
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2020

Studies in authentication

https://hdl.handle.net/2144/41697
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/355858805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

STUDIES IN AUTHENTICATION

by

SOPHIA YAKOUBOV

B.S., Massachusetts Institute of Technology, 2011
M.S., Boston University, 2015

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2020

c© 2020 by
SOPHIA YAKOUBOV
All rights reserved

Approved by

First Reader

Leonid Reyzin, PhD
Professor of Computer Science

Second Reader

Ran Canetti, PhD
Professor of Computer Science

Third Reader

Adam Smith, PhD
Professor of Computer Science

Fourth Reader

Claudio Orlandi, PhD
Associate Professor of Computer Science
Aarhus University

Acknowledgments

First and foremost, I would like to thank my advisor Leo Reyzin for being the

smartest, nicest, most supportive advisor and mentor I could have hoped for. You

gave me the freedom to pursue whatever directions and opportunities intrigued me

— even when those opportunities took me all the way to Denmark a year before my

graduation! — and continued to guide me through it all, reminding me of the big

picture, both in terms of research and life in general.

Next, a huge “thank you!” to some of my other mentors: Paul Goldenberg, who

was the first to show me what it was like to work on a math problem (“Raw Re-

cruits”, when I was 10) to which neither of us knew the answer — so much fun!

Richard Stanley, who introduced me to academic research (which ended up being my

passion, though I transitioned from combinatorics to cryptography), and who contin-

ued to patiently work with me even after I finished my undergraduate studies. Rob

Cunningham, who was the best first boss anyone could have, and who supported me

and encouraged me to grow at a time when I was less sure of myself. Ivan Damg̊ard

and Claudio Orlandi, who were the reason I came to Denmark, and who are a big

part of why I love it there so much.

To my committee members — Leo Reyzin, Ran Canetti, Adam Smith and Claudio

Orlandi — thank you for being there for me at these final stages of my time in graduate

school!

Big thanks to all of my coauthors: Foteini Baldimtsi, Jan Camenisch, Ran Canetti,

Rob Cunningham, Ivan D̊amgard, Maria Dubovitskaya, Pierre-Alain Dupont, Ben

Fuller, Vijay Gadepally, Helene Haagh, Ariel Hamlin, Jonathan Herzog, Julia Hesse,

Nick Hwang, Anna Lysyanskaya, Rebekah Mercer, Anca Nitulescu, Claudio Orlandi,

David Pointcheval, Jill Poland, Ben Price, Michael Reschly, Leo Reyzin, Kai Samelin,

Nabil Schear, Emily Shen, Adam Smith, Mayank Varia and Arkady Yerukhimovich.

iv

No researcher is an island, and I would have gotten nowhere without all of you!

I would also like to thank all of my other friends and mentors, particularly those

at Lincoln Laboratory, Boston University and Aarhus University. I did not get the

chance to collaborate with all of you (yet!), but having your company, advice and

support was an integral part of what made my grad school experience so great.

Finally, I would like to thank my mother, Nina Dubinsky, and my ex-partner, Ilya

Lifshits, for being there for me throughout my time in graduate school. I could never

have done it without you both.

v

STUDIES IN AUTHENTICATION

SOPHIA YAKOUBOV

Boston University, Graduate School of Arts and Sciences, 2020

Major Professor: Leonid Reyzin, PhD
Professor of Computer Science

ABSTRACT

This thesis presents advances in several areas of authentication.

First, we consider cryptographic accumulators, which are compact digital objects

representing arbitrarily large sets. They support efficient proofs of membership (or,

alternatively, of non-membership). We give the first definition of cryptographic accu-

mulators in the UC framework, and construct two new accumulators: one uniquely

suited for use in a revokable anonymous credential scheme, and one uniquely suited

for use in a distributed system such as a blockchain-based PKI.

Next, we consider multi-designated verifier signatures (MDVS). An MDVS is a

special kind of signature that can only be verified by parties explicitly specified by

the signer; more than that, even if those designated verifiers wanted to prove to an

external party (e.g. an adversary) that a certain message was signed by the signer,

they should be unable to do so. This is crucial in contexts where off-the-record com-

munication is desirable; the sender may not want to be provably linked to a possibly

sensitive message, but still want the intended recipients to be able to verify the au-

thenticity of the message. Existing literature defines and builds limited notions of

MDVS, where the off-the-record property only holds when it is conceivable that all

verifiers collude. We strengthen this property to support any subset of colluding veri-

fiers, and give two constructions of our stronger notion of MDVS: one from functional

vi

encryption, and one from standard primitives (but with a slightly larger signature

size).

Finally, we consider fuzzy password authenticated key exchange (Fuzzy PAKE).

PAKEs are protocols which enable two parties holding the same password (that is,

the same potentially low-entropy, non-uniform string) to agree on a (high-entropy,

uniform) secret key in a way that resists man-in-the-middle attacks and offline dic-

tionary attacks on the password. We define Fuzzy PAKE, a special kind of PAKE

where the passwords used for authentication may contain some errors. We provide

the first efficient and general solutions to this problem that enable, for example, key

agreement based on commonly used biometrics such as iris scans.

vii

Contents

1 Introduction 1

1.1 Advances in Accumulators . 1

1.2 Advances in Designated Verifier Signatures 4

1.3 Advances in PAKE . 6

2 Universally Composable Accumulators 9

2.1 Introduction . 9

2.1.1 Accumulator Applications . 14

2.2 Revisiting Classical Accumulator Definitions 16

2.2.1 Notation and Algorithms . 17

2.2.2 Security Definitions . 21

2.3 Ideal Functionality for Accumulators 26

2.3.1 Modeling Decentralized Management 32

2.3.2 Modeling Non-Adaptive Soundness 32

2.3.3 Adding Privacy Properties . 32

2.3.4 Discussion: Incorrect Accumulator and Witness Values 34

2.4 Equivalence Argument . 35

2.5 Appendix A: Universally Composable Signatures 38

2.6 Appendix B: Universally Composable Zero-Knowledge 39

2.7 Appendix C: The RSA Accumulator 39

3 Accumulators with Applications to

Anonymity-Preserving Revocation 43

viii

3.1 Introduction . 43

3.1.1 Outline . 44

3.2 Modular Accumulator Constructions 44

3.2.1 Leveraging Accumulators with Different Functionalities 44

3.2.2 Leveraging Less Secure Accumulators 49

3.3 Braavos: A Communication-Optimal Adaptively Sound Dynamic Ac-

cumulator . 50

3.3.1 CLRSAB: A Communication-Optimal Non-Adaptively Sound

Dynamic Accumulator . 55

3.3.2 Adding Zero Knowledge to Braavos 60

3.4 BraavosB: Another Communication-Optimal Adaptively Sound Dy-

namic Accumulator . 62

3.4.1 Range-RSA: A Dynamic Negative Accumulator 64

3.4.2 Range-RSA Accumulator Algorithms 67

3.4.3 BraavosB Soundness . 67

3.4.4 Adding Zero Knowledge to BraavosB 67

3.5 Comparison with Other Constructions 72

3.6 Appendix A: Lower Bound on Total Communication in Negative Ac-

cumulators . 75

4 Efficient Asynchronous Accumulators for Distributed PKI 76

4.1 Introduction . 76

4.2 Definitions . 79

4.3 Building Distributed Accumulators 80

4.4 Construction . 80

4.5 Infrequent Membership Witness Updates 83

4.6 Limited Dynamism . 84

ix

4.7 Appendix 1: Algorithms . 85

4.7.1 Accumulator Algorithms . 85

4.7.2 Batch Witness Updates . 88

5 Stronger Notions and Constructions for

Multi-Designated Verifier Signatures 91

5.1 Introduction . 91

5.1.1 A Motivating Example for MDVS 92

5.1.2 Flavors of Multi-Designated Verifier Signatures 96

5.1.3 Our Contributions . 98

5.2 Multi-Designated Verifier Signatures 104

5.3 Standard Primitive-Based MDVS Constructions 111

5.3.1 New Primitive: Provably Simulatable Designated-Verifier Sig-

natures (PSDVS) . 112

5.3.2 Standard Primitive-Based MDVS Construction 117

5.3.3 Standard Primitive-Based PSDVS Construction 121

5.3.4 DDH and Paillier-Based PSDVS Construction 127

5.3.5 Sketch of a PSDVS Scheme Based on Prime Order Groups . . 139

5.4 FE-based Construction . 140

5.4.1 Functional Encryption . 142

5.4.2 The MDVS Construction . 145

5.5 Appendix A: Instantiation of Non-Interactive ZK Proofs 148

6 Fuzzy Password Authenticated Key Exchange 153

6.1 Introduction . 153

6.1.1 Our Contributions . 155

6.2 Security Model . 160

6.3 General Construction Using Garbled Circuits 165

x

6.3.1 Building Blocks . 167

6.3.2 Construction . 172

6.3.3 An Efficient Circuit f for Hamming Distance 179

6.4 Specialized Construction For Hamming Distance 181

6.4.1 Building Blocks . 181

6.4.2 Construction . 188

6.4.3 Security of fPAKERSS . 190

6.4.4 Further Discussion: Removing Modeling Assumptions 193

6.5 Comparison of fPAKE Protocols . 193

6.6 Appendix A: Ideal UC Functionalities 196

6.7 Appendix B: Garbled Output Randomness: A New Yao’s Garbled Cir-

cuit Definition . 200

6.8 Appendix C: Proof of Theorem 12 . 202

6.9 Appendix D: Proof that sFPRFE is Enough to Realize FPfPAKE 212

6.10 Appendix E: A Concrete OT . 214

6.11 Appendix F: Proof of Theorem 13 . 215

6.12 Appendix G: Proof of Theorem 14 . 230

238

240

6.13 Appendix H: A Natural (But Failed) Approach to fPAKE

References

7 Curriculum Vitae 252

xi

List of Figures

0·1 Accumulator Notation . xv

0·2 Signature Notation . xv

0·3 Signature Notation . xv

2·1 Accumulator Algorithms . 21

2·2 The Collision-Freeness Game for Accumulators 25

2·3 Ideal Functionality FACC: Accumulator Manager / Witness Holder In-

terfaces . 30

2·4 Ideal Functionality FACC: Third Parties Interfaces 31

2·5 Ideal Functionality for Digital Signatures 39

2·6 Algorithmic Ideal Functionality for Digital Signatures 40

2·7 Ideal Functionality for Zero Knowledge 40

2·8 RSA Accumulator Manager Algorithms 41

2·9 RSA Witness Holder Algorithms . 42

2·10 RSA Verifier Algorithms . 42

3·1 Modular Accumulator Derivations: Functionality 46

3·2 Modular Accumulator Derivations: Security 49

3·3 Braavos′ Algorithms . 52

3·4 CLRSAB Algorithms . 57

3·5 Reduction From the Non-Adaptive Soundness of CLRSAB to the Strong

RSA Assumption . 59

3·6 Construction B Accumulator Manager Algorithms 64

xii

3·7 Construction B Witness Holder Algorithms 64

3·8 Construction B Third Party Algorithms 65

3·9 Range-RSA Accumulator Manager Algorithms 68

3·10 Range-RSA Witness Holder Algorithms 69

3·11 Range-RSA Third Party Algorithms 69

3·12 Accumulator Construction Comparison 73

4·1 The Distributed Accumulator . 81

5·1 MDVS Constructions and Their Properties 98

5·2 Our MDVS Constructions and Building Blocks 99

6·1 Ideal Functionality fPAKE . 163

6·2 A Modified TestPwd Interface to Allow for Different Leakage 164

6·3 Dual Execution Protocols . 170

6·4 Ideal Functionality FPRFE for Randomized Fuzzy Equality 174

6·5 A Protocol for ΠRFE Based on Yao’s Garbled Circuits 175

6·6 Functionality sFPRFE . 178

6·7 The f circuit . 180

6·8 Functionality FiPAKE . 186

6·9 Protocol EKE2 . 187

6·10 Protocol fPAKERSS . 189

6·11 FPAKE Scheme Comparison . 194

6·12 FPAKE Scheme Efficiency Comparison 195

6·13 Functionality FCRS . 196

6·14 Functionality FRO . 197

6·15 Functionality FIC . 198

6·16 Functionality FOT . 198

xiii

6·17 Functionality FpwKE . 199

6·18 Garbled Output Randomness Game 200

6·19 Summary of Proof of Theorem 12 . 203

6·20 From Game G0 to Game G1 . 204

6·21 Simulator SRFE for ΠRFE . 212

6·22 Protocol fPAKEYGC realizing FPfPAKE in the sFPRFE-hybrid model. 212

6·23 Simulator SfPAKE for fPAKEYGC. 213

6·24 Output Tables for FPfPAKE and sFPRFE 214

6·25 A Concrete OT . 215

6·26 Functionality F`-iPAKE . 216

6·27 A UC Execution of EKE2 . 216

6·28 From Game G0 (left) to Game G1 . 217

6·29 The Simulator S for the EKE2 Protocol 229

6·30 A UC Execution of fPAKERSS . 231

6·31 The Simulator S for fPAKERSS . 238

6·32 A First Natural Construction of FPAKE 239

xiv

List of Symbols

λ: The security parameter.
D: The domain of the accumulator (the set of elements that the accumulator can accumulate).

Often, D includes all elements (e.g., {0, 1}∗). Sometimes, D is more limited (e.g., primes of a
certain size).

sk: The accumulator manager’s secret key or trapdoor. (The corresponding public key, if one
exists, is not modeled here as it can be considered to be a part of the accumulator itself.)

t: A discrete time / operation counter.
at: The accumulator at time t.
mt: Any auxiliary values which might be necessary for the maintenance of the accumulator. These

are typically held by the accumulator manager. Note that while the accumulator itself should
be constant (or at least sub-linear) in size, m may be larger.

St: The set of elements in the accumulated set at time t. Note that S0 can be instantiated
to be different, based on the initial sets supported by the accumulator in question. Most
accumulators assume S0 = ∅.

x, y: Elements which might be added to or removed from the accumulator.
wxt : A witness that element x is (or is not) in the accumulated set at time t.

stts ∈ {in, out}: A flag indicating of whether a given element is in the accumulated set or not.
Op ∈ {Add,Del}: A flag indicating of whether a given element is being added or deleted.

upmsgt: A broadcast message sent (by the accumulator manager, if one exists) at time t to all witness
holders immediately after the accumulator has been updated. This message is meant to enable
all witness holders to update the witnesses they hold for consistency with the new accumulator.
It will often contain the new accumulator at, and the nature of the update itself (e.g., “x has
been added and witness wxt has been produced”). It may also contain other information.

v: A witness that the accumulator a0 was generated correctly. (Only present in strong accumu-
lators.)

vt: A witness that the accumulator at was updated correctly. (Only present in strong accumula-
tors.)

Figure 0·1: Accumulator Notation (from Baldimtsi et al. (Baldimtsi
et al., 2017))

pp: The public parameters
msk: The master secret key
spk: The signer’s public key
ssk: The signer’s secret key
vpk: A verifier’s public key
vsk: A verifier’s secret key
m: A message
σ: A signature

Figure 0·2: Signature Notation

pw: The pass-string held by a party
sk: The secret key derived by a party

Figure 0·3: Signature Notation

xv

Chapter 1

Introduction

The field of cryptography addresses two broad areas — privacy (keeping data se-

cret from unauthorized parties) and authenticity (ensuring that authorized parties

can verify the validity or provenance of data). This thesis focuses on authenticity.

There are many very different cryptographic primitives intended to provide authen-

ticity in different contexts. The most famous of these are message authentication

codes (MACs) and digital signatures, but there are many others, such as Merkle hash

trees and key exchange. In this thesis, we study three authentication primitives:

cryptographic accumulators, multi-designated verifier signatures (MDVS), and fuzzy

password authenticated key exchange (Fuzzy PAKE). (Despite this apparent diver-

sity of primitives, many authentication tools can, in fact, be considered in a unified

framework: that of cryptographic accumulators.)

1.1 Advances in Accumulators

Chapters 2, 3 and 4 focus on cryptographic accumulators. Chapter 2 gives a new

definition of accumulators in the universal composability framework. Chapter 3 gives

a few accumulator constructions that are uniquely suited for use in revokable anony-

mous credential systems, and Chapter 4 gives an accumulator construction that is

particularly well suited to use in distributed settings, e.g. on a blockcchain.

Accumulators, first introduced by Benaloh and de Mare (Benaloh and de Mare,

1994), are compact representations of arbitrarily large sets. Despite being small —

1

ideally constant-size relative to the size of the set they represent — they enable ver-

ification of statements about the set. Given a membership witness for some object

x together with the accumulator, anyone can verify that x is in the accumulated

set. If the accumulator is a universal accumulator (Li et al., 2007a), it also supports

non-membership witnesses that can be used to verify that elements are not in the

accumulated set. Typically, an accumulator is owned by an entity called an accu-

mulator manager who can add elements to (and, if the accumulator is dynamic (Ca-

menisch and Lysyanskaya, 2002), remove elements from) the set. If the accumulator

is strong (Camacho et al., 2008), even a corrupt accumulator manager cannot forge

a proof of (non-)membership.

In Chapter 2 (which is based on joint work with Foteini Baldimtsi and Ran Canetti

(Baldimtsi et al.,)), we give the first definition of cryptographic accumulators in the

UC (universal composability) framework. Accumulators are almost exclusively used

as building blocks in real-world complex systems (as opposed to on their own). Hav-

ing rigorous security analysis for such systems is crucial for their adoption and safe

use in the real world, but it can turn out to be extremely challenging given their com-

plexity. The UC framework is a paradigm designed to enable more modular security

analyses and proofs, guaranteeing that any composition of primitives remains secure

as long as the individual primitives have been proven secure in the UC framework.

Our UC definition of accumulators covers different accumulator types (universal, dy-

namic, strong) concisely in a single functionality, and captures the two basic security

properties of accumulators: correctness and soundness. Additionally, we prove the

equivalence of our UC definition to standard accumulator definitions. This implies

that existing popular accumulator schemes, such as the RSA accumulator, already

meet our UC definition, and that the security proofs of existing systems that leverage

such accumulators can be significantly simplified.

2

Chapters 3 and 4 give new accumulator constructions. Chapter 3 (which is based

on joint work with Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna

Lysyanskaya, Leonid Reyzin and Kai Samelin (Baldimtsi et al., 2017)) focuses on

building new accumulators from existing ones in a modular way. In this chapter,

we show how accumulators with different functionalities and notions of security can

be composed to enhance this functionality and security. This leads to the Braavos,

Braavos′ and BraavosB accumulators. Braavos and Braavos′ are ideally suited for use in

the context of revokable anonymous credentials. They use signatures to bind random

nonces to elements; the nonces are then accumulated in an RSA-based accumulator

which is designed not to require update messages when additions take place, at the

cost of only supporting the accumulation of random elements. Braavos, Braavos′ and

BraavosB all have the advantage that they do not require that witnesses be updated

when a new element is added. Braavos and Braavos′ additionally have the properties

that update messages do not reveal too much information about the updates made to

the accumulated set, and that they support efficient zero knowledge proofs of member

knowledge.

Chapter 4 (which is based on joint work with Leonid Reyzin (Reyzin and Yak-

oubov, 2016)) describes a different way to compose accumulators, which is reminiscent

of the use of a binary counter. This leads to the DistAccs accumulator, which consists

of a forrest of Merkle trees, one of each depth. An element is added in much the same

way as 1 would be added to a binary number; we first try to place it in the depth-1

Merkle tree space. If that is occupied, we hash the new element with the element al-

ready there, and try to place that in the depth-2 tree space, etc. This accumulator is

designed to minimize the necessary witness update frequency; an element’s witness is

its authenticating path, and it only needs to be updated when its tree is merged (which

happens at most a logarithmic number of times). This makes DistAccs ideally suited

3

for use in a distributed setting, where different — possibly computationally weak —

parties are responsible for the maintenance of different witnesses. One such setting

is maintaining a PKI on a blockchain (Yakoubov et al., 2014). Note that, though

the DistAccs accumulator does require witnesses to be updated more frequently than

the Braavos, Braavos′ and BraavosB accumulators do, it is strong (that is, it does not

require trust in the accumulator manager), which is crucial in distributed settings.

1.2 Advances in Designated Verifier Signatures

Chapter 5 (which is based on joint work with Ivan Damg̊ard, Helene Haagh, Rebekah

Mercer, Anca Nit,ulescu and Claudio Orlandi (Damg̊ard et al., 2019)) focuses on Multi

Designated Verifier Signatures (MDVS). An MDVS is a special kind of signature that

can only be verified by parties explicitly specified by the signer; more than that, even

if those designated verifiers wanted to prove to an external party (e.g. an adversary)

that a certain message was signed by the signer, they should be unable to do so. This

is crucial in contexts where off-the-record communication is desirable; the sender

may not want to be provably linked to a possibly sensitive message, but still want

the intended recipients to be able to verify the authenticity of the message.

We give stronger definitions and constructions of MDVS. Existing literature de-

fines and builds limited notions of MDVS, where the off-the-record property only holds

when all verifiers could conceivably collude. We strengthen this property to support

any subset of colluding verifiers. We give two constructions of our stronger notion

of MDVS: one from functional encryption, and one from standard primitives such as

pseudorandom functions, pseudorandom generators, key agreement and NIZKs.

In the construction based on functional encryption, the signer produces a regular

digital signature, and encrypts it using the functional encryption public encryption

key. Each verifier has a functional decryption key that allows them to learn whether a

4

given ciphertext contains a signature that verifies either under their own verification

key, or under the signer’s. No verifier can convince an external party that the signature

is the signer’s, even if they hand over their secret verification key, since the ciphertext

could just as easily contain a signature produced by the verifier and not the signer.

In order to make sure that even colluding verifiers cannot convince an external party

to accept the signature as the signer’s, the ciphertext should encrypt a vector of

signatures instead of just one; then, any third party will remain unsure whether that

vector has only a valid signature from the signer, or one valid signature from each of

the colluding designated verifiers.

The upside of this construction is that the signature size is equal to the upper

bound on the size of conceivable groups of colluding verifiers, which may be smaller

than the number of such verifiers. However, the downside is two-fold: it requires

trusted setup, and it uses functional encryption, which requires strong computational

assumptions. Our second MDVS construction does not require trusted setup, and

uses only standard primitives. Informally, in this construction the signer produces a

separate designated verifier signature for each verifier, and proves the consistency of

this vector of signatures: that either they are all real signatures, or that they are all

fake. (The proof is necessary to achieve consistency, which is the property that even

a malicious signer should be unable to sow confusion by producing a signature that

verifies for some — but not all — of the designated verifiers.) In order to support such

proofs, we introduce a new primitive which we call a provably simulatable designated

verifier signature. We show both generic and concretely efficient instantiations of this

new primitive.

Designated Verifier Signatures as Accumulators Signatures fall very naturally

into the accumulator framework; a public key can be considered as an accumulator

value, and a signature can be a membership witness. Thinking of designated verifi-

5

cation as an extension of that makes perfect sense. Instead of having accumulator

witnesses be publicly verifiable, we could consider a designated verifier accumulator

where each witness is only verifiable by certain parties as specified by the accumulator

manager.

1.3 Advances in PAKE

Chapter 6 (which is based on joint work with Pierre-Alain Dupont, Julia Hesse, David

Pointcheval and Leonid Reyzin (Dupont et al., 2018)) focuses on Fuzzy Password

Authenticated Key Exchange (Fuzzy PAKE). PAKEs are protocols which enable two

parties holding the same password (that is, the same potentially low-entropy, non-

uniform string) to agree on a (high-entropy, uniform) secret key in a way that resists

man-in-the-middle attacks and offline dictionary attacks on the password.

We introduce and give a UC definition of Fuzzy PAKE, which is a special kind of

PAKE where the passwords used for authentication may contain some errors. Verifi-

cation should still succeed, as long as the passwords are within a certain distance of

one another (for some notion of distance). This is particularly useful for key agree-

ment based on commonly used biometrics such as iris scans, or on environmental

readings.

We give two constructions of Fuzzy PAKE. The first is based on Yao’s garbled

circuits (Yao, 1986; Bellare et al., 2012) and oblivious transfer (see Chou and Or-

landi (Chou and Orlandi, 2015) and references therein). The use of these techniques

is standard in two-party computation. However, by themselves they give protocols

secure only against honest-but-curious adversaries. In order to prevent malicious be-

havior of the players, one usually applies the cut-and-choose technique (Lindell and

Pinkas, 2011), which is quite costly: to achieve an error probability of 2−λ, the num-

ber of circuits that need to be garbled increases by a factor of λ, and the number

6

of oblivious transfers that need to be performed increases by a factor of λ/2. We

show that for our special case, to achieve malicious security, it suffices to repeat the

honest-but-curious protocol twice (once in each direction), incurring only a factor of

2 overhead over the semi-honest case.

Our second construction is for the Hamming case: the two n-character passwords

have low Hamming distance if not too many characters of one party’s password are

different from the corresponding characters of the other’s password. The two parties

execute a PAKE protocol for each position in the string, obtaining n values each

that agree or disagree depending on whether the characters of the password agree or

disagree in the corresponding positions. It is important that at this stage, agreement

or disagreement at individual positions remains unknown to everyone; we therefore

make use of a special variant of PAKE which we call implicit-only PAKE This first

step upgrades Hamming distance over a potentially small alphabet to Hamming dis-

tance over an exponentially large alphabet. We then secret-share the ultimate output

key into n shares using a robust secret sharing scheme, and encrypt each share using

the output of the corresponding PAKE protocol.

The second construction is more efficient than the first in the number of rounds,

communication, and computation. However, it works only for Hamming distance.

Moreover, it has an intrinsic gap between functionality and security: if the honest

parties need to be within distance δ to agree, then the adversary may break security

by guessing a secret within distance 2δ.

Fuzzy PAKE as an Acccumulator PAKE does not naturally fall into the lan-

guage of accumulators, and fitting it into this language may be more of a stretch.

We do not consider PAKE as accumulators in Chapter 6 (or MDVS as an accumu-

lator in Chapter 5), and it might seem that trying to view too many apparently

different primitives through the same accumulator lens would lead to unnecessary

7

definitional complexity. While this may be true, the definitional complexity is offset

by the value of seeing the space of possible authentication primitives and all its dif-

ferent axes in a very clear way. MDVS, viewed outside the context of accumulators,

does not automatically provoke the question of whether it can be extended to sup-

port non-membership witnesses or deletions; inside the accumulator language, those

are natural questions, and ones that I intend to explore in future work. Similarly,

considering PAKE in the context of accumulators naturally leads to the question of

whether popular accumulators can be extended to support verification in a way that

is resilient to offline attacks.

8

Chapter 2

Universally Composable Accumulators

The contents of this section are a collaboration with Foteini Baldimtsi and Ran

Canetti (Baldimtsi et al.,). The last section of the original paper is omitted.

2.1 Introduction

Accumulators, first introduced by Benaloh and de Mare (Benaloh and de Mare, 1994),

are compact representations of arbitrarily large sets. Despite being small — ideally

constant-size relative to the size of the set they represent! — they enable verification

of statements about the set. Given a membership witness for some object x together

with the accumulator, anyone can verify that x is in the accumulated set. If the accu-

mulator is a universal accumulator (Li et al., 2007a), it also supports non-membership

witnesses that can be used to verify that elements are not in the accumulated set.

Typically, an accumulator is owned by an entity called an accumulator manager who

can add elements to (and, if the accumulator is dynamic (Camenisch and Lysyan-

skaya, 2002), remove elements from) the set. If the accumulator is strong (Camacho

et al., 2008), even a corrupt accumulator manager cannot forge a proof of (non-

)membership.

Many crucial primitives are actually special cases of accumulators. For instance,

digital signatures are accumulator schemes, where the signature verification key is the

accumulator representing the set of signed messages, and the signatures are member-

ship witnesses. The owner of the signing key is the accumulator manager, and she

9

can add elements to the set by signing them. Of course, she cannot un-sign elements

(without publishing a revocation list, which is not constant in size), and she cannot

produce a proof that a given element has not been signed, so this accumulator is nei-

ther dynamic nor universal. She can also always prove the membership of arbitrary

elements, so this accumulator is not strong.

Another example of an accumulator is a Merkle hash tree. The tree root is the

accumulator representing the set of leaf nodes, and the authenticating paths through

the tree are membership witnesses. This accumulator supports both element addition

and deletion, but when either of those events occur, all existing witnesses must be

updated, requiring total work that is linear in the number of member elements. In

many situations, this is prohibitively inefficient. The Merkle hash tree accumulator

is strong, because all additions and deletions are publicly verifiable (by means of

re-execution). Though the intuitive Merkle hash tree accumulator does not support

proofs of non-membership, it can be modified to be universal (Camacho et al., 2008).

One construction of a universal, dynamic (but not strong) accumulator with ef-

ficient update algorithms is the RSA accumulator. It is the original accumulator

introduced by Benaloh and de Mare (Benaloh and de Mare, 1994), augmented with

dynamism by Camenisch and Lysyanskaya (Camenisch and Lysyanskaya, 2002), and

with universality by Li, Li and Xue (Li et al., 2007a). It is one of the most popular

accumulator constructions because of its compactness and efficiency.

Although accumulators are frequently analyzed as stand-alone primitives, they

are almost exclusively used as building blocks in real-world complex systems, including

anonymous credentials (Camenisch and Lysyanskaya, 2002; Nguyen, 2005; Camenisch

et al., 2009; Baldimtsi et al., 2017), group signatures (Camenisch and Lysyanskaya,

2002) and, more recently, anonymous cryptocurrencies (Miers et al., 2013). Having

rigorous security analysis for such systems is crucial for their adoption and safe use in

10

the real world, but it can turn out to be extremely challenging given their complexity.

When a system consists of multiple building blocks, even if each one of them is proven

secure independently, the security analysis of the whole needs to be done from scratch.

Universal Composability

Universally Composable (UC) security (Canetti, 2001), addresses this problem. Any

protocol that has been shown to be UC-secure will maintain its security properties

even when it is used concurrently with other arbitrary protocols as part of a larger

system. This allows one to formally argue about the security of a complex scheme

in a much simpler and cleaner way, as long as all the protocols used within it have

already been proven to be UC-secure.

Showing that a protocol is UC-secure consists of two steps. First, we write out a set

of instructions called the ideal functionality, which define how we would instantiate the

primitive if we had an incorruptible third party to delegate its operation to. Second,

we show that any attack an adversary carries out against the protocol, it can also

carry out against the ideal functionality. This is done by arguing that for any efficient

adversary and environment (which sets all parties’ inputs, receives all parties’ outputs

and additionally receives information from the adversary), there exists a simulator

such that the environment cannot tell the difference between interacting with the

protocol and adversary, and interacting with the ideal functionality and simulator.

This proves that any time it suffices to use our ideal functionality within a larger

system, we can replace it with our protocol and the system will remain secure.

The modularity and the strong security guarantees provided by UC suggest that

protocols should always be designed and proven secure in the UC framework. How-

ever, this is only the case for a small fraction of proposed cryptographic schemes. One

roadblock to using the UC framework is that not all commonly used sub-protocols

have UC definitions and proofs. Some such sub-protocols have already been defined

11

and analyzed in the UC framework (e.g. digital signatures (Canetti, 2001; Canetti,

2004), zero-knowledge proofs (Camenisch et al., 2011), etc.), but others have not.

Cryptographic accumulators are one example of a very common primitive that has

never been considered in the context of UC security.

Our Results

In this work, we make the following contributions:

1. We provide the first UC definition (ideal functionality) for cryptographic accu-

mulators. There are many functionality flavors of accumulators: accumulators

might support only additions, only deletions or both, and they might support

proofs of membership, proofs of non-membership, or both. Our UC definition

covers all of these possibilities in a modular way.

2. We then prove the equivalence of our UC definition to standard accumulator

security definitions. This implies that existing secure accumulator constructions

— such as the RSA accumulator (Benaloh and de Mare, 1994; Camenisch and

Lysyanskaya, 2002; Li et al., 2007a) — are UC secure.

3. Finally, we discuss how our UC definition simplifies the proofs of security for

schemes that use accumulators as a building block. First, we build an accu-

mulator out of two weaker accumulators (as in (Baldimtsi et al., 2017), but

with stronger privacy properties), and give a simple UC proof of security for

that composite accumulator, which we call Braavos′. Then, we consider how

UC simplifies proofs of security in more complex systems such as anonymous

credentials.

Note that when defining a new ideal functionality, there are two possible scenarios:

either existing constructions can be proven to securely realize the new functionality

(as with digital signatures (Canetti, 2004)), or new constructions must be developed

(as with commitment schemes (Canetti and Fischlin, 2001)). Our second contribu-

12

tion shows that our accumulator functionality is in the first scenario; popular, existing

accumulator constructions already satisfy it. This greatly simplifies the security anal-

ysis of existing and future systems that use cryptographic accumulators as a building

block.

Informally, two classical properties are considered for cryptographic accumulators.

The first is correctness: for every element inside (or outside, for negative accumula-

tors) the accumulated set, an honest witness holder can always prove membership (or

non-membership, for negative accumulators) in the set. The second is soundness: for

every element outside (or inside, for negative accumulators) the accumulated set, it

is infeasible to prove membership (or non-membership, for negative accumulators).

Our ideal functionality is different than most ideal functionalities in that it requires

as input from the simulator all of the accumulator algorithms (as previously done in

the context of digital signatures (Canetti, 2004)). This is actually a very intuitive way

to build an ideal functionality, since it only deviates from the algorithm outputs when

necessary for correctness or soundness. We explain this in more detail in Sec. 2.3.

We chose not to incorporate secrecy or privacy requirements into our ideal func-

tionality since they depend on specific applications and vary considerably; thus, they

are best made separately, as an additional “layer” on top of the basic correctness

guarantees captured in this work. Additionally, privacy-aware constructions often

use accumulators and privacy-enhancing mechanisms (such as zero-knowledge proofs)

as two separate modules, making the formalization here more conducive to modular

analysis. We exemplify this point by sketching a modular analysis of the Baldimtsi

et al. (Baldimtsi et al., 2017) construction of revocable anonymous credentials from

zero knowledge proofs and accumulators.

13

Outline

We start by setting notation and presenting classical accumulator definitions (but

with a twist) in Section 2.2. Then, in Section 2.3, we give an ideal UC functionality

for accumulators that encompasses both of the properties listed above. In Section 2.4,

we argue that any accumulator that has these properties meets our UC definition,

and vice versa.

2.1.1 Accumulator Applications

To showcase the importance of a UC analysis for cryptographic accumulators we

briefly discuss a few of the most interesting systems that use accumulators as a main

building block. The security analysis of all the following systems would be much

simpler when the underlying accumulator is UC-secure.

Access Control

Authentication of users is vital to most of the electronic systems we use today. It is

usually achieved by giving the user a token, or credential, that the user must present

to prove that she has permission to access a service. A naive construction for an

access control system is to maintain a whitelist of authorized users (i.e., by storing

their credentials). Whenever a user wants to access the system she just needs to

present her credential, and as long as it is on the whitelist, the user will be given

access. When a user needs to be revoked, her credential is just removed from the

whitelist. Despite its simplicity, such a solution is not practical, since the size of

the whitelist will have to grow linearly with the number of participating users. One

might argue that expending an amount of resources that is linear in the number

of participating users is something systems already do, but this is not the case for

all systems, especially those the sole purpose of which is to control access to some

resource.

14

Cryptographic accumulators enable more efficient access control systems. Instead

of keeping a whitelist, an accumulator can be used to maintain the set of authorized

users. Whenever a user is given access to the resource, she is given a credential that

can be seen as an accumulator membership witness. One possible construction uses

the digital signature accumulator together with a blacklist of revoked users, which

grows linearly with the number of revocations. This construction is the one most

commonly used in public key infrastructures (PKIs), where a certificate revocation list

(CRL) that contains the revoked certificates is published periodically. This solution

is more efficient, since usually the number of revoked users is much smaller than the

number of total users in the system. However, it is still not ideal, since the blacklist

can grow to significant size. A dynamic accumulator — which supports both element

additions and deletions while remaining small — is a much better solution.

Anonymous Credentials

The inefficiency of the naive whitelist and blacklist solutions for access control be-

comes even more problematic when anonymity is considered as a goal of the system:

if a user wishes to anonymously show that her credential is on a whitelist (or not on

a blacklist), then she would have to perform a zero-knowledge proof of membership

(or non-membership) which would require cost linear to the size of the corresponding

list. Given how expensive zero knowledge proofs usually are, it is important to avoid

doing work linear in the number of valid or revoked members in a system. To avoid

this inefficiency, anonymous credentials schemes (the most prominent solution for

anonymous user authentication) make use of dynamic cryptographic accumulators as

an essential building block to allow for efficient proofs of membership (and practical

user revocation) (Camenisch and Lysyanskaya, 2002; Nguyen, 2005; Camenisch et al.,

2009). Idemix (Camenisch and Van Herreweghen, 2002), the leading anonymous cre-

dential system by IBM, is such an example of an anonymous credential scheme that

15

employs cryptographic accumulators for user membership management (Baldimtsi

et al., 2017).

Cryptocurrencies

As discussed above, when a proof of membership (or non-membership) needs to be

done in zero-knowledge, the naive whitelist and blacklist solutions are not realis-

tic. Anonymous cryptocurrencies, like anonymous credentials, require such zero-

knowledge proofs. In order to prove that a payment is valid (and is not a double-

spend), when a user wishes to spend a coin that she owns, she must first prove that

her coin does not belong in a list of previously spent coins. To ensure anonymity, such

a proof must be done in zero-knowledge. Universal cryptographic accumulators are

used in Zerocoin (Miers et al., 2013) to maintain the set of spent coins while enabling

efficient zero-knowledge proofs of non-membership.

Group Signatures

Accumulators have been suggested for building other cryptographic primitives such

as group signatures. In a group signature scheme, the group manager maintains a

list of valid group members, and periodically grants (or revokes) membership. There

has been much research on the topic of group signatures, and a number of efficient

schemes have been proposed. One of the first practical solutions supporting revo-

cation uses cryptographic accumulators for user revocation (Camenisch and Lysyan-

skaya (Camenisch and Lysyanskaya, 2002), building on the ACJT group signature

scheme (Ateniese et al., 2000)).

2.2 Revisiting Classical Accumulator Definitions

We first discuss accumulator terminology and notation and review accumulator al-

gorithms. Then, in Section 2.2.2, we revise the classical accumulator definitions of

16

security to be more modular, and to support a wider range of accumulator function-

alities. These changes make the transition to the UC model more clear and natural.

2.2.1 Notation and Algorithms

An accumulator is a compact representation of a set S = {x1, . . . xn}, which can be

used to prove statements about the underlying set. Different accumulator types and

properties have been considered in the literature. Here, we use the terminology and

definitions of Baldimtsi et al. (Baldimtsi et al., 2017), who provide a modular view of

accumulator functionalities. Like them, we consider four basic types of accumulators:

• Static accumulator : represents a fixed set.

• Additive accumulator : supports only addition of elements to the set.

• Subtractive accumulator : supports only deletion of elements from the set.

• Dynamic accumulator (Camenisch and Lysyanskaya, 2002): supports both ad-

ditions and deletions.

Note that a trivial way to achieve deletions and additions is by re-instantiating the

accumulator with the updated set. Although simple, this takes a polynomial amount

of time in the number of element additions or deletions which have been performed

up until that point. For practical applications a dynamic accumulator should support

both additions and deletions in time which is either independent of the number of

operations performed altogether, or at least sublinear in this number.

In addition to considering the types of modifications we can make to accumulated

sets, we also consider the types of proofs (membership proofs, non-membership proofs,

or both) accumulators support.

• Positive accumulator : supports membership proofs.

• Negative accumulator : supports non-membership proofs.

• Universal accumulator (Li et al., 2007a): supports both types of proofs.

We consider three types of parties in the accumulator setting. The accumulator

17

manager is a special party who is the “owner” of the accumulated set: she cre-

ates the accumulator, adds and deletes elements, and creates membership and non-

membership witnesses. A witness holder, or user, is responsible for an accumulated

element (i.e. she owns a credential in a system for which an accumulator is used).

She is interested in being able to prove the (non-)membership of that element to oth-

ers, so she maintains the witness for that element, by updating it when/if necessary.

Finally, a verifier is any third party who is only interested in checking the proofs of

(non-)membership (e.g. a gatekeeper checking credentials).

We now describe the algorithms performed by each party, and summarize them

in Figure 2·1. In Figure 0·1 we summarize the notation used to describe the different

accumulator algorithm input and output parameters.

Accumulator Manager Algorithms

The following are algorithms performed by the accumulator manager who creates the

accumulator and maintains it as required. If the accumulator is additive, she can add

elements to it by calling the Update algorithm with Op = Add. If the accumulator

is subtractive, she can delete elements by calling Update with Op = Del. If it is

dynamic, she can do both. If the accumulator is positive, the accumulator manager

can create membership witnesses by calling WitCreate with stts = in (where stts is

a variable representing the status of an element, which can be in or out of the set);

if it is negative she can create non-membership witnesses by calling WitCreate with

stts = out. If it is universal, she can do both.

• Gen(1λ, S0) → (sk, a0,m0) outputs the accumulator manager’s secret key sk,

the accumulator a0 (representing the initial set S0 ⊆ D of elements in the

accumulator, where D is the domain of the accumulator1), and an auxiliary

1The allowable S0 sets vary from accumulator to accumulator. There are accumulators that
support only S0 = ∅; others support any polynomial-size S0, and yet others support any S0 that can
be expressed as a polynomial number of ranges.

18

value m0 necessary for the maintenance of the accumulator (i.e. one could

think of mt being the accumulator manager’s memory or storage at step t).

• Update(Op, sk, at,mt, x) → (at+1,mt+1, w
x
t+1, upmsgt+1) updates the accumula-

tor by either adding or deleting an element. If Op = Add it adds the element

x ∈ D to the accumulator and outputs the updated accumulator value at+1 and

auxiliary value mt+1, as well as the membership witness wxt+1 for x and an up-

date message upmsgt+1, which enables witness holders to bring their witnesses

up to date. If Op = Del then it deletes the element x from the accumulator

and outputs at+1, mt+1 and upmsgt+1 as before, as well as a non-membership

witness wxt+1.

• WitCreate(stts, sk, at,mt, x, (upmsg1, . . . , upmsgt)) → wxt creates a (non-) mem-

bership witness. If stts = in it generates a membership witness wxt for x, and

if stts = out it generates a non-membership witness. (Of course, this algorithm

should only succeed in generating a valid membership witness if x is actually in

the set, and in generating a non-membership witness if x is not in the set.)

Remark 1. The parameters sk, m and upmsg are optional for some accumulator

constructions. We mark such parameters in grey. For instance, in a Merkle hash

tree accumulator there is no secret key sk, and in a digital signature accumulator

there is no auxiliary value m or update messages upmsg. Notice that the WitCreate

algorithm takes in both the auxiliary value m and the update messages, which seems

redundant; after all, the update messages can always be kept as part of m. The reason

we provide the algorithm with both arguments is to account for scenarios which do

not use any auxiliary storage.

Remark 2. The notion of a public key is absent on the above definition. One can

consider the accumulator value a to be the “public key” of the scheme, since it is used

for verification. In fact, in the digital signature accumulator construction, the public

verification key is equal to the accumulator value. However, unlike a typical public

key, the accumulator value can evolve over time.

19

Witness Holder Algorithms

Witness holders are interested in proving the (non-)membership of certain elements,

and thus maintain witnesses for those elements. They use a witness update algorithm

WitUp to sync their witnesses with the accumulator when additions or deletions occur.

• WitUp(stts, x, wxt , upmsgt+1) → wxt+1 updates the membership witness for ele-

ment x (if stts = in) or the non-membership witness if stts = out. The updates

use the update messages upmsg, which contain information about changes to

the accumulator value (e.g. that a given element was added, what the new

accumulator value is, etc).

Verifier/Third Party Algorithms

The last category of accumulator users are the verifiers (or third parties) who are

only interested in checking proofs of (non-)membership. They do so by calling the

VerStatus algorithm.

• VerStatus(stts, at, x, w
x
t)→ φ checks whether the membership witness (if stts =

in) or the non-membership witness (if stts = out) for element x is valid; it

returns φ = 1 if it is, and φ = 0 if it is not.

If the accumulator is strong (Definition 4), the accumulator should be secure

even against a cheating accumulator manager. That is, all modifications that an

accumulator manager makes to the accumulator should be publicly verifiable. The

differences in the algorithms are as follows: (a) Gen and Update also output a value v,

which essentially is a proof that an accumulator was created/updated correctly. (b)

Additional verification algorithms VerGen and VerUpdate can be used to check these

proofs.

20

Algorithm Inputs Outputs

Accumulator Manager Algorithms
Gen 1λ, S0 sk, a0,m0, v
Update Opt, sk, at,mt, x at+1,mt+1, wxt+1, upmsgt+1, vt+1

WitCreate stts, sk, at,mt, (upmsg1, . . . , upmsgt), x wxt
Witness Holder Algorithms

WitUp stts, x, wxt , upmsgt+1 wxt+1
Verifier or Third Party Algorithms

VerStatus stts, at, x, wxt φ ∈ {0, 1}
Additional Third Party Algorithms in Strong Accumulators

VerGen 1λ, S0, a0, v φ ∈ {0, 1}
VerUpdate Opt, at, at+1, x, vt+1 φ ∈ {0, 1}

Figure 2·1: Accumulator Algorithms. In static accumulators, the
Update, WitUp and VerUpdate algorithms do not exist. In additive
accumulators, Op is required to be equal to Add everywhere. In sub-
tractive accumulators, Op is required to be equal to Del. In dynamic
accumulators, Op can be either. In positive accumulators, stts is re-
quired to be equal to in everywhere. In negative accumulators, stts
is required to be equal to out. In universal accumulators, stts can be
either.

2.2.2 Security Definitions

A cryptographic accumulator should satisfy two basic security properties: correctness

and soundness. In this section, we review the classical correctness and soundness

properties of accumulators (stated, for instance, by Ghosh et al. (Ghosh et al., 2016)).

We revise these classical definitions in several ways.

1. We explicitly consider the correctness of the witness update algorithm, which

(Ghosh et al., 2016) consider only as an efficiency shortcut, and thus exclude

from their definitions. Since the update algorithm is used in practice, we believe

it is important to include in the formal definitions.

