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Abstract

Optimal flight trajectory generation algorithms for urban air mobility

Weihong Yuan

The concept of Urban Air Mobility (UAM) has gained significant attention recently. In

this vibrant domain, the capability of generating an optimal flight trajectory is of essential

importance. This study aims to provide analytical solutions to generate the optimal tra-

jectory in the three most common UAM scenarios. The first case is the comfort-optimal

trajectory for drone package delivery and air taxis carrying passengers. The cost is eval-

uated as a linear combination of acceleration (or specific support force) and flight time.

The second case is the control-effort-optimal trajectory for hovering vehicles. Hovering ve-

hicles are expected to be the dominant model of air taxi. The objective function is a linear

combination of thrust and flight time. The third case is the Direct-Operating-Cost (DOC)

optimal trajectory for electric fixed-wing aircraft, on which all major aerospace companies

are working. DOC is a linear combination of energy consumption and flight time.

The trajectory optimization problems are formulated as optimal control problems and

the Pontryagen’s Minimum Principle is applied to solve them. The solution is the reference

position as a function of time, which is a guidance law and is fed to the downstream flight

controller. The biggest advantage of an analytical solution is to reduce the computational

time. It can also be integrated with other flight path planning methods. Several simulation

examples will be presented to show the effectiveness of the proposed method.
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Chapter 1

Introduction

Recently, the concept of Urban Air Mobility (UAM) has gained significant attention.

UAM enables safe and efficient air traffic operations in a metropolitan area [5] as illustrated

in Fig. 1. In such future urban airspace, there are aircraft delivering packages or transporting

passengers. The aircraft are of different types, such as hovering vehicles and fixed-wing.

In this vibrant domain, the capability of generating an optimal flight trajectory from the

origin to the destination is of essential importance. From the customer’s point of view,

an important question is what is the optimal flight trajectory for passenger comfort and

package delivery. From the operator’s point of view, an important question is what is the

optimal trajectory minimizing the operating cost.

This study aims to provide analytical solutions to generate the optimal trajectory in

three target scenarios. Analytical solutions not only reduce the computational time but

provide physical insight as well. Additionally, they can also be integrated with other flight

path planning methods.

Figure 1: UAM illustration [1]
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To achieve a certain level of abstraction, so as to provide beneficial robustness in flight

trajectory tracking, it is favorable to have a double layered system (Fig. 2), namely a Flight

Management System (FMS) as the upper level and a Flight Control System (FCS) as the

lower level. A FMS generates waypoints or continuous guidance and feeds them into the

FCS, whose task is to control the aircraft to track the trajectory [6]. In this research, we

work on FMS only. Note that the outputs of the FMS, such as position and attitude as a

function of time, can be treated as reference inputs to the FCS. On the other hand, in most

applications the dynamics of the FCS, such as speed variation for example, are fast enough

to be neglected by the FMS.

Figure 2: Layered structure of FMS-FCS

1.1 Literature Survey

Drones are more and more capable of a wide range of applications such as remote sens-

ing, the delivery of packages and agricultural spraying [7]. Many companies are conducting

research and development on delivery using drones because unmanned delivery can save

costs and time since drones are not constrained by traffic jams [8]. Drone organ delivery for

transplants appears naturally as a potential application because the payload is not usually

very heavy, it does not take much space to be transported, and its delivery is typically an

emergency [9]. Reference [10] addressed the security problem with drones for organ delivery

such as hacking and privacy issues. Since the organs or any other precious and fragile parcel

may be damaged by contact, friction, or collision due to the motion of the carrier, one needs

to find a way to fly the carrier to minimize these damages during flight. This can be done

by minimizing the dynamic force transferred to the package. Another application scenario

that may appear soon in the future for the methodology proposed in this study is urban

transportation and passenger comfort. Europe has adopted the Flight Path 2050 Challenge
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demanding that 90 percent of travelers are able to complete their journey door-to-door

within four hours by 2050 [11]. A similar concept took its shape earlier in the USA named

SATS (Small Aircraft Transportation System), aiming at dealing with the saturation of

existing transportation systems [12]. In this case, travel comfort and satisfaction may be-

come the number one factor, which is strongly related to the body acceleration transferred

by the aircraft to the passengers [13]. Therefore, it is essential to be able to generate an

optimal flight trajectory onboard in real-time. Many trajectory generation methods have

been developed, such as the sampling-based approach [14], artificial heuristic approach [15],

geometry-based approach [16], BADA model-based approach [17] and dynamic program-

ming [18], to name a few. Several articles have studied optimal flight trajectories for different

objectives. References [6, 19] solved the optimal control problem for fixed-wing aircraft by

splitting the flight profiles into three segments (climb, cruise, and descent) and yielding an

optimal speed profile for the given (regulated) flight path. References [20–22] studied the

optimal trajectory for the shortest flight time. Reference [23] provided a numerical solu-

tion of the optimal energy-efficient trajectory of a quadrotor UAV assuming that the initial

and final angular velocities of each motor are identical. Reference [24] tackled the minimal

acceleration trajectory for quadrotors in the 2D vertical plane, while reference [25] studied

the minimal control effort trajectory in the vertical plane considering first order drag effects

in one direction. In chapter 2, we present the flight trajectories that optimize the passenger

comfort and the package delivery performance.

After viewing the optimal trajectory from the passenger’s point of view, we continue to

look at the problem from the operator’s point of view in chapters 3 and 4. Since the model

of the aircraft must be considered during the problem formulation, we deal with two most

common models: hovering vehicles and fixed-wing aircraft. In chapter 3, we determine the

flight trajectory which optimizes the control effort.

The research of optimal trajectories from the operator’s point of view starts with fuel

propelled fixed-wing aircraft. The authors in [26] investigated the fuel-optimal trajectory

and summarized existing dynamic models to formulate the problem, which inspired our

problem formulation. In chapter 3, the model of hovering vehicles will be studied as shown

in Fig. 3. The articles [20, 27] studied the time-optimal trajectory for quadrotors. Feasi-

ble ranges of the control inputs were studied in [27]. Reference [24] tackled the minimal

acceleration trajectory for quadrotors in a 2D vertical plane. The work presented in [28]

was on snap-optimal trajectory. The research published in [29] studied the minimal control

effort trajectory in the vertical plane with 1D drag. The study was performed only for zero

boundary conditions taking the pitch angle and thrust as control inputs. It was claimed

in the paper that a completely analytical solution was not possible. The authors in [30]

3



Figure 3: Hovering vehicle, passenger drone [2]

investigated a similar problem even though it was interpreted as the energy-optimal trajec-

tory. A second order drag model was considered and some constraints on states and control

inputs were incorporated. However, the problem was solved in 1D. Unfortunately, the 3D

trajectory would not simply be the combination of the three decoupled 1D trajectories.

Similar to [29], only the optimal control law was obtained instead of an explicit solution

of the optimal trajectory. Reference [23] solved numerically the optimal trajectory for a

quadrotor UAV with 16 states.

By contrast with the previous literature, the objective of chapter 3 is to analytically

solve the optimal trajectory by trading-off control effort and flight time. The benefits of the

result are threefold, 1) it implies a potential longer lifetime of the actuators and less main-

tenance cost, 2) it implies less energy consumption since control effort is directly related to

energy consumption, 3) it might require less space and weight for the aircraft at an early

design stage. Most published studies on trajectory generation in wind were conducted for

fixed-wing aircraft. Article [31] analyzed wind effects (specifically head and tail wind) on

Direct Operating Cost (DOC) optimal cruise-descent trajectories. Reference [32] extended

Neighboring Optimal Control (NOC) to study the minimum-time problem for a horizontal

flight in a variable wind. The work in [33] determined the fuel-optimal cruise altitude con-

sidering a zero gradient of fuel consumption rate and then the time-optimal horizontal route

was computed with Dynamic Programming (DP). Candidate optimal control actions were

found in [34] to minimize energy consumption for an airship straight flight in a constant
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wind field. Reference [35] used network flow methods and Dijkstra’s algorithm to find the

shortest path while assuming a fixed airspeed and flight level. The authors in [36] applied

a genetic algorithm to study flight track optimization for North Atlantic Airspace (NAT).

Reference [37] represented lateral routes as a graph and calculated wind-optimal trajecto-

ries by a shortest-path search. Article [38] studied time-optimal path planning in a uniform

horizontal wind for stationary flights. Another way to calculate the vertical flight cost with

performance database was proposed in [39] and verified with FlightSIM and FMS bench-

marks. Reference [40] used a genetic algorithm to select the optimal speeds, altitudes and

wind for a fuel-optimal trajectory, while Dijkstra’s algorithm was used in [41] to compute

the fuel-optimal route through a 3D fixed flight network consisting of discrete waypoints.

The authors in [42] studied the optimal vertical descent route in presence of along-track

and cross wind, while assuming idle thrust. The work in [43] obtained the optimal trajec-

tory with parametric optimization. Reference [44] proposed a narrower new trans-Atlantic

route structure to take advantage of wind, specifically jet streams. Reference [45] studied

the energy-optimal cruise direction of a multirotor given a constant speed. Reference [46]

studied a time-optimal path for a quadrotor while assuming a constant airspeed. In [47],

global optimization was broken into three smaller problems: waypoint optimization, jerk-

optimal interpolation and time-optimal adaption. Reference [48] applied swarm particle

optimization to follow trajectories with more favorable wind. Article [49] computed the

time-optimal trajectory using Bellman’s algorithm on a wind grid. The authors of [50]

found a fuel-optimal path for the descent and approach phase with a combination of opti-

mal control and a modified A* algorithm. Study [51] showed differences in fuel consumption

caused by the differences between forecast and actual wind data. The work in [52] used

a Radau pseudospectral method to generate the trajectory in both steady uniform and

boundary-layer wind fields.

A bright future for aviation with less emission, lower noise levels and higher operating

efficiency was opened by electric aircraft, such as the Airbus E-fan [53] depicted in Fig 4. An

essential functionality in demand is performance-optimal trajectory [54] onboard generation.

The authors of [55] conducted a comprehensive review of multi-objective flight trajectory

optimization techniques. Reference [56] reviewed system modeling and optimization meth-

ods for an air traffic management system. Another recent review on mathematical modeling

and objective functions for trajectory optimization was presented in [57]. Paper [58] studied

climb and descent trajectories using the energy-state approximation. Thrust was considered

as a function of speed and altitude for some cases. The result was a control law of speed and

altitude for each value of the energy-state. Article [26] summarized various aircraft models

to formulate the optimization problem and selected also the energy-state model to address

5



Figure 4: Airbus E-fan [3]

fuel-minimum and time-minimum trajectories, respectively. Thrust and path angle were

chosen as the control variables. Maximum thrust for climb, steady cruise, and minimum

thrust for descent were assumed. The work in [59] investigated the DOC-optimal longi-

tudinal path for a short-haul flight using the energy-state equations. Effects of horizontal

along-track wind were also included. Reference [60] surveyed and summarized the studies

on the DOC-optimal longitudinal path up to the 1980s. The energy-state methods inspired

us treating the horizontal position as the independent variable instead of time. Paper [61]

examined the impact of the procedural constraints (such as maximum thrust climb, steady

cruise, and minimum thrust descent) on the total cost while assuming a constant mass. The

authors claimed that if the fuel consumption is independent of thrust, constrained thrust

trajectories gave identical performance to free thrust trajectories in terms of fuel consump-

tion. Note that the constant mass assumption is verified by electric aircraft. Article [62]

investigated the fuel-optimal longitudinal path with a point mass model using Pontryagin’s

Minimum Principle (PMP) and singular perturbation theory. Reference [63] explored the

fuel-optimal climb-out considering turning. It was claimed that decoupling turning and

climbing was more efficient than simultaneously turning and climbing. Hence, we only deal

6



with the longitudinal flight in this study. The fuel-optimal longitudinal path to absorb

delay in presence of altitude-dependent horizontal wind was studied in [31]. The authors

of [6] considered the DOC-optimal vertical path by applying PMP to each phase individu-

ally. For example, when dealing with the climb phase, the terminal cost was approximated

with the cruise cost rate and the estimated cruise time. The shooting method was used to

find the optimal speed. The DOC-optimal cruise for electric aircraft was addressed in [64].

