation
tensor to?. It would be almost impossible to manually inspect all neuron groups generated for every
image for even a single layer, not to mention the fact that there are 22 layers in the model under
discussion. Moreover, please keep in mind that there are 1000 classes (!) in the aforementioned
dataset. Roughly speaking, there would be around 160-200 million neuron groups to examine.
Such a methodology is a dead-end and requires an alternative solution.

Even though it is usually not possible to draw meaningful conclusions about the general be-
havior of a given CNN from image-specific analyses, they are still valuable and help researchers
develop better intuitions about the model’s response for each case separately. The kind of insights
they provide is invaluable when, for instance, the objective is to make a diagnosis from a single
image (or a small set of related data samples). In such context, extracting case-specific features,
together with an in-depth description of what has been identified, is an essential element of the
visual processing stack. To summarize: image-specific analyses are useful from the perspective of

an end-user, while the model-specific ones are valuable from the researcher’s perspective.

*This is merely an educated guess, based on the experience from conducting the experiments on multiple layers
of the InceptionV1 model.
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Figure 36: Sequential steps to generate an original Activation Atlas. 1. Feed all the available images
to a CNN and collect activation tensors from the layer of interest. 2. Select feature columns for
further steps (for every activation tensor it is either all of them, or a single, randomly selected
one [12]). 3. Use UMAP or t-SNE to project high dimensional feature columns down to a 2D space.
4. Divide the 2-dimensional layout into a grid of cells. 5. Compute an average feature column for
every cell and generate feature visualizations to depict the underlying concepts. Figure and the
UMAP projection code adapted from [12] (and associated Colab notebooks).

4.2 Visualizing High Dimensional Space

All types of Activation Atlases presented in this chapter are 2-dimensional. However, the un-
derlying data they work with—feature columns—belongs to a multidimensional space, often with
hundreds of dimensions. To be able to visualize high dimensional vectors while minimizing distor-
tions of a topological structure of the original space, projection techniques like Uniform Manifold
Approximation and Projection (UMAP) [38] or t-SNE [36] can be used. This section is not to
provide detailed mathematical explanations on why the aforementioned dimensionality reduction
techniques work, though. Instead, an intuitive perspective on the functioning of UMAP and t-SNE
is presented to complete the introduction of the techniques necessary to generate the atlases. Fig-
ure 36 provides a schema depicting how the Activation Atlas is obtained.

The process begins with feeding all the available images to the algorithm and collecting ac-
tivation tensors across all the layers of a CNN. Then, an arbitrary layer is picked, for which the
Activation Atlas will be generated (atlas can only represent activations originating from the same
space; in the majority of cases that is equivalent to an individual layer of the network). High

dimensional feature columns from the layer of interest (for every activation tensor it is either all
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of them or a single, randomly selected one [12]), schematically marked with red squares in Fig-
ure 36, are projected by UMAP or t-5NE down to a 2D space, transforming a multidimensional
activation vector into a 2-dimensional embedding. These projection techniques can preserve part
of the local structure of the original space and, consequently, organize the feature columns into
a convenient layout. An interesting side-effect of such dimensionality reduction is that feature
columns representing similar concepts are projected roughly to the same region of the 2D space.
This particular characteristic makes it possible to simplify the analysis from thousands of points
to barely tens or hundreds. The idea is to divide a 2-dimensional layout into a grid of cells [12].
All the points that fall into the same cell are averaged together, yielding an average feature column
(concept) for that cell. Finally, using feature visualization, there is an icon generated for each cell
to provide the visual interpretation of the abstractions in this area of the projected manifold. To
summarize: Activation Atlas is just an alternative name for the “grid of icons depicting average,
high dimensional feature columns, projected down to a 2D space, with each icon depicting an

underlying concept”.