2. We allow the generation of membership witnesses during addition (or non-

membership witnesses during deletion) as is commonly done in practice, while

(Ghosh et al., 2016) only considers the generation of witnesses from a fixed

accumulator state. Because of this, we have two separate notions of correctness

— correctness and creation-correctness.

21

Correctness Definitions

Definitions 7 and 2 give the correctness requirements for the more general case of a uni-

versal dynamic accumulator. Informally, an accumulator is correct or creation-correct

if an up-to-date version of a witness produced by Update or WitCreate, respectively,

can be used to verify the (non-)membership of the corresponding element. It is easy

to adapt our definition for cases of additive/subtractive or positive/negative. To get

a definition for an additive accumulator, restrict all instances of Op to be equal to

Add; to get a definition for a subtractive accumulator, restrict all instances of Op

to be equal to Del. Similarly, to get a definition for a positive accumulator, restrict

all instances of stts to be equal to in; to get a definition for a negative accumulator,

restrict all instances of stts to be equal to out.

Definition 1 (Correctness). A universal dynamic accumulator is correct for a given

domain D of elements if an up-to-date witness wx corresponding to value x can always

be used to verify the (non-)membership of x in an up-to-date accumulator a. More

formally, there exists a negligible function ν in the security parameter λ such that for

all:

• security parameters λ,

• initial sets S0 ⊆ D,

• values x ∈ D,

• positive integers t polynomial in λ,

• positive integers tx such that 1 ≤ tx ≤ t,

• operations Op ∈ {Add,Del} (with stts = in if Op = Add and stts = out if

Op = Del),

• lists of tuples [(y1,Op1), . . . , (ytx−1,Optx−1)], [(ytx+1,Optx+1), . . . , (yt,Opt)], where

– yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , tx − 1, tx + 1, . . . , t];

– If Op = Add, then (x,Del) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)];

and

– If Op = Del, then (x,Add) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)],

The following holds:

22

Pr

(a0, sk)← Gen(1λ, S0);
(ai,mi, w

yi
i , upmsgi)← Update(Opi, sk, ai−1,mi−1, yi) for i ∈ [1, . . . , tx − 1];

(atx ,mtx , w
x
tx
, upmsgtx)← Update(Op, sk, atx−1,mtx−1, x);

(ai,mi, w
yi
i , upmsgi)← Update(Opi, sk, ai−1,mi−1, yi) for i ∈ [tx + 1, . . . , t];

wxi ←WitUp(stts, x, wxi−1, upmsgi) for i ∈ [tx + 1, . . . , t]) :
VerStatus(stts, at, x, wxt) = 1

 ≥ 1− ν(λ)

Definition 2 (Creation-Correctness). A universal dynamic accumulator is creation-

correct for a given domain D of elements if an up-to-date witness wx created by the

WitCreate algorithm — not by the Update algorithm! — corresponding to value x can

always be used to verify the (non-)membership of x in an up-to-date accumulator a.

More formally, there exists a negligible function ν in the security parameter λ such

that for all

• security parameters λ,

• initial sets S0 ⊆ D,

• values x ∈ D,

• positive integers t polynomial in λ,

• positive integers tx such that 1 ≤ tx ≤ t,

• statuses stts ∈ {in, out}, and

• lists of values [(y1,Op1), . . . , (yt,Opt)], where

– yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , t];

– If stts = in

∗ either (a) x ∈ S0, or (b) (x,Add) appears in [(y1,Op1), . . . , (ytx−1,Optx)]

and was not followed by (x,Del), and

∗ (x,Del) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)];

– If stts = out

∗ either (a) x 6∈ S0, or (b) (x,Del) appears in [(y1,Op1), . . . , (ytx−1,Optx)]

and was not followed by (x,Add), and

∗ (x,Add) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)];

The following holds:

Pr

(a0, sk)← Gen(1λ, S0);
(ai,mi, w

yi
i , upmsgi)← Update(Opi, sk, ai−1,mi−1, yi) for i ∈ [1, . . . , tx];

wxtx ←WitCreate(stts, sk, at,mt, x);
(ai,mi, w

yi
i , upmsgi)← Update(Opi, sk, ai−1,mi−1, yi) for i ∈ [tx + 1, . . . , t];

wxi ←WitUp(stts, x, wxi−1, upmsgi) for i ∈ [tx + 1, . . . , t]) :
VerStatus(stts, at, x, wxt) = 1

 ≥ 1− ν(λ)

23

Soundness Definitions

Classically, collision-freeness (Bari and Pfitzmann, 1997) is the soundness definition

for accumulators. Collision-freeness informally requires that for any element not in

the accumulated set it should be hard to find a membership witness. For negative

and universal accumulators, collision-freeness can be extended to require that for

any element in the accumulated set it should be hard to find a non-membership

witness. Another formalization of accumulator soundness for universal accumulators

is undeniability (Lipmaa, 2012), which requires that for any element (regardless of its

presence in the accumulated set) it be hard to find both a membership witness and a

non-membership witness.

In this paper, we choose to use collision-freeness, since undeniability is not mean-

ingful for positive or negative accumulators, which only support proofs of membership

or proofs of non-membership but not both. Definition 3 gives the collision-freeness

definition for a universal dynamic accumulator. This definition can be converted to

work for positive, negative, additive or subtractive accumulators in the usual way (by

limiting the possible values of Op or stts).

Definition 3 (Collision-Freeness). A universal dynamic accumulator is collision-free

for a given domain D of elements if it is hard to fabricate a (non-)membership witness

w for a value x that is not (or, respectively, is) in the accumulated set. More for-

mally, consider the collision-freeness game described in Figure 2·2. An accumulator

is collision-free if for any sufficiently large security parameter λ, for any probabilistic

polynomial-time adversary AColFree, there exists a negligible function ν in the security

parameter λ such that the probability that AColFree wins the game is less than ν(λ).

Non-Adaptive Soundness

In the collision-freeness game of Figure 2·2, the adversary is able to choose elements

to add and delete adaptively. However, this notion of collision-freeness (or sound-

24

Challenger AColFree

S = S0 if S0 provided, ∅ otherwise
S0←−−−−−−−−−−−−−−−−−−

t = 0
(sk, a0,m0)← Gen(1λ, S0) a0−−−−−−−−−−−−−−−−−−→

x ∈ D,Op ∈ {Add,Del}←−−−−−−−−−−−−−−−−−− p(λ) times
t = t+ 1

If Op = Add: S = S ∪ {x}
If Op = Del: S = S\{x}

(at+1,mt+1, wxt+1, upmsgt+1)← Update(Op, sk, at,mt, x)
at+1,mt+1, wxt+1, upmsgt+1−−−−−−−−−−−−−−−−−−→

x∗ ∈ D,w∗←−−−−−−−−−−−−−−−−−−
AColFree wins if (VerStatus(in, at+1, x∗, w∗) = 1 and x∗ 6∈ S), or (VerStatus(out, at+1, x∗, w∗) = 1 and x∗ ∈ S).

Figure 2·2: The Collision-Freeness Game for Accumulators

ness) is quite strong. In a non-adaptive2 version of the game, the adversary would be

required to commit to all elements it intends to add before seeing a0. Certain accu-

mulators can only be shown to meet non-adaptive soundness. One example of such

an accumulator is the CLRSAB accumulator, which was informally introduced as a

brief remark by Camenisch and Lysyanskaya (Camenisch and Lysyanskaya, 2002) and

formally described by Baldimtsi et al. (Baldimtsi et al., 2017). Note that, in partic-

ular, a non-adaptively sound accumulator can always be used to accumulate random

values, since it makes no difference whether random values are chosen beforehand or

on-the-fly.

Strength

Typically, accumulators are not required to be secure against cheating accumulator

managers, since in many scenarios the entity that manages the set (and thus the accu-

mulator) is trusted. When that is not the case (e.g. in many blockchain applications),

a strong accumulator can be used. A strong accumulator provides guarantees even

against a cheating accumulator manager. Informally, an accumulator is strong if all

of the modifications an accumulator manager makes to the accumulator are verifiable.

2Note that this does not refer to non-adaptive corruptions, as in the context of MPC; it is not
corruptions that are non-adaptive, but the choice of accumulated elements.

25

Definition 4 (Strength). An accumulator is strong for a given domain D of elements

if an adversary cannot win the game described in Figure 2·2 with non-negligible proba-

bility even if it is modified as follows: instead of asking the challenger to run Gen and

Update, the adversary runs them locally and sends the challenger the updated accumu-

lator values together with witnesses v. The challenger aborts if VerGen or VerUpdate

return 0.

We must also ensure the correctness of the VerGen and VerUpdate algorithms.

Definition 5 (Strength Correctness). Informally, an accumulator has strength cor-

rectness if VerGen and VerUpdate run on honestly generated inputs and outputs of

Gen and Update always return 1.

2.3 Ideal Functionality for Accumulators

Universally Composable (UC) security, proposed by Canetti (Canetti, 2001) and de-

scribed briefly in Section 3.1, requires a different flavor of definitions than those

described in Section 2.2. A UC definition of security for some primitive consists of a

set of instructions called an ideal functionality which achieves the goals of the prim-

itive when carried out by an incorruptible third party. Informally, to show that a

candidate protocol securely realizes the ideal functionality, it must be shown that any

adversary in a real execution of the protocol can be simulated by a corresponding

ideal world adversary in an interaction with the incorruptible third party running the

ideal functionality.

Definition 6 ((Canetti, 2001, Page 12)). Let execΠ,A,Z denote the random variable

(over the local random choices of all the involved machines) describing the output

of environment Z when interacting with adversary A and parties running protocol

Π. Protocol Π UC-emulates ideal functionality F if for any adversary A there exists

a simulator SIM such that, for any environment Z the distributions of execΠ,A,Z

and execF ,SIM,Z are indistinguishable. That is, on any input, the probability that Z
outputs 1 after interacting with A and parties running Π differs by at most a negligible

amount from the probability that Z outputs 1 after interacting with SIM and F .

26

In this section we present our ideal functionality FACC for an accumulator.

Like (Canetti, 2004), we discuss several candidate ideal functionalities in order

to build up the intuition for how we arrived at the ideal functionality described in

Fig. 2·3 and 2·4.

First Attempt

A naive first attempt at an accumulator functionality might ignore the accumulator

and witness objects altogether, instead functioning as a simple set manager. It would

allow the accumulator manager to add and remove elements from the set, and answer

‘yes’ or ‘no’ to membership (or non-membership) queries. These queries could option-

ally be parametrized by timestamps, so as to allow queries about all states of the set,

past and present. However, this simple ideal functionality definition fails to support

one of the basic modular operations of accumulators. Recall that an accumulator is

an object that evolves by time, i.e. at time t it might represent a different set from

what it used to represent at time t′. Thus, if we do not consider explicit accumulator

objects, then it is impossible to talk about committing to a given set by committing

to an accumulator value at a specific time.

Second Attempt - Explicitly Modeling Accumulator Values

A second attempt might be to add explicit accumulator values, without modeling

witnesses. So, a membership query would now have the form, ‘is this element a

(non-)member under this accumulator value?’. However, the absence of explicit wit-

ness objects also limits the modular use of accumulators significantly. Specifically,

not having explicit witness objects would not work when the ability to verify the

(non)membership of certain elements should be secret-shared or otherwise restricted.

(For instance, perhaps I should be able to demonstrate my membership in some or-

ganization - such as the gym - but any third party shouldn’t be able to test my

27

membership without my help, because that would be a violation of my privacy.)

Adding these privacy features to an accumulator system would require re-designing

and re-proving the accumulator system from scratch if witness objects were not part

of the ideal functionality. If witness and accumulator objects are modeled explic-

itly, however, existing accumulator systems can simply be combined with existing

off-the-shelf primitives such as secret sharing, encryption, or commitment. In other

words, having the functionality give binary answers to membership queries is over-

idealization; it is a good way to model accumulators on their own, but it does not

lend itself to use by other protocols that need actual accumulator and witness values

to operate.

Final Attempt

Our ideal functionality for accumulators FACC is described in Figures 2·3 and 2·4

and provides interfaces for all of the algorithms in Figure 2·1. (Note that in the

functionality the accumulator manager interfaces ignore all queries for which the

querier’s identity is not encoded in the functionality session id sid.)

We loosely base FACC on the ideal functionality for digital signatures described

by Canetti (Canetti, 2004). Canetti actually gave two different functionalities for

digital signatures, which we recall for completeness in Appendix 2.5. The first one

(Figure 2·5) asks the ideal world adversary for a verification key ; while the second

(Figure 2·6) asks the ideal world adversary for a verification algorithm. Similarly,

Camenisch et al. (Camenisch et al., 2019) give functionalities for signatures, non-

interactive zero knowledge proofs and for commitments that are explicitly parame-

terized by the protocol algorithms. Using a given deterministic signature verification

algorithm, rather than allowing the ideal world adversary to make each verification

decision, achieves two goals:

• It forces verification decisions to be consistent.

28

• It makes combining UC signatures and zero knowledge proofs of signature

knowledge in a black box way simpler.

For these reasons, we chose to define our FACC to receive explicit algorithms from

the ideal world adversary. Thus, instead of asking the ideal world adversary to

provide updated accumulator states, witnesses and verification decisions, our ideal

world adversary provides all accumulator algorithms to the functionality (Step 1e in

Figure 2·3).3 This is a very intuitive way to define an ideal functionality: it explicitly

uses the accumulator algorithms except where it needs to modify their behavior to

match what is demanded by correctness or soundness. If an ideal execution (that

uses the ideal functionality) is indistinguishable from a real execution, that means

that the algorithms’ behavior did not need any modification.

Just like in the context of digital signatures, if the algorithms are modeled ex-

plicitly, usage within multi-party computation (MPC) protocols or in larger zero-

knowledge-based systems such as Zcash can be done in a modular way, using existing

components.

In addition to the benefits listed above, this also allows us more flexibility to add

privacy features to the ideal functionality, as discussed in Section 2.3.3.

Remark 3. Note that inputs belonging to anyone but the accumulator manager (AM)

can be misinformed (just like parties are frequently misinformed about verification

keys in signature schemes, in the absence of a PKI). In order to capture such cases,

we require parties to provide all inputs to witness holder and third party algorithms,

instead of having some inputs, such as the accumulator value, implicitly stored by the

ideal functionality.

The ideal functionality described in Figures 2·3 and 2·4 is really an entire “menu”

of functionalities covering all different types of accumulators: additive, subtractive,

dynamic, positive, negative and universal and finally strong accumulators. More ex-

3These algorithms will, among other things, check that elements being added are in the domain
D of the accumulator in question.

29

1. GEN: Upon getting (GEN, sid, S0) as first activation from AM . . .
(a) Initialize an operation counter t = 0.
(b) Initialize an empty list A. This list will be used to keep track of all accumulator states.
(c) Initialize an empty map S, and set S[0] = S0. (If S0 was not provided, use ∅.) This map will be used

to map operation counters to current accumulated sets.
(d) Send (GEN, sid) to Adversary AIdeal.
(e) Get (ALGORITHMS, sid, (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,VerUpdate)) from Adver-

sary AIdeal. This includes all of the accumulator algorithms; their expected input output behavior is
described in Figure 2·1. All of them should be polynomial-time; we restrict the verification algorithms
VerStatus,VerGen,VerUpdate to be deterministic.

(f) Run (sk, a0,m0, v)← Gen(1λ, S0).
(g) Verify that VerGen(S0, a0, v) = 1. If not, output ⊥ to AM and halt. (This ensures strength.)

Otherwise, continue.
(h) Store sk, m0; add a0 to A.
(i) Output (ALGORITHMS, sid, S0, (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,VerUpdate) to
AM.

2. UPDATE: Upon getting (UPDATE, sid,Op, x) from AM . . .
(a) Increment the operation counter: t = t+ 1.
(b) Set S[t] = S[t− 1].
(c) Run (at,mt, wxt , upmsgt, vt)← Update(Op, sk, at−1,mt−1, x).
(d) If Op = Add:

i. Verify that VerStatus(in, a, x, wt) = 1. If not, output ⊥ to AM and halt. (This ensures
correctness.) Otherwise, continue.

ii. If x 6∈ S[t], add x to S[t].
(e) If Op = Del:

i. Verify that VerStatus(out, a, x, wt) = 1. If not, output ⊥ to AM and halt. (This ensures
negative correctness.) Otherwise, continue.

ii. If x ∈ S[t], remove x from S[t].
(f) Verify that VerUpdate(Op, at−1, at, x, vt) = 1. If not, output ⊥ to AM and halt. (This ensures

strength.) Otherwise, continue.
(g) Store mt, upmsgt; add at to A.
(h) Output (UPDATE, sid,Op, at, x, wt, upmsgt) to AM.

3. WITCREATE: Upon getting (WITCREATE, sid, stts, x) from AM . . .
(a) Run w ←WitCreate(stts, sk, at,mt, x, (upmsg1, . . . , upmsgt))
(b) If stts = in:

If x ∈ S[t], verify that VerStatus(in, at, x, w) = 1. If not, output ⊥ to AM and halt. (This ensures
creation-correctness.) Otherwise, continue.

(c) If stts = out:
If x 6∈ S[t], verify that VerStatus(out, at, x, w) = 1. If not, output ⊥ to AM and halt. (This ensures
negative-creation-correctness.) Otherwise, continue.

(d) Output (WITNESS, sid, stts, x, w) to AM.
4. WITUP: Upon getting (WITUP, sid, stts, aold, anew, x, wold, (upmsgold+1, . . . , upmsgnew)) from any party H

. . .
(a) Run wnew ←WitUp(stts, x, wold, (upmsgold+1, . . . , upmsgnew))
(b) If aold ∈ A, anew ∈ A and old < new:

i. If stts = in, VerStatus(in, aold, x, wold) = 1, x ∈ S[t] for t ∈ [old, . . . , new],
upmsgold+1, . . . , upmsgnew match the stored values and VerStatus(in, anew, x, wnew) = 0, out-
put ⊥ to P and halt. (This ensures correctness.) Otherwise, continue.

ii. If stts = out, VerStatus(out, aold, x, wold) = 1, x 6∈ S[t] for t ∈ [old, . . . , new],
upmsgold+1, . . . , upmsgnew match the stored values and VerStatus(out, anew, x, wnew) = 0, out-
put ⊥ to P and halt. (This ensures negative correctness.) Otherwise, continue.

(c) Output (UPDATEDWITNESS, sid, stts, aold, anew, x, wold, (upmsgold+1, . . . , upmsgnew), wnew) to H.

Figure 2·3: Ideal Functionality FACC: Accumulator Manager / Wit-
ness Holder Interfaces

plicitly, by default, if all of the text (except for the text colored by pink) is considered,

the ideal functionality describes a dynamic, universal accumulator. By restricting Op

30

1. VERSTATUS: Upon getting (VERSTATUS, sid, stts, a,VerStatus′, x, w) from any party P . . .
(a) If VerStatus′ = VerStatus and there exists a t such that a = at ∈ A:

i. Let t be the largest such number.
ii. If stts = in:

A. If AM not corrupted, x 6∈ S[t] and VerStatus(in, at, x, w) = 1, output ⊥ to P and
halt. (This ensures collision-freeness.) Otherwise, continue.

B. Set φ = VerStatus(in, at, x, w).
iii. If stts = out:

A. If AM not corrupted, x ∈ S[t] and VerStatus(out, at, x, w) = 1, output ⊥ to P and
halt. (This ensures negative collision-freeness.) Otherwise, continue.

B. Set φ = VerStatus(out, at, x, w).
(b) Otherwise, set φ = VerStatus′(stts, a, x, w).
(c) Output (VERIFIED, sid, stts, a,VerStatus′, x, w, φ) to P.

2. VERGEN: Upon getting (VERGEN, sid, S, a, v,VerGen′) from any party P . . .
(a) Set φ = VerGen′(S, a, v).
(b) Output (VERIFIED, sid, S, a, v,VerGen′, φ) to P.

3. VERUPDATE: Upon getting (VERUPDATE, sid,Op, a, a′, x, vt,VerUpdate′) from any party P . . .
(a) Set φ = VerUpdate′(Op, a, a′, x, vt).
(b) Output (VERIFIED, sid,Op, a, a′, x, vt,VerUpdate′, φ) to P.

Figure 2·4: Ideal Functionality FACC: Third Parties Interfaces

to be only Add or only Del we could make it additive or subtractive instead of dy-

namic; by restricting stts to be only in or only out we could make it positive or

negative instead of universal. Figure 2·3 describes the ideal functionality interfaces

for the accumulator manager and witness holders; Figure 2·4 describes the interfaces

for third parties.

We use color coding to describe different types of accumulators within the same

functionality. If the ideal functionality is limited to the black text, it describes a pos-

itive additive accumulator. Actions that are present only in subtractive accumulators

are colored green. Actions that are present only in negative accumulators are colored

blue. Finally, actions that are present only in strong accumulators are colored pink;

actions not present in strong accumulators are colored orange.

We use FACC to refer to the universal dynamic accumulator functionality. We

add Add,Del, in and out to the subscript to denote additive, subtractive, positive and

negative accumulators, respectively. We add other parameters to the subscript (e.g.

‘STRONG’) to denote other properties.

31

2.3.1 Modeling Decentralized Management

If the accumulator is strong, it may make sense to allow anyone to perform an ac-

cumulator update, instead of restricting the ability to perform such updates to the

accumulator manager. We model this by making a few changes to the functional-

ity. First, the GEN, UPDATE and WITCREATE interfaces of the ideal functionality

no longer only accept invocations by AM. Additionally, instead of having a strict

ordering of update operations, we might allow parties to perform an update on any

accumulator state, resulting in a tree of states. The functionality will be modified to

perform the appropriate checks and record-keeping.

2.3.2 Modeling Non-Adaptive Soundness

We model non-adaptive soundness (Section 2.2.2) by making two simple changes to

the ideal functionality. First, when sending the GEN command to the ideal function-

ality (in Step 1 of Figure 2·3), the accumulator manager AM is expected to provide

a set of all elements that will ever be added or deleted. (This can be done e.g. by

providing a PRF seed.) Second, if even one element outside of that set is added or

deleted, nothing is guaranteed; the functionality simply runs the algorithms it was

given, without performing any checks.

2.3.3 Adding Privacy Properties

Our ideal functionality as stated in Figures 2·3 and 2·4 does not make any attempt to

hide anything about the accumulated set from any accumulator user. In this section,

we discuss how we add such privacy properties to the ideal functionality.

Add-Delete Unlinkability

In certain scenarios it is desirable that an adversary should not be able to link an

addition of an element to a deletion of the same element later on. Such a property is

32

relevant when accumulators are used as an anonymous revocation mechanism where

the revocation information should not allow anyone to determine that the user revoked

just now was the user who joined two hours ago, and not the user who joined four

hours ago (Baldimtsi et al., 2017). We do not formally model add-delete unlinkability;

instead, we define a stronger property which we call hiding update-message (HUM).

Hiding Update-Message (HUM)

Informally, an accumulator is hiding update-message, or HUM, if given all of the up-

date messages produced in the course of an execution, it is impossible to tell whether

one specific update message corresponds to the addition / deletion of element x0 or

element x1 for x0, x1 ∈ D.

We can incorporate HUM into our ideal functionality by placing limitations on

the algorithm Update provided by the ideal world adversary. We require Update to

consist of two sub-algorithms: one sub-algorithm — Update1 — which receives no

input at all except for randomness, and produces the update message; and a second

sub-algorithm — Update2 — which can receive state from Update1 as well as all of

the other inputs typically provided to Update, and produces all the other outputs of

Update. This forces update messages to reveal nothing about the added / deleted

element.

Note that this modification is very strong, since it forces the update messages to

statistically hide the elements; constructions where the elements are only computa-

tionally hidden would not meet this definition. This modification trivially implies the

add-delete unlinkability property described above, since update messages now contain

no information at all about the elements.

Remark 4. We clearly need to withhold x from Update1, in order to guarantee that

the update message does not reveal x. However, we could consider allowing Update1 to

see the other inputs to Update. This would not work because if we give Update1 access

33

to the accumulator a or the auxiliary value m, then the update message it produces

might contain arbitrary information about the set of elements accumulated prior to

the current operation. In particular, the update message might reveal which elements

were added / deleted previously, breaking the HUM property.

Zero-Knowledge

Ghosh et al. (Ghosh et al., 2016) define the notion of a zero-knowledge accumula-

tor, which requires that accumulator and witness values reveal nothing about the

accumulated set (other than the element to which the witness corresponds). We can

incorporate ZK by placing limitations on the Update and WitCreate algorithms pro-

vided by the ideal world adversary, just like we did for the HUM property. We can

require each algorithm to consist of two sub-algorithms: one which does not require

any set-dependent inputs and produces the accumulator and witness values (as nec-

essary), and a second sub-algorithm (which can receive state from the first) which

produces all other values.

2.3.4 Discussion: Incorrect Accumulator and Witness Values

If an incorrect accumulator value (or verification algorithm VerStatus′) is provided to

the verification interface, we allow the party making the query to control the verifica-

tion verdict, via VerStatus′. This models the fact that any party can issue verification

queries for accumulator values of their choice — for instance, for accumulator values

which they may have generated themselves, and for which they control the accumu-

lated set.

If an incorrect witness for a member element is provided to the verification in-

terface, we allow the ideal world adversary to control the verification verdict (via

the algorithm VerStatus it provides during the generation phase). This models the

fact that we only require the ideal world adversary to be unable to come up with a

witness for a non-member (or a non-membership witness for a member); we do not

34

require that an adversary be unable to come up with a witness for a member (or

a non-membership witness for a non-member). For instance, it may be possible to

modify valid witnesses to obtain other witnesses for the same element. Note also that

multiple witnesses can be generated for the same element by means of the WitCreate

interface.

2.4 Equivalence Argument

Like Canetti (Canetti, 2004), we prove that satisfying our UC definition for dynamic

universal accumulators is the same as satisfying the classical definition.4

Theorem 1. Let ΠACC = (Gen,Update,WitCreate,WitUp,VerStatus) be a universal

dynamic accumulator scheme, and let VerStatus be deterministic. Then ΠACC securely

realizes FACC if and only if ΠACC satisfies Definitions 7, 2 and 3.

Proof. Our proof follows the structure of the proof of Canetti (Canetti, 2004) (pages

12-14).

1. We start by assuming that ΠACC does not satisfy Definitions 7, 2 and 3. We

then show that ΠACC also does not securely realize FACC. To do this, we build

an environment Z and an adversary AReal such that for any simulator SIM,

Z can distinguish between interacting with AReal and ΠACC, and interacting

with SIM and FACC. Like the environment of Canetti (Canetti, 2004), our

environment does not corrupt any parties, and does not send any messages to

the adversary. Because all accumulator operations are non-interactive, meaning

that they are run locally by individual parties, no messages are exchanged in

the real world. So, the adversary AReal is never activated.

(a) Assume ΠACC is not correct (i.e. does not satisfy Definition 7). That

is, there exists a security parameter λ, an initial set S0 ⊆ D, a value

x ∈ D, an operation Op ∈ {Add,Del} (with stts = in if Op = Add and

stts = out if Op = Del) and a list of values [(y1,Op1), . . . , (ytx−1,Optx−1)],

[(ytx+1,Optx+1), . . . , (yt,Opt)], where

• yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , tx − 1, tx + 1, . . . , t];

4This proof also implies that satisfying our UC definition for additive or subtractive, positive or
negative accumulators is the same as satisfying the classical definition; however, it does not imply
anything for strong accumulators. We leave that up to future work.

35

• If Op = Add, then (x,Del) does not appear in [(ytx+1,Optx+1), . . . ,

(yt,Opt)]; and

• If Op = Del, then (x,Add) does not appear in [(ytx+1,Optx+1), . . . ,

(yt,Opt)],

such that with non-negligible probability, the honestly-produced witness

for x against accumulator at will not verify.

Our environment Z will send the following commands to some party AM,

where sid encodes the identity of AM:

• (GEN, sid, S0),

• (UPDATE, sid,Op1, y1), . . . , (UPDATE, sid,Optx−1, ytx−1),

• (UPDATE, sid,Op, x), and

• (UPDATE, sid,Optx+1, ytx+1), . . . , (UPDATE, sid,Opt, yt).

As a result of the third step, Z will learn atx and wxtx . As a result of the

fourth step, Z will learn at and t − tx update messages (upmsgtx+1, . . . ,

upmsgt). It then sends (WITUP, stts, sid, atx , at, x, w
x
tx , (upmsgtx+1, . . . ,

upmsgt)) to some party H (where possibly H = AM), and receives wxt
back. Finally, it sends (VERSTATUS, sid, stts, at,VerStatus′ = VerStatus(·,
·, ·, ·), x, wxt) to some party P (which may be the same party or not). Z
outputs the returned verdict φ.

In the real world, φ will be 0 with non-negligible probability according to

our assumption.

In the ideal world, if no error messages are returned, φ will always be 1,

since in WitUp, we will always hit Item 4(b)i or 4(b)ii of Figure 2·3, and

there the first three listed conditions will be satisfied.

(b) Assume ΠACC is not creation-correct (i.e. does not satisfy Definition 2). Z
can distinguish between the real and ideal worlds in a way very similar to

that described above.

(c) Assume ΠACC is not collision-free (i.e. does not satisfy Definition 3). That

is, there exists an adversary AColFree that can forge a (non-)membership

witness for a non-member (or member, respectively) x with non-negligible

probability. Our Z will use AColFree to generate inputs for AM. Having re-

ceived x∗, w∗ fromAColFree, Z will compute φin by calling (VERSTATUS, sid,

in, at, x
∗, w∗), and φout by calling (VERSTATUS, sid, out, at, x

∗, w∗). Z will

then output 1 if x∗ was in the accumulated set and φout = 1 or if x∗ was

not in the accumulated set and φin = 1, and will output 0 otherwise.

36

In the real world, if AColFree met the collision-freeness win conditions, Z
will output 1 with non-negligible probability according to our assumption.

In the ideal world, both φin and φout will always be 0 or ⊥, since we

will satisfy the first two conditions in Item 1(a)iiA (or Item 1(a)iiiA, if

stts = out) of VERSTATUS in Figure 2·4. If the third condition is satisfied

too, ⊥ will be returned. If it is not, 0 will be returned, as a result of

Item 1(a)iiB (or Item 1(a)iiiB, if stts = out) in Figure 2·4.

2. We now prove the other direction. Assume that ΠACC does not securely realize

FACC. That is, there exists an adversary AReal such that for any simulator

SIM, there exists an environment Z that can distinguish between interacting

with AReal and ΠACC, and interacting with SIM and FACC. We show that if

that is the case, ΠACC must also violate Definition 7, 2 or 3. We pick a simulator

SIM that proceeds as follows, running an internal copy of AReal:

• Inputs from Z is forwarded to AReal. Outputs from AReal is forwarded to

Z.

• SIM handles corruptions according to the standard corruption model

(Canetti, 2001).

• Upon receiving (GEN, sid) from FACC, SIM sends the actual accumulator

algorithms back as (GEN, sid, (Gen,Update,WitCreate,WitUp,VerStatus)).

This simulator guarantees that the real and ideal worlds will be distributed iden-

tically, unless one of the following causes FACC to return ⊥:

• In Update, FACC hits Item 2(d)i or 2(e)i of Figure 2·3. If this happens, correct-

ness (Definition 7) is violated.

• In WitCreate, FACC hits Item 3b or 3c of Figure 2·3. If this happens, creation-

correctness (Definition 2) is violated.

• In VerStatus, FACC hits Item 1(a)iiA or 1(a)iiiA of Figure 2·4. If this happens,

collision-freeness (Definition 3) is violated.

• In WitUp, FACC hits Item 4(b)i or 4(b)ii of Figure 2·3. If this happens, either

correctness or creation-correctness is violated.

In order for Z to distinguish between the real and ideal worlds, one of the above

must happen with non-negligible probability, and thus either Definition 7, 2 or 3 must

be violated with non-negligible probability.

We can modify the theorem and proof to also prove equivalence between classical

37

and UC definitions for strong accumulators.

Corollary 1. Let ΠACC = (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,

VerUpdate) be a strong universal dynamic accumulator scheme, and let VerStatus,

VerGen and VerUpdate be deterministic. Then ΠACC securely realizes FACC,STRONG if

and only if ΠACC satisfies Definitions 7, 2 and 4.

Proof. The proof is very similar to that of Theorem 1 above, with a few changes. The

changes are in Steps 1c and 2 of the proof.

In Step 1c of the proof above, instead of callingAColFree, we callAStrength which runs

Gen and Update itself. The environment Z computes its output exactly as before.

In the ideal world, both φin and φout will always be 0 or ⊥, since we will satisfy

the first condition in Item 1(a)iiA (or Item 1(a)iiiA, if stts = out) of VERSTATUS

(ignoring the condition that AM is not corrupted, which does not apply for a strong

accumulator). If the third condition is satisfied too, ⊥ will be returned. If it is not, 0

will be returned, as a result of Item 1(a)iiB (or 1(a)iiiB, if stts = out) of Figure 2·4.

In Step 2 of the proof above, SIM includes VerGen and VerUpdate in the list of

algorithms it sends to the ideal functionality. Then, in the list of things that might

cause FACC,STRONG to return ⊥, we replace the third bullet with the following:

• In VerStatus, FACC hits Item 1(a)iiA or 1(a)iiiA of Figure 2·4. If this happens,

strength (Definition 4) is violated.

We also add the following:

• In Gen, FACC,STRONG returns ⊥ at Item 1g of Figure 2·3. If this happens,

strength correctness (Definition 5) is violated.

• In Update, FACC,STRONG returns ⊥ at Item 2f of Figure 2·3. If this happens,

strength correctness (Definition 5) is violated.

2.5 Appendix A: Universally Composable Signatures

In this appendix (specifically, in Figures 2·5 and 2·6), we describe the two digital sig-

nature ideal functionalities described by Canetti (Canetti, 2001; Canetti, 2004). The

first does not require the simulator to provide the signing and verification algorithms

explicitly at key generation time; the second does. Both ideal functionalities require

the verifier to provide the verification key (or verification algorithm) when using the

38

1. Key Generation: Upon getting (KEYGEN, sid) from a party Signer . . .
(a) If this is not the first KeyGen command, ignore this command. Otherwise, continue.
(b) If sid does not encode Signer’s identity, ignore this command. Otherwise, continue.
(c) Initialize an empty map W.
(d) Send (KEYGEN, sid) to Adversary AIdeal.
(e) Get (VERKEY, sid, vk) from Adversary AIdeal.
(f) Record vk.
(g) Send (VERKEY, sid, vk) to Signer.

2. Signature Generation: Upon getting (SIGN, sid, x) from a party Signer . . .
(a) Verify that sid encodes Signer’s identity. If not, ignore this command. Otherwise, continue.
(b) Send (SIGN, sid, x) to Adversary AIdeal.
(c) Get (SIGNATURE, sid, x, σ) from Adversary AIdeal.
(d) Verify that (x, σ) 6∈W or W[(x, σ)] = 1. If not, send ⊥ to Signer and halt. Otherwise, continue.
(e) If (x, σ) 6∈W, record W[(x, σ)] = 1.
(f) Output (SIGNATURE, sid, x, σ) to Signer.

3. Signature Verification: Upon getting (VERIFY, sid, x, σ, vk) from a party Verifier . . .
(a) Send (VERIFY, sid, x, σ, vk) to Adversary AIdeal.
(b) Get (VERIFIED, sid, x, σ, vk, φ) from Adversary AIdeal.
(c) If (x, σ) ∈W: let φ′ = W[(x, σ)].
(d) Else:

i. If the signer is not corrupted, vk is the recorded public key, and (x, σ) 6∈W, set φ′ = 0.
ii. Else, let φ′ = φ.

iii. Record W[(x, σ)] = φ′.
(e) Output (VERIFIED, sid, x, σ, vk, φ′) to Verifier.

Figure 2·5: Ideal Functionality for Digital Signatures (Canetti, 2004)

verification interface. This models the fact that the verifier might be misinformed

about the verification key if a PKI is not available.

2.6 Appendix B: Universally Composable Zero-Knowledge

In this appendix (in Figure 2·7) we recall the ideal functionality FZK from (Canetti,

2001) which is parameterized by a binary relation R that takes in an element x and

a witness w. It expects a single input (PROVE, sid, x, w) from Prover (where sid

encodes the identities of Prover and Verifier). If R(x,w) = 1 then FZK will output

(VERIFIED, sid, x) to Verifier5.

2.7 Appendix C: The RSA Accumulator

In this appendix (in Figures 2·8, 2·9 and 2·10), we review the RSA dynamic universal

accumulator, which has been shown to meet the classical accumulator definitions. By

5Corruption is also modeled; if Prover is corrupt, the adversary learns the prover’s witness w.

39

1. Key Generation: Upon getting (KEYGEN, sid) from a party Signer . . .
(a) If this is not the first KeyGen command, ignore this command. Otherwise, continue.
(b) If sid does not encode Signer’s identity, ignore this command. Otherwise, continue.
(c) Initialize an empty list W of signed messages.
(d) Send (KEYGEN, sid) to Adversary AIdeal.
(e) Get (ALGORITHMS, sid, Sign,Verify) from Adversary AIdeal, where Sign is a polynomial-time al-

gorithm and Verify is a polynomial-time deterministic algorithm.
(f) Send (ALGORITHMS, sid,Verify) to Signer.

2. Signature Generation: Upon getting (SIGN, sid, x) from a party Signer . . .
(a) Verify that sid encodes Signer’s identity. If not, ignore this command. Otherwise, continue.
(b) Let σ = Sign(x).
(c) Verify that Verify(x, σ) = 1. If not, send ⊥ to Signer and halt. Otherwise, continue.
(d) Output (SIGNATURE, sid, x, σ) to Signer.
(e) Record x in W.

3. Signature Verification: Upon getting (VERIFY, sid, x, σ,Verify′) from a party Verifier . . .
(a) If Verify′ = Verify, the signer is not corrupted, Verify(x, σ) = 1 and x 6∈W, send ⊥ to signer and

halt. (This violates soundness.) Otherwise, continue.
(b) φ = Verify′(x, σ).
(c) Output (VERIFIED, sid, x, σ,Verify′, φ) to Verifier.

Figure 2·6: Ideal Functionality for Digital Signatures with Algorithms
Provided by the Adversary (Canetti, 2001) (2005 version)

FRZK is parameterized by a binary relation R. It proceeds as follows.
1. Upon getting (PROVE, sid, x, w) from Prover, Ignore it unless sid = (Prover,Verifier, sid′) for some

Verifier. Next, if R(x,w) = 1, send the output (VERIFIED, sid, x) to Verifier; otherwise, do nothing.
From now on, ignore PROVE inputs.

2. Upon getting (CORRUPTPROVER, sid) from Adversary AIdeal, send w to Adversary AIdeal. If Adversary
AIdeal now provides a value (x′, w′) such that R(x′, w′) holds, and no output was yet sent to Verifier,
send (VERIFIED, sid, x′) to Verifier.

Figure 2·7: Ideal Functionality for Zero Knowledge (Canetti, 2001)
(2005 version)

Theorem 1, it follows that this accumulator also meets our UC definition.

The RSA accumulator is described across several papers. It was introduced by

Benaloh and de Mare (Benaloh and de Mare, 1994), augmented with dynamism by

Camenisch and Lysyanskaya (Camenisch and Lysyanskaya, 2002), and with univer-

sality by Li, Li and Xue (Li et al., 2007a).

40

Gen(1λ, S0):
1. Select two λ-bit safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also prime, and

let n = pq. (Consider n to be public knowledge from hereon out; it is actually a part of the
accumulator value a, but for simplicity we will not refer to it as such.)

2. Let sk = p′q′.
3. Select a random integer a′ ← Z∗n.
4. Let a0 = (a′)2 mod n. (Like n, this initial accumulator a0 will be part of all future accumulator

values, but for simplicity we will not refer to it as such.)
5. Let m0 = S0 be the set of member elements.
6. Return (sk, a0,m0).

Update(Op, sk, at,mt, x):
1. Let mt+1 = mt.
2. Check that x ∈ D (that is, that x is an odd prime). If not, return ⊥.
3. If Op = Add:

(a) If x ∈ mt+1 (x is already a member):
i. Let wxt+1 = WitCreate(in, sk, at,mt, x).

ii. Let at+1 = at.
iii. Let upmsgt = (Add,⊥).

(b) Else (x is not yet a member):
i. Add x to mt+1.

ii. Let wxt+1 = at.
iii. Let at+1 = axt mod n.
iv. Let upmsgt+1 = (Add, x).

(c) Return (at+1,mt+1, wxt+1, upmsgt+1).
4. If Op = Del:

(a) If x 6∈ mt (x is already a non-member):
i. Let at+1 = at.

ii. Let upmsgt+1 = (Del,⊥).
(b) Else (x is a member):

i. Remove x from mt+1.

ii. Let at+1 = ax
−1 mod sk
t mod n.

iii. Let upmsgt+1 = (Del, (at+1, x)).
(c) Let wxt+1 = WitCreate(out, sk, at+1,mt+1, x).
(d) Return (at+1,mt+1, wxt+1, upmsgt+1).

WitCreate(stts, sk, at,mt, x):
1. If x 6∈ D or x 6∈ mt, FAIL.
2. If stts = in:

(a) Let wxt = ax
−1 mod p′q′

t mod n, and return wxt .
3. If stts = out:

(a) Compute Bezout coefficients α, β such that α(
∏
y∈mt+1

y) + βx = 1. (Given that x 6= y

for all y ∈ mt+1, since both x and all y are prime, such α and β are guaranteed to exist
and be efficiently computable.)

(b) Let rxt = α, and sxt = a−β0 mod n.
(c) Return wxt = (rxt , s

x
t).

Verifying that the witness holds, we have

a
rxt
t = a

rxt
∏
y∈mt+1

y

0 = a
α

∏
y∈mt+1

y

0 = a1−βx
0 = a0(a−β0)x = a0(sxt)x(modn).

Figure 2·8: RSA Accumulator Manager Algorithms

41

WitUp(stts, x, wxt , upmsgt+1):
1. Parse (Op, upmsg′) = upmsg.
2. If stts = in:

(a) If Op = Add:
i. Parse y = upmsg′.

ii. If y = ⊥: let wxt+1 = wxt .
iii. Else: let wxt+1 = (wxt)y mod n.
iv. Return wxt+1.

(b) If Op = Del:
i. If upmsg′ = ⊥: let wxt+1 = wxt .

ii. Else:
A. Parse (at+1, y) = upmsg′.
B. Compute Bezout coefficients α, β such that αx+βy = 1. (Given that x 6= y, since

both x and y are prime, such α and β are guaranteed to exist.)
C. Let wxt+1 = (wxt)βaαt+1 mod n.

iii. Return wxt+1.
3. If stts = out:

(a) Parse (rxt , s
x
t) = wxt .

(b) If Op = Add:
i. Parse y = upmsg′.

ii. If y = ⊥: let wxt+1 = wxt .
iii. Else:

A. Find α and β such that αy + βx = 1.
B. rxt+1 = αrxt mod x.
C. Find a value v such that rxt+1y = rxt + vx.
D. sxt+1 = sxt a

v
t mod n.

E. Let wxt+1 = (rxt+1, s
x
t+1).

F. Return wxt+1.
Verifying that the new witness holds, we have

a
rt+1
t+1 = a

rt+1y
t = art+rxt = arxt artt

= arxt sxa0 = (art s)
xa0 = sxt+1a0(modn).

(c) Op = Del:
i. If upmsg′ = ⊥: let wxt+1 = wxt .

ii. Else:
A. Find a value v such that 0 ≤ rxt y − vx < 2λ (this is efficiently doable).
B. rxt+1 = rxt y − vx.
C. sxt+1 = sxt a

x
t+1a0.

D. Let wxt+1 = (rxt+1, s
x
t+1).

E. Return wxt+1.
Verifying that the new witness holds, we have

a
rt+1
t+1 = arty−rxt+1 = sxt a0a

−rx
t+1 = (sta

−1
t+1)xa0 = sxt+1a0(modn).

Figure 2·9: RSA Witness Holder Algorithms

VerStatus(stts, at, x, wxt):
1. If stts = in:

(a) Return 1 if at = (wxt)x mod n.
(b) Return 0 otherwise.

2. If stts = out:
(a) Parse (rxt , s

x
t) = wxt .

(b) Return 1 if a
rxt
t = (sxt)xa0(modn).

(c) Return 0 otherwise.

Figure 2·10: RSA Verifier Algorithms

42

Chapter 3

Accumulators with Applications to

Anonymity-Preserving Revocation

The contents of this section are a collaboration with Foteini Baldimtsi, Jan Ca-

menisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid Reyzin and Kai Samelin

(Baldimtsi et al., 2017). The last sections (dealing with the details of integrating

the Braavos accumulator into anonymous credentials, and with implementation) are

omitted, as they are largely not my work and are not necessary for understanding

the earlier sections. This chapter also contains some contributions from (Baldimtsi

et al.,), most of which was covered in the previous chapter. In particular, I choose to

describe the Braavos′ accumulator in this chapter instead of the previous one, since

it is closely related to the Braavos accumulator introduced here.

3.1 Introduction

As explained in the previous chapter, a natural use-case for accumulators is anony-

mous credentials. In this chapter, we introduce a number of accumulators which

are ideally suited for use in anonymous credential systems. There are a number of

properties which make an accumlator suited for use in such systems:

1. They should not require witness (or credential) holders to update their witnesses

too often; ideally, an addition of a new element should require no modification

to existing witnesses.

2. They should support efficient zero-knowledge proofs of element and witness

43

knowledge.

3. The update messages required for witness maintenance should not reveal too

much information (that is, the accumulator should either be add-revoke unlink-

able or update message hiding (HUM)).

The accumulators we introduce in this chapter — Braavos, Braavos′ and BraavosB—

all share the first two properties listed above. Braavos and Braavos′ also achieve the

last one. We build these accumulators in an intuitive, modular way, by combining

other accumulators.

3.1.1 Outline

In Section 3.2, we describe how to combine accumulators to obtain new ones with bet-

ter functionality and security. In Section 3.3, we introduce the Braavos and Braavos′

accumulators; in Section 3.4, we introduce the BraavosB accumulator.