Article [18] used lift coefficient and thrust as inputs and applied Dynamic Programming

(DP) to solve the fuel-optimal vertical route. Collocation methods were used in [65, 66]

to compute the optimal vertical trajectory. In each phase, one procedure constraint was

enforced such as constant airspeed climb, constant altitude cruise, and constant Mach num-

ber descent. The solution was verified with backward integration of the computed terminal

states and costates to recover the initial values. Both the vertical and horizontal paths

were addressed in [66]. Reference [67] applied a pseudospectral collocation method. More

details on collocation methods can be found in [68, 69]. Paper [39] provided an example

of parameterization and heuristic methods for trajectory generation. A genetic algorithm

was presented in [70] to find the fuel-optimal speed and altitude for a vertical flight. Pa-

per [71] applied hybrid optimal control (HOC) to find the fuel-optimal vertical path. The

control input was throttle. The trajectory was split into three phases and in each phase a

constraint was imposed such as climb throttle in climb, constant altitude cruise and idle

throttle in descent. An indirect numerical method was developed and the result was the

bang-singular-bang solution. A set of initial guesses were required for the solution.

Overall, Table 1 collects what is missing in the open literature for the three defined

problems.

Table 1: Missing points in open literature

Scenarios Literature Missing points

Problem 1 [7]-[25] 3D analytical solution for arbitrary boundary conditions, ex-
plicit formula for the cost

Problem 2 [26]-[52] 3D analytical solution for arbitrary boundary conditions in a
wind field

Problem 3 [53]-[72] Optimal solution for all phases of flight in a wind field

The structure of this thesis is as follows. Chapter 2 presents the flight trajectory that

optimizes the passenger comfort or package delivery performance. In chapter 3, we provide

the trajectory that optimizes the control effort and flight time for hovering vehicles. The

trajectory that optimizes the energy consumption and flight time for electric fixed-wing

aircraft is found in chapter 4. Concluding remarks are stated in chapter 5.
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1.2 Contributions

The contributions of this thesis are optimal trajectory solutions to the following three

problems:

Problem 1: Optimal trajectory for passenger comfort and package delivery

• The proposed solution determines the optimal trajectory in three-dimensional space

for arbitrary feasible initial and terminal conditions. An explicit formula for the cost

is obtained and a peak velocity constraint is enforced.

• The algorithm can be implemented in common embedded processors since it is de-

signed to use simple calculations no harder than square root and division operations.

Problem 2: Optimal trajectory trading-off control effort and flight time for hovering vehicles

• The proposed approach can find the analytical solution for either a fixed time or a

free time. Additionally, for long haul flights, an approximate solution is presented

to reduce the computational time. A characteristic parameter is proposed to decide

whether to use the analytical solution or the approximation.

• The approach is extended to satisfy peak velocity constraints.

• The optimal trajectory in a constant wind shear field is derived while respecting peak

thrust constraints.

Problem 3: DOC-optimal trajectory for electric fixed-wing aircraft

• The trajectory planning is formulated as a hybrid optimal control problem (HOCP)

to find the optimal trajectory for all phases of flight.

• The proposed solution does not require an initial guess of the costate, which saves

computational time.

• Altitude-dependent along-track wind is considered so that the optimal flight profile

in the presence of wind can be found.

• A maximum Mach number constraint and a maximum lift coefficient constraint are

enforced in a suboptimal solution to prevent results that are practically infeasible.
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Chapter 2

Onboard Generation of Optimal

Flight Trajectory for Package

Delivery and Passenger Comfort

2.1 Introduction

In this chapter, we present the flight trajectory which optimizes the passenger comfort.

The contributions of this chapter are:

• the proposed solution yields the optimal trajectory in three-dimensional space for

arbitrary feasible initial and terminal conditions,

• an explicit formula for the cost is obtained and a peak velocity constraint is enforced,

• the algorithm can be implemented in common embedded processors since it is designed

to use simple calculations no harder than square root and division operations.

The structure of this chapter is as follows. Preliminary information on optimal flight

modes and the detailed solution of the optimal control problem in 3D space are presented in

section 2.2. Simulation results are provided in section 2.3. Concluding remarks are stated

in section 2.4.

2.2 Optimal Trajectory

2.2.1 Optimal Flight Modes

The first step of trajectory optimization is to decide on the functional to be optimized.

The most common are:
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• Minimum time of flight,

• Maximum endurance,

• Maximum range,

• Economy mode (ECON): Minimization of the direct operating cost of flight, which is

a trade-off between the cost of energy and time-related costs,

• Optimal fragile package delivery: Minimization of a linear combination of flight time

and dynamic force,

• Optimal passenger satisfaction: Minimization of a linear combination of flight time

and total acceleration.

We will focus on the last two optimization problems.

2.2.2 Optimal Control Problem

To formulate our problem we define the state of the aircraft as x = [p1, p2, p3, v1, v2, v3]T ,

where pi are the position coordinates and vi are the velocity coordinates for i = 1, 2, 3. The

aircraft dynamics are described by

ṗ1

ṗ2

ṗ3

v̇1

v̇2

v̇3


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





p1

p2

p3

v1

v2

v3


+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




u1

u2

u3 − g

 (1)

As discussed in Chapter 1, the terms that matter in this problem are specific force

(acceleration) and flight time. This is the reason why the double integrator is a good

model. We define the running cost L(u) = 0.5uTu+CI , where CI(m
2/s4) is called the cost

index, which is the ratio of the cost of one time unit to the cost of one unit of acceleration.

Our optimal control problem is then formulated as

J = min
u

∫ tf

0
L(u)dt

s.t. ẋ = f(x, u)

x (0) = x0, xf given

u ∈ Ω

(2)
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where x is the state of the aircraft, f(x, u) is the vector field representing the dynamics (1),

Ω is the admissible set of inputs u, and tf is the flight time.

The solution of this problem will be obtained using the Pontryagin’s Minimum Principle

(PMP) [73, 74]. Writing the optimal control as u∗(t), and the optimal trajectory as x∗(t),

we define

λ =
∂J

∂x∗
(3)

H = L(u∗) + λT f(x∗, u∗) (4)

Then the necessary conditions (NC) for a minimizer are

∂H

∂u
= 0 (5)

∂H

∂x
= −λ̇ (6)

We are now ready to present the main result.

Theorem 2.2.1 The optimal flight trajectory is

p(t) =


C1
6 t

3 − C4
2 t

2 + C10t+ C7

C2
6 t

3 − C5
2 t

2 + C11t+ C8

C3
6 t

3 − Cg6
2 t2 + C12t+ C9

 (7)

where 
C1

C2

C3

 =
6

t3f


(v1(0) + v1(tf ))tf + 2(p1(0)− p1(tf ))

(v2(0) + v2(tf ))tf + 2(p2(0)− p2(tf ))

(v3(0) + v3(tf ))tf + 2(p3(0)− p3(tf ))



C4

C5

Cg6

 =
2

t2f


(2v1(0) + v1(tf ))tf + 3(p1(0)− p1(tf ))

(2v2(0) + v2(tf ))tf + 3(p2(0)− p2(tf ))

(2v3(0) + v3(tf ))tf + 3(p3(0)− p3(tf ))


[C7, C8, C9, C10, C11, C12] = [p1(0), p2(0), p3(0), v1(0), v2(0), v3(0)]

(8)

the optimal acceleration due to dynamic forces is

u∗(t) =


C1t− C4

C2t− C5

C3t+ g − Cg6

 (9)

and the optimal cost is

J =

(
CI +

1

2
g2

)
tf + g (v3f − v30) +

3∑
i=1

[
2(v2

i0 + v2
if + vi0vif )t−1

f

+ 6(vi0 + vif )(pi0 − pif )t−2
f + 6(pi0 − pif )2t−3

f

] (10)
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where vif , vi0 stand for the final and initial velocity in the ith direction, respectively, and

i = 1, 2, 3.

Proof: The Hamiltonian is

H =
1

2
uTu+


λ1

λ2

λ3


T 

ṗ1

ṗ2

ṗ3

+


λ4

λ5

λ6


T 

v̇1

v̇2

v̇3

+ CI (11)

From (1) and (5),

∂H

∂u
=


u1

u2

u3

+


λ4

λ5

λ6

 =


0

0

0

 (12)

u∗ = [−λ4,−λ5,−λ6]T (13)

The optimal Hamiltonian is

H∗ = −1

2
(λ2

4 + λ2
5 + λ2

6) + λ1v1 + λ2v2 + λ3v3 − λ6g + CI (14)

From (6) we obtain

∂H

∂p
=


0

0

0

 =


−λ̇1

−λ̇2

−λ̇3

 , ∂H∂v =


λ1

λ2

λ3

 =


−λ̇4

−λ̇5

−λ̇6

 (15)

[λ1, λ2, λ3] = [C1, C2, C3] (16)
λ4

λ5

λ6

 =


−C1t+ C4

−C2t+ C5

−C3t+ C6

 (17)

From (1) we know that

ṗ = v

v̇ =


u1

u2

u3 − g

 =


−λ4

−λ5

−λ6 − g

 =


C1t− C4

C2t− C5

C3t− C6 − g

 (18)

Define

Cg6 = C6 + g (19)
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Integrating equation (18) yields

v =


C1
2 t

2 − C4t+ C10

C2
2 t

2 − C5t+ C11

C3
2 t

2 − Cg6t+ C12

 (20)

p =


C1
6 t

3 − C4
2 t

2 + C10t+ C7

C2
6 t

3 − C5
2 t

2 + C11t+ C8

C3
6 t

3 − Cg6
2 t2 + C12t+ C9

 (21)

which is the same result as (7). The boundary conditions are

[p1(0), p2(0), p3(0), v1(0), v2(0), v3(0)]T = [C7, C8, C9, C10, C11, C12]T (22)

p1(tf )

p2(tf )

p3(tf )

v1(tf )

v2(tf )

v3(tf )


=



C1
6 t

3
f −

C4
2 t

2
f + C10tf + C7

C2
6 t

3
f −

C5
2 t

2
f + C11tf + C8

C3
6 t

3
f −

Cg6
2 t2f + C12tf + C9

C1
2 t

2
f − C4tf + C10

C2
2 t

2
f − C5tf + C11

C3
2 t

2
f − Cg6tf + C12


(23)

Solving the set of equations (22) and (23), with respect to the constants Ci, i = 1, . . . , 12,

yields (8). According to (2) and (9), the optimal cost is

J =

∫ tf

0

1

2


C1t− C4

C2t− C5

C3t− C6


T 

C1t− C4

C2t− C5

C3t− C6

+ CIdt

=
C2

1 + C2
2 + C2

3

6
t3f −

C1C4 + C2C5 + C3C6

2
t2f +

(
C2

4 + C2
5 + C2

6

2
+ CI

)
tf

(24)

Using (8) and (19) into (24) yields the optimal cost. Q.E.D.