4.3 Manifold Sampling

From a theoretical point of view, all possible activations of a given CNN form a multidimensional
manifold. Such a topological structure is an interesting object for in-depth studies since it contains
details on how the algorithm responds (behaves), given a wide range of inputs. The challenge in
examining such a vast and complex construct is the extent of a potential analysis to be conducted.
Fortunately, there exists a solution to this problem: if there is too much data to process, a sampling
technique proves to be useful. It approximates the original data distribution with its sparser
equivalents, reducing the amount of information to be analyzed by a significant factor.
Interestingly, feature visualization can be seen as a technique for sampling the manifold of
possible activations of a given CNN. Depending on a chosen unit of interpretability, the scope of
the obtained results differs notably. Figure 37 illustrates this idea, originally introduced in [12].
Note that for the presented example, the original 528-dimensional manifold from the mixed4d layer
was projected down to 3 dimensions using UMAP to make the illustration possible. Looking at

feature visualization from the manifold sampling perspective, the following points can be made:

¢ Basic units of interpretability like neurons or channels are mere 1-dimensional slices of the
space of possible activations. They should be seen as tiny blocks used to construct relevant

representations like feature columns, not the main target of the analyses.



Figure 37: Feature visualization as a technique for sampling the manifold of possible activations of
a CNN. Note that in this example, the original 528-dimensional manifold was projected down to 3
dimensions to enable visual overview. Left: visualizing basic units of interpretability like neurons
or channels result in a scarce sampling of the manifold. Middle: Activation Atlas performs
dense sampling, providing a holistic perspective on the space of possible activations. Right:
Distilled Class Factors Atlas, due to the altered set of activation vectors used for the analysis,

yields a manifold unlike the one of the original Activation Atlas, yet still sampling it extensively.

e Feature columns (linear combination of channels) are vectors denoting points in the original
space of activations. They are a much more meaningful representation to work with when

sampling the manifold; however, they still yield sparse results if studied in isolation.

e Activation Atlas performs dense sampling, providing a holistic perspective on the space of
possible activations. The main caveat with this technigue is that it requires tremendous
computational resources to 1) get the activation tensors for over 1 million images from the

ImageNet dataset and 2) generate hundreds of feature visualizations.

¢ Distilled Class Factors Atlas identifies latent clusters of activations in the original space by
automatically determining which factors (feature columns) attribute strongly to a classifica-
tion result. A significant decrease in the number of feature columns to look at (achieved by

careful filtering and averaging) scales down the analyses to a level feasible for humans.
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When sampling the manifold of possible activations of a CNN, the importance of choosing an
appropriate unit of interpretability to work with manifests itself even more strongly than in previous
tasks. To obtain a systemic view on the CNN’s behavior, it is insufficient to work with simple
neurons or channels. Per-image studies of distinet feature columns (as it was the case with neuron
groups) are likewise not enough—the amount of data to examine quickly reaches levels infeasible
for human analysis. On the other hand, the innovative nature of CNN Codes [27] and Activation
Atlas [12] is hard to overestimate—these techniques were exactly what the field of interpretability
needed to study a complex nature of CNNs' data representations at scale. A proposed Distilled
Class Factors Atlas extends the space of available interfaces by narrowing down the analysis—
it yvields a class-specific manifold without the need to precompute a full atlas, allowing to draw

conclusions about a sizable part of the activation space with limited computational resources.

4.4 Class Activation Atlas

It might be beneficial to isolate feature columns that strongly attribute to a class of interest and use
them to construct a “specialized” version of the Activation Atlas, instead of using activation vectors
collected from all images available in the entire dataset. Feature columns that either contribute to
the class of interest the most or whose logit values have the highest overall magnitudes (even if the
top class they support is not the target one) can be used to generate Class Activation Atlases [12].

Figure 38: Comparison of standard Activation Atlas and Class Activation Atlas. Note the differ-
ences in resulting manifolds. Images of atlases retrieved from [12], licensed under CC BY 4.0.


https://creativecommons.org/licenses/by/4.0/

Class Activation Atlas exposes feature columns that are used by a CNN to process the inputs
belonging to the same class. It is as if the CNN Codes methodology was followed, but only for
the examples of a single class, and with the results seen through the eyes of the network (thanks
to feature visualization). Figure 39 illustrates a sample Class Activation Atlas generated for the
inputs belonging to a red fox class, with the activation vectors collected from the mixed5b layer
of the InceptionV1 model. As this layer is the very last inception module of the network, its data
representation is highly abstract. When visualized, the activation tensors of such complexity are
often hard to interpret. Still, one can observe red fox’s snouts (bottom-right), fur (center and
bottom-right), legs (center), and various types of backgrounds (top-left).