3.2 Modular Accumulator Constructions

In this section, we introduce the idea of combining different accumulators to obtain

new accumulators with different properties. This technique can lead to the creation of

more efficient accumulators, such as the Braavos and Braavos′ accumulators described

in Section 3.3 and the BraavosB accumulator described in Section 3.4. We describe

how this can lead to not only enhanced security and efficiency (as in the case of

Braavos), but also to richer functionality. In this chapter, we refer to the definitions

introduced in Section 2.2.1.

3.2.1 Leveraging Accumulators with Different Functionalities

Notice that, though the notion of a subtractive accumulator helps us draw a more

complete mental picture of the accumulator space, there are conceptual equivalences

that allow us to ignore subtractive accumulators from hereon out. Let S be the

44

accumulated set of elements, and S be the complement of that set (S = D\S, where

D is the domain of all accumulatable elements).1

Notice that, conceptually,

• a positive additive accumulator of S is the same as a negative subtractive ac-

cumulator of S.

• a negative additive accumulator of S is the same as a positive subtractive ac-

cumulator of S.

• a universal additive accumulator of S is the same as a universal subtractive

accumulator of S.

Next, we discuss combining simple positive and negative accumulators to obtain

universal and dynamic accumulators. An example of a simple positive accumulator

is any digital signature scheme; the accumulator value is the verification key, and

a membership witness for x is a signature on x (Pöhls and Samelin, 2014). Simple

negative accumulators include the Merkle tree construction over ranges (Camacho

et al., 2008) and the range-RSA accumulator introduced in Appendix 3.4.1.

For the purpose of this discussion, we assume that all accumulators under con-

sideration have D = {0, 1}∗ (that is, they can can hold arbitrary elements). We

also assume that all of these accumulators are used to accumulate sets, not multi-sets

(that is, an element in the accumulated set is not added again unless it was previously

deleted).

Figure 3·1 gives an illustration of our derivations. The proofs of the correctness

and soundness of these constructions are easy exercises, and are therefore omitted.

We include only the proof of soundness of construction B given its relevance to one

of our constructions (it is used in Section 3.4).

1Note that as long as S is polynomial in size, S can be expressed as a polynomial number of
ranges.

45

ADDITIVE DYNAMIC

U
N

IV
E

R
S
A

L
N

E
G

A
T

IV
E

P
O

S
IT

IV
E

A B

C D

E F G

A = set of added el-
ements; D = set of
deleted elements.

A

D

A

D

A× N

D
×
N

A× N

D
×
N

A

A
S

S

A× N× {a, d}

Figure 3·1: Modular accumulator derivations in terms of functionality.
Large circles represent a space of accumulator constructions (e.g., the
top left-most large circle contains all positive accumulators). Each dot
(labeled A-G) within a large circle represents a construction of the type
corresponding to the large circle. Arrows denote the modular usage of
accumulators of the type corresponding to their start-point to build
an accumulator of the type corresponding to their end-point. Arrow
labels denote the types of objects being accumulated by the start-point
accumulator. S denotes the set of current members, N the set of natural
numbers (used for indexing), and {a, d} the set of possible actions (‘add’
or ‘delete’).

46

Adding Dynamism We can build a dynamic positive accumulator ACC (construc-

tion A in Figure 3·1) out of a positive accumulator ACCP and a negative accumulator

ACCN by adding indexing to the elements. When a new element x is added to ACC,

the pair (x, 1) is added to ACCP. Then, when the element is deleted, the pair (x, 1) is

added to ACCN. Next time x is added, it is added as (x, 2); each time the element is

added and deleted, the index is incremented. (Notice that this requires the accumu-

lator manager to maintain an auxiliary storage m the size of which is linear in |A|,

where A is the set of all elements ever added.) Proving the membership of x then

consists of producing an index i and proving that ((x, i) ∈ ACCP) ∧ ((x, i) 6∈ ACCN).

Similarly, we can build a dynamic negative accumulator ACC (construction C in

Figure 3·1) out of a positive accumulator ACCP and a negative accumulator ACCN.

However, the roles of the two accumulators are reversed; when an element x is added to

ACC, (x, i) is added to ACCN for the appropriate index i. When the element is deleted,

(x, i) is added to ACCP. Proving the non-membership of x then consists of producing

an index i and proving that ((x, 1) 6∈ ACCN)∨ (((x, i− 1) ∈ ACCP)∧ ((x, i) 6∈ ACCN)).

Flipping the Sign of a Dynamic Accumulator There is an alternative way

to build dynamic positive (or negative) accumulators; however, it assumes the exis-

tence of a dynamic negative (or positive, respectively) accumulator. We can build a

dynamic positive accumulator ACC (construction B in Figure 3·1) out of a positive

accumulator ACCP and a dynamic negative accumulator ACCN by adding all added

elements to ACCP, and adding all deleted elements to ACCN. When an element that

has previously been deleted is re-added, it is removed from ACCN. Proving the mem-

bership of x consists of proving that (x ∈ ACCP) ∧ (x 6∈ ACCN). The construction

of a dynamic negative accumulator (construction D in Figure 3·1) out of a simple

negative accumulator and a dynamic positive accumulator mirrors this one, and we

will not discuss it further.

47

Theorem 2. Construction B is an adaptively sound positive dynamic accumulator

if ACCP is a adaptively sound positive accumulator and ACCN is an adaptively sound

negative dynamic accumulator.

Proof. The proof consists of a reduction to the adaptive soundness of either ACCP or

ACCN. If an adversary produces a witness for an element that is not a member of the

accumulated set, then if that element was never added the adversary has succeeded

in breaking the adaptive soundness of ACCP, and if that element was deleted the

adversary has succeeded in breaking the adaptive soundness of ACCN.

Instantiating Construction B In Section 3.4, we describe a communication-

optimal instantiation of construction B which we call BraavosB. BraavosB uses digital

signatures as the positive accumulator ACCP, and another new accumulator called

range-RSA (described in Section 3.4.1) as the dynamic negative accumulator ACCN.

The communication complexity of BraavosB rivals that of Braavos, which is the focal

construction of this paper and is described in detail in Section 3.3. However, though

(asymptotically) the communication costs of Braavos and BraavosB are equally small,

Braavos has several advantages over BraavosB. One of these is that Braavos supports

more efficient zero knowledge proofs of member knowledge. Another is that BraavosB

requires the accumulator manager to store an amount of information linear in the

number of deleted elements, while Braavos only requires the accumulator manager to

store a constant amount of information.

Adding Universality Additive (construction E in Figure 3·1) and dynamic (con-

struction G in Figure 3·1) universal accumulators can be built by combining a positive

and negative accumulator of the same type in a straightforward way; both the positive

and negative accumulators are used to accumulate the elements in the set.

A dynamic universal accumulator (construction F in Figure 3·1) can also be built

out of an additive universal accumulator ACCU in a manner similar to those used

to produce constructions A and C. Each element x, when seen for the first time, is

48

assigned a counter i = 1. When x is added, a tuple of the form (x, i, a) is added to

the additive universal accumulator. When x is deleted, a tuple of the form (x, i, d)

is added to the additive universal accumulator, and the counter i is incremented.

Proving the membership of x then consists of producing the counter i and proving

that ((x, i, a) ∈ ACCU)∧((x, i, d) 6∈ ACCU). Proving the non-membership of x consists

of proving that ((x, 1, a) 6∈ ACCU) ∨ (((x, i− 1, d) ∈ ACCU) ∧ ((x, i, a) 6∈ ACCU)).

3.2.2 Leveraging Less Secure Accumulators

ADDITIVE DYNAMIC

S
O

U
N

D
N

A
-S

O
U

N
D

H

A = set of added el-
ements; R = random
elements.

A×R

R

Figure 3·2: Modular accumulator derivations in terms of security. All
accumulators in this diagram are positive. The notation is the same
as that used in Figure 3·1; additionally, R denotes random elements.
A specific (particularly efficient) instantiation of construction H is dis-
cussed further in Section 3.3.

49

In addition to considering combining accumulators with different functionalities,

we can consider combining accumulators with different security properties. Given

an (adaptively) sound positive additive accumulator ACCA and non-adaptively sound

(NA-sound) positive dynamic accumulator ACCNA, we can build an adaptively sound

dynamic accumulator ACC, as shown in Figure 3·2. 2 We call this construction

“Construction H”. When an element x is added, the accumulator manager selects a

random element r from the domain D of ACCNA. She then adds r to ACCNA, and (x, r)

to ACCA. (Recall that random elements can always be safely accumulated in non-

adaptively sound accumulators, since those random elements can be chosen without

using any information about the accumulator.) When deleting x, the accumulator

manager removes r from ACCNA. Proving the membership of x in ACC consists of

producing an r and proving that (r ∈ ACCNA) ∧ ((x, r) ∈ ACCA).

Note that, in order to support deletions, the accumulator manager must store

a mapping from every element x to the corresponding r. This can be avoided by

having the accumulator manager use a pseudorandom function Fs (where s is the

secret pseudorandom function seed) to select an r corresponding to a given x: r =

Fs(x). Even though this causes elements added to ACCNA to be computed rather

than chosen at random (therefore seemingly requiring adaptive soundness rather than

non-adaptive soundness), non-adaptive soundness is still sufficient because of the

indstinguishability of the pseudorandom and random cases.

3.3 Braavos: A Communication-Optimal Adaptively Sound

Dynamic Accumulator

In this section we introduce the Braavos (Baldimtsi et al., 2017) and Braavos′ (Baldimtsi

et al.,) accumulators, which are instantiations of construction H from Figure 3·2.

2Shamir and Tauman (Shamir and Tauman, 2001) achieve a similar goal of construct chosen
message unforgeable signatures from random message unforgeable ones by using a different technique.

50

Braavos and Braavos′ are adaptively sound positive dynamic accumulators derived

from an adaptively sound positive additive accumulator ACCA (instantiated as a sig-

nature scheme SIG) and a non-adaptively sound positive dynamic accumulator ACCNA

(instantiated using CLRSAB, described in Section 3.3.1).

As a recap, informally, they both work as follows. When a new element x is added,

a random value rx is chosen to correspond to it, and the pair (x, rx) is accumulated in

ACCA. A proof of membership for x consists of the value rx, a proof of membership

of (x, rx) in ACCA (which is simply a digital signature), and a proof of membership

of rx in ACCNA. Then, when the element x is deleted, rx is removed from ACCNA (so

a proof of membership of rx in ACCNA can no longer be produced).

The difference between Braavos and Braavos′ is simply that Braavos uses a pseu-

dorandom function to choose the random values rx (as rx = Fs(x)), whereas Braavos′

picks a fresh truly random r upon every addition. Figure 3·3 describes the Braavos′

algorithms.

We aim for Braavos and Braavos′ to have two properties: (1) communication opti-

mality (Camacho, 2009) (as described in Section 3.6), and (2) efficient zero knowledge

proofs, as described in Section 3.3.2. Our choice of underlying adaptively sound accu-

mulator ACCA in Braavos is the CL signature scheme (Camenisch and Lysyanskaya,

2003), because it supports efficient zero knowledge proofs of knowledge of a signature

on a committed value.

Communication optimality is achieved in both Braavos and Braavos′ thanks to the

use of digital signatures as ACCA and careful choice of ACCNA — update messages

should only be required when deletions occur.

Because of the different mechanisms used to choose the random values r accu-

mulated in ACCNA, Braavos and Braavos′ have different advantages. Braavos saves on

accumulator manager storage requirements, because choosing the random value rx as

51

Gen(1λ, S = ∅):
1. (SIG.sk,SIG.a0)← SIG.Gen(1λ, ∅)
2. (CLRSAB.sk,CLRSAB.a0,CLRSAB.upmsg0)← CLRSAB.Gen(1λ, ∅)
3. Set

(a) sk ← (SIG.sk,CLRSAB.sk),
(b) a0 ← (SIG.a0,CLRSAB.a0),
(c) upmsg0 ← CLRSAB.a0

(d) Instantiate m0 as an empty map.
4. Return (sk, a0, upmsg0,m0)

Update(Opt, sk, at,mt, x):
1. If Opt = Add and x 6∈ mt:

(a) Pick rx at random from the domain DCLRSAB of the CLRSAB accumulator. (We require
the domain to be large enough that the probability of picking the same element twice is
negligible.)

(b) Set mt+1 = mt
(c) Set mt+1[x] = rx
(d) CLRSAB.wrxt+1 ← CLRSAB.Update(Add,CLRSAB.sk,CLRSAB.at, rx)

(e) SIG.w
(x,rx)
t+1 ← SIG.Update(Add, SIG.sk,SIG.a0, (x, rx))

(f) Set CLRSAB.at+1 = CLRSAB.at.
(g) Set at+1 = (SIG.a0,CLRSAB.at+1)

(h) Set wxt+1 = (rx,CLRSAB.wrxt+1, SIG.w
(x,rx)
t+1)

(i) Set upmsgt+1 = ⊥
(j) Return (at+1,mt+1, wxt+1, upmsgt+1)

2. If Opt = Del and x ∈ mt:
(a) Set rx = mt[x]
(b) Set mt+1 = mt
(c) Delete x from mt+1

(d) (CLRSAB.at+1,CLRSAB.upmsgt+1)← CLRSAB.Update(Add,CLRSAB.sk,CLRSAB.at, rx)
(e) Set at+1 = (SIG.a0,CLRSAB.at+1)
(f) Set upmsgt+1 = CLRSAB.upmsgt+1
(g) Return (at+1,mt+1, upmsgt+1)

WitCreate(stts, sk, at,mt, x):
1. If stts = in and x ∈ mt:

(a) Set rx = mt[x]

(b) SIG.w
(x,rx)
t ← SIG.WitCreate(in, SIG.sk,SIG.a0, (x, rx))

(c) CLRSAB.wrxt ← CLRSAB.WitCreate(in,CLRSAB.sk,CLRSAB.at, rx)

(d) Set wxt = (rx,CLRSAB.wrxt , SIG.w
(x,rx)
t)

(e) Return wxt
WitUp(stts, x, wxt = (rx,CLRSAB.wrxt , SIG.w

(x,rx)
t), upmsgt+1):

1. If upmsgt+1 6= ⊥: (This update message corresponds to a deletion)
(a) CLRSAB.wrxt+1 = CLRSAB.WitUp(in, rx,CLRSAB.wrxt , upmsgt+1)

2. Else: wxt+1 = wxt
3. Return wxt+1

VerStatus(in, at = (SIG.at,CLRSAB.at), x, wxt = (rx,CLRSAB.wrxt , SIG.w
(x,rx)
t)):

1. Return 1 if both of the following are 1, and 0 otherwise:

• SIG.VerStatus(in, SIG.a0, (x, rx), SIG.w
(x,rx)
t)

• CLRSAB.VerStatus(out,CLRSAB.at, rx,CLRSAB.wrxt)

Figure 3·3: Braavos′ algorithms. We omit parameters unnecessary for
the SIG and CLRSAB accumulator algorithms.

rx = Fs(x) means that the random values do not have to be remembered, and can

instead be recomputed on the fly. Therefore, while Braavos′ requires O(A) accumula-

tor manager storage (where A is the number of elements that have ever been added),

Braavos only requires a constant amount of accumulator manager storage.

52

On the other hand, Braavos′ naturally has the hiding update-message (HUM)

property, while Braavos only has a weaker property called add-delete unlinkabil-

ity (Baldimtsi et al., 2017). Because no update messages are required when additions

take place and because when deletions take place, the update messages are only tied

to random elements, no deletion can be linked to an addition. However, because

Braavos uses the same random value rx = Fs(x) for every re-addition of the same

element x, two deletions of the same element are clearly linkable3; in Braavos′, that

is not the case. Because of Braavos′’s use of fresh randomness for every re-addition

of x, Braavos′ achieves the HUM property, random choice of r.

Intuitively, both Braavos and Braavos′ are secure because if an element was never

added then no signature on it has ever been produced, and every time an element x

is removed, all random values rx that have been signed with x are in the CLRSAB

accumulator, so no proof of non-membership for any such rx can be produced.

More formally, we leverage our UC definitions from Chapter 2 in the following

theorem and proof. Let FACC,in,HUM be our accumulator functionality FACC for a

dynamic, positive, HUM accumulator. That is, FACC,in,HUM is FACC restricted to

stts = in, and requiring the simulator to provide Update in two parts, as necessary

for HUM (described in Section 2.3.3). Similarly, let FACC,in,Add be our accumula-

tor functionality FACC for a positive additive accumulator, and let FACC,in,Add,NA be

our accumulator functionality FACC for a positive additive accumulator that is non-

adaptively sound (Section 2.3.2).

Theorem 3. The Braavos′ accumulator described in Figure 3·3 securely realizes

FACC,in,HUM as long as SIG securely realizes FACC,in,Add with no update messages, and

CLRSAB securely realizes FACC,in,Add,NA with no update messages for additions.

We can prove Theorem 3 very simply using the fact that both SIG and CLRSAB

3Adding zero knowledge proofs would not resolve this issue — that random value cannot be
hidden within a zero knowledge proof in any straightforward way, since it must be used to update
CLRSAB witnesses.

53

are UC-secure (that is, by operating in the double-FACC-hybrid model). Before our

UC definitions, a proof of security would involve a multi-step security reduction of

the new accumulator to one of the old ones.

Proof. The simulator for the new accumulator uses its two inner simulators to ob-

tain algorithms for the inner accumulators, composes them as in Figure 3·3, and

submits those to the ideal functionality. (Since the CLRSAB accumulator is only

non-adaptively sound, the simulator also pre-selects the random values that are to be

accumulated in the CLRSAB accumulator.)4

In Section 2.3.3, we described how in order to modify the UC functionality FACC

to be HUM, we require that the simulator provide the algorithm Update in two parts:

one sub-algorithm (let’s call it Update1) which only receives randomness and produces

the update message; and a second sub-algorithm (let’s call it Update2) which produces

all the other outputs of Update, and is additionally allowed to depend on the state

of Update1. If the update being performed is an addition, we do not need Update1 at

all, since no update message is necessary; we simply set Update2(Add, sk, at,mt, x) =

Update(Add, sk, at,mt, x). If the update being performed is a deletion, Update1(Del,

sk, at,mt) gets a random pre-selected value and performs a CLRSAB deletion on it;

it then passes the random value it deleted as stateUpdate1
to Update2(Del, sk, at,mt, x,

stateUpdate1
) which does the rest of the work.

The views of the environment Z in the real and ideal worlds will be identical

in the so-called double-FACC-hybrid model, since the sub-accumulator functionalities

guarantee that if an element was never added then no signature on it exists, and every

time an element x is removed, all random values rx that have been signed with x are

not in the set accumulated in CLRSAB, so no proof of membership for any such rx

can be produced.

Security of the Braavos accumulator follows trivially from the security of Braavos′

and pseudo-randomness of F.5

4Notice that this works regardless of how the simpler accumulators are implemented (simply
software vs. hardward vs. distributed protocols), since they satisfy the UC definition.

5The Braavos and Braavos′ accumulators use Camenisch-Lysyanskaya (CL) signatures (Camenisch
and Lysyanskaya, 2003) as the underlying positive accumulator ACCA, and the CLRSAB accumulator
as the underlying dynamic positive non-adaptively sound accumulator ACCNA, both of which rely
on the strong RSA assumption. This implies that Braavos′ relies only on that assumption, and that
Braavos additionally only requires the pseudo-randomness of F.

54

The challenge that remains is finding a communication-optimal, dynamic, non-

adaptively sound accumulator ACCNA. ACCNA should only require membership wit-

ness updates upon element deletions, not element additions. In Section 3.3.1, we

describe CLRSAB, which is exactly such an accumulator.

3.3.1 CLRSAB: A Communication-Optimal Non-Adaptively Sound Dy-

namic Accumulator

In this section, we formally describe the CLRSAB accumulator, which was informally

introduced by Camenisch and Lysyanskaya (Camenisch and Lysyanskaya, 2002) in a

remark on page 12. The CLRSAB accumulator is similar to the standard RSA ac-

cumulator (Camenisch and Lysyanskaya, 2002), which evolves the accumulator value

(as well as all membership witnesses) with every addition and deletion. The CLRSAB

accumulator, unlike the RSA accumulator, evolves the accumulator value with ev-

ery deletion only. However, the price is that, as far as we can tell, the CLRSAB

accumulator is only non-adaptively sound.

The RSA Accumulator In order to understand the CLRSAB accumulator, it helps

to understand the RSA accumulator first. Its value is a quadratic residue a modulo

n, where n is an RSA modulus: n = pq, where p = 2p′ + 1 and q = 2q′ + 1 for prime

p, p′, q, and q′. The domain D of the RSA accumulator consists of all odd positive

prime integers x.6

During the addition of x to the accumulator, the new accumulator value is com-

puted as at+1 = axt mod n. The membership witness w for x is then defined to be

the old accumulator value at. A membership verification consists of checking that

a = wx mod n. When another element y is added to the accumulator, the member-

6Note that p′ or q′ cannot themselves be accumulated, since (p′)−1 mod p′q′ and (q′)−1 mod p′q′

do not exist; however, that only happens with negligible probability in the adaptive soundness game,
since if the adversary finds p′ or q′, he or she has succeeded in factoring n.

55

ship witness for x is updated by taking wt+1 = wyt mod n.

When an element y is deleted, the accumulator manager (who knows the trapdoor

p′q′) computes the new accumulator as at+1 = ay
−1 mod p′q′

t mod n. The membership

witness w for x can then be updated using the Bezout coefficients α and β such

that αx + βy = 1. (Recall that the domain D of the accumulator contains only

odd prime numbers, so such α and β are guaranteed to exist.) The new witness is

computed as wt+1 = wβt a
α
t+1 mod n. The RSA accumulator is more formally described

in Section 2.7.

The CLRSAB Accumulator The CLRSAB accumulator preserves the relationship

between the accumulator value and the witnesses, but avoids computing a new ac-

cumulator value and updating witnesses during each addition. Instead, during the

addition of odd prime x the accumulator manager keeps the accumulator constant,

and computes the membership witness w for x as w = ax
−1 mod p′q′ mod n. Notice

that this eliminates the need for updating existing membership witnesses during ad-

ditions. The process for proving membership and for deletions is the same as in the

RSA accumulator. The algorithms of the CLRSAB accumulator are detailed in Figure

3·4.

CLRSAB Soundness The RSA accumulator is adaptively sound, meaning that an

adversary cannot find a membership witness for an element that is not a member

even if she chooses which elements should be added, optionally based on accumulator

and witness values she has previously seen.

The CLRSAB accumulator is non-adaptively sound, meaning that an adversary

cannot find a membership witness for an element that is not a member if she chooses

all elements to add prior to seeing any accumulator information. In particular, the

CLRSAB accumulator is sound when only random elements are added to the accumu-

56

Gen(1λ, ∅):
1. Select two λ-bit safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also prime, and

let n = pq. (Consider n to be public knowledge from hereon out; it is actually a part of the
accumulator value a, but for simplicity we will not refer to it as such.)

2. Let sk = p′q′.
3. Select a random integer a′ ← Z∗n.
4. Let a = (a′)2 mod n.
5. Return (sk, a).

Update(Op, sk, a, x):
1. Check that x ∈ D (that is, that x is an odd prime). If not, FAIL.
2. If Op = Add:

(a) Let w = ax
−1 mod p′q′ mod n.

(b) Return (a,w, upmsg = ⊥).
3. If Op = Del:

(a) Let a = ax
−1 mod p′q′ mod n.

(b) Let upmsg = (a, x).
(c) Return (a,w = ⊥, upmsg).

WitUp(stts = in, x, w, upmsg):
1. If upmsg = ⊥: return w. (This was an addition, and no update is necessary.)
2. Parse (a, y) = upmsg.
3. Compute Bezout coefficients α, β such that αx+ βy = 1. (Given that x 6= y, since both x and y

are prime, such α and β are guaranteed to exist.)
4. Let w = wβaα mod n.
5. Return w.

VerStatus(stts = in, a, x, w):
1. Return 1 if a = wx mod n.
2. Return 0 otherwise.

Figure 3·4: CLRSAB Algorithms

lator, since those can be chosen prior to seeing any accumulator or witness values.7

This holds under the strong RSA assumption (Bari and Pfitzmann, 1997).

Assumption 1 (Strong RSA). For any probabilistic polynomial-time adversary A,

Pr[p, q ← {λ-bit safe primes};n = pq; t← Z∗n; (r, e)← A(n, t) :

t = re mod n ∧ e is prime] = ν(λ)

For some negligible function ν.

Theorem 4. The CLRSAB accumulator with a domain D consisting of odd primes

is non-adaptively sound under the strong RSA assumption.

Proof. In Figure 3·5, we reduce the non-adaptive soundness of the CLRSAB accumu-

lator to the strong RSA assumption. The reduction R takes in an RSA integer n and

7We are not certain whether CLRSAB is also adaptively sound. Proving that it is or is not is an
open problem. It is adaptively sound when the when a polynomial-size subset of D is used as the
domain; however, this is a very limiting restriction.

57

a random value t ∈ Z∗n, and returns r, e such that t = re mod n. R leverages an ad-

versary A which can break the non-adaptive soundness of the CLRSAB accumulator;

that is, after making addition (Add) and deletion (Del) queries on elements chosen

before seeing the initial state of the accumulator, A can produce an odd prime x and

a witness w such that a = wx mod n, and x is not in the accumulator.

R must be able to answer two types of queries from A: Add queries on the non-

adaptively chosen elements, and Del queries on the same elements. Let qAdd be an

upper bound on the number of Add queries, and qDel be an upper bound on the

number of Del queries A can make. During the setup phase, having received the

elements x1, . . . , xqAdd
from A, the reduction R creates an accumulator for which it

can answer Add and Del queries on elements x1, . . . , xqAdd
. It does so by starting with

a = t2 mod n, and raising a to the power of the elements. By raising a to the power

of xqDel
j , R creates an accumulator value for which it is able to answer Del and Add

queries on xj even if A spends all of its Del queries on that one element. However, if

A forges a witness w for xj (after having added and deleted it fewer than qDel times),

the reduction won’t be able to use w to break the strong RSA assumption, since

it already knows w! For that reason, R guesses a “target” element xj from among

x1, . . . , xqAdd
, and the number ej of times that xj will be added and deleted before

the forgery (which can be anywhere from 0 to qDel), and only raises t to the power of

x
ej
j , not xqDel

j . Figure 3·5 shows the details of how the reduction picks an accumulator

value based on x1, . . . , xqAdd
, how it answers Add and Del queries, and how it then uses

the output of A to break the strong RSA assumption.

This reduction succeeds as long as:

1. During the query phase, R does not output FAIL. R does not output FAIL if the

target exponent ei was chosen correctly, which happens with probability 1
qDel+1

.

2. During the output phase, R does not output FAIL. If A outputs a witness for

an element xi ∈ {x1, . . . , xqAdd
}, R does not output FAIL as long as:

(a) R makes x the “target” prime (that is, j = i). This happens with proba-

bility 1
qAdd

.

(b) R correctly chooses the target exponent ei for x. This happens with prob-

ability 1
qDel+1

. However, this is already accounted for in item 1.

3. A succeeds in breaking the security of the CLRSAB accumulator, which we

assume happens with non-negligible probability ε.

As long as R does not output FAIL, A sees the same transcript it would when

interacting with a real accumulator manager. The probability of the reduction R

58

Setup(n, t, qAdd, qDel):
1. Let x1, . . . , xqAdd be the distinct odd primes provided by the adversary A.
2. Let a = t2 (so as to make a a quadratic residue).
3. Let ec = 2 be the current exponent linking t to a. (So, a = tec mod n is an invariant.)
4. Pick a random index j ← {1, . . . , qAdd}.
5. For i ∈ [1, . . . , qAdd]:

(a) If i = j: pick a random ei ← {0, . . . , qDel}.
(b) Else: ei = qDel.

(c) Let a = a(x
ei
i) mod n.

(d) Let ec = ecx
ei
i .

6. Return a = eeci mod n to the adversary A.
Add(xi):

1. If ei = 0: FAIL.
2. Let w = tec/xi mod n. (Note that ec must be divisible by xi, since ec has a factor of x

ei
i , and

ei > 0.)
3. Return w.

Del(xi):
1. If ei = 0: FAIL.
2. Let ec = ec/xi. (Note that ec must be divisible by xi, since ec has a factor of x

ei
i , and ei > 0.)

3. Let ei = ei − 1.
4. Let a = tec mod n.
5. Let upmsg = (a, xi).
6. Return (a, upmsg).

Output(e, w):
1. Check that a = we mod n. If not, FAIL.
2. If e = xi for i ∈ {1, . . . , qAdd} and (i 6= j or ei > 0): FAIL.
3. We know that e and ec must be relatively prime; ec has no factors outside of x1, . . . , xqAdd , and

those factors have powers ei. So, R can compute Bezout coefficients α, β such that αe+βec = 1.
4. Let r = tαwβ mod n.

(Let y = te
−1 mod p′q′ mod n; equivalently, ye mod n = t. Since we mod n = a and tec mod n =

(ye)ec mod n = a, it follows that w = yec mod n. So, r = tαwβ = (ye)α(yec)β = y1 = y.)
5. Return (r, e).

Figure 3·5: Reduction From the Non-Adaptive Soundness of CLRSAB
to the Strong RSA Assumption

succeeding is 1
qAdd

1
qDel+1

ε, which is non-negligible.

Other Approaches for Expanding the Domain and Getting Adaptive Sound-

ness for CLRSAB The domain D of CLRSAB consists of odd primes. Such a limited

domain is not a problem for our main application, because the Braavos accumulator

manager can choose a (psuedo)random prime r when a new element is added to the

accumulator for the first time, as described in Construction H. In fact, Construction

H can be viewed as one approach to expanding the domain of CLRSAB and obtaining

adaptive security for it. Here we briefly mention other approaches. Let D′ be the

59

desired domain. Let f be a mapping from D′ to λ-bit odd primes. To add x ∈ D′ to

the accumulator, add f(x) instead. We can obtain adaptive soundness in the following

ways:

• We can model f as a random oracle (the proof is straightforward).

• We can avoid the random oracle by making a different strong assumption in-

stead: namely, the assumption that f is collision-resistant, and the very strong

“adaptive strong-RSA assumption”. Informally, the adaptive strong-RSA as-

sumption states that even given an oracle that can take roots modulo n, it is

difficult to find new roots whose power is relatively prime to those of the roots

produced by the oracle.

• We can get somewhat better assumptions by having f be a randomized mapping,

and include the randomness R as part of the witness. Then, assuming that

for every two elements x1 and x2, the distributions f(x1;R) and f(x2;R) (over

random choices of R) are statistically close, we can use the technique from

(Gennaro et al., 1999). To do so, we need to assume that the strong RSA

assumption (Assumption 1) also holds in a model where there exists an oracle

O that on input x, p returns a random R such that f(R;x) = p.

• Alternatively, we can use the strong-RSA assumption without modification if f

is a trapdoor hash function, following the technique of (Shamir and Tauman,

2001).

All of these approaches require f that maps to primes. A way to build such f is

described in (Cachin et al., 1999, Section 3.2) (see also (Micali et al., 1999, Section

7)).

3.3.2 Adding Zero Knowledge to Braavos

So far, we have only discussed the functionality of accumulators, ignoring potential

privacy concerns. There typically exist three primary privacy goals in the context

60

of accumulators: hiding the membership (or non-membership) witness, hiding the

element whose membership (or non-membership) is being demonstrated as well as

the witness, and hiding all information about the accumulated set (Ghosh et al.,

2016). For our application of anonymous credential revocation (discussed further in

(Baldimtsi et al., 2017)), we mostly care about zero knowledge proofs of member

knowledge, which hide not only the witness, but the member element itself.

The Braavos and Braavos′ accumulators support efficient zero-knowledge proofs

of member knowledge. They do this in the exact same way; in the rest of this

section, we only discuss Braavos. Given that Braavos is composed of two accumulators

ACCA and ACCNA, in order for a witness holder to produce a zero-knowledge proof of

member knowledge in Braavos, she would have to produce a conjunction of proofs of

member knowledge in both ACCA and ACCNA and a proof that those members have

the correct relationship. More concretely, she would have to compute the following

zero-knowledge proof (described using Camenisch-Stadler (Camenisch and Stadler,

1997) notation):

ZKP[(x, r,ACCA.w,ACCNA.w) :

∧ ACCA.VerMem(ACCA.a, (x, r),ACCA.w)

∧ ACCNA.VerMem(ACCNA.a, r,ACCNA.w)

](ACCNA.a,ACCA.a)

Where ACCA is the signature scheme SIGCL = (KeyGen, Sign,Verify) due to Ca-

menisch and Lysyanskaya (Camenisch and Lysyanskaya, 2003), and ACCNA is the

CLRSAB accumulator.

For integration into larger systems, it might be important to be able to link the

witnesses used in the proof to other statements, while still keeping the elements

and witnesses private. To this end, commitments to the witnesses can be used. Let

61

Com = (Commit,Verify) be a commitment scheme; to integrate commitments into the

zero knowledge proof, a witness holder computes commitments to the membership

witnesses ACCA.w and ACCNA.w: (c1, o1) = Com.Commit(ACCA.w) and (c2, o2) =

Com.Commit(ACCNA.w), where o1 and o2 are decommitment values. The proof is

then enhanced, as follows:

ZKP[(x, r,ACCA.w,ACCNA.w, o1, o2) :

Com.Verify(c1,ACCA.w, o1)

∧ Com.Verify(c2,ACCNA.w, o2)

∧ ACCA.VerMem(ACCNA.a, (x, r),ACCA.w)

∧ ACCNA.VerMem(ACCNA.a, r,ACCNA.w)

](ACCNA.a,ACCA.a, c1, c2)

For concrete descriptions of the individual clauses of this proof using the commit-

ment scheme due to Fujisaki and Okamoto (Fujisaki and Okamoto, 1997), please refer

to Fujisaki and Okamoto (Fujisaki and Okamoto, 1997) and Camenisch and Lysyan-

skaya (Camenisch and Lysyanskaya, 2003; Camenisch and Lysyanskaya, 2002).

3.4 BraavosB: Another Communication-Optimal Adaptively

Sound Dynamic Accumulator

In this section, we introduce the BraavosB accumulator, which is an instantiation of

construction B from Figure 3·1. BraavosB is a dynamic positive accumulator derived

from a positive accumulator and a dynamic negative accumulator. The positive ac-

cumulator is used to accumulate added elements, and the negative accumulator is

used to accumulate deleted elements. A proof of membership in BraavosB consists of

a proof of membership in the positive accumulator (that is, a proof that the element

62

in question has been added) and a proof of non-membership in the negative accumu-

lator (that is, a proof that the element in question has not been deleted). In Figures

3·6, 3·7 and 3·8, we provide a detailed description of the construction B/ BraavosB

algorithms (in terms of the two accumulators of which it is composed, the positive

accumulator ACCP and the negative dynamic accumulator ACCN).

Just like Braavos, we aim for BraavosB to be communication optimal, and to sup-

port of zero knowledge. It might seem strange to be building a dynamic accumulator

out of a negative accumulator which is already dynamic; however, using the dynamic

accumulator to accumulate deleted elements instead of added elements is the key to

saving on communication.

Our choice of underlying positive accumulator ACCP in BraavosB is any exis-

tentially unforgeable digital signature scheme (as long as it supports zero knowledge

proofs of knowledge of a signature on a committed value). Note that though construc-

tion B has a

MemWitUpOnAdd algorithm, this algorithm is not used by BraavosB, since digital

signatures do not require membership updates.

The challenge that remains is instantiating ACCN; that is, building a negative dy-

namic accumulator that supports efficient zero knowledge proofs and the efficient gen-

eration of non-membership witnesses. The Merkle tree accumulator (Camacho et al.,

2008) does not fit the criteria, because it does not support efficient zero-knowledge

proofs. The RSA (Benaloh and de Mare, 1994; Camenisch and Lysyanskaya, 2002; Li

et al., 2007a) and Bilinear Map (Nguyen, 2005; Damg̊ard and Triandopoulos, 2008;

Au et al., 2009) accumulators do not fit these criteria either, because for each of

them, generating a non-membership witness takes time linear in the number of accu-

mulated elements. If the number of accumulated elements is large, and the demand for

non-membership witnesses is high, this can be prohibitive; ideally, non-membership

63

witnesses should be generated in constant time. To fill this need, we construct the

range-RSA accumulator, described in Appendix 3.4.1. The range-RSA accumulator

is the core technical piece of the BraavosB accumulator.

Gen(1λ, ∅):
1. (ACCP.a,ACCP.m,ACCP.sk)← ACCP.Gen(1λ, ∅).
2. (ACCN.a,ACCP.m,ACCN.sk)← ACCN.Gen(1λ, ∅).
3. Let sk = (ACCP.sk,ACCN.sk).
4. Let a = (ACCP.a,ACCN.a).
5. Let m = (ACCP.m,ACCN.m).
6. Return (sk, a, m).

Add(sk, a,m, x):
1. (ACCP.a, ACCP.m, ACCP.w, ACCP.upmsg) ← ACCP.Add(ACCP.sk, ACCP.a, ACCP.m, x).
2. (ACCN.a, ACCN.m, ACCN.upmsg) ← ACCN.Del(ACCN.sk, ACCN.a, ACCN.m, x). (This should do

nothing if x is not in ACCN already.)
3. ACCN.u← ACCN.NonMemWitCreate(ACCN.sk, ACCN.a, ACCN.m, x).
4. Let w =(ACCP.w, ACCN.u).
5. Let upmsg =(ACCP.upmsg, ACCN.upmsg).
6. Return (a, m, w, upmsg).

Del(sk, a,m, x):
1. (ACCN.a, ACCN.m, ACCN.upmsg) ← ACCN.Add(ACCN.sk, ACCN.a, ACCN.m, x).
2. Return (a,m,ACCN.upmsg).

WitCreate(sk, a,m, x, (upmsg1, . . . , upmsgt)):
1. ACCP.w ← ACCP.WitCreate((ACCP.sk, ACCP.a, ACCP.m, x, (ACCP.upmsg1, . . . ,ACCP.upmsgt)).
2. ACCN.u ← ACCN.NonMemWitCreate((ACCN.sk, ACCN.a, ACCN.m, x,

(ACCN.upmsg1, . . . ,ACCN.upmsgt)).
3. Return w = (ACCP.w,ACCN.u).

Figure 3·6: Construction B Accumulator Manager Algorithms

MemWitUpOnAdd(a, x, w, upmsg):
1. Parse (ACCP.upmsg,ACCN.upmsg) = upmsg.
2. Parse (ACCP.w,ACCN.u) = w.
3. ACCN.w ← ACCN.MemWitUpOnDel(x, ACCN.u, ACCN.upmsg).
4. ACCP.w ← ACCP.MemWitUpOnAdd(x, ACCP.w, ACCP.upmsg).
5. Return w = (ACCP.w,ACCN.u).

MemWitUpOnDel(a, x, w, upmsg):
1. Parse (ACCP.w,ACCN.u) = w.
2. ACCN.u← ACCN.NonMemWitUpOnAdd(x, ACCN.u, upmsg).
3. Return w = (ACCP.w,ACCN.u).

The witness holder can run BatchMemWitUpOnDel immediately before producing a proof.

Figure 3·7: Construction B Witness Holder Algorithms

3.4.1 Range-RSA: A Dynamic Negative Accumulator

In this section, we present the range-RSA accumulator. This accumulator is a modi-

fied version of the RSA accumulator. Like the Merkle tree accumulator of Camacho

64

VerMem(a, x, w):
1. Parse (ACCP.a,ACCN.a) = a.
2. Parse (ACCP.w,ACCN.u) = w.
3. Let b1 ← ACCP.VerMem(ACCP.a, x,ACCP.w)
4. Let b2 ← ACCN.VerNonMem(ACCN.a, x,ACCN.u)
5. Return 1 if b1 = b2 = 1, and return 0 otherwise.

Figure 3·8: Construction B Third Party Algorithms

et. al (Camacho et al., 2008), the range-RSA accumulator is based on ranges; it

accumulates ranges in a positive RSA accumulator (Camenisch and Lysyanskaya,

2002). All elements belonging to such a range are considered to be non-members ; so,

a proof of non-membership of x in the range-RSA accumulator would just be a proof

that some range (low, high) is in the underlying positive RSA accumulator, and that

low ≤ x ≤ high. 8

A range-RSA accumulator can be instantiated empty; the Gen algorithm then

creates an empty positive RSA accumulator, and adds (low, high) to it (where low

is smaller than the smallest supported element and high is the highest supported

element). Informally, when an element x is added to the range-RSA accumulator,

the range containing x is deleted from the underlying positive RSA accumulator.

To replace that range, at most two new ranges are added, covering all of the other

elements in the deleted range. When an element x is deleted from the range-RSA

accumulator, at most two ranges containing x’s direct neighbors are deleted from the

underlying positive RSA accumulator. A new range, which covers x together with the

deleted ranges, is added. The accumulator manager stores all of the range membership

8Note that range-RSA can be made universal by using open ranges instead of closed ones. A
proof of non-membership of x in the range-RSA accumulator would be a proof that some range
(low, high) is in the underlying positive RSA accumulator, and low < x < high. Then, the range-
RSA accumulator would support proofs of membership as well as proofs of non-membership. A proof
of membership of x in the range-RSA accumulator would be a proof that some range (low, high) is
in the underlying positive RSA accumulator, with x = low or x = high or both. However, we do
not make this simple modification in this paper, because the zero-knowledge proofs described in
Section 3.4.4 are more efficient for closed ranges. We do not discuss proofs of membership in the
range-RSA accumulator any further, as we only use range-RSA to prove non-membership.

65

witnesses. Each range membership witness functions as the non-membership witness

for all of the elements in that range; so, producing a non-membership witness is a

simple matter of a look-up. In Section 3.4.2, we spell out all of the details of range-

RSA accumulator algorithms.

What remains is the question of how one accumulates ranges in the underlying pos-

itive RSA accumulator. This accumulator requires that all accumulated elements (in

our case, ranges) be mapped to prime numbers using some canonical function h. We

choose a function h that is particularly well-suited for use with efficient zero-knowledge

proofs. We define h(low, high) to choose an integer suffix such that p = low||high||suffix

is a prime number, where || denotes concatenation, and each of low, high and suffix

use a fixed number l of bits. (Assuming that prime numbers are dense, for a suffi-

ciently large l such a suffix will always exist.) Our choice of h allows h(low, high) to

be expressed using arithmetic operations: h(low, high) = 22llow + 2lhigh + suffix.

Notice that the range-RSA accumulator can only accumulate elements x such that

0 ≤ x ≤ 2l − 1. This can be avoided in one of two ways: by allowing l to depend

on the range (low, high) in question and encoding l as part of the h output, or by

using a collision-resistant hash function to map all elements to l-bit binary strings.

For the rest of this paper, we only consider the accumulation of elements x such that

0 ≤ x ≤ 2l − 1, since that is sufficient for the anonymous revocation application.

Theorem 5. The range-RSA accumulator is a adaptively sound negative dynamic

accumulator under the strong RSA assumption.

Sketch. In order to break the adaptive soundness of the range-RSA accumulator,

an adversary would need to compute a non-membership witness u for an element x

that is actually in the accumulator. This is equivalent to computing a membership

witness w for r = h(low, high) such that low ≤ x ≤ high in the underlying positive

RSA accumulator. No such r is actually in the underlying positive RSA accumulator,

so this would require breaking the security of the positive RSA accumulator, which

is hard under the strong RSA assumption.

66

Properties other than security (such as completeness) are self-evident.

3.4.2 Range-RSA Accumulator Algorithms

In this section, we describe the algorithms of the range-RSA accumulator introduced

in Section 3.4.1. Recall that h(low, high) is a function that can be applied to ranges to

get a prime integer of the form p = low||high||suffix, where || denotes concatenation,

and each of low, high and suffix have a fixed number l of bits assigned to them. suffix

can be any value which makes p prime.

Let RSA.Gen, RSA.Add, RSA.MemWitUpOnAdd, RSA.Del, RSA.MemWitUpOnDel

and

RSA.VerMem be the protocols the dynamic RSA accumulator (Camenisch and Lysyan-

skaya, 2002). The protocols of the range-RSA accumulator are described in Figures

3·9, 3·10 and 3·11.

3.4.3 BraavosB Soundness

The BraavosB accumulator uses Camenisch-Lysyanskaya (CL) signatures (Camenisch

and Lysyanskaya, 2003) as the underlying positive accumulator ACCP, and the range-

RSA accumulator as the underlying dynamic negative accumulator ACCN. CL sig-

natures are existentially unforgeable under the strong RSA assumption. Recall that

the range-RSA accumulator is secure under the same assumption. By Theorem 2,

this implies that the BraavosB accumulator is an adaptively sound positive dynamic

accumulator under the strong RSA assumption.

Properties other than adaptive soundness (such as completeness) are self-evident.

3.4.4 Adding Zero Knowledge to BraavosB

Zero-Knowledge Proofs of Non-Member Knowledge in Range-RSA The

range-RSA accumulator supports efficient zero-knowledge proofs of non-member knowl-

67

Gen(1λ):
1. (RSA.sk,RSA.a)← RSA.Gen(1λ, ∅)
2. Let r = h(low, high), where low denotes 0, and high denotes 2l.
3. (RSA.a,RSA.w,RSA.upmsg)← RSA.Add(RSA.a, r)
4. Let sk = RSA.sk.
5. Let a = RSA.a.
6. Let m = [((low, high), r,RSA.w)].
7. Return (sk, a, m).

NonMemWitCreate(x,m):
1. Find the entry ((low, high), r,RSA.w) in m such that low ≤ x ≤ high.
2. If no such element exists, then x is a member of the accumulator: return ⊥.
3. Otherwise, return u = (r,RSA.w).

Add(sk, a,m, x) (executed by the accumulator manager):
1. Let =← [].
2. Find ((low, high), r, w) in m such that low ≤ x ≤ high. If no such element exists, then x is already

a member and no work remains to be done. Otherwise, continue.
3. Remove ((low, high), r, w) from m.
4. (RSA.a,RSA.m,RSA.upmsg)← RSA.Del(RSA.sk,RSA.a, r).
5. Add RSA.upmsg to upmsg.
6. If x 6= low:

(a) Let rl = h(low, x− 1).
(b) (RSA.a,RSA.wl,RSA.upmsgl)← RSA.Add(RSA.a, rl).
(c) Add RSA.upmsgl, RSA.wl and rl to upmsg.
(d) Add ((low, x− 1), rl,RSA.wl) to m.