Theorem 2.2.2 There is at least one flight time that corresponds to a stationary point of

the optimal cost. All candidates to optimal flight time are the real positive solutions of

at4f + ct2f + dtf + e = 0 (25)

for which

4at3f + 2ctf + d = tf
(
4at2f + 2c

)
+ d > 0 (26)
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where

a =

(
CI +

1

2
g2

)
c = −2

3∑
i=1

(v2
i0 + v2

if + vi0vif )

d = −12

3∑
i=1

(vi0 + vif )(pi0 − pif )

e = −18

3∑
i=1

(pi0 − pif )2

(27)

Proof: To calculate the optimal flight time, we compute

dJ

dtf
=

(
CI +

1

2
g2

)
− t−4

f

3∑
i=1

[2(v2
i0 + v2

if + vi0vif )t2f

+12(vi0 + vif )(pi0 − pif )tf + 18(pi0 − pif )2]

(28)

and equate it to zero. Since J is class C∞ for tf ∈ (0,+∞),

lim
tf→0

dJ

dtf
= −∞ < 0, lim

tf→+∞

dJ

dtf
=

(
CI +

1

2
g2

)
> 0 (29)

then J is guaranteed to have at least one stationary point. To find the stationary points of

J we must solve
dJ

dtf
= 0,where tf > 0 (30)

Let us define

F = t4f
dJ

dtf
= at4f + ct2f + dtf + e (31)

and

G =
dF

dtf
= 4at3f + 2ctf + d = tf

(
4at2f + 2c

)
+ d (32)

We see that, a > 0, c ≤ 0 and e ≤ 0. The term d can be zero, positive or negative depending

on the initial and terminal conditions. A necessary condition of optimality is F = 0, which

is equation (25). A sufficient condition for a minimum is G > 0, or inequality (26), which

finishes the proof. Q.E.D.

Remark 2.2.3 For the optimal passenger satisfaction trajectory, the same methodology can

be used with g = 0.
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2.2.3 On-board solution for optimal flight time

The optimal flight times are the real positive solutions of the equation (25) for which

inequality (26) is verified. However, some embedded processors are incapable of solving

quartic or cubic equations, complex valued arithmetic, or cubic root calculations. In this

section we propose to apply the Newton-Raphson’s (NR) method to find the optimal flight

time tf , which requires no harder than a division operation, since the derivative of each

function is pre-determined and can be represented using the boundary conditions. The

sqrt(.) operation is possibly supported in most processors but, otherwise, this can also be

replaced by a Newton-Raphson’s iteration. The Newton-Raphson’s method can fail in the

following cases [75]:

• If the initial point is outside the basin of attraction for a root the algorithm may

converge to another root,

• If the root is near an inflection point, i.e. f
′′
(x) = 0, the iteration may diverge or

oscillate, but may also converge,

• If the gradient is too small at a point, the next point may end up in another basin of

attraction or even out of the domain,

• If there is oscillation near a local extremum, which then results in one of the previous

cases.

In our case, to find the unique positive root of the 4th order polynomial (31), the

potential failures described above can be mitigated if the initial point t0 is chosen within

the zone of attraction of each target root without any inflection point or local extremum

located nearby. One can then find the optimal flight time using the following pseudocode:
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Algorithm 1 finding the optimal flight time

if d > 0 then

t = 0;

t1 =
√
−c/6;

if G(t1) < 0 then

t2 = NR(G, 0);

t3 = NR(G, t1 + 1);

if F (t2)F (t3) < 0 then

t4 = NR(F, 0);

t5 = NR(F, t3 + 1);

if J(t4) < J(t5) then

t = t4;

else

t = t5;

end if

end if

end if

end if

if t = 0 then

t1 = 1;

while F (t1) < 0 do

t1 = 2t1;

end while

t = NR(F, t1);

end if

return t;

where t = NR(F, t∗) is a routine to find the zero-crossing point of function F in the

neighborhood of t∗, defined as
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Algorithm 2 Newton-Raphson’s method

function NR(F, t0)

tk−1 = t0 − 2ε; tk = t0;

while |tk − tk−1| > ε do

tk−1 = tk;

tk = tk − F (tk)
G(tk)

;

end while

return tk;

end function

where G is the derivative of function F , ε is a parameter of termination criterion.

2.2.4 Feasible flight time satisfying a peak velocity constraint

The optimal flight time from Theorem 2.2.2 is valid for unconstrained trajectories, which

is usually acceptable for waypoint navigation on shorter haul flights. For longer haul flights

multiple constraints should be considered. This subsection deals with the optimal trajectory

with constrained peak velocity, which is the most common and practical limitation during

flight, described as

v(t)2 ≤ V 2
max (33)

According to (20),

R :=
3∑
i=1

C2
i

4
t4 − CiCi+3t

3 + (C2
i+3 + CiCi+9)t2 − 2Ci+3Ci+9t+ C2

i+9 ≤ V 2
max (34)

where Ci, i = 1, . . . , 12, are given by (8) and Cg6 is renamed as C6 for convenience. Define,

ā =
3∑
i=1

C2
i

b̄ = −
3∑
i=1

3CiCi+3

c̄ =

3∑
i=1

2(C2
i+3 + CiCi+9)

d̄ = −
3∑
i=1

2Ci+3Ci+9

(35)

so that

L =
dR

dt
= āt3 + b̄t2 + c̄t+ d̄ (36)
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and

K =
dL

dt
= 3āt2 + 2b̄t+ c̄ (37)

The discriminant of the cubic function L is defined as

∆ = 18āb̄c̄d̄− 4b̄3d̄+ b̄2c̄2 − 4āc̄3 − 27ā2d̄2 (38)

The peak value of R is analyzed in the following four cases:

1. ā = 0,
∑3

i=1C
2
i+3 = 0.

Then Ci = 0, Ci+3 = 0, ∀i ∈ {1, 2, 3}, R =
∑3

i=1C
2
i+9 = const. An example is shown

in Fig. 5a.

2. ā = 0,
∑3

i=1C
2
i+3 6= 0.

Then R =
∑3

i=1C
2
i+3t

2 − 2Ci+3Ci+9t+ C2
i+9, which is a convex quadratic polynomial.

The peak value within a closed interval [0, tf ] is always at the boundary. An example

is shown in Fig. 5b.

3. ā 6= 0,∆ ≤ 0.

When ∆ < 0, the function L has only one real root. Therefore, the function R has only

one stationary point which must be a minimum because ā > 0. The maximum value

of R is thus located at one of the boundary points of the time interval. When ∆ = 0,

the function L has a multiple root and all of its roots are real. If L has a triple root

then there is only one stationary point of R and we fall in the case already described

above. If there is a double root and a single root then there are two stationary points

of R. Since ā > 0 then for large enough values of |t| the function R must grow large.

Therefore neither of the two stationary points can be a maximum, which must be

located at one of the boundary points of the time interval. An example is shown in

Fig. 5c.

4. ā 6= 0,∆ > 0.

In this case there are three distinct real roots of L and therefore there could be a

maximum of R inside the interval [0, tf ]. Since ∆ > 0, this guarantees that b̄2−3āc̄ ≥
0, which can be proved by contradiction. In fact, if b̄2−3āc̄ < 0 then the functionK has

no real roots and therefore the function L is monotonically increasing or monotonically

decreasing. Therefore L cannot have three distinct roots, which is a contradiction with

the fact that ∆ > 0. Note that the function R must have at least one inflection point

since b̄2 − 3āc̄ ≥ 0 . An example is shown in Fig. 5d.

It is clear that for the first three cases the peak value of R(tf ) is at one of the boundary

instants, i.e., max(R(t)) = max(R(0), R(tf )). Since the boundary conditions are required
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(a) R(tf ) for case 1 (b) R(tf ) for case 2 (c) R(tf ) for case 3 (d) R(tf ) for case 4

Figure 5: Possible cases for the shape of function R(tf )

to be feasible, the maximum velocity constraint is naturally verified when the peak value

is located at a boundary point. For the case 4) we can find the root tm of function L(t)

between two inflection points of L, namely t1, t2 (which are the same point if b̄2− 3āc̄ = 0).

The pseudocode is as follows:

Algorithm 3 finding the maximum speed

maxV =
√
max(R(0), R(tf ));

if ā 6= 0 & ∆ > 0 then

t1 =
−b̄−
√
b̄2−3āc̄

3ā , t2 =
−b̄+
√
b̄2−3āc̄

3ā ;

tm = (t1 + t2)/2;

tm = NR(K, tm);

if tm < tf then

maxV =
√
max(R(tm), R(0), R(tf ));

end if

end if

where NR(R, tm) is the routine for the Newton-Raphson method defined previously. After

obtaining the maximum velocity for a given flight time, we propose using the Bisection

Search Method to find the shortest flight time, such that the maximum velocity for that

flight is below the limit. The termination error will be assumed to be 0.1s, which is small

enough to work well in most practical applications. The pseudocode is as follows for a given

tf :
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Algorithm 4 finding the optimal flight time satisfying the velocity constraint

while maxV (tf ) > Vmax do

tf = 2tf ;

end while

tf0 = tf/2;

while |tf − tf0 | > 0.1 do

tf1 = (tf + tf0)/2;

if maxV (tf1) > Vmax then

tf0 = tf1 ;

else

tf = tf1 ;

end if

end while

2.3 Simulation Results

Assume that for the initial state x0 = [0, 0, 1, 1, 0, 0]T the aircraft receives a command

to go to the destination xf = [10, 2, 5, 0, 0, 0]T at a time tf = 5s. We consider CI = 0.1, g =

9.8m/s2. The parameters for this simulation are collected in Table 2.

Table 2: Simulation parameters

Parameter Value

p0 (m) 0,0,1

v0 (m/s) 1,0,0

pf (m) 10,2,5

vf (m/s) 0,0,0

CI 0.1

g (m/s2) 9.8

Vmax (m/s) 20

The optimal cost as a function of flight time is shown in Fig. 6. It is clear that there

is an optimal time minimizing the total cost, which is not equal to 5s. The optimal time

calculated with Newton-Raphson Method is 2.4977s after only 7 iterations. The result is

consistent with the exact solution of (25). Fig. 7a shows the 3D trajectory for tf = 5s.

Fig. 7b shows the optimal trajectory for the optimal flight time. The plots of 3D trajectory,

velocity, and acceleration are also shown. Black dotted lines are magnitude values.
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Figure 6: Optimal cost for different tf .