Figure 39: Sample Class Activation Atlas of the aggregated activation vectors from the mixed5b
layer of the InceptionV1, collected from the images belonging to a red fox class. In spite of concepts’
complexity, it is still possible to observe red fox’s snouts (bottom-right), legs (center), and various
backgrounds (top-left). Image retrieved from [12], licensed under CC BY 4.0.
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“"CROSSWORD PUZZLE" "CROSSWORD PUZZLE"
FILTERED BY TOP RANK FILTERED BY OVERALL MAGNITUDE

Figure 40: Activation vectors filtering techniques for Class Activation Atlas generation. Each icon
is labeled with the top class it supports. Images retrieved from [12], licensed under CC BY 4.0.

In the example from Figure 39, only the activation vectors that attributed the most to the
target class were used to generate the Class Activation Atlas. It is, however, possible to apply a
different filtering approach: from all available feature columns (no matter what is the top class
they contribute to), select the top-n (e.g. top-2000) in terms of the magnitude of their overall
attribution to the class of interest and use those to generate a Class Activation Atlas.

Figure 40 illustrates an example of a “crossword puzzle” class to highlight differences that the
two filtering techniques may yield. Careful analysis allows several interesting conclusions to be
drawn. First, note that selecting activation vectors that attribute the most to the class of interest
(left part of the figure) produces much more uniform results, focused specifically on the concepts
related to a crossword puzzle. Such filtering approach prevents potentially valuable correlations
from being exposed, since these may come from feature columns that are shared among many
classes and that do not necessarily contribute to the target class the most. Secondly, please have
a closer look at the right part of the aforementioned fipure. Here, top-2000 activation vectors
with the highest overall magnitude (value) of the attribution score towards the class of interest
were selected [12]. Each icon is labeled with the top class it supports. Interestingly, concepts that

contribute to classes like “coffee mug”, “ballpoint”, “plate”, and of course “crossword puzzle” were
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revealed, shining new light on the family of abstractions that participate in the “crossword puzzle”

classification, exposing correlations that appear very natural and intuitive for human readers.

4.5 Distilled Class Factors Atlas

To generate a Class Activation Atlas, it is necessary to precompute activation tensors for all
images available in the dataset. Next, a single feature column is randomly selected from each of
those tensors. Then, score vectors associated with every feature column (obtained by computing
a gradient of the score w.r.t. the original activation tensor) are used to determine how a concrete
activation vector influences every possible output class. It is this additional attribution information
that makes it possible to filter feature columns that are important to predict a target class the
atlas is generated for.

Originally, random sampling of the activation tensors was used to address the problem of an
almost intractable amount of data to process (if all feature columns were to be analyzed). Even
with just a single randomly selected activation vector in each case, with over 1 million images the
strategy was still able to yield meaningful results, reducing the extent of the analysis by at least two
orders of magnitude®. The study was possible thanks to a high number of diverse examples—there
were no significant improvements visible when the number of data points reached over 100000
(below that number, however, generated atlas were not visually appealing [12]). It follows that,
from a statistical point of view, 100000+ images were sufficient to sample the original manifold of
possible activations densely enough so that the resulting atlas was representative of the underlying
data distribution. But what if there is not enough data to work with? Is random sampling the
only strategy that can be used to extract important information from the activation tensors to
better understand the behavior of convolutional networks?

In section 2.5.5, the idea of neuron groups was introduced. It is based on the assumption
that there exists a set of higher-level concepts (specific linear combinations of channels) in the
image that can be automatically extracted from the activation tensor of an arbitrary layer using
matrix decomposition. Matrix decomposition factorizes the activation tensor into a product of two
matrices: F' (linear combinations of channels = “what” is there in the activation tensor = concepts)
and S (latent spatial factors = “where” the concepts are). Please refer to eq. (6) for further details.

The analysis of latent factors with neuron groups scales the problem from hundreds of feature

columns to inspect down to just a few (often around 6-8 per image). That aspect, together with

31f all feature columns were to be used, there would be tens or hundreds of them for each input image, depending
on the layer of interest.
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the fact that the extracted concepts are often relatively easy to interpret, is what makes the matrix
decomposition a suitable technique to use when the goal is to robustly identify distinet feature
columns. One thing to keep in mind is that the resulting concepts do not necessarily exist as-
is (in the form obtained during the factorization procedure). Rather, they should be seen as an
approximation of the actual feature columns, which represents a group of similar activation vectors.