7. If x 6= high:
(a) Let rh = h(x+ 1, high).
(b) (RSA.a,RSA.wh,RSA.upmsgh)← RSA.Add(RSA.a, rh).
(c) Add RSA.upmsgh, RSA.wh and rhigh to upmsg.
(d) Add ((x+ 1, high), rh,RSA.wh) to m.

8. Let a = RSA.a.
9. Return (a,m, upmsg).

Del(sk, a,m, x) (executed by the accumulator manager):
1. If there exists ((low, high), r, w) in m such that low ≤ x ≤ high, then x is already a non-member:

return ⊥. Otherwise, continue.
2. Let upmsg = [].
3. Let low = x− 1 and high = x+ 1.
4. If there exists ((l, low), rl, RSA.wl) for some l in m:

(a) (RSA.a,RSA.m,RSA.upmsgl)← RSA.Del(RSA.sk,RSA.a, rl).
(b) Add RSA.upmsgl to upmsg.
(c) Delete ((l, low), rl,RSA.wl) from m.
(d) Let low = l.

5. If there exists ((high, h), rh, RSA.wh) for some h in m:
(a) (RSA.a,RSA.m,RSA.upmsgh)← RSA.Del(RSA.sk,RSA.a, rh).
(b) Add RSA.upmsgh to upmsg.
(c) Delete ((high, h), rh,RSA.wh) from m.
(d) Let high = h.

6. r = h(low, high).
7. (RSA.a,RSA.m,RSA.w,RSA.upmsg)← RSA.Add(RSA.sk,RSA.a, r).
8. Add r, RSA.w and RSA.upmsg to upmsg.
9. Add ((low, high), r,RSA.w) to m.

10. Let a = RSA.a.
11. Return (a,m, upmsg).

Figure 3·9: Range-RSA Accumulator Manager Algorithms

edge. To prove knowledge of a non-member, a witness holder proves knowledge of

values (x,w, r, low, high, suffix) such that

68

NonMemWitUpOnAdd(x, u, upmsg) (executed by the witness holder upon receipt of upmsg):
1. Parse (r,RSA.w) = u.
2. Parse (RSA.upmsg, rl, RSA.wl, RSA.upmsgl, rh, RSA.wh, RSA.upmsgh) = upmsg.
3. If RSA.upmsgl 6= ⊥:

(a) If x is in the range denoted by rl: return (rl,RSA.wl).
(b) Otherwise: RSA.w = RSA.MemWitUpOnAdd(x, RSA.w, RSA.upmsgl).

4. If RSA.upmsgh 6= ⊥:
(a) If x is in the range denoted by rh: return (rh,RSA.wh).
(b) Otherwise: RSA.w ← RSA.MemWitUpOnAdd(x, RSA.w, RSA.upmsgh).

5. If RSA.upmsg 6= ⊥: RSA.w ← RSA.MemWitUpOnDel(x,RSA.w,RSA.upmsg)
6. Return u = (r,RSA.w).

NonMemWitUpOnDel(a, x, u, upmsg) (executed by the witness holder upon receipt of upmsg):
1. Parse (r,RSA.w) = u.
2. Parse (RSA.upmsgl, RSA.upmsgh, r′, RSA.w′, RSA.upmsg)= upmsg.
3. If x is in the range denoted by r′:

(a) Return (r′,RSA.w′)
4. Otherwise:

(a) If RSA.upmsgl 6= ⊥: RSA.w ← RSA.MemWitUpOnDel(x,RSA.w,RSA.upmsgl).
(b) If RSA.upmsgh 6= ⊥: RSA.w ← RSA.MemWitUpOnDel(x,RSA.w,RSA.upmsgh).
(c) If RSA.upmsg 6= ⊥: RSA.w ← RSA.MemWitUpOnAdd(x,RSA.w,RSA.upmsg).
(d) Return u = (r,RSA.w).

Figure 3·10: Range-RSA Witness Holder Algorithms

VerNonMem(at, x, u) (executed by any third party):
1. Parse w = (r,RSA.w).
2. b1 ← RSA.VerMem(RSA.a, r,RSA.w)
3. b2 = 1 if x is in the range represented by r, and b2 = 0 otherwise.
4. Return 1 if b1 = b2 = 1, and return 0 otherwise.

Figure 3·11: Range-RSA Third Party Algorithms

1. low ≤ x ≤ high,

2. r = low ∗ 22l + high ∗ 2l + suffix, and

3. wr ≡ a mod n (where n is the appropriate RSA integer).

Given that the witness holder (also referred to as the prover) wants to keep all of

x, low and high secret, she will first commit to all of x,w, r, low, high and suffix, and

then use those commitments to prove statements about the underlying values. A suit-

able commitment scheme is the Fujisaki-Okamoto (FO) commitment scheme (Fujisaki

and Okamoto, 1997).

For all the statements that the witness holder needs to prove, there exist standard

techniques in the literature. These techniques, together with their conjunctions, come

69

from a standard zero knowledge proof toolbox:

• proofs of knowledge of a committed value (i.e. knowledge of discrete logarithm

representation modulo a composite (Fujisaki and Okamoto, 1997)),

• proofs of equality of committed values (i.e. proof of knowledge of equality of dis-

crete logarithms modulo a composite (or two different composites) (Camenisch

and Michels, 1999b)), and

• proofs that a committed value is the product of two other committed values (Ca-

menisch and Michels, 1999a).

All of the above-mentioned proofs are sound under the strong RSA assumption.

More specifically, to prove item 1 in the list above, the witness holder will use

a range proof (Boudot, 2000; Lipmaa, 2003). A range proof involves showing that

x − low ≥ 0 and that high − x ≥ 0. To do so, one can use the observation that any

non-negative number can be represented as a sum of four squares. The prover would

have to find these four squares for each of x− low and high−x, commit to them, and

use commitment equality and product proofs to demonstrate that each of x− low and

high− x is, in fact, a sum of four squares.

To prove item 2, the witness holder will again have to use commitments to all of

the elements in question: r, low, high and suffix. She will then use the homomorphic

properties of FO commitments to obtain a single commitment to low∗22l+ high∗2l+

suffix, and use a commitment equality proof to show that the resulting commitment

is to r.

Finally, to prove item 3, the witness holder will show that a committed value

has been accumulated. Range-RSA uses the CL-RSA accumulator (Camenisch and

Lysyanskaya, 2002) as an underlying building block, so this proof will be done as

described by Camenisch and Lysyanskaya (Camenisch and Lysyanskaya, 2002).

Note that most of these proofs require interaction between the prover and the

70

verifier. One could apply the Fiat-Shamir heuristic (Fiat and Shamir, 1987) to ob-

tain a non-interactive zero-knowledge proof, but this would require assuming random

oracles.

Zero-Knowledge Proofs of Member Knowledge in BraavosB To prove member

knowledge for BraavosB in zero knowledge, a witness holder would have to compute

the following zero-knowledge proof (described using Camenisch-Stadler (Camenisch

and Stadler, 1997) notation):

ZKP[(x, r,ACCA.w,ACCNA.w) :

∧ ACCP.VerMem(ACCP.a, x,ACCP.w)

∧ ACCN.VerNonMem(ACCN.a, x,ACCN.u)

](ACCNA.a,ACCA.a)

Where ACCP is the signature scheme SIGCL = (KeyGen, Sign,Verify) due to Ca-

menisch and Lysyanskaya (Camenisch and Lysyanskaya, 2003), and ACCN is the

range-RSA accumulator.

If integration into a larger system (where it is important to be able to link the

witnesses used in the proof to other statements) is desired, the witness holder com-

putes commitments to the membership witness ACCP.w and non-membership wit-

ness ACCN.u: (c1, o1) = Com.Commit(ACCP.w) and (c2, o2) = Com.Commit(ACCN.u),

where o1 and o2 are decommitment values. The proof is then enhanced, as follows:

71

ZKP[(x,ACCP.w,ACCN.u, o1, o2) :

Com.Verify(c1,ACCP.w, o1)

∧ Com.Verify(c2,ACCN.u, o2)

∧ ACCP.VerMem(ACCP.a, x,ACCP.w)

∧ ACCN.VerNonMem(ACCN.a, x,ACCN.u)

](ACCP.a,ACCN.a, c1, c2)

For concrete descriptions of the individual clauses of this proof, please refer to Fujisaki

and Okamoto (Fujisaki and Okamoto, 1997) and Camenisch and Lysyanskaya (Ca-

menisch and Lysyanskaya, 2003; Camenisch and Lysyanskaya, 2002).

3.5 Comparison with Other Constructions

The Braavos, Braavos′ and BraavosB accumulators are positive, dynamic accumulators

with efficient (constant-time) membership witness generation, and no membership

witness updates upon element additions — only upon element deletions. In particular,

for a fixed security parameter λ, these accumulators achieve the total communication

lower bound shown by Camacho (Camacho, 2009). (Total communication refers to

the sum of the sizes of all upmsg messages sent by the accumulator manager to the

witness holders after |A| additions and |D| deletions.) In Section 3.6, we prove that

adding universality would necessarily degrade the total communication of Braavos.

72

Accumulator Sigs RSA BM Merkle DistAccs ra
n
g
e
-R

S
A

9

B
ra

av
o

sB

C
L

R
S

A
B

B
ra

av
o

s

B
ra

av
o

s′

Protocol Runtimes

Update(Op = Add, . . .) 1 1 1 log a log a 1 1 1 1 1
Update(Op = Del, . . .) − 1 1 log a log a (with

additional
inputs)10

1 1 1 1 1

WitCreate(stts =
in, . . .)

1 1 with
sk, n
with-
out

n log a −11 − − − − −

WitCreate(stts =
out, . . .)

− n n log a − 1 − − − −

WitUp(stts = in, . . .)
upon addition

0 1 1 log a log a − 0 0 0 0

WitUp(stts = in, . . .)
upon deletion

− 1 1 log a log a − 1 1 1 1

WitUp(stts = out, . . .)
upon addition

− 1 1 log a − 1 − − − −

WitUp(stts = out, . . .)
upon deletion

− 1 1 log a − 1 − − − −

VerStatus(stts = in, . . .) 1 1 1 log a log a − 1 1 1 1
VerStatus(stts =

out, . . .)
− 1 1 log a − 1 − − − −

Storage

Accumulator size 1 1 1 1 log a 1 1 1 1 1
Witness size 1 1 1 log a log a 1 1 1 1 1

Manager storage (|m|) 1 n n a log a n d 1 1 O(a)
Communication

Total comm. to Verifier
12

0 a+ d a+d (a+
d) log a

(a+
d) log a

a+ d d d d d

Total comm. to
Witness Holder

0 a+ d a+d (a+
d) log a

(d+
log a) log a

a+ d d d d d

Other Properties

Additive? X X X X X X X X X X
Subtractive? X X X X X X X X X

Positive? X X X X X X X X X
Negative? X X X X
Strong? 13 X X

Efficient ZKPs? X X X X X X X X
Adaptively sound? X X X X X X X X X

Add-Delete unlinkable? − X X X X
Hiding

Update-Message?
X X

Fully distributed? X X X X X X
Old accumulator

compatible?
X X

Figure 3·12: Accumulator construction comparison. This figure describes various accu-
mulators and their protocol runtimes, storage requirements, and properties. We let a denote the
number of elements added to the accumulator, d denote the number of elements deleted from the
accumulator, and n denote the total number of member elements in the accumulator. (Note that
n is a−d.) The DistAccs accumulator (Chapter 4) is the first strong accumulator with witness up-
date frequency sublinear in a+ d. The Braavos, Braavos′ and BraavosB (Chapter 3) accumulators
are the first adaptively sound dynamic (additive and subtractive) accumulators to have the opti-
mal total communication of O(d). CLRSAB and Range-RSA are building blocks used for Braavos,
Braavos′ and BraavosB. Sigs represents any digital signature scheme. The RSA Construction is
due to (Benaloh and de Mare, 1994; Camenisch and Lysyanskaya, 2002; Li et al., 2007a). The
BM (bilinear map) construction is due to (Nguyen, 2005; Damg̊ard and Triandopoulos, 2008; Au
et al., 2009). The Merkle tree construction is due to (Camacho et al., 2008). Big-O notation is
omitted from this table in the interest of brevity.

73

In Figure 3·12, we compare Braavos, Braavos′ (described in Section 3.3), and

BraavosB (described in Section 3.4) to prior constructions in terms of the proper-

ties introduced in Chapter 2. (DistAccs, described in Chapter 4, is also included in

the comparison.) We compare them to digital signatures, and to the three other pri-

mary lines of work on accumulators: the RSA construction (Benaloh and de Mare,

1994; Camenisch and Lysyanskaya, 2002; Li et al., 2007a), the bilinear map construc-

tions (Nguyen, 2005; Damg̊ard and Triandopoulos, 2008; Au et al., 2009), and the

Merkle tree constructions (Camacho et al., 2008). In our comparison we also include

two building blocks: the CLRSAB accumulator (used in Braavos and Braavos′, and

described in Section 3.3.1), and the range-RSA accumulator (used in BraavosB, and

described in Section 3.4.1).15

Though Figure 3·12 includes some of the most well known accumulator construc-

tions to compare with Braavos, Braavos′ and BraavosB, we would like to note that

there exists a large number of other dynamic accumulator constructions in the liter-

ature (Li et al., 2007a; Damg̊ard and Triandopoulos, 2008; Camenisch et al., 2009;

Au et al., 2009; Catalano and Fiore, 2013; Derler et al., 2015). To the best of our

knowledge, these constructions do not achieve the efficiency we aim for.

10Here range-RSA is presented as a negative accumulator, because that is how it is used in the
BraavosB accumulator. However, range-RSA can be easily modified to be universal.

11Refer to Section 4.6 for details.
12Though DistAccs is a positive accumulator, due to its distributed nature it does not support

witness creation other than at the time of element addition.
13a and d refer to the number of elements added and deleted after the addition of the element

whose witness updates are being discussed.
14Sander (Sander, 1999) shows a way to make the RSA accumulator strong by choosing the RSA

modulus in such a way that its factorization is never revealed.
15Our comparison only considers secure accumulators in the standard model, excluding random-

oracle-enhanced constructions.

74

3.6 Appendix A: Lower Bound on Total Communication in

Negative Accumulators

Very importantly, note that unlike prior schemes in the standard model, in Braavos

and BraavosB no witness updates need to be performed when new elements are added

to the accumulator. We achieve the lower bound given by Camacho (Camacho, 2009)

which states that |D| deletions requires the total size of update messages upmsg to

be of size Ω(|D|) (we are ignoring the implicit factor of log |S| used in their proof).

We prove that while achieving this lower bound for dynamic accumulators, we cannot

also support universality.

Theorem 6. In a negative (or universal) accumulator, |A| additions require the total

size of update messages to be of size Ω(|A|).

We prove this theorem in the style of Camacho (Camacho, 2009).

Proof. Assume a witness holder has l non-membership witnesses. The accumulator

manager then adds a set of elements A to the accumulator. The witness holder must

be able to determine which of the elements for which he holds non-membership wit-

nesses have been added to the accumulator, simply by bringing his non-membership

witnesses up to date and determining which of them are still valid. This must be

true even if the witness holder holds non-membership witnesses for a superset of A.

Thus, the update messages must specify all of A. Specifying a set A requires at least

log (
(
l
|A|

)
) ≥ |A| log l

|A| bits of information. (The factor of log l
|A| can be ignored, as it

is implicit in the size of the elements.)

75

Chapter 4

Efficient Asynchronous Accumulators for

Distributed PKI

The contents of this section are a collaboration with Leonid Reyzin (Reyzin and

Yakoubov, 2016).

4.1 Introduction

One significant problem with accumulators in the context of distributed applications

is that all existing strong constructions require that membership witnesses be updated

every time a new element is added into the accumulator. If elements are added to

the accumulator at a high rate, having to perform work linear in the number of

new elements in order to retain the ability to prove membership can be prohibitively

expensive.

In this work, we introduce a new strong accumulator construction which requires

only a logarithmic amount of work (in the number of subsequent element additions)

in order to keep a witness up to date. Unlike any prior construction, our accumulator

construction also supports the verification of an up-to-date witness against an out-

dated accumulator, enabling verification by parties who are offline and without access

to the most recent accumulator. Our construction is made even more well suited for

distributed applications by the fact that it does not require any additional storage

for the execution of accumulator updates. Section 4.3 describes our construction in

detail, and provides comparisons to prior constructions.

76

Application: Distributed State The original distributed applications proposed

by Benaloh and DeMare (Benaloh and de Mare, 1994) involved a canonical common

state, but did not specify how to maintain it. Public append-only bulletin boards,

such as the ones implemented by bitcoin (Nakamoto, 2008) and its alternatives (alt-

coins, such as namecoin (Namecoin, norg)), provide a place for this common state.

Bitcoin and altcoins implement this public bulletin board by means of block chains;

in bitcoin they are used primarily as transaction ledgers, while altcoins extend their

use to public storage of arbitrary data.

Altcoins such as namecoin can be used for storing identity information in a publicly

accessible way. For instance, they can be used to store (IP address, domain) pairs,

enabling DNS authentication (Slepak, 2013). They can also be used to store (identity

id, public key pk) pairs, providing a distributed alternative to certificate authorities

for public key infrastructure (PKI) (Yakoubov et al., 2014).

Elaborating on the PKI example, when a user Bob registers a public key pkBob, he

adds the pair (“Bob”, pkBob) to the bulletin board. When Alice needs to verify Bob’s

public key, she could look through the bulletin board to find this pair. However,

when executed naively, this procedure would require Alice to read the entire bulletin

board—i.e., a linear amount of data. Bob can save Alice some work by sending her

a pointer to the bulletin board location where (“Bob”, pkBob) is posted; however,

that would still require that Alice have access to a linear amount of data during

verification. What if Alice doesn’t have access to the bulletin board at the time of

verification at all, or wants to reduce latency by avoiding on-line access to the bulletin

board during verification?

Our accumulator construction can be used in this setting to free Alice from the

need for on-line random access to the bulletin board (Yakoubov et al., 2014) (see also

(Garman et al., 2014) for a similar use of accumulators). It allows her to instead

77

simply download a small amount of data from the end of the bulletin board at pre-

determined (perhaps infrequent) intervals. The accumulator would contain all of the

(id, pk) pairs on the bulletin board, with responsibility for the witnesses distributed

among the interested individuals. When Bob posts (“Bob”, pkBob) to the bulletin

board, he also adds (“Bob”, pkBob) to the accumulator, and stores his witness wBob.

He posts the updated accumulator to the bulletin board, and since our accumulator

construction is trapdoor-free and deterministic, the validity of the new accumulator

can be checked by all parties simply by re-adding (“Bob”, pkBob) to the old accu-

mulator. Details of how such posts are monitored and validated can be found in

(Yakoubov et al., 2014).

Then, when Alice wants to verify that pkBob is indeed the public key belonging to

Bob, all she needs is wBob and a locally cached accumulator value. As long as Bob’s

bulletin board post pre-dates Alice’s locally cached accumulator value, Alice can use

that accumulator value and wBob to verify that (“Bob”, pkBob) has been posted to the

bulletin board. She does not need to refer to any of the new bulletin board contents,

because in our scheme (as opposed to other accumulator schemes), an up-to-date

witness can be used for verification even against an outdated accumulator (as long as

the addition of the element in question pre-dates the accumulator).

Our construction also reduces the work for Bob, as compared to other accumulator

constructions. In a typical accumulator construction, Bob needs to update wBob every

time a new (id, pk) pair is added to the accumulator. However, in a large-scale PKI,

the number of entries on the bulletin board and the frequency of element additions

can be high. Thus, it is vital to spare Bob the need to be continuously updating his

witness. Our accumulator reduces Bob’s burden: Bob needs to update his witness only

a logarithmic number of times. Moreover, Bob can update his witness on-demand—

for instance, when he needs to prove membership—by looking at a logarithmic number

78

of bulletin board entries (see Section 4.5 for details).1

4.2 Definitions

In this chapter, we introduce the following three additional accumulator properties

that are particularly relevant when an accumulator is used to maintain distributed

state.

Full Distribution We consider an accumulator to be fully distributed if there is

no party (including the accumulator manager, if one exists) which must store an

amount of information that is linear or super-linear in the number of elements in the

accumulator. That is, the parameter m (if it exists) must be sub-linear in size. (Note

that all other parameters are already assumed to be sub-linear.)

Low Update Frequency We consider an accumulator to have a low update fre-

quency if the frequency with which a witness for element x needs to be updated is

sub-linear in the number of elements which are added after x.

Old Accumulator Compatibility We consider an accumulator to be old accumu-

lator compatible if up-to-date witnesses wxt can be verified even against an outdated

accumulator at′ where t′ < t, as long as x was added to the accumulator before t′.

Note that this does not compromise the soundness property of the accumulator, be-

cause if x was not a member of the accumulator at t′, wxt does not verify with at′ .

Old accumulator compatibility allows the verifier to be offline and out of sync with

the latest accumulator state.

1The question of whether accumulators updates can be batched, as in our scheme, was first
posed by Fazio and Nicolosi (Fazio and Nicolosi, 2003) in the context of dynamic accumulators (i.e.,
accumulators that support deletions as described in Chapter 2). It was answered in the negative
by Camacho (Camacho and Hevia, 2010), but only in the context of deletions, and only in the
centralized case (when all witnesses are updated by the same entity).

79

4.3 Building Distributed Accumulators

There are several known accumulator constructions, including the RSA construction

(Benaloh and de Mare, 1994; Camenisch and Lysyanskaya, 2002; Li et al., 2007a),

the Bilinear Map construction (Nguyen, 2005; Damg̊ard and Triandopoulos, 2008;

Au et al., 2009), and the Merkle tree construction (Camacho et al., 2008). Their

properties are described in Figure 3·12. None of these constructions have low update

frequency or old-accumulator compatibility. The construction given in (Camacho

et al., 2008), which is similar to ours in that both are based on Merkle trees, is

made more complicated and somewhat less efficient by the fact that it is designed

it to be universal. We present a different Merkle tree construction which, unlike the

construction given in (Camacho et al., 2008), is fully distributed, old-accumulator

compatible and saves on update frequency, but is not universal.

4.4 Construction

Let n be the number of elements in our accumulator, and let h be a collision-resistant

hash function. (When h is applied to pairs or elements, the pair is encoded in such

a way that it can never be confused with a single element x – e.g., a pair is prefaced

with a 1, and a single element with a 0.)

The accumulator maintains a list of D = dlog(n + 1)e elements r0, . . . , rD (as

opposed to just one Merkle tree root). The element ri is the root of a complete

Merkle tree with 2i leaves if and only if the ith least significant bit of the binary

expansion of n is 1. Otherwise, ri = ⊥. A witness wx for x is the authenticating path

for x in the Merkle tree that contains x. That is, wx = ((z0, dir0), . . . , (zd, dird−1)),

where each zi is in the range of the hash function h, and each dir is either right or left.

These are the (right / left) sibling elements of all of the nodes along the path from

element x to the accumulator root of depth d. An illustration of an accumulator a

80

and a witness w is given in Figure 4·1.

h(xt+2)

h(�,�)

h(xt+3) h(xt+1) h(xt) h(xt+5) h(xt+4) f(xt+6)

h(�,�)

h(�,�)

…

z = h(�,�)

Accumulator A
h(�,�)

Figure 4·1: An illustration of our distributed accumulator. The
accumulator itself is shaded; the unshaded elements are elements of
the Merkle trees which are not actually a part of the accumulator.
The elements with dashed outlines belong to the authenticating
path for xt+2 (which itself has a bold outline). So, the witness for
xt+2 would be wxt+2 = ((h(xt+3), left), (z, right)).

Verification is done by using the authenticating path wx and the element x in

question to recompute the Merkle tree root and check that it indeed matches the

accumulator element rd, where d is the length of wx. In more detail, this is done

by recomputing the ancestors of the element x using the authenticating path wx as

described in Algorithm 1, where the ancestors are the nodes along the path from x

to its root, as defined by x and by elements in wx. If the accumulator is up to date,

the last ancestor should correspond to the appropriate accumulator element rd. If the

accumulator is outdated but still contains x, one of the recomputed ancestors should

still correspond to one of the accumulator elements. Verification is described in full

detail in Algorithm 5 of Section 4.7.

Element addition is done by merging Merkle trees to create deeper ones. Specifi-

81

cally, when the nth element x is added to a = [r0, . . . , rD], if r0 = ⊥, we set r0 = h(x).

If, however, r0 6= ⊥, we “carry” exactly as we would in a binary counter: we create

a depth-one Merkle tree root z = h(h(x), r0), set r0 = ⊥, and try our luck with r1.

If r1 = ⊥, we can set r1 = z. If r1 6= ⊥, we must continue merging Merkle trees

and “carrying” further up the chain. Element addition is described in full detail in

Algorithm 3 of Section 4.7.

Membership witness updates need to be performed only when the root of the

Merkle tree containing the element in question is merged, or “carried”, during a

subsequent element addition. This occurs at most D times. Membership updates use

the update message upmsgt+1 = (y, wyt+1) (where y is the element being added and

wyt+1 is the witness generated for y) in order to bring the witness wxt for the element

x up to date, as described in Algorithm 4 of Section 4.7.

Properties This construction is trivially correct. It is sound as long as h is collision

resistant. Soundness can be proven using the classical technique for Merkle trees: if

an adversary A can find a witness for an element that has not been added to the

accumulator, then A can be used to find a collision for h.

This construction is strong, since every operation is deterministic and publicly

verifiable. It is also fully distributed; all storage requirements are logarithmic in the

number of elements. No auxiliary storage m (as described in Section 4.2) is necessary

for accumulator updates.

Section 4.5 discusses the membership witness update frequency of the construc-

tion; Section 4.6 discusses how the construction can be modified to support a limited

notion of dynamism.

82

4.5 Infrequent Membership Witness Updates

As highlighted in Section 4.4, this accumulator scheme requires that the witness for

a given element x be updated at most D = dlog(n+ 1)e times, where n is the number

of elements added to the accumulator after x. One might observe that having to

check whether the witness needs updating each time a new element addition occurs

renders this point moot, since this check itself must be done a linear number of times.

However, we can get around this by giving our witness holders the ability to “go back

in time” to observe past accumulator updates. If they can ignore updates when they

occur, and go back to the relevant ones when they need to bring their witness up to

date (e.g. at when they need to show it to a verifying third party), they can avoid

looking at the irrelevant ones altogether.

“Going back in time” is possible in the public bulletin board setting of many

distributed applications. Recall the application from Section 4.1, in which our ac-

cumulator is maintained as part of a public bulletin board. The bulletin board is

append-only, so it contains a history of all of the accumulator states. Along with

these states, we will include the update message, and a counter indicating how many

additions have taken place to date. Additionally, we will include pointers to a se-

lection of other accumulator states, so as to allow the bulletin board user to move

amongst them efficiently. The pointers from accumulator state t would be to accu-

mulator states t − 2i for all i such that 0 < 2i < t (somewhat similarly to what is

done in a skip-list). These pointers can be constructed in logarithmic time: there is

a logarithmic number of them, and each of them can be found in constant time by

using the previous one, since t− 2i = t− 2i−1− 2i−1. Note that storing these pointers

is not a problem, since we are already storing a logarithmic amount of data in the

form of the accumulator and witness.

Our witness holder can then ignore update messages altogether, performing no

83

checks or work at all. Instead, he updates his witness only when he needs to produce

a proof. When this happens, he checks the counter of the most recently posted

accumulator state. The counter alone is sufficient to deduce whether his witness

needs updating. If his witness does not need updating, he has merely performed a

small additional constant amount of work for the verification at hand. If, as happens

a logarithmic number of times, his witness does need updating, the pointers and

counters allow him to locate in logarithmic time the (at most logarithmic number

of) bulletin board entries he needs to access in order to bring his witness up to date,

as described in Algorithm 9 of Section 4.7. Thus, the total work performed by our

witness holder will remain logarithmic in the number of future element additions.

4.6 Limited Dynamism

We can make our accumulator construction dynamic by giving the accumulator man-

ager auxiliary storage m consisting of the leaves of the Merkle trees (i.e., the set of

elements in the accumulator). Then, to perform a deletion Del, the manager replaces

the leaf in the tree corresponding to x with ⊥, updates the ancestors of this leaf, and

broadcasts the updated ancestors of ⊥ as the update message upmsg. To perform

a witness update (upon receipt of upmsg), each witness holder whose value x is in

the same Merkle tree replaces one node on its path (namely, the child node of the

lowest common ancestor of the deleted value and x) with the corresponding value

from upmsg.

This modification degrades the space efficiency of the manager by adding auxiliary

linear storage on top of the very short (logarithmic) accumulator, thus compromising

full distribution. (We note that this extra storage can be avoided if the witness holder,

or perhaps several other cooperating witness holders, can provide the necessary por-

tions of the Merkle tree to the manager when needed. However, this would only

84

truly work if withdrawing an element from the accumulator was a voluntary act—for

instance, this would not work in the application of credential revocation.) This mod-

ification will also degrade the low update frequency property, and old accumulator

compatibility.

To keep both full distribution and low update frequency, we can limit deletions to

newer elements (e.g. an element can only be deleted within a constant number of turns

of being added), since newer elements are in the small trees. While this appears to

be limiting, it should be noted that in many applications, deletions of older elements

may be avoided altogether by wrapping “time to live stamps” or “expiration dates”

into the elements themselves.

4.7 Appendix 1: Algorithms

In this section, we give the pseudocode for all of the algorithms used in our accu-

mulator scheme. A Python implementation of these algorithms is available upon

request.

4.7.1 Accumulator Algorithms

In this section, we give the pseudocode for the basic accumulator algorithms, such as

Gen (Algorithm 2), Add (Algorithm 3), MemWitUpOnAdd (Algorithm 4) and VerMem

(Algorithm 5). (Note that usually, in the context of dynamic accumulators, we denote

Add as Update(Op = Add, . . .), MemWitUpOnAdd as WitUp(stts = in,Op = Add, . . .),

and VerMem as VerStatus(stts = in, . . .). However, here we use different notation in

the interest of bervity.)

Recall that h is a hash function.

85

Algorithm 1 GetAncestors: a helper function for MemWitUpOnAdd (Algorithm 4)
and VerMem (Algorithm 5).

Require: p, x
1: c = h(x)
2: p = [c]
3: for (z, dir) in p do
4: if dir = right then
5: c = h(c||z)
6: else if dir = left then
7: c = h(z||c)
8: end if
9: append c to p

10: end for
11: return p

Algorithm 2 Gen

Require: 1λ

1: return a0 = ⊥

Algorithm 3 Add

Require: at, x
1: at+1 = at (the new accumulator starts out as a copy of the old one)
2: wxt+1 = [] (the witness starts out as an empty list)
3: d = 0 (the depth of the witness starts out as 0)
4: z = h(x)
5: while at+1[d] 6= ⊥ do
6: if the length of at+1 < d+ 2 then
7: append ⊥ to at+1

8: end if
9: z = h(at+1[d]||z)

10: append (at+1[d], left) to wxt+1

11: at+1[d] = ⊥
12: d = d+ 1
13: end while
14: at+1[d] = z
15: return at+1, w

x
t+1, upmsg = (x,wxt+1)

86

Algorithm 4 MemWitUpOnAdd

Require: y, wyt+1, wxt
1: let dxt be the length of wxt
2: let dyt+1 be the length of wyt+1

3: if dyt+1 < dxt then
4: return wxt (the witness has not changed)
5: else
6: dxt+1 = dyt+1

7: wxt+1 = wxt (the new authenticating path starts out as a copy of the old one)
8: wyt+1 = GetAncestors(wyt+1, y)
9: append (wyt+1[dxt], right) to wxt+1

10: append wyt+1[dxt + 1, . . .] to wxt+1

11: return wxt+1

12: end if

Algorithm 5 VerMem

Require: at, x, wx

1: p = GetAncestors(wx, x)
2: if at and r have any elements in common (computable in linear time) then
3: return TRUE
4: else
5: return FALSE
6: end if

87

4.7.2 Batch Witness Updates

In this section, we give the pseudocode for the algorithms which allow our witness

holder to avoid reading to every update message, and instead do only a logarithmic

amount of work upon every verification in order to bring the witness up to date. In

the following algorithms, we assume the existence of a public append-only random

access bulletinboard. bulletinboard[ptr] gives the ptrth entry of bulletinboard. However,

since bulletinboard may be used for things other than accumulator entries, the ptrth

entry of bulletinboard is not guaranteed to correspond to the ptrth accumulator update.

Instead, we let t′ = bulletinboard[ptr].t denote the timestep t′ such that the ptrth entry

of bulletinboard corresponds to the t′th accumulator update. GetPointers (Algorithm

6) and GetPointer (Algorithm 7) are helper algorithms for creating the pointers and

using them to move amongst the entries of bulletinboard which are relevant to the

accumulator.

Let i be the number of irrelevant entries on bulletinboard after the last relevant

entry, and let n be the number of elements which have been added to the accumulator.

GetPointers (Algorithm 6), which finds the pointer to include in a new bulletin board

entry, takes O(i)+O(log(n)) time. (The O(i) is present because GetPointers finds the

newest accumulator bulletinboard entry by iterating over the entries of bulletinboard

backwards.) Similarly, GetPointer (Algorithm 7), which finds a pointer to a desired

bulletin board entry given another pointer at which to start, takes O(log(n)) time.

BatchMemWitUpOnAdd (Algorithm 9), the batch witness update algorithm itself,

also takes O(log(n)) time. BatchMemWitUpOnAdd reverses the list of relevant indices

before finding the pointers to them for reasons of efficiency. This way, the total num-

ber pointers followed is O(log(n)), and not O(log(n)2). The list of relevant pointers

is then reversed again, so as to perform the actual membership witness updates in

order.

88

Algorithm 6 GetPointers: finds all the pointers needed for a new accumulator update
bulletin board entry. If the accumulator update happens at timestep t, the pointers
should be to all accumulator updates at timesteps t − 2i for i such that 0 < 2i < t.
This is a helper function for BatchMemWitUpOnAdd (Algorithm 9).

Require: the bulletin board bulletinboard
1: ptrs = []
2: find the last occurring addition entry (lt, alt, y, w

y
lt) on bulletinboard.

3: if one does not exist then
4: return ptrs
5: end if
6: let lptr be the pointer to the last entry
7: append lptr to ptrs
8: exp = 1
9: stuck = FALSE

10: while not stuck do
11: lptr = ptrs[−1] (the last element of ptrs)
12: let numPointersAtLastPointer be the number of pointers stored at

bulletinboard[lptr]
13: if numPointersAtLastPointer < exp then
14: stuck = TRUE
15: else
16: ptr = bulletinboard[lptr].ptrs[exp− 1]
17: append ptr to ptrs
18: end if
19: exp = exp + 1
20: end while
21: return ptrs

Algorithm 7 GetPointer: finds a pointer to the bulletin board entry corresponding
to the t∗th accumulator update. This is a helper function for BatchMemWitUpOnAdd
(Algorithm 9).

Require: the bulletin board bulletinboard, the timestep t∗, and a pointer ptr to a
bulletin board entry corresponding to t′ ≥ t∗

1: t′ = bulletinboard[ptr].t
2: while t′ 6= t∗ do
3: difference = t′ − t∗
4: let exp be the largest exponent such that 2exp is smaller than difference
5: ptr = bulletinboard[ptr].ptrs[exp]
6: t′ = bulletinboard[ptr].t
7: end while
8: return ptr

89

Algorithm 8 GetUpdateTimeSteps: finds the timesteps at which a witness needs to
be updated. This is a helper function for BatchMemWitUpOnAdd (Algorithm 9).

Require: the bulletin board bulletinboard, the timestep lupt at which the last witness
update occurred, the timestep lt at which the last accumulator update occurred,
and the depth d of the witness in question

1: relevantTimeSteps = []
2: power = 2d

3: t = lupt + power
4: while t ≤ lt do
5: append t to relevantTimeSteps
6: while t mod power × 2 = 0 do
7: power = power ∗ 2
8: end while
9: t = t+ power

10: end while
11: return relevantTimeSteps

Algorithm 9 BatchMemWitUpOnAdd

Require: the bulletin board bulletinboard, the witness wx, and the timestep lupt at
which wx was last updated

1: let d be the length of wx

2: find the last occurring addition entry (lt, alt, upmsg = (y, wylt)) on bulletinboard,
and let ptr be the pointer to this entry

3: relevantTimeSteps = GetUpdateTimeSteps(lupt, lt, d)
4: reverse the order of relevantTimeSteps
5: relevantPointers = []
6: for t ∈ relevantTimeSteps do
7: ptr = GetPointer(bulletinboard, t, ptr)
8: append ptr to relevantPointers
9: end for

10: reverse the order of relevantPointers
11: for ptr ∈ relevantPointers do
12: get (t, at, upmsg = (y, wyt)) using ptr from bulletinboard
13: wx = MemWitUpOnAdd(y, wyt , w

x)
14: end for
15: return wx

90

Chapter 5

Stronger Notions and Constructions for

Multi-Designated Verifier Signatures

The contents of this section are a collaboration with Ivan Damg̊ard, Helene Haagh,

Rebekah Mercer, Anca Nitulescu, and Claudio Orlandi1 (Damg̊ard et al., 2019). My

primary contribution is the construction based on generic primitives.

5.1 Introduction

Encrypted and authenticated messaging has experienced widespread adoption in re-

cent years, due to the attractive combination of properties offered by, for example,

the Signal protocol (Marlinspike, 2013). With so many conversations happening over

the internet, there is a growing need for protocols offering security to conversation

participants. Encryption can be used to guarantee privacy of message contents, but

authenticating messages while maintaining the properties of an in person conversa-

tion is more involved. There are two properties of in person conversations related to

authenticity that we wish to emulate in the context of digital conversations:

• Unforgeability, meaning that the receiver should be convinced that the message

actually came from the sender in question, and

• Off-the-record or deniability, meaning that the receiver cannot later prove to a

third party that the message came from the sender.

Off-the-record (OTR) messaging offers a solution to this in the two-party case,

enabling authentication of messages such that participants can convincingly deny

91

having made certain statements, or even having taken part in the conversation at

all (Borisov et al., 2004). The protocol deals with encrypted messages accompanied

by a message authentication code (MAC) constructed with a shared key. MACs work

well in two-party conversations, because for parties S(ender) and R(eciever) with a

shared secret key, a MAC attests ‘this message comes from S or R’. MACs provide

unforgeability, since a party R receiving a message authenticated with such a MAC

knows that if this MAC verifies, the message came from S. MACs provide off-the-

record (deniable) communication as R cannot convince a third party that a message

and MAC originally came from S (since R could have produced it just as easily). More

generally, tools that provide unforgeable, off-the-record two-party communication are

known as Designated Verifier Signatures (DVSs, proposed by (Jakobsson et al., 1996)

and (Chaum, 1996)).

When there are multiple recipients, for example in group messaging, the situation

becomes more complicated. DVSs have been extended to the multiparty setting un-

der the name of Multi-Designated Verifier Signatures (MDVSs) (we give a number of

references in Figure 5·1). One might hope that these schemes would work for off-the

record group messaging; however, it turns out that existing MDVS definitions and

schemes do not have the properties one would naturally ask for. In the following

section, we give a motivating example illustrating which properties we should actu-

ally ask from an MDVS scheme, and we explain how existing schemes fall short of

providing them.

5.1.1 A Motivating Example for MDVS

Imagine a government official Sophia who wants to blow the whistle on some corrupt

government activity; e.g., perhaps her colleague, Aaron, accepted a bribe. She wants

to send a message describing this corruption to Robert, Rachel and Rebekah, who

are all Reporters at national newspapers.

92

Naturally, Sophia wants the Reporters to be convinced that she is the true sender

of the message. Otherwise, they would have no reason to believe — or print — the

story.

Goal 1 (Unforgeability). It is vital that each of the Reporters be able to authenticate

that the message came from Sophia.

In order to achieve unforgeability, Sophia produces a signature σ using an MDVS

scheme, and attaches it to her message. (In such a scheme, each sender has a private

signing key and each recipient has a private verification key.) However, blowing the

whistle and reporting on Aaron’s corrupt activity could put Sophia in danger. If any

of Robert, Rachel or Rebekah could use σ demonstrate to Aaron that Sophia blew

the whistle on him, she could lose her position, or face other grave consequences.

Goal 2 (Source-Hiding / Off-the-Record). It is vital that the Reporters be unable to

prove to an outsider (Aaron) that the message came from Sophia.

One way to guarantee that the Reporters cannot link Sophia to the message is

to require that the Reporters can simulate a signature σ themselves. Then, if they

try to implicate Sophia by showing σ to Aaron, he would have no reason to believe

them; as far as he is concerned, the Reporters could have produced σ to try to frame

Sophia.

All previous constructions only support off-the-record in the limited sense that

all of the Reporters must collaborate in order to produce a simulated signature.1

However, this is insufficient. Suppose, for instance, that Aaron knows Rachel was

undercover — and thus unreachable — for the entire time between the bribery taking

place, and Robert and Rebekah bringing σ to Aaron. Then he would conclude that

Rachel could not have collaborated in simulating σ, and so it must be genuine. Even

1One previous work (Tian, 2012) achieves off-the-record when C consists of a single verifier.
However, in this construction a simulated signature created by a malicious verifier will look like a
real signature for all other designated verifers, violating unforgeability.

93

with the off-the-record definition used in prior works, it is still possible that some

subset of the Reporters would be able to implicate Sophia in the eyes of Aaron. We

therefore need a stronger off-the-record defintion.

Contribution 1 (Off-the-record For Any Subset). We give a stronger definition of

the off-the-record property, where any subset of Reporters must be able to simulate a

signature. A simulation looks like a genuine signature to an outsider, even given the

verification keys of the subset that produced it (as well as a number of other signatures

that are guaranteed to be genuine).

Under our stronger definition, no set of Reporters is able to use σ to provably

tie Sophia to the message even if Aaron has side information about communication

amongst the Reporters as well as guaranteed-to-be-genuine signatures.

Remark 5. (The Tension Between Off-The-Record and Unforgeability) Note that,

if Rachel did not participate in Robert and Rebekah’s signature simulation (e.g. if

she was undercover at the time), she will later be able to distinguish the simulation

from a real signature produced by Sophia. Otherwise, Robert and Rebekah would have

succeeded in producing a forgery that fools Rachel.

This means that under a sufficiently strong model of attack, we cannot have un-

forgeability and off-the-record at the same time. Namely, suppose Aaron first gets

a signature σ from Robert and Rebekah, while preventing them from communicating

with Rachel. Then he coerces Rachel into giving him her secret verification key. By

the unforgeability property, he can use this key to tell if σ is a simulation. (Note that

Aaron will be able to tell whether Rachel gives him her true verification key, since he

may have other signatures from Sophia that he knows are genuine that he can use to

test it. So, she has no choice but to hand over her real verification key.)

Given this observation, we choose to explore the model where the secret keys of all

coerced/corrupted verifiers (but not honest ones) can be used to simulate a signature,

as this is the strongest model of attack in which both unforgeability and off-the-record

can be achieved. As we shall see, even in this model, achieving both properties requires

highly non-trivial constructions and implies a lower bound on the size of signatures.

Finally, let us fast forward to the moment when Robert, Rachel and Rebekah

receive Sophia’s message. They want to print this high-profile story as soon as pos-

sible, but of course they want to be sure they won’t make themselves look foolish by

94

printing the story if their colleagues — the other well-respected Reporters listed as

recipients — don’t believe it actually came from Sophia. The concern here is that

Sophia could be dishonest and her actual goal could be to discredit the Reporters.

Hence we need another property — consistency, or designated verifier transferability.

Goal 3 (Consistency / Designated Verifier Transferability). It is desirable that, even

if Sophia is malicious, if one of the Reporters can authenticate that the message came

from Sophia, all of them can.

Contribution 2. We provide the first formal definition of consistency.

Now that we have covered the basic storyline, let us consider a few possible plot-

twists. First, what if Aaron is tapping the wires connecting the government building

to the outside world? Then he will see Sophia’s message — together with her signature

σ — as she sends it to the Reporters. In such a situation, we would want the signature

σ not to give Sophia— or the Reporters— away.

Goal 4 (Privacy of Identities). It is desirable that σ shouldn’t reveal Sophia’s or the

Reporters’ identities 2. When only the signer’s — Sophia’s — identity is hidden, this

property is called privacy of signer identity (PSI).

Next, what if, at the time at which Sophia has the opportunity to send out

her message, she cannot look up Rebekah’s public key securely — perhaps because

Rebekah has not yet set up an account on the secure messaging system Sophia uses?

Then, it would be ideal for Sophia to need nothing other than Rebekah’s identity

(and some global public parameters) in order to include her as a designated verifier.

Rebekah would then be able to get the appropriate key from a trusted authority such

2Note that privacy of identities is related to — but very different from — off-the-record. Neither
of these definitions is strictly stronger than the other. Privacy of identities is weaker in that it
assumes that none of the Reporters help in identifying Sophia as the sender, while off-the-record
makes no such assumptions. However, privacy of identities is stronger in that it requires that σ
alone reveal nothing about Sophia’s identity to anyone other than the Reporters; off-the-record
allows such leakage, as long as it is not provable. .

95

as the International Press Institute3 (having proved that she is, in fact, Rebekah),

and would be able to use that key to verify Sophia’s signature.

Goal 5 (Verifier-Identity-Based (VIB) Signing). It is desirable that Sophia should

only need the Reporters’ identities, not their public keys, in order to produce her

designated verifier signature.

Contribution 3. We give the first three constructions that achieve unforgeability,

off-the-record with any-subset simulation, and consistency. One of them additionally

achieves privacy of identities and verifier-identity-based signing.

The third construction, which additionally achieves privacy of identities and verifier-

identity-based signing, may, at first glance, seem strictly better; however, the price it

pays is two-fold. It uses functional encryption (which requires strong computational

assumptions), and it requires an involved trusted setup in which a master secret is

used to derive verifier keys. Note that such a trusted setup is clearly necessary in

order to achieve verifier-identity-based signing.