2.3.1 Discussion

The optimal flight time is close to half of 5s. The peak acceleration for the opti-

mal flight time is approximately 5 times higher than for the solution with a flight time

of 5s. The effects of CI on the total cost, optimal flight time, and peak velocity are

shown in Fig. 8 and Fig. 9 for another set of boundary conditions for the generality

x0 = [−0.5,−1.9, 1, 1.6, 3.7, 1]T , xf = [10, 2, 5,−0.3, 0.7, 0]T . A higher value of CI leads

to a shorter flight time, and higher peak velocity as shown in Fig. 9. Please note that the

results of Fig. 8 do not mean that a higher CI value should be avoided because of the higher

total cost incurred. It simply presents the situation when flight time has a higher weight in

the total cost.

2.3.2 Optimal passenger satisfaction trajectory

For the same two-point boundary value constraints, the optimal passenger satisfaction

trajectory is generated. Only 9 iterations were needed to find the optimal tf = 10.3206s,

which is also consistent with the exact solution. An interesting fact is that the optimal

flight time is longer than the previous case with the same boundary conditions because the

gravity is excluded for this case, which implies a lower time-related cost for the same value

of CI . The optimal trajectory is shown in Fig. 10. The effects of tf and CI on the total

cost give similar results to the case seen previously and are therefore not repeated here.

2.3.3 Optimal trajectory verifying peak velocity constraint

Continuing with the previous scenario, suppose that at the initial state x0 = [0, 0, 1, 3,−1, 2]T ,

the aircraft receives a command to arrive at the destination xf = [3150, 2713, 57, 0, 0, 0]T at
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(a) Optimal trajectory, velocity and acceleration for tf=5s.

(b) Optimal trajectory, velocity and acceleration for tf=2.4977s.

Figure 7: Optimal trajectories for two tf values.

a flight time of tf = 250s. Note that this flight time might not be feasible because there is

a peak velocity constraint of Vmax = 20m/s. In fact, the maximum velocity during the op-

timal flight trajectory for tf = 250s is 24.5546m/s. Using our algorithm, the optimal flight

time for which the trajectories respect the peak velocity limit is t∗f = 305.9440s, which is

comparable with 305.9209s obtained from the Golden Section Search & Successive Parabolic

Interpolation Method(GSSSPIM) [76] with the same termination tolerance. However, the

computational time of our algorithm is less than one quarter of the time taken by GSSSPIM

(1.961642s vs 9.180235s) with the same computer and running environment. The trajectory

is shown in Fig. 11. Clearly, the velocity verifies the constraint and the two-point boundary

conditions are met. The acceleration is less than 0.3m/s2 for the whole flight.
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Figure 8: Effect of CI on total cost.

(a) Effect of CI on optimal flight time. (b) Effect of CI on peak velocity.

Figure 9: Effects of CI on optimal parameters.

2.4 Conclusions

This chapter formulated and solved an optimal trajectory generation problem for mini-

mizing damage in package delivery. The same methodology could be used for maximizing

passenger comfort during flight with only minor modifications. An analytical solution in 3D

space was obtained for arbitrary feasible boundary conditions. The proposed methodology

can generate the optimal flight trajectory for a given flight time. Additionally, an optimal

time can be determined. Furthermore, the methodology was extended to provide solutions

that satisfy a peak velocity constraint. The effects of a parameter called the cost index on

the optimal solution were also discussed.
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Figure 10: Optimal passenger satisfaction trajectory, velocity and acceleration for optimal
tf .

Figure 11: Optimal trajectory, velocity and acceleration satisfying maximal velocity limit.
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Chapter 3

Optimal Trajectory Trading-off

Control Effort and Flight Time for

Hovering Vehicles

3.1 Introduction

After viewing the optimal trajectory from the passenger’s point of view, we look at the

problem from the operator’s side in this chapter. The flight trajectory for hovering vehicles

which optimizes a combination of control effort and flight time will be presented.

In the first half, we present the trajectory neglecting wind. Compared to the previous

work in the literature, the main contributions of this part are as follows:

• the proposed approach can find the analytical solution for either a fixed time or a

free time. Additionally, for long haul flights, an approximate solution is presented

to reduce the computational time. A characteristic parameter is proposed to decide

whether to use the analytical solution or the approximation,

• the approach is extended to satisfy peak velocity constraints.

In the second half, we present the optimal trajectory in a constant wind shear field.

Compared to the previous work in the literature, the main contributions of this section are

as follows:

• an analytical solution is obtained to trade-off control effort and flight time for hovering

vehicles in a constant wind shear field for arbitrary boundary conditions,

• the proposed approach accommodates both fixed and free flight times and satisfies

peak thrust constraints.
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The structure of this chapter is as follows. Section 3.2 presents the problem formulation

and the detailed solution of the optimal trajectory generation problem, including the optimal

trajectory and the optimal flight time. Simulation results are presented in section 3.3. Next,

in section 3.4, the modified problem formulation considering wind is presented, while the

detailed solution of the optimal trajectory appears in section 3.5. Simulation results are

presented in section 3.6. Concluding remarks are stated in section 3.7.

3.2 Optimal Trajectory without Wind

3.2.1 Problem Description

Assume that an aircraft at current state x0 receives a command to reach the destination

xf at time tf . The problem to be solved in this chapter is to generate the trajectory between

x0 and xf that optimizes a functional that trades off control effort and flight time. This

optimal trajectory is to be found for both a fixed and a free flight time.

To formulate and solve this problem we make the following assumptions:

1. The vehicle conserves its mass, or mass depletion is sufficiently slow. Electric vehicles

naturally fall into this condition.

2. The only forces acting on the aircraft are thrust, drag and weight.

3. The wind effect and air density variation are ignored.

4. The drag is linear in the velocity written as

D = −kdv (39)

where D is drag, v is velocity, and kd is assumed to be a constant for a given flight.

For lower Reynold’s numbers (Re < 103), this is a reasonable assumption called linear

Stokes drag [77, 77]. For higher Reynold’s numbers, it is just an approximation and

valid only within a small range in the neighborhood of the target velocity.

3.2.2 Problem Formulation

Define the state vector x = [p1, p2, p3, v1, v2, v3]T , where p is the vector of position

coordinates, v is the vector of velocity coordinates. The system dynamics are
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ṗ1

ṗ2

ṗ3

v̇1

v̇2

v̇3


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





p1

p2

p3

v1

v2

v3


+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




a1

a2

a3

 (40)


T1

T2

T3

 = m



a1

a2

a3

+


0

0

g


+ kd


v1

v2

v3

 (41)

The optimal control problem is

J = min
T

∫ tf

0

1

2
T TT + CIdt

s.t. (40), (41)

x (t0) = x0

xf given

(42)

where CI is the ratio of cost of time and cost of control effort. Define

λ =
∂J(x)

∂x
(43)

H = L(T ) + λT f(x, T ) (44)

where L(T ) = 1
2T

TT +CI and f(x, T ) is defined in (40)-(41). Following the same procedure

in section 2.2, one needs the necessary conditions below for a minimizer

∂H∗

∂T
= 0 (45)

∂H∗

∂x
= −λ̇ (46)

3.2.3 Optimal trajectory solution

Theorem 3.2.1 The optimal flight trajectory, which is the solution to problem (42) is
p1

p2

p3

 =


−C1

k2d
t− C4

2k2d
e

kd
m
t − C7m

kd
e−

kd
m
t + C10

−C2

k2d
t− C5

2k2d
e

kd
m
t − C8m

kd
e−

kd
m
t + C11

−C3

k2d
t− C6

2k2d
e

kd
m
t − C9m

kd
e−

kd
m
t + C12

 (47)
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where pi is the position, kd is the drag coefficient, m is the mass, and


Ci

Ci+3

Ci+6

Ci+9

 =



−v0ik
2
d −

kd
2mCi+3 + Ci+6k

2
d

(pfi−p0i)+(vfi−v0i) m
kd
−v0itf−

(vfi−v0i)tf e

kd
m tf

e

kd
m tf−1

tf
2mkd

(
e
kd
m tf +1

)
− 1

k2
d

(
e
kd
m tf−1

)

−(vfi−v0i)e
kd
m tf

e
kd
m tf−1

− e
kd
m tf

2mkd
Ci+3

p0i + 1
2k2d
Ci+3 + m

kd
Ci+6


(48)

for i = 1, 2, 3.

Proof: The Hamiltonian of (42) is

H =
1

2
T 2 + λ1ṗ1 + λ2ṗ2 + λ3ṗ3 + λ4v̇1 + λ5v̇2 + λ6v̇3 + CI

=
1

2
(T 2

1 + T 2
2 + T 2

3 ) + λ1v1 + λ2v2 + λ3v3 + CI+

λ4

m
(T1 − kdv1) +

λ5

m
(T2 − kdv2) +

λ6

m
(T3 − kdv3 −mg)

(49)

From (45),

∂H∗

∂T
=


T1

T2

T3

+
1

m


λ4

λ5

λ6

 =


0

0

0

 (50)

T ∗ =
1

m
[−λ4,−λ5,−λ6]T (51)

H∗ = − 1

2m2
(λ2

4 + λ2
5 + λ2

6) + λ1v1 + λ2v2 + λ3v3 −
kd
m

(λ4v1 + λ5v2 + λ6v3)− λ6g + CI

(52)

From (46),

∂H∗

∂p
=


0

0

0

 =


−λ̇1

−λ̇2

−λ̇3

 , ∂H∗∂v
=


λ1 − kd

mλ4

λ2 − kd
mλ5

λ3 − kd
mλ6

 =


−λ̇4

−λ̇5

−λ̇6

 (53)

[λ1, λ2, λ3]T = [C1, C2, C̄3]T (54)
λ4

λ5

λ6

 =


C1m
kd

+ C4e
kd
m
t

C2m
kd

+ C5e
kd
m
t

C̄3m
kd

+ C6e
kd
m
t

 = −m


T1

T2

T3

 (55)

From (41),

v̇ = a =
1

m


−C1
kd
− C4

m e
kd
m
t − kdv1

−C2
kd
− C5

m e
kd
m
t − kdv2

− C̄3
kd
− C6

m e
kd
m
t − kdv3 −mg

 (56)
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Define C3 as

C3 = C̄3 +mgkd (57)

Integrating (56) and using (57) yields

v =


−C1

k2d
− C4

2mkd
e

kd
m
t + C7e

− kd
m
t

−C2

k2d
− C5

2mkd
e

kd
m
t + C8e

− kd
m
t

−C3

k2d
− C6

2mkd
e

kd
m
t + C9e

− kd
m
t

 (58)

Integrating (58), (47) is obtained.

The boundary conditions are [
p(0)

v(0)

]
= x0,

[
p(tf )

v(tf )

]
= xf (59)

After solving (59) using (47), (58), we get (48). We observe that the denominator of Ci+3

will never be zero. To show this, let Q =
kdtf
m > 0, then the denominator equal to zero

is equivalent to Q(eQ + 1) − 2(eQ − 1) = 0. Since the derivative of the left-hand-side is

(Q−1)eQ+1. It is monotonically increasing, and when Q = 0, (Q−1)eQ+1 = 0. Therefore,

Q(eQ + 1)− 2(eQ − 1) > 0(e0 + 1)− 2(e0 − 1) = 0. Q.E.D.

Theorem 3.2.2 The optimal cost for a given flight time tf is

J∗ =

(
1

2
m2g2 + CI

)
tf−mg

[
C3

kd
tf +

C6

kd
(E(tf )− 1)

]
+

3∑
i=1

[
C2
i

2k2
d

tf +
C2
i+3

4kdm
(E(2tf )− 1) +

CiCi+3

k2
d

(E(tf )− 1)

] (60)

where E(t) = e
kd
m
t.