As compelling as the groups of neurons are, they were not designed to draw comprehensive
conclusions about the models’ behavior. Instead, they provide per-image insights. There is,
however, a captivating use case for matrix decomposition: the way it extracts concepts could
replace a random sampling strategy in the process of Activation Atlas generation. That particular

idea led to the creation of a novel interpretability interface—Distilled Class Factors Atlas.

Figure 41: Sample Distilled Class Factors Atlas, generated for a velcano class.

Figure 41 depicts a Distilled Class Factors Atlas in a way similar to how Class Activation
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Atlases were presented in the previous section—a uniform grid of icons organized into a 2D layout,
reflecting a high dimensional manifold projected down to two dimensions. Such a basic type of
visualization provides an overview of the latent factors identified in multiple images of a voleano
class, without any additional information on concepts’ influence on the classification result. In
Figure 41, feature columns from a mixed5a layer were used. The layer was chosen arbitrarily
since the corresponding atlas contains interesting icons that accurately summarize what a voleano
concept means: lava (bottom), smoke (bottom-center), landscapes related to mountains, with
varying scales and contexts (center and top).

Although the type of result a Distilled Class Factors Atlas technique yields might resemble
the one obtained using Class Activation Atlas, the generation process differs considerably. To
produce a Class Activation Atlas for a single class of interest, it is required to randomly sample
feature columns from all the images available in the dataset. Theoretically, one could sample
the activation vectors only from the examples belonging to a target class, yet this could result
in a multitude of important concepts being rejected due to the random nature of the selection
procedure. Alternatively, all feature columns from such examples could be taken into account;
however, this would introduce a lot of meaningless noise that would impede the process of atlas
generation. Distilled Class Factors Atlas addresses both of the aforementioned issues by 1) using
only the images belonging to a given class and 2) leveraging matrix decomposition to robustly
identify a small set of distinct concepts. Consequently, atlas generation is computationally efficient,
while ensuring that the important abstractions are not dismissed by any randomness. Distilled
Class Factors Atlas is not able, however, to reveal correlations between a class of interest and
concepts that are not present in the images belonging to that class. For such a use case, the Class
Activation Atlas technique would be a better choice.

An important detail that needs to be taken into consideration when generating any kind of atlas
is a grid size. It can have a tremendous influence on the interpretability of a resulting interface.
In Figure 42, three examples were provided to illustrate the impact of a grid size parameter. A
grid that is too small yields icons that are the result of averaging over too many feature columns,
obliterating the complexity of the underlying representation. The just-right size of a grid reveals
a rich set of concepts identified by a matrix decomposition. When a grid size is too large, a resulting
atlas loses its advantage of aggregating clusters of the existing abstractions, instead, displaying an

overwhelming amount of icons to analyze.
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Figure 42: Influence of a grid size on the generated atlas. Left: too small grid yields the icons
that are the result of averaging over too many feature columns, obliterating the complexity of
the underlying representation. Middle: just right size of a grid reveals a rich set of concepts
identified by a matrix decomposition. Right: when a grid size is too large, a resulting atlas loses its
advantage of ageregating clusters of the existing abstractions, instead displaying an overwhelming

amount of icons to analyze.

4.5.1 Factors Are Not Created Equal

When analyzing icons in the atlases, it would be exceptionally useful to be able to determine how
important a given concept is to a classification of a class of interest. In the original work [12],
this kind of information for full Activation Atlases was provided in two different ways: 1) scaling
the icons (the more points in a cell of a grid, the larger the resulting icon) and 2) altering icons’
transparency (the stronger the attribution to the class of interest, the less transparent the icon)?.
While the first one is a basic heuristic that should work reliably only if thousands of data points
are available (based on the laws of statistics), the second one estimates the importance of a concept
by averaging over the attributions of all feature columns that fell into the same cell in a grid. The
attributions are calculated by linearly approximating the computation that occurs in the part of the
convolutional network that follows the layer the atlas is being generated for. Such approximation
is then used to obtain a single scalar value indicating the influence of a specific concept on a class

of interest. To clarify, the aforementioned process can be expressed mathematically as follows:

height width depth

S S S A Hovs, a0

=1 =1 d-1

4Neither of these were used in the process of Class Activation Atlases generation, though.
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where a is the resulting scalar value denoting the sum-reduced attribution of the concept to the
class of interest, A is the 3D attribution tensor and H is the 3D activation tensor. Tensor A is the
result of the element-wise product of the activation tensor H and the gradient of the logit of class ¢
w.r.t. that activation tensor. Equation (14) represents a form of a gradient ® input attribution
technique, with the input being an activation tensor. The linear approximation is suitable when
operating on a feature column level; however, it does not directly apply to latent factors. To
include the concepts’ importance in the atlas, a different approach needs to be taken.