In contrast, our first two constructions can be instantiated either in the random

oracle model, or with a common reference string — in both cases avoiding the need

for a master secret key. They use only standard primitives such as pseudorandom

functions, pseudorandom generators, key agreement and NIZKs. The first construc-

tion uses these primitives in a black-box way; the second construction uses specific

instances of these primitives, for concrete efficiency.

In the following subsections, we give an overview of previous work and then discuss

our results in more detail.

5.1.2 Flavors of Multi-Designated Verifier Signatures

There are many ways to define MDVS and its properties. Figure 5·1 summarizes the

approaches taken by prior work, compared to our own.

3This trusted authority can also be distributed; perhaps the master secret is secret-shared across
several different institutions, who must collaborate in order to produce a secret verification key.

96

There are several different flavors of verification. In some MDVS schemes, even a

single designated verifier cannot link a signature to the signer; the designated verifiers

need to work together in order to verify a signature. Thus, we have two notions

of verification: local verification and cooperative verification (where all designated

verifiers need to cooperate in order to verify the signature).

Recall that the off-the-record property states that an outsider cannot determine

whether a given signature was created by the signer or simulated by the designated

verifiers. We have three flavors of such simulateability: one designated verifier (out

of n) can by himself simulate a signature (as done by (Tian, 2012))4, all designated

verifiers need to collude in order to simulate a signature (all other works on MDVS),

or any subset of the designated verifiers can simulate a signature (this paper). Of

course, the simulated signature should remain indistinguishable from a real one even

in the presence of the secrets held by the simulating parties.

There is also the standard security property of signature schemes, which is un-

forgeability ; no one (except the signer) should be able to construct a signature that

any verifier will accept as a valid signature from that signer. There are two flavors of

unforgeability. The first is weak unforgeability, where designated verifiers can forge,

but others cannot. The second is strong unforgeability, where a designated verifier

can distinguish between real signatures and signatures simulated by other verifiers;

that is, even other designated verifiers cannot fool a verifier into accepting a simulated

signature.5

4If only one designated verifier can simulate a signature, it must be distinguishable from a real
signature by other verifiers (by the strong unforgeability property). Two colluding verifiers would
be able to prove to an outsider that a given signature is not a simulation by showing that it verifiers
for both of them. So, any-subset simulation gives strictly stronger off-the-record guarantees than
one-verifier simulation.

5Note that when all designated verifiers are needed for the simulation, then a designated verifier
will be able to distinguish a simulation from a real signature based on whether he participated in the
simulation of the signature. However, if this is the only way he can distinguish, then the signature
scheme has weak unforgeability, since the simulated signature is still a valid forgery.

97

Schemes PSI Verification Simulation Unforgeability Signature
Size

(Jakobsson et al., 1996;
Laguillaumie and Vergnaud,

2004; Li et al., 2007b)

No Local All Weak O(1)

(Chow, 2008; Vergnaud,
2006; Zhang et al., 2012)

Our work, from standard
primitives

No Local Any subset C Strong O(|D|)

(Ng et al., 2005; Chow, 2006) Yes All All Weak O(|D|)
(Ming and Wang, 2008; Seo
et al., 2008; Chang, 2011)

Yes All All Weak O(1)

(Shailaja et al., 2006;
Laguillaumie and Vergnaud,
2007; Vergnaud, 2006; Zhang

et al., 2012)

Yes Local All Weak O(|D|)

(Tian, 2012) Yes Local One Weak O(1)

Our work, from FE Yes Local Any subset C
of size up to t

Strong O(t)

Figure 5·1: Existing MDVS constructions and their properties. Let
D be the set of designated verifiers, and t ≤ |D| be an upper bound on
the set of colluding designated verifiers C ⊆ D.

5.1.3 Our Contributions

We propose formal definitions of all the relevant security properties of MDVS in the

strongest flavor, including the definition of off-the-record with any-subset simulation.

We also give the first formal (game based) definition of consistency, where a corrupt

signer can collude with some of the designated verifiers to create an inconsistent

signature.

We then give several different constructions of MDVS that achieve these proper-

ties, including local verification, off-the-record with any-subset simulation, and strong

unforgeability. Our constructions, and the tools they require, are mapped out in

Figure 5·2. In particular, these are the first constructions that combine any-subset

simulation and with strong unforgeability, as described in Figure 5·1. We get these

results at the expense of signature sizes that are larger than in some of the earlier

constructions. However, this is unavoidable, as shown in Theorem 7 below.

Theorem 7. Any MDVS with any-subset simulation and strong unforgeability must

have signature size Ω(|D|).

Remark 6. It may seem from the table that our functional encryption based scheme

98

Our FE
MDVS

Our Standard
Tools MDVS

Verifiable
FE

Signatures

Our
PSDVS1

Our
PSDVS2

Our
AVPKE

Non-Interactive
Key Exchange

PRFPRG

Commitments

Paillier DDH

Σ-Protocols

NIZK-PoK

FE

AVPKE

NIZK

PSDVS

DVS

PSI

VIB Signing

MDVS

Figure 5·2: Our MDVS Constructions and Building Blocks

99

contradicts the theorem, but this is not the case. It can be instantiated such that

signatures can be simulated by collusions up to a certain maximal size t, and then

signatures will be of size Ω(|C|). However, if we want any subset to be able to simulate,

the signature size is Ω(|D|), in accordance with the theorem.

Proof. Imagine that we give all the verifiers’ keys to a sender and a receiver; the

sender can now encode an arbitrary subset C ⊆ D by letting C construct a simulated

signature σ on some default message, and sending it to the receiver. The receiver

can infer C from σ: by strong unforgeability, all verifiers’ keys outside C will reject σ,

whereas keys in C will accept, since we require the simulation to look convincing even

given the secret keys in C. It follows that σ must consist of enough bits to determine

C, which is log2(2|D|) = |D|.

Why First Ideas Fail

Using MACs Black-box usage of a standard MAC scheme cannot help us combine

unforgeability with consistency.6 There are two straightforward ways to use a stan-

dard MAC scheme in this context: sharing a MAC key among the entire group, and

sharing MAC keys pairwise. Sharing a single key does not provide the desired notion

of unforgeability, since any member of the group can forge messages from any other

member. Sharing keys pairwise does not provide the desired notion of consistency. If

recipients R1 and R2 are the chosen recipients of a message, and R1 receives a mes-

sage he accepts as coming from S, he cannot be sure that R2 would also accept that

message: If S is corrupt, he could include a valid MAC for R1 and an invalid MAC

for R2.

Using Proofs of Knowledge A standard technique for making designated verifier

signatures for a single verifier is to start from an interactive protocol that proves

knowledge of either the signer’s or the verifier’s secret key, and turn this into a

signature scheme using the Fiat-Shamir paradigm. It may seem natural to try to

6Note that our construction from standard primitives does make use of MAC schemes; however,
it does so in a complex, non-black-box way.

100

build an MDVS from this. However, it turns out to be challenging to achieve strong

unforgeability using this technique; a signature cannot consist of a proof of knowledge

of the signer’s or one of the verifiers’ secret keys, since any verifier will be able to

convince other verifiers to accept a signature that did not come from the signer. For

the same reason, a signature cannot consist of a proof of knowledge of the signer’s

secret key or some subset of the verifiers’ secret keys.

MDVS from Standard Primitives

Our first class of MDVS constructions is based only on standard primitives. With

one exception specified below, all of these constructions can be instantiated in the

random oracle model with no trusted setup. (Without random oracles, we would need

to set up a common reference string.)

The idea is that the signer creates a DVS signature for each verifier individu-

ally, and then proves the consistency of those signatures.7. To support such proofs,

we define a new primitive called Publicly Simulatable Designated Verifier Signatures

(PSDVS) in Section 5.3.1, which is a single-verifier DVS equipped with extra proper-

ties. We then show, in Section 5.3.2, that a PSDVS together with a non-interactive

zero knowledge proof of knowledge (NIZK-PoK) imply an MDVS for any number of

signers and verifiers. Finally, we give some constructions of PSDVS. Our first PS-

DVS construction (in Section 5.3.3) uses only generic tools, namely psedudorandom

functions, non-interactive key exchange (such as Diffie-Hellman), and non-interactive

zero-knowledge proofs of knowledge. Our second PSDVS construction (in Section

5.3.4) aims at better concrete efficiency. It is based on DDH, strong RSA and Paillier

encryption, is secure in the random oracle model, and requires a constant number of

exponentiations for all operations. This scheme requires the trusted generation of an

7Simply proving that all of the signatures verify would violate the off-the-record property; instead,
the signer proves that either all of the signatures are real, or they are all simulated, as described in
Section 5.3

101

RSA modulus so that the factorization remains unknown. We also sketch a variant

that requires no trusted setup, is secure in the random oracle model, and only requires

(a variant of) the DDH assumption. However, this version requires double discrete

log proofs, and therefore requires a non-constant number of exponentiations.

In order to support one of our constructions in which the signer sends an encrypted

MAC key, we introduce a new tool we call Authenticated and Verifiable Encryption

(AVPKE), which may be of independent interest. This is a variant of Paillier en-

cryption with built-in authentication, and as such it is related to the known primitive

“signcryption” (Zheng, 1997). However, our AVPKE scheme has the additional prop-

erty that we can give efficient zero-knowledge proofs involving the encrypted message,

using the algebraic properties of Paillier encryption.

To sign in our PSDVS schemes, the signer and verifiers first must establish a

shared symmetric key k. In some cases they can do this non-interactively, using their

secret and public keys, while in other cases the signer must send an encrypted key

alongside the signature. After this, the signer sends a MAC on the message under

key k; this MAC is based on a pseudorandom function.

MDVS from Functional Encryption.

Our last construction is based on Verifiable Functional Encryption (VFE). It has

the advantages of additionally meeting the privacy of identities and verifier-identity-

based signing properties. Additionally, it can be set up to have smaller signatures if

we are willing to make a stronger assumption on the number of colluding verifiers.

Namely, the signature size is O(t), where t is the size of the largest number of colluding

verifiers we want to tolerate. The downsides are that, with current state of the art,

VFE requires non-standard computational assumptions. We also need a trusted setup

for generating keys; however, this is unavoidable if we wish to achieve verifier-identity-

based signing.

102

Remark 7. If we are going to put a bound on the size of a collusion, it may seem

we can use bounded collusion FE, which can be realized from standard assumptions

(Gorbunov et al., 2012; Ananth and Vaikuntanathan, 2019), and then there is no

need for our other constructions from standard primitives. However, this is not true.

Bounded collusion FE requires us to fix the bound on collusion size at key generation

time; a bound that may later turn out to be too small. Additionally, ciphertext sizes

in bounded collusion FE depend on the bound; thus, choosing a large bound to make

sure we can handle the application implies a cost in efficiency. The MDVS signature

sizes would depend on some upper bound on number of corrupt parties in the system,

as opposed to on the number of recipients for the signature in question, which may be

orders of magnitude smaller.

In a nutshell, the idea behind the functional encryption based construction is to

do the proof of knowledge of one of the relevant secret keys “inside the ciphertext”.

In a little more detail, the idea is to encrypt a list of t standard signatures, where

t is the maximal size of collusion we want to protect against (that is, t ≥ |C|), and

the MDVS signature will simply be this ciphertext. To sign, the signer will generate

their own standard signature σS on the message, and then encrypt a list a signatures

consisting of σS followed by t−1 dummy values. To verify a signature, a verifier V gets

a functional decryption key that will look at the list of signatures inside the ciphertext

and output accept or reject. It will accept if the list contains a valid signature from

S or a valid signature from V. Now, if a corrupt set of verifiers C wants to simulate

a signature, they will all sign the message and encrypt the list of these signatures.

By security of the encryption scheme, this looks like a real signature, and will indeed

verify under all verification keys belonging to verifiers in C. However, no honest

verifier will accept it as a signature from S, so we have strong unforgeability.

103

5.2 Multi-Designated Verifier Signatures

MDVS Algorithms

A multi-designated verifier signature (MDVS) scheme is defined by the following prob-

abilistic polynomial-time algorithms:

Setup(1λ)→ (pp,msk): On input the security parameter λ ∈ N, outputs public pa-

rameters pp and the master secret key msk.

SignKeyGen(pp,msk)→ (spk, ssk): On input the public parameter pp and the master

secret key msk, outputs the public key spk and secret key ssk for a signer.

VerKeyGen(pp,msk)→ (vpk, vsk): On input the public parameter pp and the master

secret key msk, outputs the public key vpk and secret key vsk for a verifier.

Sign(pp, sski, {vpkj}j∈D,m)→ σ: On input the public parameters pp, a secret signing

key sski, the public keys of the designated verifiers {vpkj}j∈D, and a message

m, outputs a signature σ.

Verify(pp, spki, vskj, {vpkj′}j′∈D,m, σ)→ d: On input the public parameters pp, a

public verification key spki, a secret key vskj of a verifier such that j ∈ D,

the public keys of the designated verifiers {vpkj}j∈D, a message m, and a sig-

nature σ, outputs a boolean decision d: d = 1 (accept) or d = 0 (reject).

Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C,m)→ σ′: On input public parameters pp, a public

verification key spki, the public keys of the designated verifiers {vpkj}j∈D, the

secret keys of the corrupt designated verifiers {vskj}j∈C, and a message m,

outputs a simulated signature σ′.

The different algorithms take many different inputs, which are not all needed for all

of our constructions. For instance, the constructions based on standard primitives

(Section 5.3) do not need a master secret key; they allow key pairs for signers and

verifiers to be generated locally. Additionally, some of our constructions do not use

the signers’ and verifiers’ public keys in all of the algorithms in which they appear as

104

inputs above. Thus, to simplify the notation we exclude these inputs in later sections

whenever they are not needed.

MDVS Properties

Let σ be a signature from signer i on message m and designated for verifiers D. We

ask for the following (informal) properties:

Correctness: All verifiers j ∈ D are able to verify an honestly generated signature

σ.

Consistency: If there exists one verifier j ∈ D that accepts the signature σ, then

all other designated verifiers (i.e. all j′ ∈ D \ {j}) also accept the signature.

Unforgeability: An adversary without knowledge of the secret key sski for signer

i cannot create a signature σ′ that is accepted by any designated verifier as a

signature from signer i.

Off-The-Record: Given a signature σ, any malicious subset of the designated ver-

ifiers C ⊆ D cannot convince any outsider that σ is a signature from signer i

(i.e. the malicious set could have simulated the signature themselves).

(Optionally) Privacy of Identities: Any outsider (without colluding with any des-

ignated verifiers) cannot determine the identity of the signer and/or the identi-

ties of the designated verifiers.

(Optionally) Verifier-Identity-Based Signing: The signer should be able to pro-

duce a signature for a set of designated verifiers without requiring any infor-

mation about them apart from their identities. In other words, we should have

vpkj = j for a verifier with identity j.

Throughout our formal definitions we use the following six oracles:

Signer Key Generation Oracle: OSKG(i)

1. If a signer key generation query has previously been performed for i, look

up and return the previously generated key.

105

2. Otherwise, output and store (spki, sski)← SignKeyGen(pp,msk).

Verifier Key Generation Oracle: OV KG(j)

1. If a verifier key generation query has previously been performed for j, look

up and return the previously generated key.

2. Otherwise, output and store (vpkj, vskj)← VerKeyGen(pp,msk).

Public Signer Key Generation Oracle: OSPK(i)

1. (spki, sski)← OSKG(i).

2. Output spki.

Public Verifier Key Generation Oracle: OV PK(j)

1. (vpkj, vskj)← OV KG(j).

2. Output vpkj.

Signing Oracle: OS(i,D,m)

1. (spki, sski)← OSKG(i).

2. For all j ∈ D: vpkj ← OV PK(j).

3. Output σ ← Sign(pp, sski, {vpkj}j∈D,m).

Verification Oracle: OV (i, j,D,m, σ)

1. spki ← OSPK(i).

2. (vpkj, vskj)← OV KG(j).

3. Output d← Verify(pp, spki, vskj, {vpkj′}j′∈D,m, σ).

Definition 7 (Correctness). Let λ ∈ N be the security parameter, and let MDVS =

(Setup, SignKeyGen,VerKeyGen, Sign,Verify, Sim) be an MDVS scheme. MDVS is cor-

rect if for all signer identities i, messages m, verifier identity sets D and j ∈ D, it

holds that

Pr
[
Verify(pp, spki, vskj, {vpkj′}j′∈D,m, σ) 6= 1

]
= 0,

where the inputs to Verify are generated as follows:

• (pp,msk)← Setup(1λ);

• (spki, sski)← SignKeyGen(pp,msk, i);

106

• (vpkj, vskj)← VerKeyGen(pp,msk, j) for j ∈ D;

• σ ← Sign(pp, sski, {vpkj}j∈D,m).

In Def 7, we require that all the designated verifiers can verify the signature, with-

out considering what happens for parties that are not designated verifiers (i.e. parties

who should not be able to verify the signature). Parties that are not designated

verifiers are accounted for by the off-the-record property.

Definition 8 (Consistency). Let λ ∈ N be the security parameter, and let MDVS =

(Setup, SignKeyGen,VerKeyGen, Sign,Verify, Sim) be an MDVS scheme. Consider the

following game between a challenger and an adversary A:

GameconMDVS,A(λ)
1. (pp,msk)← Setup(1λ)

2. (m∗, i∗,D∗, σ∗)← AOSKG,OVKG,OSPK ,OV PK ,OV (pp)

We say that A wins the game if there exist verifiers j0, j1 ∈ D∗ such that:

Verify(pp, spki∗ , vskj0 , {vpkj′}j′∈D∗ ,m∗, σ∗) = 0,

Verify(pp, spki∗ , vskj1 , {vpkj′}j′∈D∗ ,m∗, σ∗) = 1,

where all keys are the honestly generated outputs of the key generation oracles, and

OV KG is never queried on j0 or j1.

MDVS is consistent if, for all PPT adversaries A,

AdvconMDVS,A(λ) = Pr
[
A wins GameconMDVS,A(λ)

]
≤ ν(λ).

Def 8 states that even a valid signer (i.e. someone who knows a secret signing key)

cannot create an inconsistent signature that will be accepted by some designated

verifiers and rejected by others. By the correctness property, an honestly gener-

ated signature is accepted by all designated verifiers. By design, corrupt designated

verifiers can construct an inconsistent signature, since some verifiers will accept it

(i.e. those verifiers that created it), while the remaining honest designated verifiers

will reject the simulated signature. Thus, we need to ask for j 6= j0, j1 for all queries

j to the oracle OV KG.

107

Definition 9 (Existential Unforgeability). Let λ ∈ N be the security parameter, and

let MDVS = (Setup, SignKeyGen,VerKeyGen, Sign,Verify, Sim) be an MDVS scheme.

Consider the following game between a challenger and an adversary A:

GameeufMDVS,A(λ)
1. (pp,msk)← Setup(1λ)

2. (m∗, i∗,D∗, σ∗)← AOSKG,OVKG,OSPK ,OV PK ,OS (pp)

We say that A wins the game if we have all of the following:

• for all queries i to oracle OSKG, it holds that i∗ 6= i;

• for all queries (i,D,m) to oracle OS that result in signature σ, it holds that

(i∗,D∗,m∗) 6= (i,D,m);

• there exists a verifier j′ ∈ D∗ such that for all queries j to oracle OV KG, it holds

that j′ 6= j and

Verify(pp, spki∗ , vskj′ , {vpkj′′}j′′∈D∗ ,m∗, σ∗) = 1,

where all keys are honestly generated outputs of the key generation oracles.

MDVS is existentially unforgeable if, for all PPT adversaries A,

AdveufMDVS,A(λ) = Pr
[
A wins GameeufMDVS,A(λ)

]
≤ ν(λ).

Def 9 states that an adversary cannot create a signature that any honest verifier

will accept as coming from a signer whose secret signing key the adversary does not

know. The adversary will always get the public keys of the involved parties, i.e. signer

with identity i∗ and the designated verifiers D, through the key generation oracles.

He is also allowed to obtain the secret keys of every party except the signer i∗ and

at least one designated verifier. The reason why we need at least one honest verifier

is that corrupt verifiers can create a simulated signature that will look like a real

signature with respect to their own verifier secret keys. However, this simulation will

be rejected by any honest designated verifier, i.e. the simulation will be a valid forgery

for the corrupt verifiers, but not for the honest verifiers.

Definition 10 (Off-The-Record). Let λ ∈ N be the security parameter, let MDVS =

(Setup, SignKeyGen,VerKeyGen, Sign,Verify, Sim) be an MDVS scheme, and let t be an

108

upper bound on the number of verifiers an adversary A can corrupt. Consider the

following game between a challenger and an adversary A, where all keys are honestly

generated outputs of the key generation oracles:

GameotrMDVS,SIM,A(λ)
1. (pp,msk)← Setup(1λ)

2. (i∗,D∗,m∗, C∗)← AOSKG,OVKG,OSPK ,OV PK ,OS ,OV (pp)

3. b← {0, 1}
4. σ0 ← Sign(pp, sski∗ , {vpkj}j∈D∗ ,m∗)
5. σ1 ← Sim(pp, spki∗ , {vpkj}j∈D∗ , {vskj}j∈C∗ ,m∗)
6. b′ ← AOSKG,OVKG,OSPK ,OV PK ,OS ,OV (σb)

We say that A wins the game if b′ = b, and all of the following hold:

• |C∗| ≤ t and C∗ ⊆ D∗;
• for all queries i to oracle OSKG it holds that i∗ 6= i;

• for all queries j to oracle OV KG it holds that j /∈ D∗\C∗;
• for all queries (i, j,D,m, σ) to OV it holds that σb 6= σ.

We say that an MDVS scheme is t-off-the-record if, for all PPT adversaries A,

AdvotrMDVS,SIM,A(λ) = Pr
[
A wins GameotrMDVS,SIM,A(λ)

]
− 1

2
≤ ν(λ).

If a scheme supports t = |D|, we say that it is off-the-record.

Def 10 states that any adversary that corrupts a subset (of size t) of the designated

verifiers C∗ cannot determine whether the received signature was created by real signer

i∗ or simulated by the corrupt verifiers C∗. The adversary is not allowed to see the

secret keys for the designated verifiers that are in D∗\C∗. If the adversary was allowed

to get secret keys of additional parties in D∗ (which are not in C∗), then he would be

able to distinguish trivially, since any honest designated verifiers (i.e. any j ∈ D∗\C∗)

can distinguish simulated signatures from real signatures (from the unforgeability

property).

Definition 11 (Privacy of Identities). Let λ ∈ N be the security parameter, and

let MDVS = (Setup, SignKeyGen,VerKeyGen, Sign,Verify, Sim) be an MDVS scheme.

Consider the following game between a challenger and an adversary A, where all keys

are the honestly generated outputs of the key generation oracles:

109

GamepriMDVS,A(λ)
1. (pp,msk)← Setup(1λ)

2. (m∗, i0, i1,D0,D1)← AOSKG,OVKG,OSPK ,OV PK ,OS ,OV (pp)

3. b← {0, 1}
4. σ∗ ← Sign(pp, sskib , {vpkj}j∈Db ,m

∗)

5. b′ ← AOSKG,OVKG,OSPK ,OV PK ,OS ,OV (σ∗)

We say that A wins the game if b = b′, and all of the following hold:

• |D0| = |D1|;
• for all queries i to OSKG, it holds that i /∈ {i0, i1};
• for all gueries j to OV KG, it holds that j /∈ D0 ∪ D1;

• for all queries (i, j,D,m, σ) to OV , it holds that σ∗ 6= σ.

MDVS has privacy of identities if, for all PPT adversaries A,

AdvpriMDVS,A(λ) = Pr
[
A wins GamepriMDVS,A(λ)

]
− 1

2
≤ ν(λ).

We say that MDVS has additional properties as follows:

• privacy of the signer’s identity (PSI) if we make the restriction that D0 = D1;

• privacy of the designated verifiers’ identities (PVI) if we make the restriction

that i0 = i1.

Def 11 states that an adversary cannot distinguish between signatures from two

different signers (PSI) if he does not know the secret key of any of the signers or

designated verifiers (as designated verifiers are allowed to identify the signer). Fur-

thermore, it should not help him to see other signatures that he knows are from the

signers in question.

In addition, if we vary the verifier sets (D0 6= D1), then the MDVS scheme has

privacy of designated verifier’s identities (PVI), which means that any outsider with-

out knowledge of any secret keys cannot distinguish between signatures meant for

different verifiers.

Definition 12 (Verifier-Identity-Based Signing). We say that an MDVS scheme has

verifier-identity-based signing if for honestly generated verifier keys (vskj, vpkj) for

verifier with identity j, we have vpkj = j.

110

Note that, in order to achieve verifier-identity-based signing, verifier key genera-

tion must require a master secret key msk. Otherwise, any outsider would be able

to generate a verification key for verifier j, and use it to verify signatures meant only

for that verifier.

Relation to Previous Definitions Our definition of MDVS is consistent with

previous work in this area, but with some differences. Our MDVS syntax closely

follows the one introduced by (Laguillaumie and Vergnaud, 2004), but we allow for

a master secret key in the case where the keys are generated by a trusted party

(like in our construction based on functional encryption). Our security definitions

are adapted from those in (Laguillaumie and Vergnaud, 2004; Zhang et al., 2012)

to capture the flexibility introduced by allowing any subset of designated verifiers

to simulate a signature, thus providing better deniability properties. Finally, we

formalize consistency as an additional and desirable requirement.

5.3 Standard Primitive-Based MDVS Constructions

In this section we show how to create an MDVS scheme that uses only standard prim-

itives, such as key exchange, commitments, pseudorandom functions and generators,

and non-interactive zero knowledge proofs.

On a high level, one way to build an MDVS is for the signer to use a separate DVS

with each verifier; the MDVS signature would then consist of a vector of individual

DVS signatures. This gives us almost everything we need — the remaining issue is

consistency. Each verifier can verify one of the DVS signatures, but is not convinced

that all of the other verifiers will come to the same conclusion.

A solution to this consistency issue is to include as part of the MDVS signature a

zero knowledge proof that all of the DVS signatures verify. However, this introduces

a new issue with off-the-record. Now, a colluding set of verifiers will not be able to

111

simulate a signature unless all of the verifiers collude. In order to produce such a

convincing zero knowledge proof as part of the signature, they would need to forge

signatures for the other verifiers in the underlying DVS scheme, which they should

not be able to do.

So, instead of using a zero knowledge proof of knowledge that all of the DVS

signatures verify, we use a proof that either all of the DVS signatures verify, or they

are all simulated. Then, a corrupt set of verifiers can simulate all of the underlying

DVS signatures — with the caveat that the signatures they simulate for themselves

should be convincing simulations even in the presence of their secret keys — and,

instead of proving that all of the signatures verify, they prove that all of the signatures

are simulations.

In order to support such proofs, in Section 5.3.1 we introduce a new primitive

called a Provably Simulatable DVS (PSDVS). Then, in Section 5.3.2 we show how to

compose PSDVS instances into an MDVS. In Section 5.3.3 we build a PSDVS out of

generic standard primitives. In Section 5.3.4 we build a more efficient PSDVS out of

concrete instantiations of those primitives.

5.3.1 New Primitive: Provably Simulatable Designated-Verifier Signa-

tures (PSDVS)

Designated Verifier Signatures (DVS) have a simulation algorithm Sim which is used

to satisfy the off-the-record property (the single-verifier equivalent of Def 10). Given

the signer’s public key, the verifier’s secret key and a message m, SIM should return

a signature which is indistinguishable from a real signature. A Provably Simulat-

able DVS (PSDVS), in addition to correctness and existential unforgeability, must

have two notions of transcript simulation: public simulation and verifier simulation.

Furthermore, for each of these, it should be possible to produce a zero knowledge

proof that the signature produced is a simulation. Additionally, it should be possible

112

to similarly prove that a real signature is, in fact, real. This makes a PSDVS well

suited for use in an MDVS which uses a zero knowledge proof of knowledge to enforce

consistency.8

More formally, a PSDVS consists of the standard DVS algorithms Setup,

SignKeyGen,VerKeyGen, Sign,Verify, as well as five additional algorithms: RealSigVal

to validate real signatures, and PubSigSim, PubSigVal, VerSigSim and VerSigVal to

simulate signatures and to validate such simulations.

Definition 13. A PSDVS must satisfy the standard notions of correctness and ex-

istential unforgeability. Additionally, it should satisfy PubSigSim indstinguishability

(Def 14), PubSigSim correctness (Def 15), PubSigSim soundness (Def 16), VerSigSim

indstinguishability (Def 17), VerSigSim correctness (Def 18), VerSigSim soundness

(Def 19), provable signing correctness (Def 20), and provable signing soundness

(Def 21).

Provable Public Simulation

As in PSI (Def 11), anyone should be able to produce a signature that is indistin-

guishable from a real signature. Additionally, the party simulating the signature

should be able to produce a proof that this is not a real signature. This proof will

be incorporated into the MDVS proof of consistency; the colluding verifiers, when

producing a simulation, need to prove that all underlying PSDVS signatures are real,

or that they are all fake.

In other words, we require two additional algorithms, as follows:

1. PubSigSim(pp, spk, vpk,m)→ (σ, π)

2. PubSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

The colluding verifiers will produce a public simulation in the underlying PSDVS

for verifiers outside their coalition, and use PubSigSim to prove that this simulation is

8While these additional properties allow the composition of PSDVS into an MDVS, they are not
useful when PSDVS is used on its own.

113

not a real signature. π will not be explicitly included in the proof of “the underlying

PSDVS signatures are all real or all fake,” of course, as it would give away the fact

that all underlying signatures are fake, as opposed to all being real; rather, it will be

wrapped in a larger zero knowledge proof.

Definition 14 (PubSigSim Indistinguishability). We say that the PSDVS has Pub-

SigSim Indistinguishability if PubSigSim produces a signature σ that is indistinguish-

able from real. More formally, an adversary should not be able to win the following

game with probability non-negligibly more than half:

GamePubSigSim-Ind
PVDVS,A (λ)

1. pp← Setup(1λ)

2. (spk, ssk)← SignKeyGen(pp)

3. (vpk, vsk)← VerKeyGen(pp)

4. m∗ ← AOS ,OV (spk, vpk)

5. b← {0, 1}
6. σ0 ← Sign(pp, ssk, vpk,m∗)

7. (σ1, π)← PubSigSim(pp, spk, vpk,m∗)

8. b′ ← AOS ,OV (pp, spk, vpk,m∗, σb)

We say that A wins the PubSigSim-Ind game if b = b′ and for all queries (m,σ)

to OV , it holds that (m,σ) 6= (m∗, σb).

Definition 15 (PubSigSim Correctness). We say that the PSDVS has PubSigSim

Correctness if for all pp ← Setup(1λ); (spk, ssk) ← SignKeyGen(pp); (vpk, vsk) ←
VerKeyGen(pp); m ∈ {0, 1}∗; (σ, π)← PubSigSim(pp, spk, vpk,m);

Pr[PubSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 16 (PubSigSim Soundness). We say that the PSDVS has PubSigSim

Soundness if it is hard to construct a signature σ which is accepted by the verifier

algorithm and at the same time can be proven to be a simulated signature. More

formally, an adversary should not be able to win the following game with non-negligible

probability:

GamePubSigSim-Sound
PVDVS,A (λ)

1. pp← Setup(1λ)

2. (spk, ssk)← SignKeyGen(pp)

3. (vpk, vsk)← VerKeyGen(pp)

4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

We say that A wins the PubSigSim-Sound game if Verify(pp, vsk,m∗, σ∗) = 1 and

PubSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1.

114

Provable Verifier Simulation

As in off-the-record (Def 10), a verifier should be able to produce a signature that

is indistinguishable from a real signature, even given its secret key. Additionally,

the verifier should be able to produce a proof that the signature is not a real signa-

ture (that is, that the verifier, and not the signer, produced it). This proof will be

incorporated into the MDVS proof of consistency.

In other words, we require two additional algorithms, as follows:

1. VerSigSim(pp, spk, vpk, vsk,m)→ (σ, π)

2. VerSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

The colluding verifiers will produce a verifier simulation in the underlying PSDVS

for verifiers inside their coalition, and use VerSigSim to prove that this simulation is

not a real signature.

Definition 17 (VerSigSim Indistinguishability). We say that the PSDVS has Ver-

SigSim Indistinguishability if VerSigSim produces a signature σ that is indistinguish-

able from real. More formally, an adversary should not be able to win the following

game with probability non-negligibly more than half:

GameV erSigSim-Ind
PVDVS,A (λ)

1. pp← Setup(1λ)

2. (spk, ssk)← SignKeyGen(pp)

3. (vpk, vsk)← VerKeyGen(pp)

4. m∗ ← AOS (pp, spk, vpk, vsk)

5. b←$ {0, 1}
6. σ0 ← Sign(pp, ssk, vpk,m∗)

7. (σ1, π)← VerSigSim(pp, spk, vsk,m∗)

8. b′ ← AOS (pp, spk, vpk, vsk,m∗, σb)

We say that A wins the VerSigSim-Ind game if b = b′.

Definition 18 (VerSigSim Correctness). We say that the PSDVS has VerSigSim

Correctness if for all pp ← Setup(1λ), (spk, ssk) ← SignKeyGen(pp), (vpk, vsk) ←
VerKeyGen(pp), m ∈ {0, 1}∗, (σ, π)← VerSigSim(pp, spk, vpk, vsk,m),

Pr[VerSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

115

Definition 19 (VerSigSim Soundness). We say that the PSDVS has VerSigSim

Soundness if the signer is not able to produce σ and π that pass the validation check

VerSigVal, i.e. π is a proof that σ was not produced by the signer. More formally, an

adversary should not be able to win the following game with non-negligible probabil-

ity:

GameV erSigSim-Sound
PVDVS,A (λ)

1. pp← Setup(1λ)

2. (spk, ssk)← SignKeyGen(pp)

3. (vpk, vsk)← VerKeyGen(pp)

4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

A wins the VerSigSim-Sound game if VerSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1.

Provable Signing

Lastly, we require a provable variant of signing, so that the signer is able to produce

a proof that a signature is real. In other words, we require the signing algorithm

Sign(pp, spk, ssk, vpk,m)→ (σ, π) to output π as well. We also require one additional

validation algorithm, as follows:

RealSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

Definition 20 (Provable Signing Correctness). We say that the PSDVS has Provable

Signing Correctness if ∀pp ← Setup(1λ), (spk, ssk) ← SignKeyGen(pp),

(vpk, vsk)← VerKeyGen(pp), m ∈ {0, 1}∗, (σ, π)← Sign(pp, spk, ssk, vpk,m),

Pr[RealSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 21 (Provable Signing Soundness). We say that the PSDVS has Provable

Signing Soundness if the proof of correctness π produced by Sign does not verify unless

σ verifies. More formally, an adversary should not be able to win the following game

with non-negligible probability:

GameSign-Sound
PVDVS,A (λ)

1. pp← Setup(1λ)

2. (spk, ssk)← SignKeyGen(pp)

3. (vpk, vsk)← VerKeyGen(pp)

116

4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

We say that A wins the Sign-Sound game if RealSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1

and Verify(pp, spk, vsk,m∗, σ∗) = 0.

Note that none of these proofs π are parts of the signature. If included in the

signature, such proofs would allow an adversary to distinguish a simulation from a

real signature.

5.3.2 Standard Primitive-Based MDVS Construction

Given a PSDVS, as defined in Section 5.3.1, we can build an MDVS. The transforma-

tion is straightforward: the signer uses the PSDVS to sign a message for each verifier,

and proves consistency using a non-interactive zero knowledge proof of knowledge.

The proof of consistency will claim that either all of the PSDVS signatures verify, or

all of them are simulated. Const 1 describes this transformation.

Construction 1. Let PSDVS = (Setup, SignKeyGen,VerKeyGen, Sign,Verify,

RealSigVal,PubSigSim,PubSigVal,VerSigSim,VerSigVal) be a provably simulatable des-

ignated verifier signature scheme, and NIZK-PoK = (Setup,Prove,Verify) be a non-

interactive zero knowledge proof of knowledge system and Rcons a relation that we will

define later in the protocol.

Setup(1λ):

1. crs← NIZK-PoK.Setup(1λ,Rcons).

2. PSDVS.pp← PSDVS.Setup(1λ).

Output (crs,PSDVS.pp) as the public parameters pp.

SignKeyGen(pp): (spki, sski)← PSDVS.SignKeyGen(PSDVS.pp).

Output (spki, sski) as signer i’s public/secret key pair.

VerKeyGen(pp): (vpkj, vskj)← PSDVS.VerKeyGen(PSDVS.pp).

Output (vpkj, vskj) as verifier j’s public/secret key pair.

Sign(pp, sski, {vpkj}j∈D,m):

117

1. For every verifier j ∈ D, compute a signature and proof of signature valid-

ity as (σj, πj)← PSDVS.Sign(PSDVS.pp, sski, vpkj,m).

2. Create a proof π of consistency, i.e a proof of knowledge of {πj}j∈D such

that either all signatures are real (as demonstrated by {πj}j∈D), or all

signatures are fake (as could be demonstrated by the proofs produced by

PSDVS.PubSigSim or PSDVS.VerSigSim).

More formally, for this NIZK-PoK we define a relation for a statement

u = (PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D) and the witness w = {πj}j∈D:

Rcons =
{
u = (PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D), w = {πj}j∈D :(∧

j∈D

PSDVS.RealSigVal(PSDVS.pp, spki, vpkj,m, σj, πj) = 1
) ∨

(∧
j∈D

(
PSDVS.VerSigVal(PSDVS.pp, spki, vpkj,m, σj, πj) = 1 ∨

PSDVS.PubSigVal(PSDVS.pp, spki, vpkj,m, σj, πj) = 1
))}

(5.1)

Let π ← NIZK-PoK.Prove(crs, u = (PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D),

w = {πj}j∈D).

3. σ = ({σj}j∈D, π).

Output σ as the signature.

Verify(pp, spki, vskj,m, σ = ({σj}j∈D, π)):

1. Let dπ ← NIZK-PoK.Verify(crs, u = (PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D),

π).

2. Let d← PSDVS.Verify(PSDVS.pp, spki, vskj,m, σj) ∧ dπ.

Output d as the verification decision.

Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C,m):

1. For j ∈ D ∩ C: (σj, πj)← VerSigSim(PSDVS.pp, spki, vpkj, vskj,m).

2. For j ∈ D\C: (σj, πj)← PubSigSim(PSDVS.pp, spki, vpkj,m).

118

3. Use these signatures and proofs to produce the NIZK π for relation Rcons.

4. σ = ({σj}j∈D, π).

Output σ as the signature.

Theorem 8. Assume PSDVS is a secure provably simulatable designated verifier sig-

nature scheme and NIZK-PoK is a secure non-interactive zero knowledge proof of

knowledge system. Then Const 1 is a correct and secure MDVS scheme (without

privacy of identities (Def 11)).

Proof. Correctness is apparent by inspection. We show consistency, unforgeability

and off-the-record separately.

Claim 1. Const 1 is consistent, as per Def 8.

Assume that Const 1 is inconsistent; then there exists an adversary A that can

produce a message m∗ and signature σ∗ = ({σ∗j}j∈D∗ , π∗) such that σ∗ verifies for

some, but not all, of the intended recipients D∗. We can then use A to create another

adversary B that can break either the security of the underlying PSDVS, or the

security of the NIZK-PoK.

B receives pp, ssk, spk, vpk regardless of whether it’s playing the PubSigSim-

Sound,

VerSigSim-Sound or Sign-Sound games.

It randomly chooses identities to assign the given signer and verifier keys to; it

generates the other signer and verifier keys honestly. It answers signing oracle queries

honestly, since in all these cases it has the signer secret key. It answers key generation

keys honestly as well, unless asked for ssk or the secret key corresponding to vpk;

then, it aborts. However, since at least one signer and one verifier secret key must

remain unqueried by A, the probability of an abort is not overwhelming. Eventually,

it gets D∗ and (m∗, σ∗ = ({σ∗j}j∈D, π∗)) from A; by assumption, with non-negligible

probability, σ∗ is inconsistent.

Assume without loss of generality that j0, j1 ∈ D∗, Verify(pp, vskj0 ,m
∗, σ∗) =

0, and Verify(pp, vskj1 ,m
∗, σ∗) = 1. Assume, also without loss of generality, that

NIZK-PoK.Verify is deterministic; then, the decision dπ regarding the validity of the

zero knowledge proof of knowledge π∗ must be the same for verifiers Vj0 and Vj1 , and so

it must be that dπ = 1. It follows that in order for Verify(pp, vskj0 ,m
∗, σ∗) = 0 we need

PSDVS.Verify(PSDVS.pp, vskj0 ,m
∗, σ∗j0) = 0, and in order for Verify(pp, vskj1 ,m

∗, σ∗)

119

= 1 we need PSDVS.Verify(PSDVS.pp, vskj1 ,m
∗, σ∗j1) = 1. Then, if dπ = 1, either π∗

violates the soundness of NIZK-PoK, or one of the following must be true:

1. PSDVS.RealSigVal(PSDVS.pp, spk, vpkj0 ,m
∗, σ∗j0 , πj0) = 1. If this is the case,

then B returns (m∗, σ∗j0 , πj0) (the last of which is extractable from the knowledge

soundness property of π∗) as a break of Provable Signing Soundness of the

PSDVS, since we know that PSDVS.Verify(PSDVS.pp, vskj0 ,m
∗, σ∗j0) = 0.

2. PSDVS.VerSigVal(PSDVS.pp, spk, vpkj1 ,m
∗, σ∗j1 , πj1) = 1. If this is the case,

then B returns (m∗, σ∗j1 , πj1) (the last of which is extractable from the knowl-

edge soundness property of π∗) as a break of VerSigSim Soundness, since the

adversary was not given the secret key corresponding to vpk.

3. PSDVS.PubSigVal(PSDVS.pp, spk, vpkj1 ,m
∗, σ∗j1 , πj1) = 1. If this is the case,

then B returns (m∗, σ∗j1 , πj1) (the last of which is extractable from the knowledge

soundness property of π∗) as a break of PubSigSim Soundness, since we know

that

PSDVS.Verify(PSDVS.pp, vskj1 ,m
∗, σ∗j1) = 1.

Claim 2. Const 1 is existentially unforgeable, as per Def 9.

This holds since any forgery of Const 1 either includes a forgery of the underlying

PSDVS, or includes a fresh proof of knowledge on a statement for which the adversary

does not have a witness, which is impossible by the knowledge soundness property of

our NIZK proof of knowledge.

Claim 3. Const 1 is off-the-record, as per Def 10.

The simulation algorithm Sim, described above, is defined to use public and verifier

simulation to produce the individual PSDVS signatures, and to prove that all PSDVS

signatures are simulations instead of proving that they all verify.

Below we describe a sequence of games; in Game 0, it is impossible for the adver-

sary to distinguish b = 0 from b = 1, since its view in the two cases are identically

distributed. In each subsequent game, the advantage of the adversary is at most

negligibly greater than in the previous one; in the final game, the adversary will find

itself playing exactly the game described in Def 10.

Game 0: This gives A a real signature no matter what the value of b is.

A can have no advantage in this game.

Game 1: This game is the same as the previous game, except that if b = 1, the

NIZK-PoK is simulated (and thus does not require the witnesses {πj}j∈D∗).

120

If A distinguishes b = 0 from b = 1 with non-negligibly greater advantage than

in the previous game, B can use A to break the zero-knowledge property of the

NIZK-PoK.

Game 2.j for j ∈ D∗ ∩ C∗: This game is the same as the previous game, except that

if b = 1, Vj’s portion of the signature is replaced with a verifier simulation; that

is, (σj, πj)← VerSigSim(pp, spki∗ , vpkj, vskj,m
∗).

If A distinguishes b = 0 from b = 1 with non-negligibly greater advantage than

in the previous game, B can use A to break the VerSigSim indistinguishability

property.

Note that the statement the NIZK-PoK is proving no longer holds; however,

the NIZK-PoK simulator must still produce a simulated NIZK-PoK that is in-

distinguishable from a real one, since otherwise the NIZK-PoK simulator would

be useable to distinguish a signature produced by VerSigSim from a signature

produced by Sign.

Game 3.j for j ∈ D∗\C∗: This game is the same as the previous game, except that

if b = 1, Vj’s portion of the signature is replaced with a public simulation; that

is, (σj, πj)← PubSigSim(pp, spki∗ , vpkj,m
∗).

If A distinguishes b = 0 from b = 1 with non-negligibly greater advantage than

in the previous game, B can use A to break the PubSigSim indistinguishability

property.

Game 4: This game is the same as the previous game, except that if b = 1, we

replace the simulated π with a real proof; since all the individual signatures

are now simulated, such a valid proof can be computed again. Note that now,

if b = 1, we are executing exactly the simulation procedure SIM described

above, and thus this is exactly the game described in Def 10.

If A distinguishes b = 0 from b = 1 with non-negligibly greater advantage than

in the previous game, B can use A to break the zero-knowledge property of the

NIZK-PoK.

5.3.3 Standard Primitive-Based PSDVS Construction

We can build a PSDVS from a special message authentication code (MAC) which

looks uniformly random without knowledge of the secret MAC key — such a MAC

can be built from any pseudorandom function. A signature on a message m will

121

be a MAC on (m, t), where t is some random tag. Proving that the signature is

real simply involves proving knowledge of a MAC key that is consistent with the

MAC and some global public commitment to the MAC key. A public proof that the

signature is simulated and does not verify would involve proving that the MAC was

pseudorandomly generated. A verifier’s proof that the signature is simulated would

involve proving that the tag was generated in a way that only the verifier could use

(e.g. from a PRF to which only the verifier knows the key).

Of course, this is not ideal, since MACs require knowledge of a shared key; in

order to use MACs, we would need to set up shared keys between every possible pair

of signer and verifier. However, we can get around this using non-interactive key

exchange (NIKE). Each signer and verifier publishes a public key, and any pair of

them can agree on a shared secret key by simply using their own secret key and the

other’s public key.

Const 2 describes this construction in more detail.

Construction 2. Let:

• COMM = (Setup,Commit,Open) be a commitment scheme,

• PRF = (KeyGen,Compute) be a length-preserving pseudorandom function,

• PRG be a length-doubling pseudorandom generator,

• NIZK = (Setup,Prove,Verify) be a non-interactive zero knowledge proof system,

and

• NIKE = (KeyGen,KeyExtract,KeyMatch) be a non-interactive key exchange pro-

tocol. KeyMatch is an additional algorithm that checks if a public key and a

secret key match. KeyMatch is not typically defined as a part of a NIKE scheme;

however, such an algorithm always exists.