Proof: From (55), (57), we get
T1

T2

T3

 =


−C1
kd
− C4

m E(t)

−C2
kd
− C5

m E(t)

−C3
kd
− C6

m E(t) +mg

 (61)

By plugging (61) into the cost function in (42) and integrating, expression (60) is obtained.

Q.E.D.

Approximation 1: For longer tf , i.e. kd
m tf > 5, an approximate solution is

pi = p0i + (vfi +
kd
m
lfi)t− lfiE(t− tf ) +

[
m

kd
(vfi − v0i) + lfi

]
(E(−t)− 1) (62)
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where i = 1, 2, 3, and

lf =
(pf − p0) +

(vf−v0)
kd

m− vf tf
kd
m tf − 2

= −
mvf
kd

+
(pf − p0)− m

kd
(vf + v0)

kd
m tf − 2

(63)

J∗ =

(
1

2
m2g2 + CI +mgkdvf3 + gk2

dlf3

)
tf − 2mgkdlf3 +

3∑
i=1

[
k2
d

2
tf

(
vfi +

kd
m
lfi

)2

+
k3
d

m
l2fi − 2k2

dlfi

(
vfi +

kd
m
lfi

)] (64)

In fact, when kd
m tf > 5, the following hold

E(tf ) > 100� 1 (65)

E(tf )± 1 ≈ E(tf ) (66)

One can then approximate Ci+3, for i = 1, 2, 3, as

Ci+3 =
(pfi − p0i) + (vfi − v0i)

m
kd
− vfitf(

tf
2mkd

− 1
k2d

)
E(tf )

=
2k2

d

E(tf )
lfi (67)

Then (48) becomes 
Ci

Ci+3

Ci+6

Ci+9

 =


−k2

d(vfi + kd
m lfi)

2k2d
E(tf ) lfi

−(vfi − v0i)− kd
m lfi

p0i − m
kd

(vfi − v0i)− lfi

 (68)

Using (68) in (47) yields (62). Plugging (68) into (60), (64) is obtained. Accordingly, the

new velocity profile is

vi = (vfi +
kd
m
lfi)−

kd
m
lfiE(t− tf )−

[
(vfi − v0i) +

kd
m
lfi

]
E(−t) (69)

Remark 3.2.3 E(tf ) and lf are a scalar and a vector, respectively, for a given set of

boundary conditions and flight time tf .

Remark 3.2.4 The condition for the approximation can be loosened to kd
m tf > 3, so as to

obtain an approximation error
E(tf )
E(tf )−1 ≈ 1.0524, meaning about 5% of relative error for

this approximation when kd
m tf = 3. The approximate trajectory will be shown in the next

section. When kd
m tf < 3, Theorem 3.2.1 and 3.2.2 have to be applied. The optimal flight

time tf is sought with numerical methods for 1D optimization problems, such as Golden

Section Search, or Successive Parabolic Interpolation [76], because there are over 20 terms

in the cost function, which makes the gradient based optimization too expensive to analyze

and solve.
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We define the characteristic parameter

CV =
3CD

4

ρair
ρcraft

dist

l
(70)

where CD is the drag coefficient, ρair, ρcraft is air density and effective aircraft density, re-

spectively, dist is the flight distance, and l is the aircraft length. This parameter determines

whether to use the theoretical solution (CV < 3) or the approximation (CV ≥ 3).

Considering the smallest outer sphere surrounding the hovering aircraft, the diameter of

the sphere equals to the aircraft length l. The volume of the sphere is 1
6πl

3 = 2
3Al, where A

is the effective area of the outer sphere surrounding the aircraft defined as A = 1
4πl

2. Define

the effective aircraft density ρcraft as mass divided by the volume of the sphere. Choosing

kd with average velocity magnitude vavg, we expand the terms as

kd
m
tf =

1
2CDρairAvavgtf

ρcraftA
2
3 l

=
3CD

4

ρair
ρcraft

dist

l
(71)

Note that CD is a function of the Reynold’s number, which is defined as

Re =
ρair
µ
vavgl (72)

For a given aircraft, kd
m tf is a function of the flying environment (atmosphere), esti-

mated average speed, and flight distance. Therefore, it can be regarded as a characteristic

parameter for the flight trajectory.

Theorem 3.2.5 There is at most one peak velocity during flight.

Proof: R is the square of the velocity magnitude, and can be obtained from (58) as

R = |v(t)|2

=
3∑
i=1

[
C2
i

k4
d

+
C2
i+3

4m2k2
d

E(2t) + C2
i+6E(−2t) +

CiCi+3

mk3
d

E(t)− 2CiCi+6

k2
d

E(−t)− Ci+3Ci+6

mkd

]
(73)
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Define

a =
3∑
i=1

C2
i+3

4m2k2
d

≥ 0

b =

3∑
i=1

C2
i+6 ≥ 0

c =
3∑
i=1

CiCi+3

mk3
d

d =
3∑
i=1

−2CiCi+6

k2
d

e =
3∑
i=1

C2
i

k4
d

− Ci+3Ci+6

mkd

(74)

Then we have

R = aW 2 +
b

W 2
+ cW +

d

W
+ e

W = E(t) ∈ [1, E(tf )]

(75)

The function R is differentiable on t since it is the summation of differentiable functions.

Additionally, W is monotonic on t without sign change, and is never zero. Define the

function Q as

Q =
∂R

∂W
W 3 = (2aW − 2b

W 3
+ c− d

W 2
)W 3 =

(
2aW 4 + cW 3 − dW − 2b

)
(76)

Let Wm be the zero-crossing point of the function Q from positive to negative values within

the interval W ∈ [1, E(tf )], which corresponds to the maximizer of the function R. There-

fore, the peak value of R during the flight is found as

max(R) = max (R(1), R(E(tf )), R(Wm)) (77)

The following two cases are possible:

1. a = 0.

Then we have Ci+3 = 0, i ∈ {1, 2, 3}, so that c = 0, and then Q = −dW − 2b. Since

−2b ≤ 0, there is no zero-crossing point of function Q from positive to negative values

within the interval W ∈ [1, E(tf )]. An example is shown in Fig. 12a. The single peak

velocity will therefore occur at either W = 1 or W = E(tf ).

2. a 6= 0.

The function Q is a quartic function. Only when Q has four distinct real roots, there

are two zero-crossing points in the direction from positive to negative values. An

example is shown in Fig. 12d. Otherwise, there is at most one zero-crossing point
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from positive to negative values, for example in Fig. 12b and Fig. 12c. Assume there

are two maximizers in W > 0. Note that we must have Q(0) > 0 because Q decreases

on the left of the first root. Since Q(W = 0) = −2b ≤ 0, we obtain a contradiction.

Therefore, there must be at most one maximizer in W > 0. Q.E.D.

(a) Function Q for case 1 (b) Function Q for case 2, two simple roots

(c) Function Q for case 3, two simple roots and
one double root (d) Function Q for case 4, four distinct roots

Figure 12: Curves of function R for all cases

Remark 3.2.6 A proposed solution to find the feasible flight time tf which verifies the peak

velocity constraint is to find the shortest time such that max(R) ≤ V 2
max.

3.3 Simulation Results

Two cases are studied in this section, one being a smaller electric rotorcraft, the other

being a bigger manned electric helicopter. Their kd is calculated with a coefficient of drag

CD chosen from reference [77] assuming that they are rough spherical objects and with vavg

obtained by dividing distance with time. In Fig. 15, the dotted line is the trajectory from

Theorem 3.2.1, while the crossed line is the approximate solution from Approximation 1.
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3.3.1 Case 1: Smaller rotorcraft

Let x0 = [−1.5, 0, 1, 1, 0,−1]T and xf = [10, 2, 5, 0, 2, 0]T . Taking the DJI Phantom 4

Pro [78] as an example, m = 1.388kg, l = 0.35m,CD = 0.3, CI = 10. The air density ρair =

1.225kg/m3 is chosen from reference [4] at sea level. The parameters for this simulation

are collected in Table 3. The parameter CV = 0.15716 � 3. In this case, Theorem 3.2.1

Table 3: Simulation parameters

Parameter Value

p0 (m) -1.5,0,1

v0 (m/s) 1,0,-1

pf (m) 10,2,5

vf (m/s) 0,2,0

CI 10

m (kg) 1.388

l (m) 0.35

CD 0.3

ρair (kg/m3) 1.225

g (m/s2) 9.8

Vmax (m/s) 20

and 3.2.2 have to be used. The optimal flight time is tf = 2.6813s. Fig. 13 shows the

optimal 3D trajectory and the corresponding velocity, acceleration, thrust, position and

cost over time. The final position error is 1.819e−12m, i.e., it is a factor of 1.4742e−13 of

the whole distance of 12.3390m, merely because of roundoff error. The velocity stays well

within range under the upper limit of 20m/s. The velocity peak and valley of acceleration

in the middle are caused by the relatively low boundary velocities. The thrust takes values

between 13 ∼ 23N . The final cost is 355.8. The Pareto trade-off curve of this flight is

depicted in Fig. 14, which illustrates the tradeoff between the flight time and control effort,

and indicates that a larger CI leads to a shorter flight time and higher control effort.

Figure 13: Optimal trajectory for smaller rotorcraft.
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Figure 14: Pareto trade-off of CI

3.3.2 Case 2: Larger manned helicopter

Let x0 = [−1.5, 0, 10, 30, 5, 3]T and xf = [17810, 26370, 3645, 4, 32, 0]T . Taking the Siko-

rsky Firefly [79] as an example, m = 930kg, l = 2.54m,CD = 0.3, CI = 10. The air density

ρair = 1.0251kg/m3 is chosen from reference [79] at the middle altitude of the two bound-

ary points. The parameters of this simulation are collected in Table 4. The parameter

Table 4: Simulation parameters

Parameter Value

p0 (m) -1.5,0,10

v0 (m/s) 30,5,3

pf (m) 17810,26370,3645

vf (m/s) 4,32,0

CI 10

m (kg) 930

l (m) 2.54

CD 0.3

ρair (kg/m3) 1.0251

g (m/s2) 9.8

Vmax (m/s) 45

CV = 26.8335 > 3, so either Approximation 1 or Theorem 3.2.5 can be used. The optimal

flight time is tf = 736.3338s. Fig. 15 shows the optimal 3D trajectory and the corresponding

velocity, acceleration, thrust, position and cost over time. The lines of the exact solution and

the approximate one match well with each other, meaning that the approximate solution

can represent the exact solution with minor errors. The calculation is much faster for the

approximate solution. The final position error is 1.99e−09m, i.e., it is a factor of 6.2269e−14

of the whole distance of 32028.73m. The acceleration plot shows that the trajectory has a
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Figure 15: Optimal trajectory for manned helicopter.

peak value of less than 1.5m/s2. The thrust magnitude is slowly varying and the cost is

approximately linear as a function of time. For this long haul example, a cruise-like phase

appears during the flight.