In [49], Olah et al. introduced the neuron groups’ attribution method that can be used to esti-
mate the importance of factors obtained from the activation tensor decomposition. In the previous
chapter, an improvement over their technique was introduced, namely: Latent Factor Attribution.
Combining LFA with Distilled Class Factors Atlas yields a novel type of visualization—class-
specific atlas that includes the well-grounded attribution information. To better understand the
value provided by such a hybrid interface, consider the following 2D layout with a basic atlas:

Space of volcano factors mapped with UMAP
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Figure 43: A 2D projection of class-specific latent factors, together with a basic atlas. The size

and color of points correspond to the values of sum-reduced LFA attribution tensors.

The layout on the left differs from the ones presented before—this time it is not a uniform set
of points, but rather a diverse visualization. Points’ sizes and colors depend on a sum-reduced
attribution (the former based on an absolute value): gray denotes “neutral to the classification”,
blue means “inhibitory to the class of interest” and red is “supporting the prediction of a target

class”. Here, the attribution is computed using the LFA technique. The juxtaposition of the
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raw manifold projection with the atlas, as illustrated in Figure 43, makes it possible to observe
the clusters of points that specific icons represent and to draw some initial conclusions about
their impact on the classification result. Such a comparison, however, is neither efficient nor a
particularly effective in assessing factors’ importance. Instead, the attribution information can be
directly linked with the Distilled Class Factors Atlas by altering icons’ size and opacity.

Figure 44: A basic atlas (top-left), compared to the ones with the LFA information incorporated.
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In Figure 44 one can clearly see how different the basic atlas (top-left) is from the atlases
that have the LFA attribution information incorporated into them. Top-right atlas has the icons’
opacity mapped to the scalar attribution: the more opaque the feature visualization is, the higher
its importance. Bottom-left atlas, on the other hand, alters icons’ scale instead of the opacity, with
the same rule being applied here as well: the larger the icon is, the more it influences the class
of interest. Bottom-right atlas applies both opacity and scale modifications. The mathematical
formula to obtain target values of the parameters to be modified is as follows:

exp[a; - max(a)] )
(@)~ (5 Frpter mas(aT) o)

where m(a;) is a value between 0 and 1, denoting a scale or opacity modifier (0: “zero size”

and/or “fully transparent”; 1: “original scale” and/or “fully opagque”), a is the vector of sum-
reduced attribution values (see eq. (14) for details on obtaining a single element, denoted as a;
in the equation above), and s is the smoothing factor that enables fine-grained control over the
obtained visualizations (value between 0 and 1, inclusively). Equation (15) is essentially a standard
softmax function, modified by subtracting max(a) from the value to be exponentiated, with the
result raised to the power equal to a smoothing factor 5. The subtraction is used to ensure that
neither overflow nor the underflow will occur in the computation. In Figures 45 to 51 one can find

examples illustrating how manifold projections and the corresponding atlases for a velecano class
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vary across the layers of the InceptionV1 network.
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Figure 45: Projected manifold and corresponding atlas for mixed4a layer of the InceptionV1.

7



space of volcano factors mapped with UMAP

1.0 -

081 . ' v . 34
-+ i .

0.6 M > . 25

0.4 - 3 13

0.2

0.0 - - 11

T T T T T T —- -14
0.0 0.2 0.4 0.6 0.8 1.0

Figure 46: Projected manifold and corresponding atlas for mixed4b layer of the InceptionV1.
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Figure 47: Projected manifold and corresponding atlas for mixed4e layer of the InceptionV1.
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Figure 48: Projected manifold and corresponding atlas for mixed4d layer of the InceptionV1.
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Figure 49: Projected manifold and corresponding atlas for mixed4e layer of the InceptionV1.
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Figure 50: Projected manifold and corresponding atlas for mixed5a layer of the InceptionV1.
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Figure 51: Projected manifold and corresponding atlas for mixed5b layer of the InceptionV1.