We consider the public parameters for the underlying primitives COMM,PRF,PRG,

NIKE together with the three common reference strings (crs1, crs2, crs3) corresponding

to the relations R1, R̃2, R̃3
9 necessary to compute NIZK proofs as part of the pub-

lic parameters of the PSDVS. Note that relations denoted R̃ refer to statements of

fake-ness, whereas relations denoted R refer to statements of real-ness.

9The three relations will be defined later in the protocol description.

122

Setup(1λ):

1. crsi ← NIZK.Setup(1λ,Ri), i = 1, 2, 3.

2. ck ← COMM.Setup(1λ).

Output ({crs1, crs2, crs3}, ck) as the public parameters pp.

SignKeyGen(pp):

1. (NIKE.pkS,NIKE.skS)← NIKE.KeyGen(1λ).

2. ssk = NIKE.skS.

3. spk = NIKE.pkS.

Output ssk as the signer’s secret key and spk as the signer’s public key.

VerKeyGen(pp):

1. (NIKE.pkV,NIKE.skV)← NIKE.KeyGen(1λ).

2. kV ← PRF.KeyGen(1λ). (Informally, this key will be used by the verifier to

simulate signatures using VerSigSim.)

3. Choose randomness (i.e. decommitment value) rV at random.

4. cV = COMM.Commit(ck, kV; rV). (Informally, this commitment will be

used by the verifier to support its proofs of fake-ness.)

5. vsk = (NIKE.skV, kV, rV).

6. vpk = (NIKE.pkV, cV).

Output vsk as the verifier’s secret key and vpk as the verifier’s public key.

Sign(pp, ssk = NIKE.skS, vpk = (NIKE.pkV, cV),m):

The signer computes a shared key with the designated verifier and proceeds to

sign the message m:

1. kshared = NIKE.KeyExtract(NIKE.skS,NIKE.pkV). (Informally, this key will

be used as a MAC key.)

2. Choose t at random.

3. σ = (σ1, σ2)← (t,PRFkshared((m, t))).

123

4. π ← NIZK.Prove(crs1, u, w) where u = ((σ1, σ2),NIKE.pkS,NIKE.pkV,m)

and w = (NIKE.skS, kshared))

We define the relation R1 indexed by NIKE public parameters and PRF for

a statement u and witness w:

R1 = {(u = (σ1, σ2,NIKE.pkS,NIKE.pkV,m), w = (NIKE.skS, kshared)) :

KeyMatch(NIKE.pkS,NIKE.skS) = 1

∧ kshared = NIKE.KeyExtract(NIKE.skS,NIKE.pkV)

∧ σ2 = PRFkshared((m,σ1))}

Output σ as the signature, and π as the proof of real-ness.

Verify(pp, spk = NIKE.pkS, vsk = (NIKE.skV, kV, rV),m, σ = (σ1, σ2)):

1. kshared = NIKE.KeyExtract(NIKE.skV,NIKE.pkS). (Informally, this key will

be used as a MAC key.)

2. If PRFkshared((m,σ1)) = σ2, set d = 1. Otherwise, set d = 0.

Output d as the verification decision.

RealSigVal(pp, spk, vpk,m, σ, π):

Output d← NIZK.Verify(crs1, σ, π) as the validation decision.

PubSigSim(pp,m):

1. Choose a PRG seed s.

2. Choose σ1 and σ2 pseudorandomly by running PRG on s.

3. σ ← (σ1, σ2).

4. Let π ← NIZK.Prove(crs2, u = σ,w = s).

We define the relation R̃2 indexed by the PRG for a statement u = (σ =

(σ1, σ2)) and the witnesses w = s:

R̃2 = {(u = σ;w = s) : u = PRG(w)} (5.2)

124

Output σ as the simulated signature, and π as the proof of fake-ness.

PubSigVal(pp, spk, vpk,m, σ = (σ1, σ2), π):

Output d← NIZK.Verify(crs2, σ, π) as the validation decision.

VerSigSim(pp, spk = NIKE.pkS, vpk = (NIKE.pkV, cV), vsk = (NIKE.skV, kV, rV),m):

The verifier can fake a signature using its PRF key kV.

1. kshared = NIKE.KeyExtract(NIKE.skV,NIKE.pkS).

2. Choose r at random.

3. t← PRFkV
(r).

4. σ ← (t,PRFkshared((m, t))).

5. Let π ← NIZK.Prove(crs3, u = (cV, σ1), w = (kV, rV, r)).

We define the relation R̃3 indexed by the NIKE public parameters and PRF

for statements u and witnesses w:

R̃3 = {(u = (cV, σ1), w = (kV, rV, r)) :

kV = COMM.Open(cV, rV) ∧ σ1 = PRFkV
(r)}

Output σ as the simulated signature and π as the proof of fake-ness.

VerSigVal(pp, spk, vpk,m, σ, π):

Output d← NIZK.Verify(crs3, (cV, σ1), π) as the validation decision.

Theorem 9. If the schemes COMM,PRF,PRG,NIZK,NIKE are secure, then Const 2

is a correct and secure PSDVS scheme as per Def 13.

Proof. Correctness. It is straightforward to verify that any honestly generated signa-

ture will pass the verification test.

Existential Unforgeability. We can reduce the unforgeability of the PVDVS to the

pseudorandomness of the underlying PRF. Suppose there exists a forger A having

non-negligible advantage in winning the existential unforgeability game 9 for a single

signer and a single verifier (see Def 9). We can use this forger to build a distinguisher

B that is able to break the pseudo-randomness property of the PRF. B runs A and

simulate the signing queries m of A by picking a random tag t and forwarding the

125

query (m, t) to its evaluation oracle that outputs either the evaluation PRF(m, t),

either a truly random value. In the first case, the forger A has the same view as in

the game 9. Given that A is able to forge a signature on a fresh message m∗ in the

first case, but not in the second, then this implies that the adversary B can distinguish

between the two, breaking the pseudo-randomness of the PRF.

PubSigSim Indistinguishability (Def 14). By the security property of the PRG

(indistinguishability from real randomness), the advantage of an adversary A in the

game GamePubSigSim-Sound
PVDVS,A (λ) is bounded by the advantage of an adversary B in dis-

tinguishing between PRG and a truly random generator. Note that we can apply the

property only for the first half of the signature, adversary A should not be able to

distinguish between a random t and σ1 generated as (σ1, σ2)← PRG(s).

PubSigSim Correctness (Def 15). By the completeness of the NIZK scheme, any

proof π generated honestly by running the PubSigSim, i.e π ← NIZK.Prove(crs2,

u = σ,w) will be validated by PubSigVal(pp, spk, vpk,m, σ, π) that runs NIZK.Verify

(crs2, u = σ, π) algorithm.

PubSigSim Soundness (Def 16). Suppose there is an adversary A that wins the

game of PubSigSim-Sound game with non negligible probability. Then, from an

output (m∗, σ∗, π∗) of A(ssk, spk, vpk) we have from the soundness of the NIZK, since

PubSigVal outputs 1, that there is a value s such that σ∗ = (σ∗1, σ
∗
2) ← PRG(s) and

also σ∗ = (σ∗1,PRF(m∗, σ∗1)) from the verification check of the signature Verify(pp, spk,

vsk,m∗, σ∗) = 1. This implies there exists a collision PRG(s) = (σ∗1,PRF(m∗, σ∗1))

breaking the pseudorandomness of the underlying primitives PRG and PRF. In the

first case, given a signature σ∗ = (σ∗1,PRF(m∗, σ∗1)) that verifies, A should not be

able to find a preimage s∗ for σ∗ with respect to the PRG with advantage significantly

better than for a truly random function, without breaking the pseudorandomness

of the PRG. Otherwise, from computing an output of the pseudorandom generator

PRG(s) = (σ∗1, σ
∗
2), A should not be able to find a (fixed prefix) preimage (t,m∗) of

PRF such that t = σ∗1. This is indeed infeasable without breaking the pseudorandom

property of the PRF.

VerSigSim Indistinguishability (Def 17). This follows from the pseudorandomness

of our PRF. Remark that both a real signature and a verifier-simulated signature

pass the verification test, the only difference is in how the tag t is generated, truly

random, or as t← PRFkV
(r).

VerSigSim Correctness (Def 18). As in the case of PubSigSim correctness, this

holds by considering the completeness of the NIZK scheme, since an honnest proof

126

generated by VerSigSim, will be validated by VerSigVal that simply runs NIZK.Verify

algorithm.

VerSigSim Soundness (Def 19.) This follows from the properties of the underlying

COMM and NIZK schemes. Consider an adversary A that is able to win the game of

VerSigSim-Sound, meaning that it produces a couple (σ, π) validated by VerSigVal.

Then, if the NIZK scheme is assumed to be sound, the following should hold: A is

able to compute an opening kV of cV, breaking the hidding of the commitment scheme

COMM or A is able to find a preimage r for PRFkV
, i.e σ1 = PRFkV

(r) which breaks

the pseudorandomness of the PRF.

Provable Signing Correctness (Def 20). As in the case of PubSigSim and Ver-

SigSim, this follows by definition of RealSigVal and the completeness of the NIZK.

Provable Signing Soundness (Def 21). This holds if we assume soundness of the

NIZK proof togheter with NIKE security properties and pseudorandomness of the PRF.

Assuming that the NIZK is sound, then an adversary winning the game RealSigVal, is

able either to break the soundness of the NIKE scheme or to find a preimage of the

PRF. Finding a preimage is infeasible, given the pseudorandomness property of the

PRF.

5.3.4 DDH and Paillier-Based PSDVS Construction

The goal of this section is to construct a PSDVS scheme based on DDH and the

security of Paillier encryption. The idea in the PSDVS construction is that the

authenticator for a message m will be H(m, t)k in a group G where t is a nonce, k is

a key known to both parties and H is a hash function modeled as a random oracle.

The construction requires that certain properties of the key can be proved in zero-

knowledge, and we can do this efficiently using standard Σ-protocols because the key

is in the exponent. However, naive use of this idea would mean that a sender needs

to store a key for every verifier he talks to, and the set-up must generate correlated

secret keys for the parties. To get around this, we will instead let the sender choose

k on the fly and send it to the verifier, encrypted using a new variant of Paillier

encryption. In the following subsection we describe and prove this new encryption

127

scheme, and then we specify the actual PSDVS construction. Paillier-style encryption

comes in handy since its algebraic properties are useful in making our zero knowledge

proofs efficient.

Paillier-based Authenticated and Verifiable Encryption

An authenticated and verifiable encryption scheme (AVPKE) involves a sender S and

a receiver V. Such a scheme comes with the following polynomial time algorithms:

Setup(1λ)→ pp: A probabilistic algorithm for setup which outputs public parameters.

KeyGenS(pp)→ (skS, pkS): A probabilistic sender key generation algorithm.

KeyGenV(pp)→ (skV, pkV): A probabilistic receiver key generation algorithm.

Encpp,skS,pkV
(k)→ CT : A probabilistic encryption algorithm for message k.

Decpp,skV,pkS
(CT)→ {k,⊥}: A decryption algorithm that outputs either reject or a

message.

We require, of course, that Decpp,skV,pkS
(Encpp,skS,pkV

(k)) = k for all messages k.

Intuitively, the idea is that given only the receiver public key pkV and his own

secret key skS, the sender S can encrypt a message k in such a way that on receiving

the ciphertext, V can check that k comes from S, no third party knows k and finally,

the encryption is verifiable in that it allows S to efficiently prove in zero-knowledge

that k satisfies certain properties.

To help understand our concrete construction of an AVPKE scheme, we recall

that standard Paillier encryption of a message k under the public key n is defined as

(n + 1)kvn mod n2 where v∈R Z∗n. In (Damg̊ard and Jurik, 2003), it was suggested

that first, v can be chosen as ±ĝs for a random s and a ĝ of large order modulo

n – or equivalently, a random number of Jacobi symbol 1 mod n. This is not a

security problem, as the Jacobi symbol of v can be efficiently computed from the

ciphertext anyway. Further, they suggested that v can be chosen similarly as in El-

Gamal encryption, if the sender sends along a random power of ĝ. They also showed

128

that the resulting encryption scheme is still CPA secure under the same assumption.

In this way all users can share the same modulus, which comes in very handy in our

setting.

We add an authentication mechanism to this encryption scheme and get the fol-

lowing AVPKE scheme.

Construction 3. Let:

• Ggen be a Group Generator, a probabilistic polynomial time algorithm which on

input 1λ outputs the description of a cyclic group G and a generator g, such

that the order of G is a random λ-bit RSA modulus n, which is the product of

so-called safe primes. (That is, n = pq where p = 2p′ + 1, q = 2q′ + 1 and p′, q′

are also primes.) Finally, we need the algorithm to output an element ĝ ∈ Z∗n
of order p′q′.

• NIZK = (Setup,Prove,Verify) be a simulation-sound non-interactive zero knowl-

edge proof system. In this section, we will use Σ-protocols made non-interactive

using the Fiat-Shamir heuristic, so in this case Setup is empty and there is no

common reference string.

Ggen can be constructed using standard techniques. For instance, first generate

n using standard techniques, then repeatedly choose a small random number r until

P = 2rn+1 is a prime. Let g′ be a generator of Z∗P . Then let G be the subgroup of Z∗P
generated by g = g′2r mod P .10 Finally, to construct the element ĝ, let u∈R Zn and

set ĝ = u2 mod n. Indeed, this is a random square, and since the subgroup of squares

modulo n has only large prime factors in its order (p′ and q′), a random element is a

generator with overwhelming probability11.

Setup(1λ): Run Ggen to generate a modulus n and ĝ ∈ Z∗n as explained above. Output

pp = (n, ĝ).

KeyGenS(pp): Pick skS∈R Zn, and set pkS = ĝskS. Output (skS, pkS).

KeyGenV(pp): Pick α1, α2∈R Zn, set skV = (α1, α2), and set pkV = (β1, β2) = (ĝα1 , ĝα2).

The public key values are statistically indistinguishable from random elements in the

group generated by ĝ since n is a sufficiently good “approximation” to the order p′q′

of ĝ.

10The group G will be more prominently used in the construction of the PSDVS scheme.
11This set-up need to keep the factorization of n secret. Hence, to avoid relying on a trusted party,

the parties can use an interactive protocol to generate n securely, there are several quite efficient
examples in the literature.

129

Encpp,skS,pkV
(k; r, b1, b2):

1. The randomness should have been picked as follows: r∈R Zn and b1, b2∈R {0,
1}.

2. Set CT1 = (−1)b1 ĝr mod n.

3. Set CT2 = (n+ 1)k((−1)b2βskS
1 βr2 mod n)n mod n2.

4. Let πvalid be a non-interactive zero-knowledge proof of knowledge wherein

given public data (n, ĝ, (CT1, CT2)), the prover shows knowledge of a wit-

ness w = (k, r, b1, v) such that CT1 = (−1)b1 ĝr and CT2 = (n+ 1)kvn mod

n2. An honest prover can use v = (−1)b2βskS
1 βr2 mod n. The factor (−1)b1

is only in the ciphertext for technical reasons: it allows πvalid to be efficient.

Output CT = (CT1, CT2, πvalid).

Decpp,skV=(α1,α2),pkS
(CT = (CT1, CT2, πvalid)):

1. Check that CT1, CT2 have Jacobi symbol 1 modulo n, and check πvalid.

Output reject if either check fails.

2. Let u = pkα1
S CTα2

1 mod n and check that (CT2u
−n)n mod n2 = ±1. Z∗n2

contains a unique subgroup of order n, generated by n+ 1. So here we are

verifying that – up to a sign difference – CT2u
−n mod n2 is in the subgroup

generated by n+ 1. If the check fails, output reject.

3. Otherwise, compute k such that (n+ 1)k = ±CT2u
−n mod n2.12

An AVPKE scheme should allow anyone to make “fake” ciphertexts that look

indistinguishable from real encryptions, given only the system parameters. Further-

more, the receiver V should be able to use his own secret key skV and the public key

pkS of the sender to make ciphertexts with exactly the same distribution as real ones.

This is indeed true for our scheme:

Fake Encryption: Let r∈R Zn, b, b′∈R {0, 1} and v ∈ Z∗n be a random square. Then,

Encpp,fake(k; r, b, b′, v) = ((−1)bĝr mod n, (n+ 1)k((−1)b
′
v)n mod n2), πvalid

where πvalid is constructed following the NIZK prover algorithm.

12k can be computed using the standard “discrete log” algorithm from Paillier decryption.

130

V’s Equivalent Encryption:

Encpp,skV,pkS
(k; r, b1, b2) =

((−1)b1 ĝr mod n, (n+ 1)k(−1)b2(pkα1
S ĝrα2 mod n)n mod n2), πvalid

where r∈R Zn, b1, b2∈R {0, 1} and πvalid is constructed following the NIZK prover

algorithm.

In the following, we will sometimes suppress the randomness from the notation and

just write, e.g., Encpp,skS,pkV
(k).

By simple inspection of the scheme it can be seen that:

Lemma 1. For all k, Decpp,skV,pkS
(Encpp,skS,pkV

(k)) = k. Furthermore, encryption by

S and by V returns the same ciphertexts: for all messages k and randomness r, b1, b2,

we have Encpp,skS,pkV
(k; r, b1, b2) = Encpp,skV,pkS

(k; r, b1, b2).

Lemma 2. If DDH in 〈ĝ〉 is hard, then (k,Encpp,skS,pkV
(k; r, b1, b2)) is computationally

indistinguishable from (k,Encpp,fake(k; r′, b, b′, v)) for any fixed message k and random-

ness r, b1, b2, r
′, b, b′, v, as long as the discrete log of β2 to the base ĝ is unknown.

Proof. This follows immediately from that fact that (ĝr, βr2) is indistinguishable from

(ĝr
′
, v) by assumption.

Definition 22. Consider the following experiment for an AVPKE scheme and a prob-

abilistic polynomial time adversary A: Run the set-up and key generation and run

AOE ,OD(pp, pkV, pkS). Here, OE takes a message k as input and returns Encpp,skS,pkV
(k),

while OD takes a ciphertext and returns the result of decrypting it under pkS, skV

(which will be either reject or a message). A wins if it makes OD accept a ciphertext

that was not obtained from OE. The scheme is authentic if any PPT A wins with

negligible probability.

Lemma 3. If the DDH problem in 〈ĝ〉 is hard, the AVPKE scheme defined above is

authentic.

Proof. Assume for contradiction that we have adversary A who wins the authenticity

game with non-negligible probability. We now stepwise transform the game into an

algorithm that will solve the computational Diffie-Hellman problem in 〈ĝ〉, which will

131

certainly contradict the assumption. Let Game 0 be the original authenticity game.

In Game 1, we replace OE by Ofake
E which on input k from A returns Encpp,fake(k).

At the same time, we replace OD by an alternative version OaltD that does not use

the α2 part of skV, namely instead of computing u = pkα1
S cα2

1 it extracts r from the

proof in the ciphertext and computes instead u = pkα1
S βr2 which is the same value

(up to a sign) and hence leads to an equivalent decryption. In addition, if it gets an

encryption Encpp,fake(k) produced by the fake encryption oracle, it always returns k.

Since now the discrete log of β2 base ĝ is not used, we can use our assumption and

Lemma 2 to conclude that A’s winning probability in the new game is essentially the

same. In Game 2, we guess the index j of the first call to OD where A gets an accept

for a forged ciphertext, which we can do with an inverse polynomial probability, since

A is poly-time. If A does not win the game at the j’th call, we declare that it loses.

Clearly A still wins Game 2 with non-negligible probability. In Game 3, we replace

OaltD by OsimD which, up to (but not including) call j, responds to a ciphertext that

was output by Ofake
E with the message that was encrypted and rejects anything else.

Observe that in the event where A wins Game 2, OsimD simulates OaltD perfectly, so A
wins Game 3 with the same probability as Game 2.

Now, observe that we can execute Game 3 up to step j and get A’s ciphertext

for the j’th call without access to the secret keys of S and V. We can therefore take

group elements ĝ, pkS = ĝskS , β1 = ĝα1 as input to the CDH problem (where the

goal is to find ĝskSα1), and execute Game 3 with A on this input. Assume A wins,

and let c∗ be the ciphertext submitted in the j’th call to OsimD . Recall that c∗ is

of form (c1, c2, πvalid). By simulation soundness of the NIZK used, we can extract

the witness claimed in the proof, and so we get r and k, v such that c1 = ±ĝr and

c2 = (n+ 1)kvn mod n2.

We can assume that V’s decryption algorithm would accept c∗, this implies that

v must have Jacobi symbol 1. Also, since the algorithm computes u = pkα1
S cα2

1 mod

n and checks that (c2u
−n)n mod n2 = ±1, we can assume this check is satisfied.

Inserting the expression we have for c2 we get

±1 = (c2u
−n)n mod n2 = ((n+ 1)kvnu−n)n mod n2 = ((vu−1 mod n)n)n mod n2

Here, we have used the fact that Z∗n2 is the direct product of a group G of order n and

a group H of order φ(n) isomorphic to Z∗n under the isomorphism x 7→ xn mod n2.

Since (vu−1 mod n)n mod n2 ∈ H and raising to power n is a 1-1 mapping on H, it

132

follows that vu−1 mod n = ±1. Inserting the expression for u, we get

±v = u = pkα1
S cα2

1 = pkα1
S ĝrα2 = ĝskSα1βr2

In conclusion, we can flip a coin and submit plus or minus vβ−r2 mod n as a solution

to the CDH problem and this will be correct with half the probability with which A
wins Game 3.

We proceed to show that the AVPKE scheme hides the message encrypted even if

adversary knows the secret key of the sender, and even if a decryption oracle is given.

This is essentially standard CCA security.

Definition 23. Consider the following experiment for an AVPKE scheme and a

probabilistic polynomial time adversary A: Run the set-up and key generation and

run AOE(pp, pkV, skS). Here, OE takes two messages k0, k1 as input, selects a bit η at

random and returns CT ∗ = Encpp,skS,pkV
(kη). OD takes a ciphertext and returns the

result of decrypting it under pkS, skV (which will be either reject or a message). A
may submit anything other than CT ∗ to OD, and must output a bit η′ at the end. It

wins if η′ = η. The scheme is private if any PPT A wins with negligible advantage

over 1
2
.

In the following we will use the assumption underlying the Paillier encryption

scheme, sometimes known as the composite degree residuosity assumption (CDRA):

a random element x in Z∗n2 where x mod n has Jacobi symbol 1 is computationally

indistinguishable from yn mod n2 where y ∈ Z∗n is random of Jacobi symbol 113.)

Lemma 4. Assume that DDH in 〈ĝ〉 is hard and that CDRA holds. Then the AVPKE

scheme satisfies Definition 23.

Proof. Assume for contradiction that adversary A wins the game with probability

non-negligibly larger than 1/2. Let Game 0 be the original game. We change the

game stepwise to get new games that can be used to either solve DDH or break

CDRA. In Game 1, we replace OD by an alternative version OaltD that does not use

the α2 part of skV, namely instead of computing u = pkα1
S cα2

1 it extracts r from

13The original CDRA assumption does not have the restriction to Jacobi symbol 1, but since the
Jacobi symbol is easy to compute without the factors of n, the two versions are equivalent.

133

the proof in the ciphertext and computes instead u = pkα1
S βr2 which is the same

value (up to a sign) and hence leads to an equivalent decryption. A wins Game

1 with exactly the same probability. In Game 2, we replace OE by OsimE , defined

as follows: take a, b ∈ 〈ĝ〉 as input, where a = ĝr, b = βr2 . let η∈R {0, 1}, r∈R Zn
and return (±a, (n + 1)kη(±βskS

1 b)n mod n2, πvalid), where πvalid is a simulated proof.

Except for the simulation, this is exactly Game 1, so A wins with essentially the

same probability – note that by simulation soundness, the witness extraction used

by OaltD still works. In Game 3, we make a, b be random group elements in 〈ĝ〉.
Now, A’s winning probability remains essentially the same since otherwise, we could

use the difference between Game 2 and 3 to solve DDH. Now note that in Game 3

(±βskS
1 b)n mod n2 is in fact a uniformly random element of form yn mod n2, where

the Jacobi symbol of y mod n is 1. In Game 4, we replace this by x chosen uniformly

in Z∗n2 subject to x mod n having Jacobi symbol 1. In Game 4, c∗ has no information

on η, so here A wins with probability 1/2. This means that we can use the difference

between Game 3 and 4 to break CDRA, and we have a contradiction.

We say that an AVPKE scheme is secure if it is authentic, private, supports

equivalent encryption by V and indistinguishable fake encryption.

The PSDVS Scheme

We now return to the promised PSDVS scheme.

Construction 4. Let:

• Ggen be a Group Generator, a probabilistic polynomial time algorithm which on

input 1λ outputs G, g, n, ĝ exactly as in the previous AVPKE construction.

• H be a hash function which we model as a random oracle. We assume it maps

onto the group G.

• NIZK = (Setup,Prove,Verify) be a simulation-sound non-interactive zero knowl-

edge proof system. In this section, we will use Σ-protocols made non-interactive

using the Fiat-Shamir heuristic, so in this case Setup is empty and there is no

common reference string.

Setup(1λ): Let (G, g, ĝ, n)← Ggen(1λ) and let h∈R G. Set pp = (G, g, ĝ, n, h). Return

pp as the public parameters.

134

SignKeyGen(pp): Run key generation for the AVPKE scheme as defined above to get

keys ssk = skS, spk = pkS for the signer S. Output ssk as the signer’s secret

key and spk as the signer’s public key.

VerKeyGen(pp):

1. Run key generation for the AVPKE scheme as defined above to get keys

skV, pkV for the verifier V. (These keys will be used to sign messages and

verify signatures.)

2. Choose kV∈R Zn. (This key will be used by the verifier to simulate signa-

tures using VerSigSim.)

3. Choose rV∈R Zn and let cV = gkVhrV . (This commitment will be used by

the verifier to support its proofs of fake-ness.)

4. vsk = (skV, kV, rV), vpk = (pkV, cV).

Output vsk as the verifier’s secret key and vpk as the verifier’s public key.

Sign(pp, ssk = skS, pkV,m):

1. Choose t∈R G, r∈R Zn, b1, b2∈R {0, 1}, s∈R Z∗n, ks∈R Zn.

2. Let σ ← (t,H(m, t)ks ,Encpp,skS,pkV
(ks; r, b1, b2)).

3. π ← NIZK.Prove(u = (σ = (σ1, σ2, σ3), pkV , pkS,m), w = (skS, ks, r, b1, b2))

be a zero knowledge proof of knowledge of witness w such that:

σ2 = H(m,σ1)ks ∧ σ3 = Encpp,skS,pkV
(ks; r, b1, b2)

Output σ as the signature, and π as the proof of real-ness. Recall that the

ciphertext by construction already contains a proof implying that the ciphertext

contains a well defined plaintext. The role of the tag t in the signature is to let

the verifier give a proof for his way to simulate a signature. This will become

clear below.

Verify(pp, spk = pkS, vsk = (skV, kV, rV),m, σ = (σ1, σ2, σ3)):

135

1. Decrypt σ3 as ks = Decpp,skV,pkS
(σ3). If this fails, set d = 0 and abort.

2. If σ2 = H(m,σ1)ks , set d = 1. Otherwise, set d = 0.

Output d as the verification decision.

Informally, forging a signature is hard since the verifier rejects forged ciphertexts

and valid ones hide the ks value inside, by properties of the AVPKE scheme.

The only other option is to reuse an existing ks in a new signature, which is

hard if CDH is hard in G. Namely, you have to raise a random group element

(output by the random oracle) to the secret exponent ks.

PubSigSim(pp,m):

1. Choose k, k′∈R Zn, such that k 6= k′.

2. Choose t∈R G, r∈R Zn, b, b′∈R {0, 1}, v∈R Zn, such that v has Jacobi

symbol 1.

3. σ ← (t,H(m, t)k,Encpp,fake(k
′; r, b, b′, v)).

4. Let π ← NIZK.Prove(u = σ = (σ1, σ2, σ3), w = (k, k′)) be a zero-knowledge

proof of knowledge such that:

σ2 = H(m,σ1)k ∧ σ3 = Encpp,fake(k
′; ·, ·, ·, ·) ∧ k 6= k′.

Output σ as the simulated signature, and π as the proof of fake-ness. The

notation Encpp,fake(k
′; ·, ·, ·, ·) means that the proof only has to establish that

the plaintext inside the encryption is some value k′ different from k.

Informally, a simulated signature looks like a real one since fake encryptions are

indistinguishable from real ones and by privacy of the encryption scheme, one

cannot decide efficiently if k = k′ or not. Clearly, a fake signature as defined is

always rejected by the verifier.

VerSigSim(pp, spk = pkS, vpk = (pkV, cV), vsk = (skV, kV, rV),m):

1. Choose rt∈R Zn, t = gkVhrt , ks∈R Zn, b1, b2∈R {0, 1} and v∈R Z∗n of Jacobi

136

symbol 1.

2. σ ← (t,H(m, t)ks ,Encpp,skV,pkS
(ks; r, b1, b2)).

3. Let π ← NIZK.Prove(u = ((σ1, σ2, σ3), cV,m), w = (kV, rV, rt)) be a zero-

knowledge proof of knowledge of witness w = (kV, rV, rt) such that:

σ1 = gkVhrt ∧ cV = gkVhrV .

Output σ as the simulated signature and π as the proof of fake-ness.

Informally, the simulated signature has exactly the same distribution as a real

signature, and cannot be distinguished even given the verifier’s key: for every

t there exists a rt that the verifier could have used to generate it. Only the

verifier can prove fake-ness since no one else knows kV, and so giving a proof

would, with overwhelming probability, require opening cV to a value different

from kV, which is infeasible if discrete log is hard in G.

Theorem 10. If the AVPKE scheme is secure, and under the DDH assumption,

Const 4 is a secure PSDVS scheme.

Remark 8. To get a concrete instantiation of the PSDVS scheme, we need to instan-

tiate the AVPKE scheme (as explained above) and also the NIZKs assumed in Const 4

(as explained in Section 5.5). This way, we get an instantiation in the random oracle

model, secure under the strong RSA, the DDH and the CDRA assumptions.

Proof. In this proof we refer to the definitions in Section 5.3.1.

Unforgeability. Suppose adversary A wins the unforgeability game (in presence of

a signing and verification oracle), and let σ∗ = (σ∗1, σ
∗
2, σ

∗
3) be the forged signature,

and m∗ the message in question. If σ∗3 is a ciphertext that was not output by the

signing oracle, then A can be used to break authenticity of the AVPKE scheme, since

V only accepts a signature if decryption of σ∗3 does not reject. So we may assume

that σ∗3 is a valid ciphertext Encpp,skS,pkV
(k) that was used in a genuine signature

σ = (t,H(m, t)k,Encpp,skS,pkV
(k)). Since A wins, m 6= m∗, so we can assume that

H(m, t) and H(m∗, σ∗1) are independent random variables output by the random oracle,

and furthermore since V accepts the forged signature, we have σ∗2 = H(m, t∗)k.

137

This means we can use A to solve CDH in 〈ĝ〉 which contradicts the assumption

that DDH (and hence CDH) is hard: Given a random CDH challenge ĥ, ĥa, ĥb, we will

guess which genuine signature and which calls to the random oracle will be involved

in the forgery. We will program the random oracle so that H(t,m) = ĥ and set

σ2 = ĥa. This means that we are implicitly claiming that the exponent used in the

signature is a. This does not match the encryption Encpp,skS,pkV
(k), but we program the

verification oracle to accept the signature anyway, and by privacy of the encryption

scheme, the inconsistency does not affect A’s behavior significantly. Finally, we set

H(t∗,m∗) = ĥb, and it is now clear that if A wins, we have σ∗2 = (ĥb)a = ĥab.

Provable Public Simulation. PubSigSim indistinguishability follows from privacy of

the AVPKE scheme: if an adversary A wins the PubSigSim-Ind game, we can use

A to construct an adversary that wins the privacy game. The adversary can use skS

to emulate the signing oracle and the use the decryption oracle to emulate the (less

powerful) verification oracle. PubSigSim correctness and PubSigSim soundness follow

immediately from completeness and soundness of the NIZK used.

Provable Verifier Simulation. VerSigSim indistinguishability is clear, since the sig-

nature produced by VerSigSim has exactly the same distribution as regular signa-

tures. VerSigSim correctness follows from completeness of the NIZK used. Finally,

for VerSigSim soundness, assume that a corrupt S could produce a proof that VerSigVal

would accept. By soundness of the NIZK used, this would mean that we could extract

from the proof data such that both the tag t in the signature and cV could be opened

as commitments to the same value, say x. However, V already knows from the key

generation how to open cV to the value kV. The adversary gets no information on

kV during the game because commitments are perfectly hiding, and so x 6= kV with

overwhelming probability. This means we can use the adversary to break the binding

property of the commitment scheme.

Sign. It is easy to see that Provable Signing Correctness and Soundness follow imme-

diately from completeness and soundness of the NZIK used in Sign.

In Section 5.5 we list, for completeness, the standard Σ-protocols we need to

instantiate our construction.

138

5.3.5 Sketch of a PSDVS Scheme Based on Prime Order Groups

In this section we sketch a variant of the scheme in Section 5.3.4 where we need only

prime order groups and no trusted set-up. So we let G be a group of prime order p

with generator g, where p = 2q+1 and q is also prime. We let H denote the subgroup

of Z∗p of order q. H is also the group of squares modulo p. We let h be a generator

of H. These parameters can be generated in public and can be verified by anyone, so

no trusted set-up with secret trapdoor is required.

We make public keys for S and V as follows: pkS = hskS , pkV = hskV , skS, skV∈R ∈

Zq.

The parties can compute a shared key k = hskSskV from only the public keys, which

is pseudorandom for anyone else if DDH in H is hard.

We let the signature on m be H(m, t)k, which can be verified by V in the obvious

way.

To prove in ZK that a signature σ = (σ1, σ2) is valid, one proves knowledge of skS,

such that gpkS = gh
skS and σ2 = H(m,σ1)k = H(m,σ1)pk

skS
V share the same “level-2 ”

discrete log, which can be done using a standard protocol which, however, requires a

number of exponentiations linear in the security parameter.

For PubSigSim, one generates a fake signature by choosing a random element

e ∈ Z∗p and letting the simulated signature be H(m, t)−e
2 mod p. −e2 mod p is not a

square modulo p and hence is not in H. It will therefore not be accepted, since the

correct k is in H by construction. This is indistinguishable from a genuine signature

if we make a nonstandard variant of the DDH assumption saying that g raised to a

random square is indistinguishable from g raised to a random non-square. One can

show in ZK that H(m, t)−e
2 mod p has the right form by showing that the discrete log

of its inverse is a square, which can be done with standard Σ protocols.

The case of VerSigSim is handled in exactly the same way as the previous con-

139

struction.

5.4 FE-based Construction

In this section, we present an MDVS scheme based on functional encryption. One

disadvantage of this scheme is that it requires a trusted setup; secret verification keys

must be derived from a master secret key. However, the accompanying advantage

is that this scheme has verifier-identity-based signing; verifiers’ public keys consist

simply of their identity, allowing any signer to encrypt to any set of verifiers without

needing to retrieve their keys from some PKI first.

At a high level, we are first given a digital signature scheme (DS) and a functional

encryption scheme (FE). The keys of the signer with identity i are a secret DS signing

key ski and corresponding public DS verification key vki. An MDVS signature CT

is a FE ciphertext obtained by encrypting the plaintext that consists of the message

m, the signer’s DS verification key vki, a set of designated verifier identities D, and

the signer’s DS signature σ on the message using the secret DS signing key ski. That

is, CT = FE.Enc(pp, (m, vki,D, σ)). Verifier j’s public key is simply their identity j

(that is, vpkj = j). Their secret key consists of a DS key pair (skj, vkj), and an FE

secret key dkj. dkj is the secret key for a function that checks whether j is among

the specified designated verifiers, and then checks whether the DS signature σ inside

the ciphertext CT is either a valid signature under the signer’s verification key vki,

or under the verifier’s verification key vkj. However, this basic scheme does not give

us the off-the-record property; we therefore tweak it slightly, as we describe below.

From One to Many DS Signatures

In order to ensure that any subset of valid verifiers cannot convince an outsider of

the origin of the MDVS signature, we need to replace the one DS signature in the

ciphertext with a set of DS signatures. The reason is that, if only one signature is

140

contained in the ciphertext, any designated verifier can prove to an outsider that “it

was either me or the signer that constructed the signature”. If more than one verifier

proves this about the same MDVS signature, then the signature must have come from

the signer.

To prevent this kind of “intersection attack”, we allow the ciphertext to contain

a set Σ of DS signatures, and change the corresponding FE secret keys to check if

there exists a DS signature in the set that either verifies under the signer’s or the

verifier’s DS verification key. Now, an outsider will no longer be convinced that it was

the signer who constructed the MDVS signature, since each of the colluding verifiers

could have constructed a DS signature that verifies under their own verification key,

and then encrypted this set together with the public verification key of the signer.

Achieving Consistency

In order to achieve consistency, we need security against malicious encryption in the

underlying FE scheme. We need to ensure that any (possibly maliciously generated)

ciphertext is consistent with one specific message across decryption with different

functions. Otherwise, a malicious MDVS signer may be able to construct a ciphertext

(i.e. a signature) that will be valid for one designated verifier but not valid for another,

thereby breaking the consistency property. Security against a malicious encryption

is a property of verifiable functional encryption (VFE), which was introduced by

Badrinarayanan et. al (Badrinarayanan et al., 2016). However, it turns out that we

do not need the full power of VFE, which also includes precautions against a malicious

setup. Thus, we define a weaker notion of VFE, and substitute the standard FE

scheme with this new scheme allowing us to achieve the MDVS consistency property.

In Section 5.4.1 we introduce ciphertext verifiable functional encryption, followed

by our MDVS construction based on functional encryption which is presented in

Section 5.4.2.

141

5.4.1 Functional Encryption

An FE scheme starts with an authority that generates the public parameters pp and

a master secret key msk. Then the holder of the master secret key can generate a

decryption key dkf associated with some function f that belongs to some predefined

function family. Anyone can generate an encryption CT of some value x, using only

the public parameters, and the party that has been given the decryption key dkf can

decrypt the ciphertext CT to obtain f(x).

The standard security properties of functional encryption consider only the case

where an adversary holds a set of decryption keys dkf1 , . . . , dkfq , and wants to learn

more than it is allowed to about some encrypted message. The security property says

that given an encryption of x, the adversary should only learn f1(x), . . . , fq(x).

However, in some settings, we additionally need security against malicious en-

cryption, and possibly a malicious key generation authority. To achieve this, Badri-

narayanan et. al (Badrinarayanan et al., 2016) introduced verifiable functional en-

cryption (VFE), which is an FE scheme extended with verification algorithms that

check the validity of the ciphertexts and decryption keys.

We require security only against malicious encryption, allowing us to define a

weaker notion of verifiability for functional encryption that handles malicious encryp-

tors and decryptors, while assuming an honest authority.

Ciphertext Verifiable Functional Encryption

Let F = Fλ be a function family, M = Mλ the message space, and Y = Yλ the

output space such that F :M→ Y . Let C = Cλ be the ciphertext space. Then, we

define a ciphertext verifiable functional encryption (VFE) scheme for function family

F by the following algorithms:

Setup(1λ)→ (pp,msk): The PPT algorithm Setup, on input the security parameter

142

λ, outputs the public parameters pp and the master secret key msk.

KeyGen(msk, f)→ dkf : The PPT key generation algorithm KeyGen, on input the

master secret key msk and a function f ∈ F , outputs a secret key dkf .

Enc(pp,m)→ CT : The PPT encryption algorithm Enc, on input the public parame-

ters pp and a message m, outputs a ciphertext CT .

Dec(dkf , CT)→ y′: The decryption algorithm Dec, on the decryption key dkf and

the ciphertext CT , outputs y′ ∈ Y ∪ {⊥}.

Verify(pp, CT)→ d: The public verification algorithm Verify, on input the public pa-

rameters pp and the ciphertext CT , outputs a boolean decision d = 0 (reject)

or d = 1 (accept).

Properties

A functional encryption scheme must have the standard correctness (Def 24) and

IND-CPA security (Def 25). A ciphertext verifiable scheme must additionally have

ciphertext verifiability (Def 26).

Definition 24 (Correctness). Let λ ∈ N be the security parameter, and let F :M→
Y be a function family. Let VFE = (Setup,KeyGen,Enc,Dec) be a FE scheme for

function family F . For all messages m ∈M, all functions f ∈ F we have

Pr [Dec(KeyGen(msk, f),Enc(pp,m)) 6= f(m)] ≤ ν(λ),

where (pp,msk)← Setup(1λ), and the probability is taken over the random choices of

all algorithms.

Definition 25 (IND-CPA Security). Let λ ∈ N be the security parameter, and let

F : M → Y be a function family. Let VFE = (Setup,KeyGen,Enc,Dec) be a FE

scheme for function family F . Consider the following game between a challenger and

an adversary A:

GameIND−CPA
VFE,F ,A (λ)

1. (pp,msk)← Setup(1λ)

2. (m0,m1)← AOG (pp)

143

3. b←$ {0, 1}
4. CT ← Enc(pp,mb)

5. b′ ← AOG (CT)

The key generation oracle is defined OG(fi) := KeyGen(msk, fi).

We say that A wins the IND-CPA game if b = b′, |m0| = |m1|, and fi(m0) =

fi(m1) for all queries fi ∈ F to oracle OG. We say a FE scheme satisfies the IND-

CPA security property if, for all PPT A,

AdvIND−CPA
VFE,F ,A (λ) = Pr[A wins the game]− 1

2
≤ ν(λ).

We consider a ciphertext verifiable functional encryption scheme VFE = (Setup,

KeyGen,Enc,Dec,Verify) for function family F . In such a scheme, we also need secu-

rity against a malicious encryptor. In Def 26 we simplify the verifiability of (Badri-

narayanan et al., 2016) to consider only ciphertext verifiability, not .

Definition 26 (Ciphertext Verifiability). A scheme VFE for function family F is

ciphertext verifiable, if, for all CT ∈ {0, 1}∗, there exists x ∈ M such that for all

f ∈ F and dkf ← KeyGen(msk, f), if Verify(pp, CT) = 1, then

Pr [Dec(dkf , CT) = f(x)] = 1,

where (pp,msk)← Setup(1λ).

Def 26 states that for all ciphertexts constructed by a malicious encryptor, it

must hold that if the ciphertext CT passes the verification algorithm, then there

exists a unique input x that can be associated with ciphertext CT , meaning that for

all functions f ∈ F the decryption of CT will yield f(x). As an example, consider

the functions feven and fodd that determine whether an input natural number is even

or odd. If the scheme has ciphertext verifiability, the adversary should not be able

to create a ciphertext CT that passes the verification algorithm, and on decryption

using these functions will yield a result that claims that the element encrypted in CT

is both even and odd.

144

As discussed in (Goyal et al., 2015), an FE scheme satisfying these properties can

be achieved by combining a standard FE scheme with a simulation-sound NIZK proof

of knowledge to achieve security against malicious encryption.

5.4.2 The MDVS Construction

Construction 5. Let SIGN = (KeyGen, Sign,Verify) be a standard digital signa-

ture scheme and let VFE = (Setup,KeyGen,Enc,Dec,Verify) be a functional encryp-

tion scheme secure with ciphertext verifiability. Then we define a MDVS scheme

FEMDVS = (Setup,KeyGen, Sign,Verify, Sim) as follows:

Setup(1λ): (ppFE,mskFE)← VFE.Setup(1λ).

Output public parameter pp = ppFE and master secret key msk = mskFE.

SignKeyGen(i): (ski, vki)← SIGN.KeyGen(1λ).

Output the signer’s secret key sski = ski and public key spki = vki.
14

VerKeyGen(msk, j):

1. vpkj = j,

2. (skj, vkj)← SIGN.KeyGen(1λ),

3. dkj ← VFE.KeyGen(mskFE, fj), where fj is defined as follows.

Function fj
Input: m, vki, {vpkj′}j′∈D,Σ;
Const: vpkj , vkj ;
1. If vpkj /∈ {vpkj′}j′∈D: output ⊥;
2. If ∃σ ∈ Σ : SIGN.Verify(vki,m, σ) = 1 OR

SIGN.Verify(vkj ,m, σ) = 1:

output (m, vki, {vpkj′}j′∈D);

3. Else: output ⊥

Output the verifiers secret key vskj = (skj, dkj) and public key vpkj = j.15

Sign(pp, sski, {vpkj}j∈D,m):

14We assume that the mapping i → (sski, spki) is unique in the system. This can be achieved
without loss of generality by pseudorandomly generating the randomness required in the key gener-
ation process from the identity i and the master secret key.

15We assume that the mapping j → (vskj , vpkj) is unique in the system. This can be achieved
wlog by pseudorandomly generating the randomness required in the key generation process from the
identity j and the master secret key.

145

1. σ ← SIGN.Sign(ski,m).

2. Output CT = VFE.Enc(ppFE, (m, vki, {vpkj}j∈D, {σ,⊥, · · · ,⊥})).

Verify(pp, spki, vskj, {vpkj}j∈D,m,CT):

1. Check whether VFE.Verify(ppFE, CT) = 1. If not, output 0.

2. Compute (m′, vk′i, {vpkj}j∈D′)\⊥ ← VFE.Dec(dkj, CT). If the output is

⊥, output 0.

3. Check m′ = m, vk′i = vki (with spki = vki), and D′ = D. If all hold,

output 1. Otherwise output 0.

Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C,m):

1. For each j ∈ C, vskj = (skj, dkj).

2. Compute σj ← SIGN.Sign(skj,m
∗).

3. Let Σ = {σj}j∈C∗ , add default values to get the required size.

4. Output CT = VFE.Enc(ppFE, (m∗, spki, {vpkj}j∈D,Σ)).

Theorem 11. Assume that VFE is an IND-CPA secure functional encryption scheme

with ciphertext verifiability, and SIGN is an existential unforgeable digital signature

scheme. Then Const 5 is a correct and secure MDVS scheme with privacy of identities

and verifier-identity-based signing.

Proof. Correctness: Follows directly from an inspection of the algorithms and the

correctness of the functional encryption scheme.