3.4 Optimal Trajectory in Constant Wind Shear Field

3.4.1 Problem description

In this section, we present the optimal trajectory in constant wind shear field. Compared

to section 3.2, the assumptions become:

1. The vehicle conserves its mass, or mass depletion is sufficiently slow. Electric vehicles

naturally fall into this situation.

2. The only forces acting on the aircraft are thrust, drag and gravity, which is the case

for rotorcraft hovering vehicles.

3. There is a constant wind shear field

va = va0 + wT
0 (p− p0)

va0
|va0 |

(78)

where va is the wind velocity, va0 is the nonzero wind velocity at the initial state, w0

is the shear vector, which is the gradient vector of the wind speed, p is the vector of

position coordinates, p0 is the initial position.

4. The drag is linear, written as

D = −kd(v − va) (79)

where v is the ground speed, and kd is assumed to be a constant for a given flight.
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3.4.2 Problem Formulation

Without loss of generality, the inertial coordinate frame is rotated so that the p1 axis is

aligned with the wind velocity va0 at the starting position, and the p2 axis is aligned with

the shear vector w0. We solve the problem in this wind frame, then transform the optimal

trajectory back to the initial frame. In the wind frame, the wind shear can be characterized

by a scalar w so that the wind velocity at each position is
va1

va2

va3

 =


va10 + w (p2 − p2(t0))

0

0

 (80)

where va10 = |va0 |.
The system dynamics are

ẋ =

[
ṗ

v̇

]
=

[
v

1
m [T− kd (v − va)]− g

]
(81)

where T is the thrust and g is the gravitational acceleration. Note that one also needs to

transform the coordinate of the gravity vector and boundary state values.

The optimal control problem is

J = min
T

∫ tf

t0

1

2
TTT + CIdt

s.t. (80), (81)

x (t0) = x0

x(tf ) = xf

(82)

where CI , denoted as the cost index, is the ratio of cost of time to cost of control effort.

3.5 Problem Solution

We apply the Pontryagin Maximum Principle (PMP) to this problem following the same

procedure in section 3.2. The main result of this section is stated next.
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3.5.1 Optimal Trajectory Formula

Theorem 3.5.1 The optimal flight trajectory for problem (82) is

p1 =
C1

2k2
d

(
w2

3
t3 − mw2

kd
t2 +

2m2w2

k2
d

t− 2t

)
− C2m

4k3
d

(
w2t− 3mw2

kd
+

2kd
m

)
e

kd
m
t

− C3w

k2
d

(
t2

2
− m

kd
t

)
− C4wm

4k3
d

e
kd
m
t +

C5wm

kd

(
t+

m

kd

)
e−

kd
m
t + C6wt

− C11m

kd
e−

kd
m
t + C12 −

mg2w

kd

(
t2

2
− m

kd
t

)
+

(
va10 − wp2(t0)− mg1

kd

)
t

p2 =
C1w

2k2
d

t2 − C2w

2k2
d

(t− 3m

2kd
)e

kd
m
t − C3

k2
d

t− C4

2k2
d

e
kd
m
t − C5m

kd
e−

kd
m
t + C6 −

mg2

kd
t

p3 =− C7

k2
d

t− C8

2k2
d

e
kd
m
t − C9m

kd
e−

kd
m
t + C10 −

mg3

kd
t

(83)

And the optimal cost for a given flight time tf is

J∗ = J ′(tf )− J ′(t0) (84)

where

J ′(t) =
1

2

[
C2

1

k2
d

(
w2

3
t3 +

w2m

kd
t2 +

w2m2

k2
d

t+ t

)
+

C2
2

2mkd

(
w2t2 − w2m

kd
t+

w2m2

2k2
d

+ 1

)
E(2t)

+
C2

3

k2
d

t+
C2

4

2mkd
E(2t)− 2C1C2

k2
d

(
w2t2 − w2m

kd
t+

w2m2

k2
d

− 1

)
E(t)− C1C3w

k2
d

(
t2 +

2m

kd
t

)
− 2C1C4w

k2
d

tE(t) +
2C2C3w

k2
d

(
t− m

kd

)
E(t) +

C2C4w

mkd

(
t− m

2kd

)
E(2t) +

2C3C4

k2
d

E(t)

+
C2

7

k2
d

t+
C2

8

2mkd
E(2t) +

2C7C8

k2
d

E(t)

]
+ CIt

(85)

where pi is the position coordinate for i = 1, 2, 3, kd is the drag coefficient defined in (79),

m is the mass, and C1 to C12 are coefficients calculated from the boundary values[
x(t0)

x(tf )

]
=

[
x0

xf

]
(86)

and E(t) = e
kd
m
t.

Proof: The Hamiltonian of (82) is

H =
1

2
|T|2 + CI + λ1ṗ1 + λ2ṗ2 + λ3ṗ3 + λ4v̇1 + λ5v̇2 + λ6v̇3 (87)

From PMP, we have

∂H

∂T
=


T1

T2

T3

+
1

m


λ4

λ5

λ6

 =


0

0

0

 (88)
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T =
1

m
[−λ4,−λ5,−λ6]T (89)

Replacing (81) and (89) into (87) yields

H =− 1

2m2
(λ2

4 + λ2
5 + λ2

6) + λ1v1 + λ2v2 + λ3v3

− kd
m

[λ4(v1 − va1) + λ5(v2 − va2) + λ6(v3 − va3)]

− (λ4g1 + λ5g2 + λ6g3) + CI

(90)

From the Hamilton’s equations and considering (80), we get

∂H

∂p
=
kd
m


0

λ4w

0

 =


−λ̇1

−λ̇2

−λ̇3

 (91)

∂H

∂v
=


λ1 − kd

mλ4

λ2 − kd
mλ5

λ3 − kd
mλ6

 =


−λ̇4

−λ̇5

−λ̇6

 (92)

Let

λ1 = C1 (93)

Then

λ̇4 −
kd
m
λ4 = −C1 (94)

λ4 =
C1m

kd
+ C2e

kd
m
t (95)

Replacing (95) in the fourth equation of (81) together with (89) yields

v̇1 =
1

m

[
−C1

kd
− C2

m
e

kd
m
t − kd(v1 − va1)

]
− g1 (96)

Recalling (80) we obtain

v̇1 +
kd
m
v1 =− C1

mkd
− C2

m2
e

kd
m
t +

kd
m

(va10 + wp2 − wp20)− g1 (97)

Replacing (95) into (91) and solving leads to

λ2 = −C1wt− C2we
kd
m
t + C3 (98)

Replacing λ2 into (92) yields

λ̇5 −
kd
m
λ5 = C1wt+ C2we

kd
m
t − C3 (99)
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whose solution is

λ5 = −C1wm

kd

(
t+

m

kd

)
+ C2wte

kd
m
t +

m

kd
C3 + C4e

kd
m
t (100)

Replacing (100) in the fifth equation of (81) results in

v̇2 +
kd
m
v2 =

C1w

mkd

(
t+

m

kd

)
− C2w

m2
te

kd
m
t − C3

mkd
− C4

m2
e

kd
m
t − g2 (101)

which yields by successive integration

v2 =
C1w

k2
d

t− C2w

2mkd

(
t− m

2kd

)
e

kd
m
t − C3

k2
d

− C4

2mkd
e

kd
m
t + C5e

− kd
m
t − mg2

kd
(102)

p2 =
C1w

2k2
d

t2 − C2w

2k2
d

(
t− 3m

2kd

)
e

kd
m
t − C3

k2
d

t− C4

2k2
d

e
kd
m
t − C5m

kd
e−

kd
m
t + C6 −

mg2

kd
t (103)

Integrating (97) yields

v1 =
C1

2k2
d

(
w2t2 − 2mw2

kd
t+

2m2w2

k2
d

− 2

)
− C2

4k2
d

(
w2t− 2mw2

kd
+

2kd
m

)
e

kd
m
t

− C3w

k2
d

(
t− m

kd

)
− C4w

4k2
d

e
kd
m
t − C5wte

− kd
m
t + C6w + C11e

− kd
m
t

− mg2w

kd

(
t− m

kd

)
+

(
va10 − wp2(t0)− mg1

kd

) (104)

Integrating we get p1 in (83). Let

λ3 = C7 (105)

From (92) and (105)

λ6 =
C7m

kd
+ C8e

kd
m
t (106)

Replacing (106) in the third equation of (81) and integrating twice yields

v3 = −C7

k2
d

− C8

2mkd
e

kd
m
t + C9e

− kd
m
t − mg3

kd
(107)

p3 = −C7

k2
d

t− C8

2k2
d

e
kd
m
t − C9m

kd
e−

kd
m
t + C10 −

mg3

kd
t (108)

From (89), (95), (100), (106), we get
T1

T2

T3

 = −


C1
kd

+ C2
m E(t)

−C1w
kd

(
t+ m

kd

)
+ C2w

m tE(t) + C3
kd

+ C4
m E(t)

C7
kd

+ C8
m E(t)

 (109)

Replacing (109) into the cost function in (82) and integrating, expression (84) is obtained.

Q.E.D.
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Remark 3.5.2 Letting

va10 = w = g1 = g2 = 0 (110)

yields

p1 = −C1

k2
d

t− C2

2k2
d

e
kd
m
t − C11m

kd
e−

kd
m
t + C12

p2 = −C3

k2
d

t− C4

2k2
d

e
kd
m
t − C5m

kd
e−

kd
m
t + C6

p3 = −C7 +mg3kd
k2
d

t− C8

2k2
d

e
kd
m
t − C9m

kd
e−

kd
m
t + C10

(111)

which matches with Theorem 3.2.1.

Remark 3.5.3 We can add a positive shear vector with increasing altitude to emulate the

drag reduction caused by air density dropping.

3.5.2 Optimal Flight Time and Peak Thrust Constraint

Since the optimal cost is derived as a function of the flight time in equation (84). A

static optimization technique (such as the one described in [76]) is applied to (84) to find

the optimal flight time. A peak thrust constraint is imposed as a hard penalty to a number

of time instants within the flight time. The pseudocode for this procedure is as follows
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Algorithm 5 solution procedure

get x0,xf ,va0 ,w0;

set CI ;

transform the coordinates as stated in section 3.4.2;

compute the optimal time top = fmin
(
cost(tf )

)
;

compute the coefficients C1 ∼ C12 with (86);

compute the reference position for each time instant with (83);

function cost(tf )

compute the coefficients C1 ∼ C12 with (86);

compute the total cost J with (84);

for t=linspace(t0, tf , 100) do

if |T(t)| > Tmax then

J = J + Inf ;

Break;

end if

end for

return J ;

end function

3.5.3 Optimal Trajectory in Time-dependent Wind

Corollary 3.5.4 If a time-dependent wind component w(t) is included such that the wind

velocity becomes 
va1

va2

va3

 =


va10 + w (p2 − p2(t0)) + w1(t)

w2(t)

w3(t)

 (112)

the optimal trajectory is

p′i(t) = pi(t) +

∫ t

t0

kd
∫ s
t0
wi(τ)e

kd
m
τdτ

me
kd
m
s

ds (113)

where pi(t) is the previous solution as written in (83).

Proof: Following the previous proof, the Hamiltonian is

H =
1

2
T2 + CI +


λ1

λ2

λ3


T

v +


λ4

λ5

λ6


T

v̇ (114)
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The optimal thrust is still

T =
1

m
[−λ4,−λ5,−λ6]T (115)

Since the added term is solely a function of time, the costates dynamics are unchanged.