4.6 Discussion and Limitations

To study a multitude of Distilled Class Factors Atlases, a dedicated web interface has been created
(see Figure 52). The resource is available at https://bmiselis.github.io/atlases.html. It is
possible to explore any layer of interest (all mixed4* and mixed5* layers are available), together
with a class of choice from the following: grand piano, sax, scuba diver, indian cobra, african
elephant, dalmatian, peacock, red fox, giant panda, tarantula, zebra, dam, sea shore, and volcano.
These particular classes were selected due to the fact that each of them is very characteristic and
easy to interpret. Some represent an instrument or a distinet animal species, while the other depict
more abstract concepts like a landscape or a geological structure.

Another aspect that can be controlled in the interface is a grid size, with the values ranging from
3x 3 to 10 x 10. Additionally, users can control smoothing factors for icons’ size and transparency
independently (transparency = 1 - opacity). All of the aforementioned tunable parameters provide
interesting insights into the concepts that attribute to a given class and the way their underlying

representations evolve in the consecutive layers of the convolutional network.
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Figure 52: A web interface to explore data from Distilled Class Factors Atlas experiments.
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One of the main questions of this chapter is the following: do Distilled Class Factors Atlases
help interpret the class-specific behavior of a convolutional network? According to the subjective
opinion of the author of the thesis, the answer to this question is: yes, they do. It cannot, however,
be proved mathematically in an objective way. Instead, several case-studies were described below
to indicate what kind of insights the proposed interface provides and why these can be perceived
as valuable in the process of an algorithm’s comprehension.

Naturally, each image contains (or at least should contain) an “object” and a “background”.
The background is the surrounding of the instance, i.e. a context in which it occurs naturally.
When extracting latent factors from the activation tensors, a subset of them will inevitably be
related to that context. The important question here is whether this additional information is
actually used by the network while making a prediction, or is it, rather, discarded and does not
participate in the classification. To address this question, three examples are provided in Figures 53
to 55 (with captions containing per-case analysis). For each case, the atlas was generated using
factors extracted from a mixed4e layer, with the left visualization being a basic distilled class

(without the attribution) and the right one incorporating the concepts’ importance.

entire
= | elephant
| 3 ﬁl‘“ ‘I. “

Figure 53: Background’s influence on the prediction of the “african elephant” class. The upper
cluster contains concepts directly related to the “african elephant” class, while the icons in the bot-
tom depict various kinds of background. Model’s behavior matches human intuition—background

does not influence the prediction of the “african elephant” class.
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Figure 54: Background’s influence on the prediction of the “giant panda” class. Multiple interesting
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concepts were identified, yet the one depicting the panda snout remains the most important.
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Figure 55: Background's influence on the prediction of the “grand piano” class. Multiple interesting

concepts were identified, yet the one depicting the entire instrument and something similar to grand

piano’s strings remain the most important ones for the classification.
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It is very reassuring that the actual behavior of the convolutional network under investigation
matches human intuition—both the examples provided in the text and the ones that were not
presented in this thesis (due to the volume of the visualization) indicate that class's instances
attribute to the classification result the most, not the background or the other vague contextual
information. Of course, there are cases for which it is non-trivial to determine what is an instance
of the class and what the background is. Good examples would be categories like “volecano”,
“geashore” or “dam”. For these, the boundary between the important concept and “the rest” is
rather vague and hard to express even for humans; hence, they were not included in the analysis.

Another insight that the Distilled Class Factors Atlas with the attribution information offers
is the following: it is possible to compare concepts that attribute to given classes the most. Such
a juxtaposition makes it possible to determine whether there are any visual similarities (or differ-
ences) between the underlying abstractions. Intuitively, an expected result would be that if there
are classes that are related to one another in some sense, then there should be similar concepts
identified by the model while processing them. An example of such classes could be “red fox”, “dal-
matian” and “giant panda”. The animals belonging to these species all have fur, snouts, legs, torsi,
eyes, and ears. Is it true that abstractions of these types occur in the layers of the InceptionV17 If
80, how many layers does it take for the representation to specialize so that the differences between
the concepts are clearly visible? The following examples from mixed4a, mixed4b, and mixed4c lay-
ers (Figures 56 to 58) show that there indeed are close similarities between the concepts, provided

that the representation is extracted from the early enough part of the model.