Consistency: Assume that there exist an adversary that produces an inconsistent

signature: (i∗, {vpkj}j∈D∗ ,m∗, CT ∗), such that there exists j1, j2 ∈ D∗ (for which the

adversary does not have the corresponding secret keys) such that:

Verify(spki∗ , vskj1 , {vpkj}j∈D∗ ,m∗, CT ∗) = 1,

Verify(spki∗ , vskj2 , {vpkj}j∈D∗ ,m∗, CT ∗) = 0,

where spki∗ = vki∗ , vskj1 = (skj1 , dkj1), and vskj2 = (skj2 , dkj2).

Since the verification for j1 yields 1, then both j1 and j2 will verify the ciphertext:

VFE.Verify(ppFE, CT) = 1, meaning that (thanks to ciphertext verifiability) there

146

exists a unique encrypted message (m, vki, {vpkj}j∈D, σ) in CT that is consistent

across decryption with different functions.

Then j1 will decrypt: (m, vki, {vpkj}j∈D)← VFE.Dec(dkj, CT), which is equal to

(m∗, vki∗ , {vpkj}j∈D∗). On the other hand j2 will decrypt

(m′, vk′i, {vpkj}j∈D′) or ⊥ ← VFE.Dec(dkj, CT)

If the output was ⊥, then either j2 /∈ D or there does not exists a valid signa-

ture in σ. Otherwise the output was (m′, vk′i, {vpkj}j∈D′) which is different from

(m, vki, {vpkj}j∈D) in at least one component. Thus, the output of the decrypt of

j1 and j2 is not consistent with a unique message, which contradicts the fact that

VFE.Verify(ppFE, CT) = 1 (i.e. there exists a unique encrypted message).

Thus, an adversary that violated the consistency of the MDVS scheme, violates

the ciphertext verifiability of the FE scheme.

Existential Unforgeability: Assume that the adversary produces a valid forgery: (i∗,

{vpkj}j∈D∗ ,m∗, CT ∗), where CT ∗ is the signature (a FE ciphertext) on message m∗,

from signer i∗ designated to the verifiers in the set D∗.
Then there exists a designated verifier j ∈ D∗, who has not been corrupted by

the adversary, such that the FE decryption will yield m′, vk′i and D′, where m′ = m∗,

vk′i = vki∗ , and D′ = D∗ (otherwise it would not be a valid forgery).

The only thing left in the FE ciphertext is the set of signatures σ. In order for

CT ∗ to be a forgery, then there must exist a digital signature σ ∈ σ such that

SIGN.Verify(vk′i,m
′, σ) = 1 OR SIGN.Verify(vkj,m

′, σ) = 1.

This means that the adversary must create a digital signature forgery for either signer

i or “signer” j, without knowing the corresponding secret signing keys. This contra-

dicts the assumption that the digital signature satisfies existential unforgeability.

Privacy of Identities: The adversary receives a signature CT ∗, which is an FE en-

cryption of one of the two following messages:

1. (m∗, vki0 , {vpkj}j∈D0 , {SIGN.Sign(ski0 ,m
∗),⊥, · · · ,⊥}),

2. (m∗, vki1 , {vpkj}j∈D1 , {SIGN.Sign(ski1 ,m
∗),⊥, · · · ,⊥}).

In the PSI game, the adversary is not allowed to ask for verification keys for any of

the designated verifiers in D0 or D1. This means that for all verification keys (i.e. FE

147

decryption keys) the adversary can ask for, we have that the underlying function fj

evaluated on the two messages will yield ⊥, since j is not in any of the two sets of

designated verifiers.

Thus, privacy of the identities (PSI and PVI) follows directly from the IND-CPA

security of the functional encryption scheme.

Off-The-Record: The off-the-record property follows directly from the IND-CPA se-

curity of the functional encryption scheme. The messages in the real and simulated

version have the same length, since we add default values to σ to ensure we have the

same number of elements in both cases.

For all functions fj that the adversary gets an FE decryption key for, we argue

that evaluation on each of the two messages results in the same output. First we look

at the decryption keys dkj for j /∈ D∗ (i.e. not a designated verifier). In both the

real and the simulated case the decryption will yield ⊥, since j is not a designated

verifier.

Next, we look at the decryption keys dkj for j ∈ D∗. In this case j must also

be in the corruption set C∗. Thus, in the real case the set σ contains σi∗ a digital

signature of message m∗ under the signing key of signer i∗, and the decryption will

yield (m∗, vki∗ , {vpkj}j∈D∗). In the simulated case the set σ contains σj a digital

signature of message m∗ under the signing key of party j. Thus, the decryption will

again yield (m∗, vki∗ , {vpkj}j∈D∗), since function fj does not differentiate whether it

was the verification vki∗ or vkj that was used to verify the digital signature.

5.5 Appendix A: Instantiation of Non-Interactive ZK Proofs

We list here, for completeness, the standard Σ-protocols we need. We assume the

same set-up as above, that is, a group G of order an RSA modulus n is given (a

product of safe primes), as well as a generator g of G, and a generator ĝ of the

subgroup of squares mod n.

The protocols we list here are well-known or simple variations of know protocols.

It is easy to show the standard completeness, soundness and honest verifier ZK prop-

erties, so we will not present these proofs, but recall some ideas where these may

148

be less well known. The protocols can be turned into non-interactive ZK proofs of

knowledge in the standard way in the random oracle model using the Fiat-Shamir

heuristic.

All proofs have negligible soundness error, so we always need only 1 iteration of

each protocol.

A general technical remark: some of the protocols are usually designed for use

in a group of prime order, while here we use them in a group of order n. The only

difficulty this could lead to is that the proofs of soundness requires us to invert various

non-zero numbers modulo the group order. This could in principle fail modulo n, but

this would lead to finding a non-trivial factor of n (which is generated in a trusted

manner as part of the setup) and so can only happen with negligible probability if

factoring is hard, which we have to assume throughout anyway.

Protocols for the AVPKE scheme. Some number theoretic background first:

because n = pq = (2p′ + 1)(2q′ + 1) is a product of safe primes, the subgroup of

squares in Z∗n has order p′q′ and ĝ is chosen to be a generator. It lies inside the

subgroup of numbers of Jacobi symbol 1 which has order 2p′q′ and is generated by ĝ

and −1.

The first protocol has as public input ĝ, ĥ ∈ Z∗n and we assume ĥ Jacobi symbol

1, this can be easily checked by the verifier. Recall that an honest prover knows r

such that ĥ = ĝr. The protocol goes as follows:

Protocol Composite order discrete log.

1. P chooses s∈R {0, 1}3λ and sends a = ĝs to V (interpreting s as a binary

number).

2. V sets e∈R Zn and sends it to P .

3. P returns z = s+ er to V , and V checks that ĝz = aĥe mod n.

This protocol is easily seen to be complete and statistical honest verifier zero-knowledge

149

(note that s is chosen to be exponentially larger than er so z is statistically close to

a random 3λ bit number. Soundness is more tricky. Assuming that ĥ is in the group

generated by ĝ, then the protocol is a proof of knowledge of r, under the strong RSA

assumption modulo n, as shown by Fujisaki and Okamoto (Fujisaki and Okamoto,

1997). Now, since ĥ has Jacobi symbol 1, either ĥ or −ĥ is in the subgroup, so the

protocol proves that P knows the discrete log of ĥ or −ĥ.

For the second protocol we have public input c = (n + 1)kvn mod n2 and β = γk

for some γ ∈ G. The prover knows k and v. The protocol goes as follows:

Protocol Plaintext and discrete log knowledge.

1. P chooses s∈R Zn, u∈R Z∗n and sends a = (n+ 1)sun mod n2, α = γs to V .

2. V sets e∈R Zn and sends it to P .

3. P returns z = s + er mod n,w = uve mod n, and V checks that (n + 1)zwn =

ace mod n2 and that γz = αβe.

It is trivial to prove this protocol complete, sound and honest-verifier zero-knowledge.

To to the proof πvalid in the AVPKE scheme, we run the Composite order discrete

log and the Plaintext and discrete knowledge protocols where in the latter we omit γ,

β, α.

Protocols for the PVDVS scheme. The first protocol works with the well-known

Pedersen commitments, where a commitment to x with randomness r is of form gxhr

where g, h ∈ G. These commitments are perfectly hiding and computationally binding

if discrete log in G is hard. The protocol shows that two Pedersen commitments

contain the same value. The public input is c1 = gx1h
r1
1 , c2 = gx2h

r2
2 . The protocol

works as follows:

Protocol Commitment equality.

1. P sets y, s1, s2∈R Zn, and sends a1 = gy1h
s1
1 , a2 = gy2h

s2
2 to V

150

2. V sets e∈R Zn and sends to P .

3. P sends z = y + ex mod n and u1 = s1 + er1 mod n, u2 = s2 + er2 mod n to V .

4. V checks that gz1h
u1
1 = a1c

e
1 and that gz2h

u2
2 = a2c

e
2.

The NIZK in VerSigSim uses this protocol.

For the NIZK in PubSigSim, recall that we have H(m, t)k, Efake(k
′, r, b, b′, v) as

input, and we want to demonstrate that k 6= k′. The prover includes H(m, t)k
′

in

the proof, and runs the Plaintext and discrete log knowledge protocol to demonstrate

that the exponent k′ is also present in the encryption. For this, we consider only the

last part of the ciphertext, which is a Paillier encryption of k′, as this part already

uniquely determines k′. The prover can use k′ and (−1)b
′
v as witness. Finally, the

verifier checks that H(m, t)k
′ 6= H(m, t)k. Soundness and completeness of this should

be clear. For zero-knowledge, the simulator would produce H(m, t)k
′′

for random k′′,

and simulate the Plaintext and discrete log knowledge protocol. Of course the statement

in question is now false, but by privacy of the encryption scheme, the simulated public

data is indistinguishable from the case where the statement is true, so the simulator

must still produce an indistinguishable transcript.

Finally, for the proof of real signature in Sign, we have to show that the ciphertext

encrypting k is completely well formed so that V will accept, and that this exponent

is used in the MAC. For this we use the following protocol. The public input is δ = γk

for a publicly known γ ∈ G (namely a hash-value), pkS = ĝskS mod n and

C = EskS,pkV
(k, r, b1, b2) = ((−1)b1 ĝr mod n, (n+ 1)k((−1)b2βskS

1 βr2 mod n)n mod n2),

for publicly known β1, β2 ∈ Z∗n2 , which in our context come from V’s public key pkV.

The prover’s secret witness is skS, k, r, b1, b2.

Protocol Valid signature.

1. P chooses s ∈ Zn, x, y ∈ {0, 1}3λ, c1, c2 ∈ {0, 1}. He then sends to V : a =

151

EskS+x,pkV
(s, y, c1, c2), ξ = ĝx mod n and ω = γs.

2. V sets e∈R Zn and sends it to P .

3. P returns zs = s+ er mod n, zx = x+ eskS, zy = y+ er, d1 = (c1 + eb1) mod 2,

d2 = (c2 + eb2) mod 2. V checks that Ezx,pkV
(zs, zy, d1, d2) = aCe, that ĝzx =

ξpkeS and that γzs = ωδe.

It is tedious but straightforward to check completeness. For (statistical) hon-

est verifier ZK we use that x, y are both exponentially lager than eskS and er, re-

spectively. For soundness, assume we get acceptable answers (zs, zx, zy, d1, d2) and

(z′s, z
′
x, z
′
y, d
′
1, d
′
2) to challenges e, e′. This will imply that we get equations:

Ezx−z′x,pkV
(zs − z′s, zy − z′y, (d1 − d′1) mod 2, (d2 − d′2) mod 2) = Ce−e′

ĝzx−z
′
x = pke−e

′

S , γzs−z
′
s = δe−e

′

Now, note that the protocol is in fact (implicitly) using the Composite order discrete

log protocol to prove knowledge of the discrete logs of plus or minus the numbers

pkS = ĝskS mod n and (−1)b1 ĝr mod n, where the latter occurs inside the ciphertext.

The soundness proof for that protocol from (Fujisaki and Okamoto, 1997) argues

if we get acceptable answers to two challenges e, e′, then under the strong RSA as-

sumption, it must be that e− e′ divides the difference between the answers. So under

this assumption we get that e−e′ divides zx−z′x and zy−z′y. It is now straightforward

to extract a valid witness, essentially by dividing by e − e′ in the exponent on both

sides.

152

Chapter 6

Fuzzy Password Authenticated Key

Exchange

The contents of this section are a collaboration with Pierre-Alain Dupont, Julia Hesse,

David Pointcheval, and Leonid Reyzin (Dupont et al., 2018). My primary contribu-

tion is the construction based on Yao’s garbled circuits.

6.1 Introduction

Consider key agreement by two parties who start out knowing a common secret

(which we refer to as “pass-string”, a generalization of “password”). These parties

may face several complications: (1) the pass-string may come from a non-uniform,

low-entropy distribution, and (2) the two parties’ copies of the pass-string may have

some noise, and thus not match exactly. The use of such pass-strings for security has

been extensively studied; examples include biometrics and other human-generated

data (Daugman, 2004; Zviran and Haga, 1993; Brostoff and Sasse, 2000; Ellison

et al., 2000; Mayrhofer and Gellersen, 2009; Monrose et al., 2002; Kolesnikov and

Rackoff, 2008), physically unclonable functions (PUFs) (Pappu et al., 2002; Gassend

et al., 2002; Tuyls et al., 2006; Suh and Devadas, 2007; Yu and Devadas, 2010), noisy

channels (Wyner, 1975), quantum information (Bennett et al., 1988), and sensor

readings of a common environment (Han et al., 2017; Han et al., 2018).

153

The Noiseless Case. When the starting secret is not noisy (i.e., the same for

both parties), existing approaches work quite well. The case of low-entropy secrets

is covered by password-authenticated key exchange (PAKE), in a long line of work the

first formal models for which were introduced by Bellare et al. (Bellare et al., 2000)

and Boyko et al. (Boyko et al., 2000). A PAKE protocol allows two parties to agree

on a shared high-entropy key if and only if they hold the same short password. Even

though the password may have low entropy, PAKE ensures that off-line dictionary

attacks are impossible. Roughly speaking, an adversary has to participate in one on-

line interaction for every attempted guess at the password. Because key agreement

is not usually the final goal, PAKE protocols need to be securely composable with

whatever protocols (such as authenticated encryption) use the output key. This

composability has been achieved by universally composable (UC) PAKE defined by

Canetti et al. (Canetti et al., 2005) and implemented in several follow-up works.

In the case of high-entropy secrets, off-line dictionary attacks are not a concern,

which enables more efficient protocols. If the adversary is passive, randomness ex-

tractors (Nisan and Zuckerman, 1993) do the job. The case of active adversaries is

covered by the literature on so-called robust extractors defined by Boyen et al. (Boyen

et al., 2005) and, more generally, by many papers on privacy amplification protocols

secure against active adversaries, starting with the work of Maurer (Maurer, 1997).

Composability for these protocols is less studied; in particular, most protocols leak

information about the pass-string itself, in which case reusing the pass-string over

multiple protocol executions may present problems (Boyen, 2004) (with the excep-

tion of (Canetti et al., 2016)).

The Noisy Case. When the pass-string is noisy (i.e., the two parties have slightly

different versions of it), this problem has been studied only for the case of high-entropy

pass-strings. A long series of works on information-reconciliation protocols (started

154

by Bennett et al. (Bennett et al., 1988)) and their one-message variants called fuzzy

extractors (defined by Dodis et al. (Dodis et al., 2008), further enhanced for active

security starting by Renner et al. (Renner and Wolf, 2004)) achieves key agreement

when the pass-string has a lot of entropy and not too much noise. Unfortunately,

these approaches do not extend to the low-entropy setting and are not designed to

prevent off-line dictionary attacks.

Constructions for the noisy case depend on the specific noise model. The case of

binary Hamming distance — when the n pass-string bits held by the two parties are

the same at all but δ locations — is the best studied. Most existing constructions

require, at a minimum, that the pass-string should have at least δ bits of entropy.

This requirement rules out using most kinds of biometric data as the pass-string—

for example, estimates of entropy for iris scans (transformed into binary strings via

wavelet transforms and projections) are considerably lower than the amount of errors

that need to be tolerated (Blanton and Hudelson, 2009, Section 5). Even the PAKE-

based construction of Boyen et al. (Boyen et al., 2005) suffers from the same problem.

One notable exception is the construction of Canetti et al. (Canetti et al., 2016),

which does not have such a requirement, but places other stringent limitations on

the probability distribution of pass-strings. In particular, because it is a one-message

protocol, it cannot be secure against off-line dictionary attacks.

6.1.1 Our Contributions

We provide definitions and constant-round protocols for key agreement from noisy

pass-strings that:

• Resist off-line dictionary attacks and thus can handle low-entropy pass-strings,

• Can handle a variety of noise types and have high error-tolerance, and

• Have well specified composition properties via the UC framework (Canetti,

2001).

155

Instead of imposing entropy requirements or other requirements on the distribu-

tion of pass-strings, our protocols are secure as long as the adversary cannot guess

a pass-string value that is sufficiently close. There is no requirement, for example,

that the amount of pass-string entropy is greater than the number of errors; in fact,

one of our protocols is suitable for iris scans. Moreover, our protocols prevent off-line

attacks, so each adversarial attempt to get close to the correct pass-string requires an

on-line interaction by the adversary. Thus, for example, our protocols can be mean-

ingfully run with pass-strings whose entropy is only 30 bits—something not possible

with any prior protocols for the noisy case.

New Models. Our security model is in the Universal Composability (UC) Frame-

work of Canetti (Canetti, 2001). The advantage of this framework is that it comes

with a composability theorem that ensures that the protocol stays secure even when

run in arbitrary environments, including arbitrary parallel executions. Composabil-

ity is particularly important for key agreement protocols, because key agreement is

rarely the ultimate goal. The agreed-upon key is typically used for some subsequent

protocol—for example, to instantiate a secure channel. Further, this framework al-

lows to us to give a definition that is indifferent to how the initial pass-strings are

generated. We have no entropy requirements or constraints on the pass-string distri-

bution; rather, security is guaranteed as long as the adversary’s input to the protocol

is far enough from the correct pass-string.

As a starting point, we use the definition of UC security for PAKE from Canetti et

al. (Canetti et al., 2005). The PAKE ideal functionality is defined as follows: the

secret pass-strings (called “passwords” in PAKE) of the two parties are the inputs

to the functionality, and two random keys, which are equal if and only if the two

inputs are equal, are the outputs. The main change we make to PAKE is enhancing

the functionality to give equal keys even if the two inputs are not equal, as long as

156

they are close enough. We also relax the security requirement to allow one party to

find out some information about the other party’s input—perhaps even the entire

input—if the two inputs are close. This relaxation makes sense in our application: if

the two parties are honest, then the differences between their inputs are a problem

rather than a feature, and we would not mind if the inputs were in fact the same. The

benefit of this relaxation is that it permits us to construct more efficient protocols.

(We also make a few other minor changes which will be described in Section 6.2.)

We call our new UC functionality “Fuzzy Password-Authenticated Key Exchange” or

fPAKE.

New Protocols. The only prior PAKE-based protocol for the noisy setting by

Boyen et al. (Boyen et al., 2005), although more efficient than ours, does not satisfy

our goal. In particular, it is not composable, because it reveals information about the

secret pass-strings (we demonstrate this formally in Section Section 6.13. Because

some information about the pass-strings is unconditionally revealed, high-entropy

pass-strings are required. Thus, in order to realize our definition for arbitrary low-

entropy pass-strings, we need to construct new protocols.

Realizing our fPAKE definition is easy using general two-party computation tech-

niques for protocols with malicious adversaries and without authenticated chan-

nels (Barak et al., 2005). However, we develop protocols that are considerably more

efficient: our definitional relaxation allows us to build protocols that achieve security

against malicious adversaries but cost just a little more than the generic two-party

computation protocols that achieve security only against honest-but-curious adver-

saries (i.e., adversaries who do not deviate from the protocol, but merely try to infer

information they are not supposed to know).

Our first construction uses Yao’s garbled circuits (Yao, 1986; Bellare et al., 2012)

and oblivious transfer (see Chou and Orlandi (Chou and Orlandi, 2015) and references

157

therein). The use of these techniques is standard in two-party computation. However,

by themselves they give protocols secure only against honest-but-curious adversaries.

In order to prevent malicious behavior of the players, one usually applies the cut-

and-choose technique (Lindell and Pinkas, 2011), which is quite costly: to achieve an

error probability of 2−λ, the number of circuits that need to be garbled increases by a

factor of λ, and the number of oblivious transfers that need to be performed increases

by a factor of λ/2. We show that for our special case, to achieve malicious security,

it suffices to repeat the honest-but-curious protocol twice (once in each direction),

incurring only a factor of 2 overhead over the semi-honest case. 1 Mohassel et

al. (Mohassel and Franklin, 2006) and Huang et al. (Huang et al., 2012) suggest a

similar technique (known as “dual execution”), but at the cost of leaking a bit of the

adversary’s choice to the adversary. In contrast, our construction leaks nothing to the

adversary at all (as long as the pass-strings are not close). This construction works

regardless of what it means for the two inputs to be “close,” as long as the question

of closeness can be evaluated by an efficient circuit.

Our second construction is for the Hamming case: the two n-character pass-strings

have low Hamming distance if not too many characters of one party’s pass-string

are different from the corresponding characters of the other’s pass-string. The two

parties execute a PAKE protocol for each position in the string, obtaining n values

each that agree or disagree depending on whether the characters of the pass-string

agree or disagree in the corresponding positions. It is important that at this stage,

agreement or disagreement at individual positions remains unknown to everyone; we

therefore make use of a special variant of PAKE which we call implicit-only PAKE

1Gasti et al. (Gasti et al., 2016) similarly use Yao’s garbled circuits for continuous biometric user
authentication on a smartphone. Our approach can eliminate the third party in their application,
at the cost of requiring two garbled circuits instead of one. As far as we know, ours is the first
use of garbled circuits in the two-party fully malicious setting without calling on an expensive
transformation.

158

(we give a formal UC security definition of implicit-only PAKE and show that it is

realized by the PAKE protocol of Bellovin and Merritt (Bellovin and Merritt, 1992)

and Abdalla et al. (Abdalla et al., 2008)). This first step upgrades Hamming distance

over a potentially small alphabet to Hamming distance over an exponentially large

alphabet. We then secret-share the ultimate output key into n shares using a robust

secret sharing scheme, and encrypt each share using the output of the corresponding

PAKE protocol.

The second construction is more efficient than the first in the number of rounds,

communication, and computation. However, it works only for Hamming distance.

Moreover, it has an intrinsic gap between functionality and security: if the honest

parties need to be within distance δ to agree, then the adversary may break security

by guessing a secret within distance 2δ. See Figure 6·11 for a comparison between

the two constructions.

The advantages of our protocols are similar to the advantages of universally com-

posable PAKE: They provide composability, protection against off-line attacks, the

ability to use low-entropy secret inputs, and handle any distribution of those inputs.

And, of course, because we construct fuzzy PAKE, our protocols can handle noisy

inputs—including many types of noisy inputs that could not be handled before. Our

first protocol can handle any type of noise as long as the notion of “closeness” can

be efficiently computed, whereas most prior work was for Hamming distance only.

However, these advantages come at the price of efficiency. Our protocols require

2–5 rounds of interaction, as opposed to many single-message protocols in the liter-

ature (Dodis et al., 2012; Canetti et al., 2016; Woodage et al., 2017). They are also

more computationally demanding than most existing protocols for the noisy case,

requiring one public-key operation per input character. We emphasize, however, that

our protocols are much less computationally demanding than the protocols based

159

on general two-party computation, as already discussed above, or general-purpose

obfuscation, as discussed in (Bitansky et al., 2014, Section 4.3.4).

6.2 Security Model

We now present a security definition for fuzzy password-authenticated key exchange

(fPAKE). We adapt the definition of PAKE from Canetti et al. (Canetti et al., 2005)

to work for pass-strings (a generalization of “passwords”) that are similar, but not

necessarily equal. Our definition uses measures of the distance d(pw, pw′) between

pass-strings pw, pw′ ∈ Fnp . In Section 6.3.3 and Section 6.4, Hamming distance is

used, but in the generic construction of Section 6.3, any (efficiently computable)

other notion of distance can be used instead. We say that pw and pw′ are “similar

enough” if d(pw, pw′) ≤ δ for a distance notion d and a threshold δ that is hard-coded

into the functionality.

Parties first engage our functionality (described in Figure 6·1) by making NewSession

queries, which include their pass-strings. Once both parties have made NewSession

queries, the simulator can make NewKey queries on behalf of the parties, prompting

the functionality to release an appropriate session key to the party in question. In

an execution in which the adversary does not meddle, both session keys will be ran-

dom: they will match if the pass-strings are “similar enough”, and be independent

otherwise.

Modeling Adversarial Capabilities To model the possibility of dictionary at-

tacks, the functionality allows the adversary to make one pass-string guess against

each player (P0 and P1). In the real world, if the adversary succeeds in guessing (a

pass-string similar enough to) party Pi’s pass-string, it can often choose (or at least

bias) the session key computed by Pi. To model this, the functionality then allows

the adversary to set the session key for Pi.
160

As usual in security notions for key exchange, the adversary also sets the session

keys for corrupted players. In the definition of Canetti et al. (Canetti et al., 2005),

the adversary additionally sets Pi’s key if P1−i is corrupted. However, contrary to the

original definition, we do not allow the adversary to set Pi’s key if P1−i is corrupted

but did not guess Pi’s pass-string. We make this change in order to protect an honest

Pi from, for instance, revealing sensitive information to an adversary who did not

successfully guess her pass-string, but did corrupt her partner.

Roles There are two categories of fPAKE protocols: symmetric protocols in which

the two parties execute the same code, and asymmetric protocols in which the two

parties execute different code. Frequently in asymmetric protocols, one party can be

seen as the “sender” who initiates the protocol, and the other can be seen as the

“receiver” who responds.2

In our ideal functionality, each party includes a role tag in her NewSession query;

one party should identify herself as the sender (denoted as role = sender), while the

other should identify herself as the receiver (role = receiver). The functionality

simply forwards these role tags to the simulator; the roles do not affect any of the

functinality’s decisions.

In the case of symmetric protocols, the role tags are unnecessary, since a sender

and a receiver execute the same code. In the case of asymmetric protocols, the

simulator needs the role tags in order to determine which code to execute. It might

look strange that the functionality ignores these role tags once it forwards them to the

simulator; it might seem that, in the case of an asymmetric protocol, the functionality

should only proceed if one of the roles provided is sender and the other receiver.

However, in such a situation, the simulator can trigger the desired behavior — an

2To reflect the fact that, even in symmetric protocols, one party likely requests that the other
engage in key exchange with her, such a request message can be pre-pended to any symmetric
protocol.

161

abort — simply by never issuing a NewKey query.3

Notes Another minor change we make is considering only two parties — P0 and

P1 — in the functionality, instead of considering arbitrarily many parties and en-

forcing that only two of them engage the functionality. This is because universal

composability takes care of ensuring that a two-party functionality remains secure in

a multi-party world.

As in the definition of Canetti et al. (Canetti et al., 2005), we consider only

static corruptions in the standard corruption model of Canetti (Canetti, 2001). Also

as in their definition, we chose not to provide the players with confirmation that

key agreement was successful. The players might obtain such confirmation from

subsequent use of the key.

Leakage By default, in the fPAKE functionality the TestPwd interface provides the

adversary with one bit of information — whether the pass-string guess was correct

or not. This definition can be strengthened by providing the adversary with no

information at all, as in implicit-only PAKE (FiPAKE, Figure 6·8), or weakened by

providing the adversary with extra information when the adversary’s guess is close

enough.

To capture the diversity of possibilities, we introduce a more general TestPwd

interface, described in Figure 6·2. It includes three leakage functions that we will

instantiate in different ways below—Lc if the guess is close enough to succeed, Lf if

it is too far. Moreover, a third leakage function—Lm for medium distance—allows

the adversary to get some information even if the adversary’s guess is only somewhat

close (closer than some parameter γ ≥ δ), but not close enough for successful key

3An asymmetric protocol where the parties do not abort when both are executing the same role’s
code (but the resulting keys are not distributed as they should be) cannot securely instantiate our
functionality.

162

The functionality fPAKE is parameterized by a security parameter λ and tolerances δ ≤ γ. It interacts with an
adversary S and two parties P0 and P1 via the following queries:

• Upon receiving a query (NewSession, sid, pwi, role) from party Pi, where pwi is a password and
role = sender implies that Pi wishes to initiate a key exchange, while role = receiver implies that
Pi wishes to respond:

– Send (NewSession, sid,Pi, role) to S;
– If one of the following is true, record (Pi, pwi) and mark this record fresh:

∗ This is the first NewSession query
∗ This is the second NewSession query and there is a record (P1−i, pw1−i)

• Upon receiving a query (TestPwd, sid,Pi, pw
′
i) from the adversary S:

If there is a fresh record (Pi, pwi), then set d← d(pwi, pw′i) and do:
– If d ≤ δ, mark the record compromised and reply to S with “correct guess”;
– If d > δ, mark the record interrupted and reply to S with “wrong guess”.

• Upon receiving a query (NewKey, sid,Pi, sk) from the adversary S:
If there is no record of the form (Pi, pwi), or if this is not the first NewKey query for Pi, then ignore this
query. Otherwise:

– If at least one of the following is true, then output (sid, sk) to player Pi:
∗ The record is compromised

∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a record (P1−i, pw1−i) with
d(pwi, pw1−i) ≤ δ

– If this record is fresh, both parties are honest, there is a record (P1−i, pw1−i) with
d(pwi, pw1−i) ≤ δ, a key sk′ was sent to P1−i, and (P1−i, pw1−i) was fresh at the time, then
output (sid, sk′) to Pi;

– In any other case, pick a new random key sk′ of length λ and send (sid, sk′) to Pi.
– Mark the record (Pi, pwi) as completed.

Figure 6·1: Ideal Functionality fPAKE

agreement. We thus decouple the distance needed for functionality from the (possibly

larger) distance needed to guarantee security; the smaller the gap between these two

distances, the better, of course.

Below, we list the specific leakage functions Lc, Lm and Lf that we consider in

this work, in order of decreasing strength (or increasing leakage):

1. The strongest option is to provide no feedback at all to the adversary. We define

fPAKEN to be the functionality described in Figure 6·1, except that TestPwd is

from Figure 6·2 with

LNc (pwi, pw′i) = LNm(pwi, pw′i) = LNf (pwi, pw′i) = ⊥ .

2. The basic functionality fPAKE, described in Figure 6·1, leaks the correctness of

163

• Upon receiving a query (TestPwd, sid,Pi, pw′
i) from the adver-

sary S:
If there is a fresh record (Pi, pwi), then set d← d(pwi, pw′i) and do:

– If d ≤ δ, mark the record compromised and reply to S with
Lc(pwi, pw′i);

– If δ < d ≤ γ, mark the record compromised and reply to S with
Lm(pwi, pw′i);

– If γ < d, mark the record interrupted and reply to S with
Lf (pwi, pw′i).

Figure 6·2: A Modified TestPwd Interface to Allow for Different Leak-
age

the adversary’s guess. That is, in the language of Figure 6·2,

Lc(pwi, pw′i) = “correct guess”,

and Lm(pwi, pw′i) = Lf (pwi, pw′i) = “wrong guess”.

The classical PAKE functionality from (Canetti et al., 2005) has such a leakage.

3. Assume the two pass-strings are strings of length n over some finite alphabet,

with the jth character of the string pw denoted by pw[j]. We define fPAKEM

to be the functionality described in Figure 6·1, except that TestPwd is from

Figure 6·2, with Lc and Lm that leak the indices at which the guessed pass-

string differs from the actual one when the guess is close enough (we will call

this leakage the mask of the pass-strings). That is,

LMc (pwi, pw′i) = ({j s.t. pwi[j] = pw′i[j]}, “correct guess”),

LMm (pwi, pw′i) = ({j s.t. pwi[j] = pw′i[j]}, “wrong guess”)

and LMf (pwi, pw′i) = “wrong guess”.

4. The weakest definition — or the strongest leakage — reveals the entire actual

pass-string to the adversary if the pass-string guess is close enough. We define

164

fPAKEP to be the functionality described in Figure 6·1, except that TestPwd is

from Figure 6·2, with

LPc (pwi, pw′i) = LPm(pwi, pw′i) = pwi and LPf (pwi, pw′i) = “wrong guess”.

Here, LPc and LPm do not need to include “correct guess” and “wrong guess”,

respectively, because this is information that can be easily derived from pwi

itself.

The first two functionalities are the strongest, but there are no known constructions

that realize them, other than through generic two-party computation secure against

malicious adversaries, which is an inefficient solution. The last two functionalities,

though weaker, still provide meaningful security, especially when γ = δ. Intuitively,

this is because strong leakage only occurs when an adversary guesses a “close” pass-

string, which enables him to authenticate as though he knows the real pass-string

anyway.

In Section 6.3, we present a construction satisfying fPAKEP for any efficiently

computable notion of distance, with γ = δ (which is the best possible). We present a

construction for Hamming distance satisfying fPAKEM in Section 6.4, with γ = 2δ.

6.3 General Construction Using Garbled Circuits

In this section, we describe a protocol realizing fPAKEP that uses Yao’s garbled cir-

cuits (Yao, 1986). We briefly introduce this primitive in Sec. 6.3.1 and refer to

Yakoubov (Yakoubov, 2017) for a more thorough introduction.

The Yao’s garbled circuit-based fPAKE construction has two advantages:

1. It is more flexible than other approaches; any notion of distance that can be

efficiently computed by a circuit can be used. In Section 6.3.3, we describe a

suitable circuit for Hamming distance. The total size of this circuit is O(n),

165

where n is the length of the pass-strings used. Edit distance is slightly less

efficient, and uses a circuit whose total size is O(n2).

2. There is no gap between the distances required for functionality and security —

that is, there is no leakage about the pass-strings used unless they are similar

enough to agree on a key. In other words, δ = γ.

Informally, the construction involves the garbled evaluation of a circuit that takes

in two pass-strings as input, and computes whether their distance is less than δ.

Because Yao’s garbled circuits are only secure against semi-honest garblers, we cannot

simply have one party do the garbling and the other party do the evaluation. A

malicious garbler could provide a garbling of the wrong function — maybe even a

constant function — which would result in successful key agreement even if the two

pass-strings are very different. However, as suggested by Mohassel et al. (Mohassel

and Franklin, 2006) and Huang et al. (Huang et al., 2012), since a malicious evaluator

(unlike a malicious garbler) cannot compromise the computation, by performing the

protocol twice with each party playing each role once, we can protect against malicious

behavior. They call this the dual execution protocol.

The dual execution protocol has the downside of allowing the adversary to specify

and receive a single additional bit of leakage. It is important to note that because of

this, dual execution cannot directly be used to instantiate fPAKE, because a single bit

of leakage can be too much when the entropy of the pass-strings is low to begin with

— a few adversarial attempts will uncover the entire pass-string. Our construction is

as efficient as that of Mohassel et al. and Huang et al., while guaranteeing no leakage

to a malicious adversary in the case that the pass-strings used are not close. We

describe how we achieve this in Section 6.3.1.

Due to the symmetric layout of our construction, we skip all role tags in this

section.

166

6.3.1 Building Blocks

In Section 6.3.1, we briefly review oblivious transfer. In Section 6.3.1, we review Yao’s

Garbled Circuits. In Section 6.3.1, we describe in more detail our take on the dual

execution protocol, and how we avoid leakage to the adversary when the pass-strings

used are dissimilar.

Oblivious Transfer (OT)

Informally, 1-out-of-2 Oblivious Transfer (see Chou and Orlandi (Chou and Orlandi,

2015) and citations therein) enables one party (the sender) to transfer exactly one of

two secrets to another party (the receiver). The receiver chooses (by index 0 or 1)

which secret she wants. The security of the OT protocol guarantees that the sender

does not learn this choice bit, and the receiver does not learn anything about the

other secret.

Yao’s Garbled Circuits (YGC)

In this section, we give a brief introduction to Yao’s garbled circuits (Yao, 1986).

We refer to Yakoubov (Yakoubov, 2017) for a more detailed description, as well as

a summary of some of the Yao’s garbled circuits optimizations (Beaver et al., 1990;

Kolesnikov and Schneider, 2008; Pinkas et al., 2009; Kolesnikov et al., 2014; Zahur

et al., 2015; Ball et al., 2016). Informally, Yao’s garbled circuits are an asymmetric

secure two-party computation scheme. They enable two parties with sensitive inputs

(in our case, pass-strings) to compute a joint function of their inputs (in our case, an

augmented version of similarity) without revealing any additional information about

their inputs. One party “garbles” the function they wish to evaluate, and the other

evaluates it in its garbled form.

Below, we summarize the garbling scheme formalization of Bellare et al. (Bellare

et al., 2012), which is a generalization of YGC.

167

Functionality. A garbling scheme G consists of a tuple of four polynomial-time

algorithms (Gb,En,Ev,De):

1. Gb(1λ, f)→ (F, e, d). The garbling algorithm Gb takes in the security parameter

λ and a circuit f , and returns a garbled circuit F , encoding information e, and

decoding information d.

2. En(e, x)→ X. The encoding algorithm En takes in the encoding information e

and an input x, and returns a garbled input X.

3. Ev(F,X)→ Y . The evaluation algorithm Ev takes in the garbled circuit F and

the garbled input X, and returns a garbled output Y .

4. De(d, Y)→ y. The decoding algorithm De takes in the decoding information d

and the garbled output Y , and returns the plaintext output y.

A garbling scheme G = (Gb,En,Ev,De) is projective if the encoding information e

consists of 2n wire labels (each of which is essentially a random string), where n is

the number of input bits. Two wire labels are associated with each bit of the input;

one wire label corresponds to the event of that bit being 0, and the other corresponds

to the event of that bit being 1. The garbled input includes only the wire labels

corresponding to the actual values of the input bits. In projective schemes, in order

to give the evaluator the garbled input she needs for evaluation, the garbler can send

her all of the wire labels corresponding to the garbler’s input. The evaluator can then

use OT to retrieve the wire labels corresponding to her own input.

Similarly, we call a garbling scheme output-projective if decoding information d

consists of two labels for each output bit, one corresponding to each possible value

of that bit. The garbling schemes used in this paper are both projective and output-

projective.

Correctness. Informally, a garbling scheme (Gb,En,Ev,De) is correct if it always

holds that De(d,Ev(F,En(e, x))) = f(x).

168

Security. Bellare et al. (Bellare et al., 2012) describe three security notions for

garbling schemes: obliviousness, privacy and authenticity. Informally, a garbling

scheme G = (Gb,En,Ev,De) is oblivious if a garbled function F and a garbled input

X do not reveal anything about the input x. It is private if additionally knowing

the decoding information d reveals the output y, but does not reveal anything more

about the input x. It is authentic if an adversary, given F and X, cannot find a

garbled output Y ′ 6= Ev(F,X) which decodes without error.

In Section 6.7, we define a new property of output-projective garbling schemes

called garbled output randomness. Informally, it states that even given one of the

output labels, the other should be indistinguishable from random.

Malicious Security: A New Take on Dual Execution with Privacy - Cor-

rectness Tradeoffs

While Yao’s garbled circuits are naturally secure against a malicious evaluator, they

have the drawback of being insecure against a malicious garbler. A garbler can “mis-

garble” the function, either replacing it with a different function entirely or causing

an error to occur in an informative way (this is known as “selective failure”).

Typically, malicious security is introduced to Yao’s garbled circuits by using the

cut-and-choose transformation (Lindell and Pinkas, 2015; Lindell, 2013; Huang et al.,

2013). To achieve a 2−λ probability of cheating without detection, the parties need

to exchange λ garbled circuits (Lindell, 2013).4 Some of the garbled circuits are

“checked”, and the rest of them are evaluated, their outputs checked against one

another for consistency. Because of the factor of λ computational overhead, though,

cut-and-choose is expensive, and too heavy a tool for fPAKE. Other, more efficient

transformations such as LEGO (Nielsen and Orlandi, 2009) and authenticated gar-

bling (Wang et al., 2017) exist as well, but those rely heavily on pre-processing, which

4There are techniques (Lindell and Riva, 2014) that improve this number in the amortized case
when many computations are done — however, this does not fit our setting.

169

M
F

0
6

H
K

E
1
2 Correct Output Computed Output Privacy

1 1 OR ‘cheating’ 1-bit leakage
0 0 OR ‘cheating’ 1-bit leakage

O
u

r

P
ro

to
co

l Correct Output Computed Output Privacy
1 1 OR 0 1-bit leakage
0 0 full privacy

Figure 6·3: The Privacy-Correctness Tradeoff of Dual Execution Pro-
tocols for Boolean Functions. MF06 stands for (Mohassel and Franklin,
2006); HKE12 stands for (Huang et al., 2012).

cannot be used in fPAKE since it requires advance interaction between the parties.

Mohassel et al. (Mohassel and Franklin, 2006) and Huang et al. (Huang et al.,

2012) suggest an efficient transformation known as “dual execution”: each party

plays each role (garbler and evaluator) once, and then the two perform a comparison

step on their outputs in a secure fashion. Dual execution incurs only a factor of

2 overhead over semi-honest garbled circuits. However, it does not achieve fully

malicious security. It guarantees correctness, but reduces the privacy guarantee by

allowing a malicious garbler to learn one bit of information of her choice. Specifically,

if a malicious garbler garbles a wrong circuit, she can use the comparison step to

learn one bit about the output of this wrong circuit on the other party’s input. This

one extra bit of information could be crucially important, violating the privacy of the

evaluator’s input in a significant way.

We introduce a tradeoff between correctness and privacy for boolean functions.

For one of the two possible outputs (without loss of generality, ‘0’), we restore full

privacy at the cost of correctness. The new privacy guarantee is that if the correct

output is ‘0’, then a malicious adversary cannot learn anything beyond this output,

but if the correct output is ‘1’, then she can learn a single bit of her choice. The

new correctness guarantee is that a malicious adversary can cause the computation

that should output ‘1’ to output ‘0’ instead, but not the other way around. Our

privacy–correctness tradeoff is summarized in Figure 6·3.

170

The main idea of dual execution is to have the two parties independently evaluate

one another’s circuits, learn the output values, and compare the output labels using

a secure comparison protocol. This comparison step is simply a check for malicious

behavior; if comparison fails, then honest party Pi learns that P1−i cheated. If the

comparison step succeeded, P1−i might still have cheated — and gleaned an extra bit

of information — but Pi is assured that she has the correct output.

In our construction, however, the parties need not learn the output values before

the comparison. Instead, the parties can compare output labels assuming an output of

‘1’, and if the comparison fails, the output is determined to be ‘0’. More formally, let

d0[0], d0[1] be the two output labels corresponding to P0’s garbled circuit, and d1[0],

d1[1] be the two output labels corresponding to P1’s circuit. Let Y1 ∈ [d1[0], d1[1]] be

the output label learned by P0 as a result of evaluation, and Y0 ∈ [d0[0], d0[1]] be the

label learned by P1. The two parties securely compare (d0[1], Y1) to (Y0, d1[1]); if the

comparison succeeds, the output is “1”.

Whereas in dual execution the comparison step is just a sanity check, here it

determines the actual computation output. If the correct output is ‘1’, a cheating

P1−i can still learn one bit of information by mis-garbling her circuit; depending on

the output of the mis-garbled circuit, the comparison step will either succeed or fail.

If the comparison fails, Pi will accept an incorrect output of ‘0’, and never be aware

that P1−i cheated. If the correct output is ‘0’, however, there is nothing P1−i can do

to cause the comparison step to succeed, since in order to do this, she would need to

use the second output label di[1] as an input. Since the true output was ‘0’, and thus

Yi = di[0], by the garbled output randomness property of the garbling scheme, P1−i

can’t even distinguish di[1] from random.

Our privacy–correctness tradeoff is perfect for fPAKE. If the parties’ inputs are

similar, learning a bit of information about each other’s inputs is not problematic,

171

since arguably the small amount of noise in the inputs is a bug, not a feature. If the

parties’ inputs are not similar, however, we are guaranteed to have no leakage at all.

We pay for the lack of leakage by allowing a malicious party to force an authentication

failure even when authentication should succeed, which either party can do anyway

simply by providing an incorrect input.

In Section 6.3.2, we describe our Yao’s garbled circuit-based fPAKE protocol in

detail. Note that in this protocol, we omit the final comparison step; instead, we use

the output lables ((d0[1], Y1) and (Y0, d1[1])) to compute the agreed-upon key directly

(via XOR).

6.3.2 Construction

Building a fPAKE from YGC and OT is not straightforward, since all constructions of

OT assume authenticated channels, and fPAKE (or PAKE) is designed with unauthen-

ticated channels in mind. We therefore follow the framework of Canetti et al. (Canetti

et al., 2012), who build a UC secure PAKE protocol using OT. We first build our pro-

tocol assuming authenticated channels, and then apply the generic transformation of

Barak et al. (Barak et al., 2005) to adapt it to the unauthenticated channel setting.

More formally, we proceed in three steps:

1. First, in Section 6.3.2, we define a randomized fuzzy equality-testing function-

ality FRFE, which is analogous to the randomized equality-testing functionality

of Canetti et al.

2. In Section 6.3.2, we build a protocol that securely realizes FRFE in the OT-hybrid

model, assuming authenticated channels.

3. In Section 6.3.2, we apply the transformation of Barak et al. to our proto-

col. This results in a protocol that realizes the “split” version of functionality

FPRFE, which we show to be enough to implement to fPAKEP . Split functionali-

ties, which were introduced by Barak et al., adapt functionalities which assume

172

authenticated channels to an unauthenticated channels setting. The only addi-

tional ability an adversary has in a split functionality is the ability to execute

the protocol separately with the participating parties.

The Randomized Fuzzy Equality Functionality

Figure 6·4 shows the randomized fuzzy equality functionality FPRFE, which is essentially

what FPfPAKE would look like assuming authenticated channels. The primary difference

between FPRFE and FPfPAKE is that the only pass-string guesses allowed by FPRFE are

the ones actually used as protocol inputs; this limits the adversary to guessing by

corrupting one of the participating parties, not through man in the middle attacks.