∂H

∂p
=
kd
m


0

λ4w

0

 =


−λ̇1

−λ̇2

−λ̇3

 (116)

∂H

∂v
=


λ1 − kd

mλ4

λ2 − kd
mλ5

λ3 − kd
mλ6

 =


−λ̇4

−λ̇5

−λ̇6

 (117)

Hence, the same equations for λi are obtained as (95), (100), (106). Take v1 for example:

the dynamics of velocity becomes

v̇1(t) +
kd
m
v1(t) = − C1

mkd
− C2

m2
e

kd
m
t +

kd
m

(va10 + wp2(t)− wp20 + w1(t))− g1

= RHS +
kd
m
w1(t)

(118)

where RHS stands for the right hand side of (97). Denote the solution of velocity and

position as v′and p′ to distinguish from the previous formula. Integrating yields

v′1(t) = v1(t) +
kd
∫ t
t0
w1(τ)e

kd
m
τdτ

me
kd
m
t

(119)

where v1(t) is the previous solution written in (104). The optimal trajectory is obtained by

another integration as

p′1(t) = p1(t) +

∫ t

t0

kd
∫ s
t0
w1(τ)e

kd
m
τdτ

me
kd
m
s

ds (120)

where pi(t) is the previous solution as written in (83). This result applies to all the three

dimensions. Q.E.D.

3.6 Simulation Results

The DJI Phantom 4 Pro [78] is chosen for the simulation with the parameters m =

1.388kg, l = 0.35m (required for kd as in section 3.3), Tmax = 50N . The air density

ρair = 1.225kg/m3 is chosen at sea level from [4]. Assuming that hovering rotorcraft are

rough spherical objects, the kd is calculated with a drag coefficient CD = 0.3 chosen from [77]

and with vavg obtained by dividing the flight distance with time. The cost index is CI = 1.
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The boundary conditions and wind field are

x0 = [0, 0, 1, 3,−1, 2];

xf = [3150, 270, 57, 0, 0, 0];

va0 = [2,
√

5, 0];

w0 = 0.01[−
√

5, 2,
√

7]/4;

The parameters for this simulation are collected in Table 5.

Table 5: Simulation parameters

Parameter Value

p0 (m) 0,0,1

v0 (m/s) 3,-1,2

pf (m) 3150,270,57

vf (m/s) 0,0,0

va0 (m/s) 2,
√

5,0

w0 (1/s) 0.01×[−
√

5,2,
√

7]/4

CI 1

m (kg) 1.388

l (m) 0.35

CD 0.3

ρair (kg/m3) 1.225

g (m/s2) 9.8

Tmax (N) 50

In Fig. 16, the blue arrows indicate the wind field. The black curve represents the

optimal flight path obtained by the method proposed in this section, while the magenta is

the path in absence of wind. It is interesting to see that even a 3m/s wind with 0.01/s

shear results in such a big difference in the flight path. The corresponding velocity and

thrust over time are shown in Fig. 17 and Fig. 18. In these plots, the solid lines refer to

the magnitude while the other three lines indicate the three coordinates. The disparities in

the velocity profiles of the trajectories planned with and without wind are clearly shown.

In absence of wind, a large portion of the flight is steady flight. While in presence of wind,

the aircraft maneuvers in favor of wind and also satisfies the boundary states. The thrust

stays well beneath the upper limit. In absence of wind, the optimal flight time is 152.1s

and the total cost is 1.910× 104. In presence of the constant wind shear, the optimal time

is 158.9s and the cost is 2.014× 104. If the trajectory that was planned neglecting wind is

flown in the same wind field, the actual thrust is plotted in Fig. 19 and the actual cost is

2.101× 104. Therefore, a 4.3% improvement is achieved with the solution provided in this

section. To compare the two trajectories planned considering and neglecting wind in the

same wind field, the optimal flight times and total cost for two sets of wind parameters are
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Figure 16: 3D flight trajectory in wind

collected in Table 6. Setting 1: va0 = [2,
√

5, 0];w0 = 0.01[−
√

5, 2,
√

7]/4.

Setting 2: va0 = [2,
√

5, 0];w0 = 0.1[−
√

5, 2,
√

7]/4.

Table 6: Total cost

Cost Trajectory neglecting wind Trajectory considering wind

Setting 1 2.101× 104 2.014× 104

Setting 2 1.254× 105 3.779× 104

If the magnitude of shear w is 0.1/s, the cost neglecting wind is 1.254 × 105, while that

considering wind is 3.779 × 104. Therefore, the cost is 2.3 times higher if the wind is

neglected during trajectory planning. In order to obtain a Pareto analysis, the maximum

thrust is set at 100N to allow for a larger diversity of possible flight times. The Pareto

trade-off curve of this flight is depicted in Fig. 20, which illustrates the trade-off between

the flight time and control effort. The larger the CI , the smaller the flight time and the

higher the control effort cost.

3.7 Conclusions

In the first half of this chapter, we presented an analytical solution of the optimal tra-

jectory trading-off control effort and flight time. The approach allowed arbitrary boundary

conditions, and both fixed and free flight times. An approximate solution for long haul

flights was derived so as to reduce the computational time. A characteristic term was

proposed to determine whether to use the analytical solution or the approximation. The
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Figure 17: Velocity and thrust plots with wind
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Figure 18: Velocity and thrust plots without wind

method was extended to respect peak velocity constraints. Additionally, the optimal trajec-

tory in a constant wind shear field was presented and a peak thrust constraint was enforced.

The Pareto optimal trade-off curve provides a helpful tool to select the cost index CI in

practice.
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Figure 19: Actual thrust in wind

Figure 20: Pareto tradeoff
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Chapter 4

DOC-optimal Longitudinal

Trajectory for Electric Fixed-wing

Aircraft: A Hybrid Optimal

Control Approach

4.1 Introduction

This chapter presents the optimal longitudinal trajectory for electric fixed-wing aircraft

trading-off two costs: energy consumption and flight time costs. Compared to the open

literature, the contributions of this chapter are:

• the trajectory planning is formulated as a hybrid optimal control problem (HOCP)

to find the optimal trajectory for all phases of flight,

• the proposed solution does not require an initial guess of the costate, which saves

computational time,

• altitude-dependent along-track horizontal wind is considered so that the solution can

yield the optimal flight profile in the presence of wind,

• a maximum Mach number constraint and a maximum lift coefficient constraint are

enforced in a suboptimal solution to prevent results that are practically infeasible.

The structure of this chapter is as follows. Section 4.2 presents the problem formulation,

while the detailed solution of the optimal trajectory appears in section 4.3. Simulation

results are presented in section 4.4. Concluding remarks are stated in section 4.5.
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4.2 Problem Formulation

4.2.1 Problem description

This chapter finds the optimal longitudinal trajectory for an electric fixed-wing aircraft

trading-off energy consumption and flight time between two positions [x0, z0] and [xf , zf ],

where x0, z0 are the initial horizontal and vertical position respectively.

4.2.2 Assumptions

1. The trajectory consists of climb, cruise and descent phases. Maximum thrust (Tmax)

is used for climb, idle thrust (Tmin) for descent, constant altitude (hc) for cruise.

2. The component of thrust perpendicular to the velocity is negligible compared to

weight.

3. The gravity is assumed constant.

4. The inertial force is neglected compared to drag, thrust and the component of weight

aligned with the velocity.

5. The centrifugal force is neglected compared to weight and lift.

6. The aircraft is flying at a Mach number that is lower than the drag divergence Mach

number (MD).

7. Small angle assumptions hold for the flight path angle γ

cosγ ≈ 1; sinγ ≈ γ; tanγ ≈ γ (121)

8. Propulsion efficiency η is constant so that the battery charge rate of change is

Q̇ =
TvG
η

(122)

where T is thrust, and vG is ground speed.

9. The velocity v is continuous.

10. The drag verifies D 6= Tmax, D 6= Tmin.
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4.2.3 Flight dynamics

For mass m, gravity g, path angle γ, radius of curvature R, acceleration a, the flight

dynamics [80] in accordance with the assumptions 2 to 7 are

L = m(gcosγ +
v2
G

R
) ≈ mg (123)

T = D +m(gsinγ + a) ≈ D +mgγ (124)

where L is lift, and the ground speed vG is expressed as a function of the airspeed v and

wind speed vw as

vG = v + vw (125)

In (124), D is the drag expressed as

D = D(v, z) =
1

2
ρ(z)v2SCD (126)

where ρ is the air density, S is the characteristic surface area, and CD is the drag coefficient.

We consider a parabolic drag coefficient

CD = CD0 + kdC
2
L (127)

where CD0, kd are constant, and CL is the lift coefficient such that

L =
1

2
ρv2SCL (128)

Considering (123), (127) and (128), we get

CD = CD0 + kd

(
2mg

ρv2S

)2

(129)

To make the optimal control problem more realistic to solve, we take the air density data

(part of which is shown in Table 7) from the US Standard Atmosphere [4], and fit a function

for the relationship between air density ρ (kg/m3) and altitude z (m) as

ρ(z) = 4.098e−( z+2.608e+04
2.374e+04 )

2

(130)

This formula is found using Matlab Curve Fitting Toolbox by solving the parameters of an

exponential function with a second order exponent that minimizes the mean squared error.

The second order exponential function yields smaller error than the first order exponential

function and is simpler than the higher order counterparts. It is more suitable for the

problem formulation than the well known two-part formulas [81]. The fitted curve matches

the standard values as shown in Fig. 21.
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Table 7: Standard air density [4]

altitude (m) air density (kg/m3) speed of sound (m/s)

-1000 1.347 344.1

0 1.225 340.3

1000 1.112 336.4

2000 1.007 332.5

3000 0.9093 328.6

4000 0.8194 324.6

5000 0.7364 320.5

6000 0.6601 316.5

7000 0.5900 312.3

8000 0.5258 308.1

9000 0.4671 303.8

10000 0.4135 299.5

15000 0.1948 295.1

20000 0.08891 295.1

4.2.4 System dynamics

Since the thrust is constrained by the flight rules such as assumption 1, we take the

speed as the control variable. The system dynamics are

d

dt

[
x

z

]
=

[
vGcosγ

vGsinγ

]
(131)

We choose the horizontal position x as the independent variable, so that the state is solely

z. Considering (121) and (124), the system dynamics are

dz

dx
= γ =

T −D(v, z)

mg
(132)

where

T =


Tmax, climb

D(v, z), cruise

Tmin, descent

(133)

51



Figure 21: Air density interpolation

4.2.5 Optimal control problem

The optimal control problem is

J = min
v

∫ xf

x0

T

η
+

CI
v + vw(z)

dx

s.t. (132), (133), (126), (129)

z (x0) = z0

z(xf ) = zf

v ∈ C0

(134)

where C0 is the set of continuous functions, and CI is denoted as the cost index, which is

the ratio of the cost of time to the cost of energy consumption. We apply the Pontryagin’s

Minimum Principle (PMP) [74] and Hybrid Optimal Control (HOC) [82] to this problem.

4.3 Problem Solution

Before solving the problem formulated in (134), we briefly review the optimality condi-

tions for hybrid optimal control.