(a) Dalmatian (b) Red fox (c) Giant panda

Figure 56: Comparison of the concepts identified in mixed4a layer that attribute the most to
the class of interest. Note how similar the core abstractions are: they all seem to depict proto-
snouts with a multitude of eves and noses. There are, however, subtle differences in textures that

correspond to the target classes: “dots” for a dalmatian category, or clear “red fur” for the fox.
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(a) Dalmatian (b) Red fox (c) Giant panda

Figure 57: Comparison of the concepts identified in mixed4b layer that attribute the most to the

class of interest. Concepts begin to specialize, with clearer distinction between the categories.

(a) Dalmatian (b) Red fox (c) Giant panda

Figure 58: Comparison of the concepts identified in mixed4c layer that attribute the most to the
class of interest. At this point, the abstractions that influence the classification the most (in a given
layer) differ significantly between examined categories. Specialized snout detectors appear across

all three classes presented in the figure.

The final use case of the Distilled Class Factors Atlas presented in this section relates to
quite specific behavior of the network that can be observed between mixed4e and mixed5a layers.
A phenomenon that could be called “concept merging” manifests itself when comparing the atlases
of the same class generated for mixed4e and mixed5a layers. All of the scenarios were analyzed
in detail and put as a caption for Figures 59 to 61 below. However, here is an example of what
“concept merging” means: if there are “elephant”, “grass/ground” and “water” concepts in the
mixed4e layer for the “african elephant” class, then it is interesting to observe “elephant on the
grass”, “elephant on the ground” and “elephant by water” concepts in the atlas for a mixed5a
layer. It is as if the weights of the mixed5a layer assembled the incoming concepts into the more

complex ones (if it is true, it would be very similar to the idea of circuits [11]).
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(b) Layer: mixed5a

Figure 59: Concept merging phenomenon for the “african elephant™ class. Core concept (elephant)
is merged with the more contextual ones (ground, grass and water) in the mixed5a layer, yielding
the “elephant on the grass”, “elephant on the ground” and “elephant by water” abstractions.

Interestingly, the core concept is present across all icons in the atlas of the mixed5a layer.



dam with
waterfall

dam in the
complex scenery

(b) Layer: mixed5a

Figure 60: Concept merging phenomenon for the “dam” class. Although in this case it is harder
to assign names to the concepts visible in the mixed4e atlas, one can still notice a river, valley and
waterfall abstractions, together with the core concept—dam. Mixed5a layer merged the “dam”

abstraction with the remaining ones, producing “dam with a waterfall” and a multitude of others,

collectively called “dam in the complex scenery” in the figure.
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scuba diver
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(water + context)

(b) Layer: mixed5a

Figure 61: Concept merging phenomenon for the “sea shore” class. In this example, it is quite
easy to detect “sand”, “rocks” and “watery sceneries”. Arguably, there appear to exist “city with
a bridge” and “scuba diver” concepts, yet it is not totally clear. After concept merging in mixed5a
layer, the resulting atlas contains a wide variety of sea shore sceneries (essentially: water in different
contexts). One can spot a visualization resembling “scuba diver by the shore” abstraction as well,

although it is quite moot. 38



Distilled Class Factors Atlas is not flawless. The major limitation of a proposed interface is
the fact that has already been mentioned before: it cannot, by design, identify concepts correlated
with a class of interest that do not appear in the images belonging to that class. Even though
the Distilled Class Factors Atlas deliberately limits the analysis and requires examples to be of
the same type, it is important to acknowledge such a constraint. If one's interest is to conduct
a broader study, however, Class Activation Atlas is a good candidate and should be used instead.

Another difficulty while working with Distilled Class Factors Atlases is the fact that their
generation process is a computationally demanding task. When using a single GeForce GTX
1080 Ti, it takes between 2 to 5 minutes to obtain the atlas, depending on the number of icons.
Before a severe code optimization, it took up to 30 minutes (!) to get a single visualization.
Parallelizing the procedure by making it possible to optimize for the batch of icons simultaneously
led to a significant decrease in the computation, enabling widespread data generation.