4.3.1 Hybrid optimal control theory

According to [82], for each phase of flight q with Hamiltonian Hq, the necessary condi-

tions are
∂Hq

∂v
= 0 (135)
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λ̇ = −∂Hq

∂z
(136)

λq−1(x−q ) = λq(xq) (137)

Hq−1(x−q ) = Hq(xq) (138)

where xq is the switching instant from phase q− 1 to phase q, and x−q is the left limit of xq.

4.3.2 Optimal trajectory for a given cruising altitude

Theorem 4.3.1 The optimal airspeed for a given cruising altitude is a solution of

0 =


− CI

(v+vw)2
+ λ

mg

(
−ρSCD0v + 4m2g2kd

ρSv3

)
, climb

− CI
(v+vw)2

+ 1
η

(
ρSCD0v − 4m2g2kd

ρSv3

)
, cruise

− CI
(v+vw)2

+ λ
mg

(
−ρSCD0v + 4m2g2kd

ρSv3

)
, descent

(139)

At the top of climb xc and the top of descent xd, the values of the costate are

λ(xc−) = λ(xd) = −mg
η

(140)

Proof: For this problem, we consider the flight consisting of three phases, which are

climb: q = 1

cruise: q = 2

descent: q = 3

(141)

Climb occurs for x ∈ [x0, xc), cruise occurs for for x ∈ [xc, xd), and descent corresponds to

x ∈ [xd, xf ]. The Hamiltonians for each phase are

H1 =
Tmax
η

+
CI

v + vw
+ λ

Tmax −D
mg

H2 =
D

η
+

CI
v + vw

H3 =
Tmin
η

+
CI

v + vw
+ λ

Tmin −D
mg

(142)

According to PMP, the optimal velocity is the solution of

∂H

∂v
= 0 (143)

which yields

0 =


− CI

(v+vw)2
+ λ

mg

(
−ρSCD0v + 4m2g2kd

ρSv3

)
, climb

− CI
(v+vw)2

+ 1
η

(
ρSCD0v − 4m2g2kd

ρSv3

)
, cruise

− CI
(v+vw)2

+ λ
mg

(
−ρSCD0v + 4m2g2kd

ρSv3

)
, descent

(144)
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The costate dynamics are

∂H

∂z
= −λ̇

=


λ
mg

(
−1

2SCD0v
2 + 2m2g2kd

ρ2Sv2

)
∂ρ
∂z −

CI
(v+vw)2

∂vw
∂z , climb

0, cruise

λ
mg

(
−1

2SCD0v
2 + 2m2g2kd

ρ2Sv2

)
∂ρ
∂z −

CI
(v+vw)2

∂vw
∂z , descent

(145)

The optimal switching (138) yields

H1(xc−) = H2(xc) (146)

H2(xd−) = H3(xd) (147)

Replacing (142) and enforcing continuity of the velocity at the switching (assumption 9),

we get

(Tmax −D)

(
1

η
+
λ(xc−)

mg

)
= 0 (148)

(Tmin −D)

(
1

η
+
λ(xd)

mg

)
= 0 (149)

From assumption 10,

λ(xc−) = λ(xd) = −mg
η

(150)

The left part of (150) is consistent with the necessary condition (137). Q.E.D.

4.3.3 Suboptimal Solution Satisfying Speed Constraints

In order to deal with the speed constraints, we enforce the minimum and maximum

constraints on the airspeed at every time step. The cost function is obtained for a cruising

altitude hc. We then optimize over hc to find the optimal cruising altitude and thus the

longitudinal path. Note that a feasible flight envelope for the cruising altitude is set for this

optimization. The algorithm to compute the cost given a cruising altitude (hc) and a cost

index (CI) is as follows:
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Algorithm 6 calculating the optimal cost for a cruising altitude

function cost(hc)

Step 1: get air density ρ(hc), speed of sound vs(hc) from [4] such as Table 7;

Step 2: solve (144) for cruise speed v.

Considering the speed constraints, the feasible cruising speed is

vc = max(min(v,MDvs(hc)), vmin(hc))

Step 3: solve differential equations (132), (145) in climb and descent using the solution

of equation (144) as an input, and z(x0) = z0, z(xf ) = zf , v(xc) = v(xd) = vc

to get top of climb (xc) and top of descent (xd);

if x0 ≤ xc ≤ xd ≤ xf then

return J =
∫ xf
x0

T
η + CI

v+vw(z)dx;

else

return J =∞;

end if

end function

To determine the optimal cruising altitude one only has to solve h∗ = argmin(COST(h)).

Remark 4.3.2 The xc and xd can be computed using the terminal event of ode45, the

integral of the cost is computed using ode45, and h∗ is computed using fmincon in MatlabTM.

4.4 Simulation Results

Table 8 shows the parameters of an Airbus A300 model [83]. The maximum and mini-

mum thrust are scaled as 25% and 2.5% of the weight, respectively. The effects of four factors

are studied here: CI , η,m, and vw(z). The boundary positions are [0, 0] and [1000000, 0].

The default values for the parameters are CI = 100000, η = 1, vw(z) = 0m/s.

4.4.1 Effect of cost index CI

The simulation results are collected in Table 9. The tradeoff between energy consump-

tion and flight time is depicted in Fig. 22. The bigger is CI , the more expensive is the time

of flight. Therefore, the aircraft tends to fly faster, which implies higher altitude. Also,

more energy is consumed.

The optimal trajectories are shown in Fig. 23 for two different values of CI . The larger

is CI , the higher is the cruising altitude, and the higher is the top speed. The lift coefficients

are well below the limit. The peak values of the path angle are almost the same, which

55



Table 8: Model parameters

Parameter Value

S (m2) 260

m (tons) 100

CD0 0.0206

kd 0.0520

CLmax 1.4278

Tmax (N) 250000

Tmin (N) 25000

MD 0.9

hmax (km) 17

g (kgm/s2) 9.8

Table 9: Effect of CI

CI 10000 100000 300000

h (m) 0 10637 16220

flight time (s) 10113 6286 5188

energy (GJ) 64.12 64.38 64.52

total cost (GJ) 67.15 66.27 66.08

indicates that the weight component parallel to velocity is dominant for climb and descent.

4.4.2 Effect of efficiency η

The simulation results are listed in Table 10. The higher is the propulsion efficiency,

the higher is the cruising altitude, and the lower is the cost for both time and energy. This

means that for sufficiently low CI the plane flies at the minimum altitude, meaning that

there is no gain to climb.

Table 10: Effect of efficiency

η 0.4 0.7 1.0

h (m) 0 5681 10637

flight time (s) 10101 7765 6286

energy (GJ) 160.3 91.8 64.4

total cost (GJ) 161.3 92.6 65.0

4.4.3 Effect of mass m

As shown in Table 11, the heavier is the aircraft, the faster and higher it flies, but more

energy is required. The aircraft flies much faster at higher altitude to compensate for the
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Figure 22: Effect of CI

drop in air density.

Table 11: Effect of mass

m (t) 60 90 120

h (m) 3471 9328 12685

flight time (s) 11103 7005 5293

energy (GJ) 38.6 58.0 77.2

total cost (GJ) 39.8 58.7 77.7

4.4.4 Effect of along-track horizontal wind vw(z)

The wind profile is shown in Fig. 24, which is an approximation to the jet stream. The

differences in the optimal trajectories with and without wind are shown in Fig. 25. The

aircraft is able to find the optimal cruising altitude to take advantage of the wind. The

airspeeds are similar for the two flights, although there is a subtle difference in the lift

coefficients. In absence of wind, the flight time is 1.75 hours, whereas the flight time with

wind is 1.52 hours.

4.5 Conclusions

This chapter provided an analytical solution for the longitudinal trajectory which op-

timizes a trade-off between the energy consumption and flight time for electric fixed-wing
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Figure 23: Optimal trajectory for different values of CI , CI = 1 × 105 for the red line,
CI = 3× 105 for the blue line

aircraft. The approach used hybrid optimal control theory to obtain the optimal trajectory

for the whole flight instead of for each phase separately. The solution did not require an

initial guess of the costate, which saved computational time. To satisfy the velocity and

lift coefficient constraints, a suboptimal numerical solution was proposed to find the cruis-

ing altitude. Altitude-dependent along-track horizontal wind was incorporated to find the

longitudinal path and speed profiles. The effects of four factors, namely cost index CI ,

efficiency η, mass m, and wind velocity vw(z) were analyzed. The higher were CI , η, m,

the higher and faster the airplane flew.
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Figure 24: Vertical profile of along-track wind speed

Figure 25: Optimal trajectory with and without wind
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Chapter 5

Conclusions

In this thesis, we provided solutions to the optimal flight trajectory in three of the most

common Urban Air Mobility (UAM) scenarios. The first problem was the comfort-optimal

trajectory for package delivery and passenger transport. The cost was a linear combination

of acceleration (or specific support force) and flight time. The solution determined the

optimal trajectory in three-dimensional space for arbitrary feasible initial and terminal

conditions. An explicit formula for the cost was presented and a peak velocity constraint

was enforced. The algorithm can be implemented in common embedded processors since it

was designed to use simple calculations no harder than square root and division operations.

The second problem was the control-effort-optimal trajectory for hovering vehicles. Hov-

ering vehicles are expected to be the dominant model of air taxi. The objective function

was a linear combination of thrust and flight time. An analytical optimal trajectory was

obtained for arbitrary boundary conditions considering linear drag. The approach deter-

mined the trajectory for either a fixed time or a free time. An approximate solution was

presented for long haul flights to reduce the computational time. A characteristic param-

eter was proposed to decide whether to use the analytical solution or the approximation.

The approach was extended to satisfy peak velocity constraints. To incorporate the wind

effect, another result was derived to find the optimal trajectory in a constant wind shear

field while respecting peak thrust constraints.

The third problem was the Direct-Operating-Cost (DOC) optimal trajectory for electric

fixed-wing aircraft. DOC is a linear combination of energy consumption and flight time.

The trajectory planning was formulated as a hybrid optimal control problem (HOCP) to

find the optimal trajectory for all phases of a flight. The solution did not require an

initial guess of the costate, which saves computational time. A maximum Mach number

constraint and a maximum lift coefficient constraint were enforced to prevent solutions that
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are practically infeasible. Altitude-dependent along-track horizontal wind was considered

so that the solution would be the optimal flight profile in the presence of wind.

Our results for the first two problems are analytical solutions for arbitrary boundary

conditions. They can be incorporated with sampling-based methods (such as reference [14])

to interpolate the optimal trajectory between any two adjacent sample points while sat-

isfying additional path constraints. For each solution, we can calculate the expected cost

beforehand, which provides a budgeting functionality for all stakeholders. Since our objec-

tive functions are a combination of control effort (or specific support force) and flight time,

by assigning a different weight to the flight time, we can obtain different trajectories. The

effect of the cost index (CI) is demonstrated. The higher is CI , the shorter is the flight,

which agrees with the fact that time is more expensive. Insight into the cost management

of the flight operation industry helps to choose appropriate values for CI . For the third

problem, the optimal flight profile was determined for electric fixed-wing aircraft. We ap-

plied the HOC theory to find the optimal flight for all its phases. The effects of four factors

were analyzed, namely cost index CI , efficiency η, mass m, and wind velocity vw(z). The

higher were CI , η, m, the higher and faster the airplane flew.
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