Despite providing a new perspective on the latent representations of a CNN, Distilled Class
Factors Atlas has a flaw, at least a part of it. The problem is that icons that are there to reveal
the visual meaning of data points from a projected manifold often illustrate concepts that are
a bit ambiguous in terms of their interpretation, especially for later layers of the network (like
mixed5b). In the current form, the interface does not offer any additional details related to feature
visualizations that could help identify the true nature of the abstraction. A good example (and
a potential extension) would be to display subset images the concepts in a given cell were extracted
from, together with the corresponding latent spatial factors. Combining feature visualization with

image samples and spatial information would increase the method’s interpretability.
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Chapter 5
Conclusions and Future Work

In this work, the objective was to uncover the world of inner representations constructed by a single
convolutional network—InceptionV1. The choice of a model was based on the conclusions drawn
from the preceding research [12, 48, 49]: the InceptionV1 uses concepts that are particularly easy
to interpret when visualized with various feature visualization technigues.

To meet this objective, two novel techniques were proposed in the thesis: Latent Factor At-
tribution and Distilled Class Factors Atlas. Thanks to the insights they provided, they made it
possible to see the world through the model’s eyes and, to some extent, understand how it comes
to the specific outputs given an input image.

Latent Factor Attribution is a mid-level attribution method that allows for quantification of the
importance of latent factors identified in the hidden layers’ activation tensors by matrix decomposi-
tion approaches like NMF and PCA. When using LFA, it is possible for the CNNs' interpretability
researchers to develop new intuitions on how visual reasoning occurs in the convolutional net-
works, especially in terms of what contributes to the complex conclusions that are often regarded
by laymen as “magical”. Activation tensor decomposition, when coupled with feature visualiza-
tion and LFA, shines new light on how the information is represented in the entire groups of
neurons. Through the inspiring work on distributed coding scheme in neuroscience, the field of
machine learning interpretability is extended by LFA—a new building block that, when used in
the right context, can yield captivating results, like the ones that were included in a supplementary
interactive Activation Explorer interface.

Distilled Class Factors Atlas creates a summary of concepts that are strongly associated with
a given class. It shifts the focus to class-wise analyses and helps to form conclusions covering
the visual processing of entire categories, not merely individual samples. It extends the idea of

Class Activation Atlas [12] to increase the feasibility of computation and reliability of the obtained
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results. Here, feature columns are not randomly sampled to construct the atlas anymore. Instead,
distinet concepts (latent factors) are extracted from a multitude of images belonging to the same
class and are then visualized collectively. Combining the representational strength of Activation
Atlases, together with the LFA-based attribution information, yields the interface that helps to
keep the researcher’s attention only on the regions of the atlas that truly matter for the classification
of a class of interest.

There exist potential future research avenues that could either extend the Distilled Class Factors
Atlas interface or apply it to the real-world problems. Omne idea is to leverage the technique to
analyze the incorrectly predicted inputs to uncover the reasons for mistakes and, potentially, help
fix the model’s laws. A proposed method could be an alternative debugging approach—instead of
going through the code of the algorithm, researchers could reason about it on a different level of
abstraction by directly inspecting the underlying representations. Potentially, this would provide
the kind of information they need to redesign the architecture so that it constructs the concepts
they want it to.

Another future goal could be to use the Distilled Class Factors Atlas to better understand the
differences between two classes that are strongly related to each other, e.g. to understand in details
how a convolutional network decides whether the input image belongs is the “african elephant” or
the “indian elephant”. Such insights would contribute to the increase in the trust of the model—if
it truly attended the meaningful concepts, the “black box” would instantly become less opaque.

Due to limitations in computational resources and time, it was not possible to robustly extend
the analysis presented in this thesis to other important convolutional networks. The natural next
step would be to apply the proposed techniques on models like ResNet, or the EfficientNet family.

Last but not least, by observing the current initiatives like the Circuits project [11], the author
of the thesis wonders whether careful decomposition-like approaches could be leveraged to robustly
identify the neurons that act in a distributed way across multiple layers, as a result representing
interpretable abstractions—circuits.

The contributions from the field of interpretability are truly hard to overestimate. Thanks
to thorough and careful analyses, some important questions have already been answered. Novel
research teaches humans a lot about visual processing that takes place in convolutional networks.
Most importantly, though, one day, it might help us redefine how we perceive the mechanisms that
occur in our brains daily, imperceptibly. Computer vision was supposed to be a summer project
for a small group of students. It has been over 50 years from that time, and not only does it remain
unsolved, but it constantly provides new insights that change the way we think about machine

learning algorithms. That is the real beauty of science.
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