Like in FPfPAKE, if a pass-string guess is “similar enough”, the entire pass-string is

leaked. This leakage could be replaced with any other leakage from Section 6.2; FRFE

would leak the correctness of the guess, FMRFE would leak which characters are the

same between the two pass-strings, etc.

Note that, unlike the randomized equality functionality in the work of Canetti et

al. (Canetti et al., 2012), FPfPAKE has a TestPwd interface. This is because NewKey

does not return the necessary leakage to an honest user. So, an interface enabling the

adversary to retrieve additional information is necessary.

A Randomized Fuzzy Equality Protocol

In Figure 6·5 we introduce a protocol ΠRFE that securely realizes FPRFE using Yao’s

garbled circuits. Garbled circuits are secure against a malicious evaluator, but only

a semi-honest garbler; however, we obtain security against malicious adversaries by

having each party play each role once, as describe in Section 6.3.1. In more detail,

both parties Pi ∈ {P0,P1} proceed as follows:

1. Pi garbles the circuit f that takes in two pass-strings pw0 and pw1, and returns

‘1’ if d(pw0, pw1) ≤ δ and ‘0’ otherwise. Section 6.3.3 describes how f can be

173

The functionality FRFE is parameterized by a security parameter λ and a
tolerance δ. It interacts with an adversary S and two parties P0 and P1 via the
following queries:

• Upon receiving a query (NewSession, sid, pwi) from party Pi ∈
{P0,P1}:

– Send (NewSession, sid,Pi) to S;
– If this is the first NewSession query, or if this is the second NewSession

query and there is a record (P1−i, pw1−i), then record (Pi, pwi).
• Upon receiving a query (TestPwd, sid,Pi) from the adversary S,
Pi ∈ {P0,P1}:
If records of the form (P0, pw0) and (P1, pw1) do not exist, if P1−i is not
corrupted, or this is not the first TestPwd query for Pi, ignore this query.
Otherwise, if d(pw0, pw1) ≤ δ, send pwi to the adversary S.
• Upon receiving a query (NewKey, sid,Pi, sk) from the adversary S,
Pi ∈ {P0,P1}:
If there are no records of the form (Pi, pwi) and (P1−i, pw1−i), or if this is
not the first NewKey query for Pi, then ignore this query. Otherwise:

– If at least one of the following is true, then output (sid, sk) to party Pi.
∗ Pi is corrupted
∗ P1−i is corrupted and d(pw0, pw1) ≤ δ

– If both parties are honest, d(pw0, pw1) ≤ δ, and a key k1−i was sent
to P1−i, then output (sid, k1−i) to Pi.

– In any other case, pick a new random key ki of length λ and
send (sid, ki) to Pi.

Figure 6·4: Ideal Functionality FPRFE for Randomized Fuzzy Equality

designed efficiently for Hamming distance. Instead of using the output of f (‘0’

or ‘1’), we will use the garbled output, also referred to as an output label in an

output-projective garbling scheme. The possible output labels are two random

strings — one corresponding to a ‘1’ output (we call this label ki,correct = di[1]),

and one corresponding to a ‘0’ output (we call this label ki,wrong = di[0]).

2. Pi uses OT to retrieve the input labels from P1−i’s garbling that correspond to

Pi’s pass-string. (Similarly, Pi uses OT to send P1−i the input labels from her

own garbling that correspond to P1−i’s pass-string.)

3. Pi sends P1−i her garbled circuit, together with the input labels from her gar-

174

P0(pw0 ∈ {0, 1}n) P1(pw1 ∈ {0, 1}n)

1 (F0, e0, d0)← Gb(1λ, f) (F1, e1, d1)← Gb(1λ, f)
parse e0 = (e0,0, e0,1) parse e1 = (e1,1, e1,0)

2 perform two OTs in parallel:

(sender)
e0,1−−−−−−→

pw1←−−−−−− (receiver)

OT
−−−−−−→

X0,1 = En(e0,1, pw1)

(receiver)
pw0−−−−−−→

e1,0←−−−−−− (sender)

OT
←−−−−−−

X1,0 = En(e1,0, pw0)

3 X0,0 = En(e0,0, pw0) X1,1 = En(e1,1, pw1)
4

X1,1, F1↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁
X0,0, F0

X1 = (X1,1, X1,0) X0 = (X0,0, X0,1)
5 Y1 = Ev(F1, X1) Y0 = Ev(F0, X0)
6 k0,wrong = d0[0] k1,wrong = d1[0]
7 k0,correct = d0[1] k1,correct = d1[1]
8 k0 = k0,correct ⊕ Y1 k1 = k1,correct ⊕ Y0

Figure 6·5: A Protocol ΠRFE Realizing FPRFE using Yao’s garbled cir-
cuits and an Ideal OT Functionality. If at any point an expected mes-
sage fails to arrive (or arrives malformed), the parties output a random
key. Subscripts are used to indicate who produced the object in ques-
tion. If a double subscript is present, the second subscript indicates
whose data the object is meant for use with. For instance, a double
subscript 0, 1 denotes that the object was produced by party P0 for use
with P1’s data; e0,1 is encoding information produced by P0 to encode
P1’s pass-string. Note that we abuse notation by encoding inputs to a
single circuit separately; the input to P0’s circuit corresponding to pw0

is encoded by P0 locally, and the input corresponding to pw1 is encoded
via OT. For any projective garbling scheme, this is not a problem.

bling that correspond to her own pass-string. After this step, Pi should have

P1−i’s garbled circuit and a garbled input consisting of input labels correspond-

ing to the bits of the two pass-strings.

4. Pi evaluates P1−i’s garbled circuit, and obtains an output label Y1−i (where

Y1−i ∈ {k1−i,correct, k1−i,wrong}) .

5. Pi outputs ki = ki,correct ⊕ Y1−i.

The natural question to ask is why ΠRFE only realizes FPRFE, and not a stronger

functionality with less leakage. We argue this assuming (without loss of generality)

that P1 is corrupted. ΠRFE cannot realize a functionality that leaks less than the full

175

pass-string pw0 to P1 if d(pw0, pw1) ≤ δ; intuitively, this is because if P1 knows a

pass-string pw1 such that d(pw0, pw1) ≤ δ, P1 can extract the actual pass-string pw0,

as follows. If P1 plays the role of OT receiver and garbled circuit evaluator honestly,

P0 and P1 will agree on k0,correct. P1 can then mis-garble a circuit that returns k1,correct

if the first bit of pw0 is 0, and k1,wrong if the first bit of pw0 is 1. By testing whether

the resulting keys k0 and k1 match (which P1 can do in subsequent protocols where

the key is used), P1 will be able to determine the actual first bit of pw0. P1 can then

repeat this for the second bit, and so on, extracting the entire pass-string pw0. Of

course, if P1 does not know a sufficiently close pw1, P1 will not be able to perform

these tests, because the keys will not match no matter what circuit P1 garbles.

More formally, if P1 knows a pass-string pw1 such that d(pw0, pw1) ≤ δ and carries

out the mis-garbling attack described above, then in the real world, the keys produced

by P0 and P1 either will or will not match based on some predicate p of P1’s choosing

on the two pass-strings pw0 and pw1. Therefore, in the ideal world, the keys should

also match or not match based on p(pw0, pw1); otherwise, the environment will be

able to distinguish between the two worlds. In order to make that happen, since the

simulator does not know the predicate p in question, the simulator must be able to

recover the entire pass-string pw0 (given a sufficiently close pw1) through the TestPwd

interface.

Theorem 12. If (Gb,En,Ev,De) is a projective, output-projective and garbled-output

random secure garbling scheme, then protocol ΠRFE with authenticated channels in

the FOT-hybrid model securely realizes FPRFE with respect to static corruptions for

any threshold δ, as long as the pass-string space and notion of distance are such

that for any pass-string pw, it is easy to compute another pass-string pw′ such that

d(pw, pw′) > δ5.

Sketch. For every efficient adversary A, we describe a simulator SRFE such that no

efficient environment can distinguish an execution with the real protocol ΠRFE and

5This is used in the argument of indistinguishability of Games G2 and G3 in Appendix 6.8.

176

A from an execution with the ideal functionality FPRFE and SRFE. SRFE is described

in Figure 6·21. We prove indistinguishability in a series of hybrid steps. First, we

introduce the ideal functionality as a dummy node. Next, we allow the functionality

to choose the parties’ keys, and we prove the indistinguishability of this step from

the previous using the garbled output randomness property of our garbling scheme

(Definition 30, Theorem 15). Next, we simulate an honest party’s interaction with

another honest party without using their pass-string, and prove the indistinguisha-

bility of this step from the previous using the obliviousness property of our garbling

scheme. Finally, we simulate an honest party’s interaction with a corrupted party

without using the honest party’s pass-string, and prove the indistinguishability of

this step from the previous using the privacy property of our garbling scheme.

We give a more formal proof of Theorem 12 in Section 6.8.

From Split Randomized Fuzzy Equality to fPAKE

The Randomized Fuzzy Equality (RFE) functionality FPRFE assumes authenticated

channels, which an fPAKE protocol cannot do. In order to adapt RFE to our setting,

we use the split functionality transformation defined by Barak et al. (Barak et al.,

2005). Barak et al. provide a generic transformation from protocols which require

authenticated channels to protocols which do not. In the “transformed” protocol, an

adversary can engage in two separate instances of the protocol with the sender and

receiver, and they will not realize that they are not talking to one another. However,

it does guarantee that the adversary cannot do anything beyond this attack. In other

words, it provides “session authentication”, meaning that each party is guaranteed to

carry out the entire protocol with the same partner, but not “entity authentication”,

meaning that the identity of the partner is not guaranteed.

Barak et al. achieve this transformation in three steps. First, the parties generate

signing and verification keys, and send one another their verification keys. Next, the

parties sign the list of all keys they have received (which, in a two-party protocol,

consists of only one key), sign that list, and send both list and signature to all other

177

The functionality sFPRFE is parameterized by a security parameter λ. It interacts
with an adversary S and two parties P0 and P1 via the following queries:• Initialization

– Upon receiving a query (Init, sid) from a party Pi ∈ {P0,P1},
send (Init, sid,Pi) to the adversary S.

– Upon receiving a query (Init, sid,Pi, H, sidH) from the adver-
sary S:
∗ Verify that H ⊆ {P0,P1}, that Pi ∈ H, and that if a previous

set H ′ was recorded, either (1) H ∩ H ′ contains only corrupted
parties and sidH 6= sidH′ , or (2) H = H ′ and sidH = sidH′ .
∗ If verification fails, do nothing.
∗ Otherwise, record the pair (H, sidH) (if it was not already

recorded), output (Init, sid, sidH) to Pi, and locally initialize
a new instance of the original RFE functionality FRFE denoted
HFPRFE, letting the adversary play the role of {P0,P1} − H in
HFPRFE.

• RFE
– Upon receiving a query from a party Pi ∈ {P0,P1}, find the set
H such that Pi ∈ H, and forward the query to HFPRFE. Otherwise,
ignore the query.

– Upon receiving a query from the adversary S on behalf of Pi
corresponding to set H, if HFPRFE is initialized and Pi 6∈ H, then
forward the query to HFPRFE. Otherwise, ignore the query.

Figure 6·6: Functionality sFPRFE

parties. Finally, they verify all of the signatures they have received. After this process

— called “link initialization” — has been completed, the parties use those public keys

they have exchanged to authenticate subsequent communication.

We describe the Randomized Fuzzy Equality Split Functionality in Figure 6·6. It

is simplified from Figure 1 in Barak et al. (Barak et al., 2005) because we only need

to consider two parties and static corruptions.

It turns out that sFPRFE is enough to realize FPfPAKE. In fact, the protocol ΠRFE

with the split functionality transformation directly realizes FPfPAKE. In Section 6.9, we

prove that this is the case.

178

6.3.3 An Efficient Circuit f for Hamming Distance

The Hamming distance of two pass-strings pw, pw′ ∈ Fnp is equal to the number of

locations at which the two pass-strings have the same character. More formally,

d(pw, pw′) := | {j | pw[j] 6= pw′[j], j ∈ [n]} |.

We design f for Hamming distance as follows:

1. First, f XORs corresponding (binary) pass-string characters, resulting in a list

of bits indicating the (in)equality of those characters.

2. Then, f feeds those bits into a threshold gate, which returns 1 if at least n−δ of

its inputs are 0, and returns 0 otherwise. f returns the output of that threshold

gate, which is 1 if and only if at least n− δ pass-string characters match.

This circuit, illustrated in Figure 6·7, is very efficient to garble; it only requires

n ciphertexts. Below, we briefly explain this garbling. Our explanation assumes

familiarity with YGC literature (Yakoubov, 2017, and references therein). Briefly,

garbled gadget labels (Ball et al., 2016) enable the evaluation of modular addition

gates for free (there is no need to include any information in the garbled circuit to

enable this addition). However, for a small modulus m, converting the output of that

addition to a binary decision requires m− 1 ciphertexts. We utilize garbled gadgets

with a modulus of n+ 1 in our efficient garbling as follows:

1. The input wire labels encode 0 or 1 modulo n+ 1. However, instead of having

those input wire labels encode the characters of the two pass-strings directly,

they encode the outputs of the comparisons of corresponding characters. If the

jth character of Pi’s pass-string is 0, then Pi puts the 0 label first; however, if

the jth character of Pi’s pass-string is 1, then Pi flips the labels. Then, when

P1−i is using oblivious transfer to retrieve the label corresponding to her jth

pass-string character, she will retrieve the 0 label if the two characters are equal,

179

pw1
0

pw1
1

pw2
0

pw2
1

pw3
0

pw3
1

pw4
0

pw4
1

{0, 1}

eq

eq

eq

eq

threshold

Figure 6·7: The f circuit

and the 1 label otherwise. (Note that this pre-processing on the garbler’s side

eliminates the need to send X0,0 and X1,1 in Figure 6·5.)

2. Compute a n-input threshold gate, as illustrated in Figure 6 of Yakoubov (Yak-

oubov, 2017). This gate returns 0 if the sum of the inputs is above a certain

threshold (that is, if at least n−δ pass-string characters differ), and 1 otherwise.

This will require n ciphertexts.

Thus, a garbling of f consists of n ciphertexts. Since fPAKE requires two such

garbled circuits (Figure 6·5), 2n ciphertexts will be exchanged.

Larger Pass-string Characters. If larger pass-string characters are used, then

Step 1 above needs to change to check (in)equality of the larger characters instead of

bits. Step 2 will remain the same. There are several ways to perform an (in)equality

check on characters in Fp for p ≥ 2:

1. Represent each character in terms of bits. Step 1 will then consist of XORing

corresponding bits, and taking an OR or the resulting XORs of each character

to get negated equality. This will take an additional n log(p) ciphertexts for

every pass-string character.

2. Use garbled gadget labels from the outset. We will require a larger OT (1-out-

of-p instead of 1-out-of-2), but nothing else will change.

180

6.4 Specialized Construction For Hamming Distance

In Section 6.13, we show that it is not straightforward to build a secure fPAKE from

primitives that are, by design, well-suited for correcting errors. However, PAKE pro-

tocols are appealingly efficient compared to the garbled circuits used in the prior

construction. In this section, we ask whether the failed approach can be rescued in

an efficient way, and we answer this question in the affirmative.

6.4.1 Building Blocks

Robust Secret Sharing

We recall the definition of a robust secret sharing scheme, slightly simplified for our

purposes from Cramer et al. (Cramer et al., 2015). For a vector c ∈ Fnq and a set

A ⊆ [n], we denote with cA the projection Fnq → F|A|q , i.e., the sub-vector (ci)i∈A.

Definition 27. Let λ ∈ N, q a λ-bit prime, Fq a finite field and n, t,m, r ∈ N with

t < r ≤ n and m < r. An (n, t, r)q robust secret sharing scheme (RSS) consists of two

probabilistic algorithms Share : Fq → Fnq and Reconstruct : Fnq → Fq with the following

properties:

• t-privacy: for any s, s′ ∈ Fq, A ⊂ [n] with |A| ≤ t, the projections cA of c
$←

Share(s) and c′A of c′
$← Share(s′) are identically distributed.

• r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s),

and any c̃ such that cA = c̃A, it holds that Reconstruct(c̃) = s.

In other words, an (n, t, r)q-RSS is able to reconstruct the shared secret even if the

adversary tampered with up to n− r shares, while each set of t shares is distributed

independently of the shared secret s and thus reveals nothing about it. We note that

we allow for a gap, i.e., r ≥ t+ 1. Schemes with r > t+ 1 are called ramp RSS.

Definition 28 (Smoothness). We say that an (n, t, r)q-RSS is

• m-smooth if for any s ∈ Fq, A ⊂ [n] with |A| ≤ m, any c output by Share(s),

and any c̃ such that c̃A = cA, c̃Ā
$← Fn−|A|q , for all PPT A it holds that

|Pr[1← A(1λ,Reconstruct(c̃))]− Pr[1← A(1λ, u)]|
181

is negligible in λ, where the probability is taken over the random coins of A and

Reconstruct and u
$← Fq.

• m-smooth on random secrets if it is m-smooth for randomly chosen s
$← Fq and

the probabilities are additionally taken over the coins consumed by this choice.

Definition 29 (Strong t-privacy). We say that an (n, t, r)q-RSS has strong t-privacy,

if for any s ∈ Fq, A ⊂ [n] with |A| ≤ t, the projection cA of c
$← Share(s) is distributed

uniformly randomly in F|A|q .

Note that strong t-privacy implies t-privacy. The opposite does not necessarily

hold. (To see that the opposite might not hold, imagine a Share algorithm creating

shares that start with “I’m a share!”). Also note that, in case of random errors

occuring, as long as there are fewer then t undisturbed shares, a strong t-private

scheme actually hides the locations (and with this also the number) of errors.

Linear Codes

A linear q-ary code of length n and rank k is a subspace C with dimension k of

the vector space Fnq . The vectors in C are called codewords. The size of a code

is the number of codewords it contains, and is thus equal to qk. The weight of a

word w ∈ Fnq is the number of its non-zero components, and the distance between

two words is the Hamming distance between them (equivalently, the weight of their

difference). The minimal distance d of a linear code C is the minimum weight of its

non-zero codewords, or equivalently, the minimum distance between any two distinct

codewords.

A code for an alphabet of size q, of length n, rank k, and minimal distance d

is called an (n, k, d)q-code. Such a code can be used to detect up to d − 1 errors

(because if a codeword is sent and fewer than d − 1 errors occur, it will not get

transformed to another codeword), and correct up to b(d− 1)/2c errors (because for

any received word, there is a unique codeword within distance b(d−1)/2c). For linear

codes, the encoding of a (row vector) word W ∈ Fkq is performed by an algorithm

182

C.Encode : Fkq → Fnq , which is the multiplication of W by a so-called “generating

matrix” G ∈ Fk×nq (which defines an injective linear map). This leads to a row-vector

codeword W ·G =: c ∈ C ⊂ Fnq .

The Singleton bound states that for any linear code, it holds that k+d ≤ n+1. A

maximum distance separable (or MDS) code satisfies k+d = n+1. Since d = n−k+1,

MDS codes are fully described by the parameters (q, n, k). Such an (n, k)q-MDS code

can correct up to b(n− k)/2c errors; it can detect if there are errors whenever there

are no more than n− k of them. For a matrix G generating an MDS code, any set of

k columns of G are linearly independent.

For a thorough introduction to linear codes and proofs of all statements in this

short overview we refer the reader to (Roth, 2006).

Observe that a linear code, due to the linearity of its encoding algorithm, is not

a primitive designed to hide anything about the encoded message (e.g., a popular

choice for the generating matrix is G := (Ik|∗) with Ik being the k × k identity

matrix). However, we show in the following lemma how to turn an MDS code into a

RSS scheme with additional smoothness guarantees.

Lemma 5. Let C be a (n + 1, k)q-MDS code. We set L to be the last column of the

generating matrix G of the code C and we denote by C ′ the (n, k)q-MDS code whose

generating matrix G′ is G without the last column. Let further algorithm Decode of

the MDS code C ′ be of the following form:

1. On input a word c ∈ Fnq , Decode chooses D ⊆ [n] with |D| = k.

2. Let G′D denote the matrix obtained from G′ by eliminating all columns with

indices not in D. Decode now outputs cD ·G′−1
D .

Let Share and Reconstruct work as follows:

• Share(s) for s ∈ Fq first chooses a random row vector W ∈ Fkq such that W ·
L = s, and outputs c ← C ′.Encode(W) (equivalently, we can say that Share(s)

chooses a uniformly random codeword of C whose last coordinate is s, and

outputs the first n coordinates as c).

• Reconstruct(w) for w ∈ Fnq first runs C ′.Decode(w). If it gets a vector W ′, then

output s = W ′ · L, otherwise output s
$← Fq.

183

Then Share and Reconstruct form a t-smooth, strongly t-private (n, t, r)q-RSS for t =

k − 1 and r = d(n+ k)/2e that is (r − 1)-smooth on random secrets.

Proof. Let us consider all required properties from Definitions 27, 28 and 29.

• strong t-privacy: Assume |A| = t (privacy for smaller A will follow immediately

by adding arbitrary coordinates to it to get to size t). Let J = A ∪ {n + 1};
note that |J | = t + 1 = k. Note that for the code C, any k coordinates of a

codeword determine uniquely the input to Encode that produces this codeword

(otherwise, there would be two codewords that agreed on k elements and thus

had distance n−k+1, which is less than the minimum distance of C). Therefore,

the mapping given by EncodeJ : Fkq → F|J |q is bijective; thus coordinates in J are

uniform when the input to Encode is uniform. The algorithm Share chooses the

input to Encode uniformly subject to fixing the coordinate n+ 1 of the output.

Therefore, the remaining coordinates (i.e., the coordinates in A) are uniform.

• r-robustness: Note that C has minimum distance n − k + 2, and therefore C ′

has minimum distance n− k + 1 (because dropping one coordinate reduces the

distance by at most 1). Therefore, C ′ can correct b(n − k)/2c = n − r errors.

Since cA = c̃A and |A| ≥ r, there are at most n − r errors in c̃, so the call to

C ′.Decode(c̃) made by Reconstruct(c̃) will output W̃ = W . Then Reconstruct(c̃)

will output s = W̃ · L = W · L.

• t-smoothness: to prove this, we show that disturbing one share uniformly ran-

dom already randomizes the output of Reconstruct. Let D denote the set cho-

sen by Decode. Since every codeword is uniquely determined by k elements,

the mappings fi : Fq → Fq, x 7→ Encode(G′−1
D (c))n+1 with c ← Fkq , ci = x are

bijective for all i ∈ [k]. Since t = k − 1, c̃D contains at least one entry that is

chosen uniformly at random and thus the claim follows from the fact that the

output of Reconstruct is computed as Encode(G′−1
D (·)).

• (r − 1)-smoothness on random secrets: first, it holds that r − 1 > k and thus

c̃ contains more than k undisturbed shares. We distinguish two cases. Either

D chosen by Decode contains only undisturbed shares (i.e., D ⊆ A), then

Reconstruct will output s which is distributed uniformly random in Fq. Else,

D 6⊆ A. In this case, at least one element of c̃D is distributed uniformly random

and the randomness of the output of Reconstruct follows as in the proof of

t-smoothness.

184

Note that the Shamir’s secret sharing scheme is exactly the above construction

with Reed-Solomon codes (McEliece and Sarwate, 1981). Further, we are not aware

of any decoding algorithm for linear MDS codes that cannot be adopted to comply

with our restrictions on Decode.

Implicit-Only PAKE

PAKE protocols can have two types of authentication: implicit authentication, where

at the end of the protocol the two parties share the same key if they used the same

pass-string and random independent keys otherwise; or explicit authentication where,

in addition, they actually know which of the two situations they are in. A PAKE

protocol that only achieves implicit authentication can provide explicit authentication

by adding key-confirmation flows (Bellare et al., 2000).

The standard PAKE functionality FpwKE from (Canetti et al., 2005) (see Figure

6·17) is designed with explicit authentication in mind, or at least considers that

success or failure will later be detected by the adversary when he will try to use the key.

Thus, it reveals to the adversary whether a pass-string guess attempt was successful

or not. However, some applications could require a PAKE that does not provide

any feedback, and so does not reveal the situation before the keys are actually used.

Observe that, regarding honest players, FpwKE already features implicit authentication

since the players do not learn anything but their own session key.

Definition of implicit-only PAKE. We introduce a new notion called implicit-

only PAKE or iPAKE (see Figure 6·8). The iPAKE ideal functionality is designed to

implement implicit authentication with respect to the adversary as well as honest

players, by not providing the adversary with any feedback in response to a password

guess. Of course, in many cases, the parties and the adversary can later check whether

their session keys match or not, and so whether the pass-strings were the same or

185

The functionality FiPAKE is parameterized by a security parameter λ. It interacts with an adversary S and the
(dummy) parties P0 and P1 via the following queries:

• Upon receiving a query (NewSession, sid, pwi, role) from party Pi:
– Send (NewSession, sid,Pi, role) to S;
– If one of the following is true, record (Pi, pwi) and mark this record fresh:

∗ This is the first NewSession query
∗ This is the second NewSession query and there is a record (P1−i, pw1−i)

• Upon receiving a query (TestPwd, sid,Pi, pw
′
i) from S :

If there is a fresh record (Pi, pwi), then:
– If pwi = pw′i, mark the record compromised;
– If pwi 6= pw′i, mark the record interrupted.

• Upon receiving a query (NewKey, sid,Pi, sk) from S, where |sk| = λ:
If there is no record of the form (Pi, pwi), or if this is not the first NewKey query for Pi, then ignore this
query. Otherwise:

– If at least one of the following is true, then output (sid, sk) to player Pi:
∗ The record is compromised

∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a record (P1−i, pw1−i) with pwi =

pw1−i
– If this record is fresh, both parties are honest, there is a record (P1−i, pw1−i) with pwi = pw1−i,

a key sk′ was sent to P1−i, and (P1−i, pw1−i) was fresh at the time, then output (sid, sk′) to Pi;
– In any other case, pick a new random key sk′ of length λ and send (sid, sk′) to Pi.
– Mark the record (Pi, pwi) as completed.

Figure 6·8: Functionality FiPAKE

not. We stress that this is not leakage from the PAKE protocol itself, but from the

environment.

In addition to the changes we already make to the FpwKE ideal functionality in our

fPAKE functionality description, we make one more change in our iPAKE functionality.

In response to a TestPwd query, the functionality silently updates the internal state

of the record (from fresh to either compromised or interrupted), meaning that

the query outcome is not given to the adversary S. Without going into details, it

is clear that the simulation of an honest party is hard if the simulator S does not

know whether the password it extracted from the corrupt party is correct or not.

However, the simulator gets help from the functionality, which sets honest parties’

keys appropriately.

We further alter this functionality to allow for public labels, as shown in Section

6.11, Figure 6·26. The resulting functionality F`-iPAKE idealizes what we call labeled

implicit-only PAKE (or `-iPAKE for short), resembling the notion of labeled public

key encryption as formalized in (Shoup, 2001). In a nutshell, labels are public au-

186

A(pw ∈ Fp) B(pw′ ∈ Fp)

x
$← FP , `← L, X ← gx

X∗ ← Epw||`(X)
`,X∗−−−−−−−→ y

$← FP , `′ ← L, Y ← gy
`′, Y ∗←−−−−−−− Y ∗ ← Epw′||`′(Y)

Z ← Dpw||`′(Y
∗)x Z ′ ← Dpw′||`(X

∗)y

k ← H(X∗, Y ∗, Z) k′ ← H(X∗, Y ∗, Z ′)
output (`′, k) output (`, k′)

Figure 6·9: Protocol EKE2, in a group G = 〈g〉 of prime order P ,
with a hash function H : G3 → {0, 1}k and a symmetric cipher E ,D
onto G for keys in Fp × L, where L is the label space.

thenticated strings that are chosen by each user individually for each execution of the

protocol. Authentication here means that tampering with the label can be efficiently

detected. Such labels can be used to, e.g., distribute public information such as public

keys reliably over unauthenticated channels.

A UC-Secure `-iPAKE Protocol. In the seminal paper by Bellovin and Mer-

ritt (Bellovin and Merritt, 1992), the Encrypted Key Exchange protocol (EKE) is

proposed, which is essentially a Diffie-Hellman (Diffie and Hellman, 1976) key ex-

change. The two flows of the protocol are encrypted using the pass-string as the

encryption key with an appropriate symmetric encryption scheme. The EKE pro-

tocol has been further formalized by Bellare et al. (Bellare et al., 2000) under the

name EKE2. We present its labeled variant in Figure 6·9. The idea of appending the

label to the symmetric key is taken from (Abdalla et al., 2008). We prove security

of this protocol in the FRO,FIC,FCRS-hybrid model. That is, we use an ideal random

oracle functionality FRO to model the hash function, and ideal cipher functionality

FIC to model the encryption scheme and assume a publicly available common refer-

ence string modeled by FCRS. Formal definitions of these functionalities are given in

Section 6.6.

Theorem 13. If the CDH assumption holds in G, the protocol EKE2 depicted in

Figure 6·9 securely realizes F`-iPAKE in the FRO,FIC,FCRS-hybrid model with respect to

187

static corruptions.

We note that this result is not surprising, given that other variants of EKE2 have

already been proven to UC-emulate FpwKE. Intuitively, a protocol with only two

flows not depending on each other does not leak the outcome to the adversary via

the transcript, which explains why EKE2 is implicit-only. Hashing of the transcript

keeps the adversary from biasing the key unless he knows the correct pass-string or

breaks the ideal cipher. For completeness, we include the full proof in Section 6.11.

6.4.2 Construction

We show how to combine an RSS with a signature scheme and an `-iPAKE to obtain

an fPAKE. The high-level idea is to fix the issue that arose in the protocol from Section

6.13 due to pass-strings being used as one-time pads. Instead, we first expand the

pass-string characters to keys — which we refer to as “character keys” — with large

entropy using `-iPAKE. The resulting character keys are then used as one-time pads

for shares of a chosen output session key. We also apply known techniques from the

literature, i.e., adding signatures and labels to prevent man-in-the-middle attacks.

Our full protocol is depicted in Figure 6·10. It works as follows:

1. In the first phase, the two parties aim at enhancing their pass-strings to a

vector of high-entropy character keys. For this, the pass-strings are viewed as

vectors of characters. The parties repeatedly execute a PAKE on each of these

characters separately. The PAKE will ensure that the character key vectors held

by the two parties match in all positions where their pass-strings matched, and

are independent in all other positions.

2. In the second phase of the protocol one party, the sender, will pick the final

session key uniformly at random and send it in such a way that it reaches the

188

Sender (pw ∈ Fnp) Receiver (pw′ ∈ Fnp)

(vk, sk)
$← SigGen(1λ)

(vk,pwt)t−−−−−−−→
(ε,pw′t)t←−−−−−−

for t = 1, . . . , n `-iPAKE for t = 1, . . . , n

(ε,Kt)t←−−−−−−
(`t,K

′
t)t−−−−−−−→ abort if `r 6= `s for

any r, s or `1 /∈ VK
Let K := (Kt)t∈[n] Let K′ := (K′t)t∈[n]

U
$← Fq , C ← Share(U)

E ← C +K
σE ← Sign(vk, E)

E, σE , vk−−−−−−−−−−−−−−−−−−→ abort if vk 6= `1
output k← U or Vfy(vk, σE , E) = 0

U ′ ← Reconstruct(E −K′)
output k′ ← U ′

Figure 6·10: Protocol fPAKERSS where q ≈ 2λ is a prime number
and + denotes the group operation in Fnq . ε denotes the empty string.
(Share,Reconstruct) is a Robust Secret Sharing scheme with Share :
Fq → Fnq , and (SigGen → VK × SK, Sign,Vfy) is a signature scheme.
The parties repeatedly execute a labeled implicit-only PAKE protocol
with label space VK and key space Fq, which takes inputs from VK ×
Fp. If at any point an expected message fails to arrive (or arrives
malformed), the parties output a random key.

other party only if enough of the character keys match. This is done by applying

an RSS to the key, and sending it to the other party using the character key

vector as a one time pad. The robustness property of the RSS ensures that a

few non-matching password digits do not prevent the receiver from recovering

the sender’s key.

When using the MDS code–based RSS which is described in Lemma 5, the one-

time pad encryption of the shares (which form a codeword) can be viewed as the

code-offset construction for information reconciliation (aka secure sketch) (Juels and

Wattenberg, 1999; Dodis et al., 2004) applied to the character key vectors. We present

our construction in terms of RSS, but we could instead present this construction using

information reconciliation. The syndrome construction of secure sketches 5 can also

be used here instead of the code-offset construction.

189

6.4.3 Security of fPAKERSS

We show that our protocol realizes functionality FMfPAKE in the F`-iPAKE-hybrid model.

In a nutshell, the idea is to simulate without the pass-strings by adjusting the char-

acter keys outputted by F`-iPAKE to the mask of the pass-strings, which is leaked by

FMfPAKE.

Theorem 14. If RSS := (Share : Fq → Fnq ,Reconstruct : Fnq → Fq) is a strongly t-

private, t-smooth (n, t, r)q-RSS that in addition is (r − 1)-smooth on random secrets,

and (SigGen, Sign,Vfy) is an EUF-CMA secure one-time signature scheme, protocol

fPAKERSS securely realizes FMfPAKE with γ = n − t − 1 and δ = n − r in the F`-iPAKE-

hybrid model with respect to static corruptions.

In particular, if we wish key agreement to succeed as long as there are fewer than

δ errors, we instantiate RSS using the construction of Lemma 5 based on a (n+ 1, k)q

MDS code, with k = n−2δ. This will give r = d(n+k)/2e = n− δ, so δ will be equal

to n− r, as required. It will also give γ = n− t− 1 = 2δ.

We thus obtain the following corollary:

Corollary 2. For any δ and γ = 2δ, given an (n + 1, k)q-MDS code for k = n − 2δ

(with minimal distance d = n− k + 2) and an EUF-CMA secure one-time signature

scheme, protocol fPAKERSS securely realizes FMfPAKE in the F`-iPAKE-hybrid model with

respect to static corruptions.

Proof sketch of Theorem 14. We start with the real execution of the protocol

and indistinguishably switch to an ideal execution with dummy parties relaying their

inputs to and obtaining their outputs from FMfPAKE. To preserve the view of the distin-

guisher (the environment Z), a simulator S plays the role of the real world adversary

by controlling the communication between FMfPAKE and Z. During the proof, we build

FMfPAKE and S by subsequently randomizing pass-strings (since the final simulation has

to work without them) and session keys (since FMfPAKE hands out random session keys

190

in certain cases). We have to tackle the following difficulties, which we will describe

in terms of attacks.

• Passive attack: in this attack, Z picks two pass-strings and then observes the

transcript and outputs of the protocol, without having access to any internal

state of the parties. We show that Z cannot distinguish between transcript and

outputs that were either produced using Z’s pass-strings or random pass-strings.

Regarding the outputs, we argue that even in the real execution the session keys

were chosen uniformly at random (with Z not knowing the coins consumed by

this choice) as long as the RSS either reconstructs the uniformly random secret

correctly or outputs a different uniformly random value. Depending on the

distance of the passwords this is guaranteed either by robustness or smoothness

for random secrets, both of which are properties of the RSS. Regarding the

transcript, randomization is straightforward using properties of the one-time

pad.

• Man-in-the-middle attack: in this attack, Z injects a malicious message into

a session of two honest parties. There are several ways to secure protocols

that have to run in unauthenticated channels and are prone to this attack.

Basically, all of them introduce methods to bind messages together to prevent

the adversary from injecting malicious messages. To do this, we need the labeled

version of our iPAKE and a one-time signature scheme6. Unless Z is able to

break a one-time-signature scheme, this attack always results in an abort.

• Honest-but-curious/Active attack: in this attack, Z corrupts one of the parties.

The simulator will get help from FMfPAKE by issuing a TestPwd query, which will

inform him whether the passwords used by both parties are close and, if so, in

6Instead of labels and one-time signature, one could just sign all the messages, as would be done
using the split-functionality (Barak et al., 2005), but this would be less efficient. This trade-off, with
labels, is especially useful when we use a PAKE that admits adding labels basically for free, as it is
the case with the special PAKE protocol we use.

191

which positions they match (i.e., their mask).

– If the sender is honest, we show how to use this information to simulate

the transcript. Note that knowledge of the mask is necessary since, due

to corruption, Z can now actually decrypt the one-time pad and thus the

transcript reveals the positions of the errors in the pass-strings, which are

of course already known to Z. If the simulator does not learn a mask, then

the passwords are too far away and it follows from the strong privacy of

the RSS that real and simulated transcript are indistinguishable from Z’s

view. Note that here, since Z is aware of the non-matching pass-string

positions, it is crucial that strong privacy guarantees that the locations of

all errors are hidden from Z.

– If the receiver is honest and Z injects a malicious message on behalf of the

sender, the simulator uses the mask to compute the output of the honest

receiver. If no mask is obtained then again the pass-strings are too far away

from each other, and the smoothness property of the RSS (for arbitrarily

chosen secrets) says that the receiver’s output can be simulated by chosing

it uniformly at random.

One interesting subtlety that arises is the usage of the iPAKE. Observe that the UC

security notion for a regular PAKE as defined by Canetti et al. (Canetti et al., 2005)

and recalled in Section 6.6 provides an interface to the adversary to test a pass-string

once and learn whether it is right or wrong. Using this notion, our simulator would

have to answer to such queries from Z. Since this is not possible without FMfPAKE

leaking the mask all the time, it is crucial to use the iPAKE variant that we introduce

in Section 6.11. Using this stronger notion, the adversary is still allowed one pass-

string guess which may affect the output, but the adversary learns nothing more

about the outcome of his guess than he can infer from whatever access he has to the

192

outputs alone. Since our protocol uses the outputs of the PAKE as one-time pad keys,

it is intuitively clear that by preventing Z from getting additional leakage about these

keys, we protect the secrets of honest parties.

6.4.4 Further Discussion: Removing Modeling Assumptions

All of the assumptions in our protocol come from the realization of the F`-iPAKE func-

tionality. The `-iPAKE protocol from section 6.11 requires a random oracle, an ideal

cipher and a CRS. We note that we can remove everything except for the CRS by,

e.g., taking the PAKE protocol introduced by Katz and Vaikuntanathan (Katz and

Vaikuntanathan, 2011). This protocol also securely realizes our F`-iPAKE functional-

ity7. However, it is more costly than our `-iPAKE protocol since both messages each

contain one non-interactive zero knowledge proof.

Since fPAKE implies a regular PAKE (simply set δ = 0), Canetti et al. (Canetti

et al., 2005) give strong evidence that we cannot hope to realize FfPAKE without a

CRS.

6.5 Comparison of fPAKE Protocols

In this section, we give a brief comparison of our fPAKE protocols. First, in Fig-

ure 6·11, we describe the assumptions necessary for the two constructions, and the

security parameters that they can achieve.

Then, in Figure 6·12, we describe the efficiency of the constructions when concrete

7In a nutshell, their protocol is implicit-only for the same reason as the `-iPAKE protocol we use
here: there are only two flows that do not depend on each other, so the transcript cannot reveal the
outcome of a guess unless it reveals the pass-string to anyone. Regarding the session keys, usage
of a hash function takes care of randomizing the session key in case of a failed dictionary attack.
Furthermore, the protocol already implements labels. A little more detailed, looking at the proof
by Katz and Vaikuntanathan (Katz and Vaikuntanathan, 2011), the simulator does not make use of
the answer of TestPwd to simulate any messages. Regarding the session key that an honest player
receives in an corrupted session, they are chosen to be random in the simulation (in Expt3). Letting
this happen already in the functionality makes the simulation independent of the answer of TestPwd
also regarding the computation of the session keys.

193

Assumptions Threshold
δ

Gap γ − δ

fPAKERSS UC-secure `-iPAKE < n/2 δ
fPAKEYGC (1) UC-secure OT (2) projective,

output-projective and
garbled-output random secure

garbling scheme

Any None

Figure 6·11: Assumptions, Distance Thresholds and Functional-
ity/Security Gaps achieved by the two schemes. fPAKERSS is the con-
struction in Figure 6·10. fPAKEYGC is the construction in Figure 6·5
with the split functionality transformation of Barak et al. (Barak et al.,
2005).

primitives (OT / `-iPAKE) are used to instantiate them. fPAKERSS is instantiated as

the construction in Figure 6·10 with the `-iPAKE in Figure 6·9 and an RSS. fPAKEYGC

is instantiated as the construction in Figure 6·5 with the UC-secure oblivious transfer

protocol of Chou and Orlandi (Chou and Orlandi, 2015) described in Figure 6·25, with

the garbling scheme of Bal et al. (Ball et al., 2016), and with the split functionality

transformation of Barak et al. (Barak et al., 2005). Though fPAKEYGC can handle any

efficiently computable notion of distance, Figure 6·12 assumes that both constructions

use Hamming distance (and that, specifically, fPAKEYGC uses the circuit described in

Figure 6·7). We describe efficiency in terms of sub-operations (per-party, not in

aggregate).

Note that these concrete primitives each have their own set of required assump-

tions. Specifically, the `-iPAKE in Figure 6·9 requires a random oracle (RO, described

in Figure 6·14), ideal cipher (, described in Figure 6·15) and common reference string

(CRS, described in Figure 6·13). The oblivious transfer protocol in Figure 6·25 re-

quires a random oracle. The garbling scheme of Bal et al. (Ball et al., 2016) requires

a mixed modulus circular correlation robust hash function, which is a weakening of

the random oracle assumption.

For fPAKERSS, the factor of n arises from the n times EKE2 is executed. For

194

fPAKEYGC, the factor of n comes from the garbled circuit. Additionally, in fPAKEYGC,

three communication flows come from OT. The last of these is combined with send-

ing the garbled circuits. Two additional flows of communication come from the split

functionality transformation. The need for signatures also arises from the split func-

tionality transformation.
O

u
tp

u
t

K
e
y

F
o
rm

a
t

#
(B

id
ir

e
c
ti

o
n
a
l)

C
o
m

-
m

u
n
ic

a
ti

o
n

F
lo

w
s

#
E

x
p
o
n
e
n
ti

a
ti

o
n
s

#
H

a
sh

e
s

#
E

n
c
ry

p
ti

o
n
s

#
D

e
c
ry

p
ti

o
n
s

#
S
h
a
re

#
R

e
c
o
n
st

ru
c
t

#
S
ig

K
e
y
G

e
n
s

#
S
ig

n
s

#
S
ig

V
e
ri

fi
e
s

fPAKERSS
sender Fq 2 2n n n n 1 0 1 1 0
receiver 0 1 0 0 1

fPAKEYGC {0, 1}λ 5 3n+ 2 4n+ 7 2n n − − 1 5 5

Figure 6·12: Efficiency (in Terms of Sub-Operations) of the Two
Constructions. Here, by “bidirectional communication flow” we mean
two flows, one in each direction, which do not depend on one another.
fPAKERSS is the construction in Figure 6·10 instantiated with the `-
iPAKE in Figure 6·9. The first fPAKERSS row describes the sender’s
efficiency; the second row describes the receiver’s efficiency. fPAKEYGC

is the construction in Figure 6·5 instantiated with the UC-secure obliv-
ious transfer protocol of Chou and Orlandi (Chou and Orlandi, 2015)
described in Figure 6·25, the garbling scheme of Bal et al. (Ball et al.,
2016), and with the split functionality transformation of Barak et
al. (Barak et al., 2005). fPAKEYGC is described in a single row, since it
is a symmetric protocol.

Efficiency Optimizations to fPAKEYGC We can make several small efficiency

improvements to the fPAKEYGC construction which are not reflected in Figure 6·12.

First, instead of using the split functionality transformation of Barak et al. (Barak

et al., 2005), we can use the split split functionality of Camenisch et al. (Camenisch

et al., 2010). It uses a split key exchange functionality to establish symmetric keys,

and then uses those to symmetrically encrypt and authenticate each flow. While this

does not save any communication rounds, it does reduce the number of public key

operations needed. Second, if the pass-strings are more than λ bits long (where λ

195

is the security parameter), OT extensions that are secure against malicious adver-

saries (Afshar et al., 2015) can be used. If the pass-strings are fewer than λ bits long,

then nothing is to be gained from using OT extensions, since OT extensions require λ

“base OTs”. However, if the pass-strings are longer — say, if they are some biometric

measurement that is thousands of bits long — then OT extensions would save on the

number of public key operations, at the cost of an extra round of communication.

6.6 Appendix A: Ideal UC Functionalities

Common Reference String. The Common Reference String (CRS) functionality

was already defined in (Canetti, 2007). We recall it in Figure 6·13 for completeness.

Note that we do not let FCRS check whether a party is allowed to obtain the CRS —

it is assumed public.

The functionality FDCRS is parameterized with a distribution D and proceeds as
follows:
• Upon receiving (sid, crs):

– If there is no value r recorded, then choose and record a value r
$← D.

– Reply with (sid, r).

Figure 6·13: Functionality FCRS

Random Oracles. The Random Oracle (RO) functionality was already defined by

Hofheinz and Müller-Quade in (Hofheinz and Müller-Quade, 2004). We recall it in

Figure 6·14 for completeness. It is clear that the random oracle model UC-emulates

this functionality.

Ideal Cipher. An ideal cipher (Bellare et al., 2000) is a block cipher that takes a

plaintext or a ciphertext as input. We describe the ideal cipher functionality FIC in

Figure 6·15, in the same vein as the above random oracle functionality. It is clear that

the ideal cipher model UC-emulates this functionality. Note that this functionality

196

The functionality FRO proceeds as follows, running on security parameter k, with a
set of (dummy) parties P1, . . . ,Pn and an adversary S:
• FRO keeps a list L (which is initially empty) of pairs of bit strings.
• Upon receiving a value (sid,m) (with m ∈ {0, 1}∗) from some party Pi or

from S, do:
– If there is a pair (m, h̃) for some h̃ ∈ {0, 1}k in the list L, set h := h̃.
– If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair

(m,h) ∈ L.
Once h is set, reply to the activating machine (i.e., either Pi or S) with (sid, h).

Figure 6·14: Functionality FRO

characterizes a perfectly random permutation for each key by ensuring injectivity for

each query simulation: to this aim, it uses a list L and projections Msk and Csk, that

are global, independently of the sid.

Oblivious Transfer. The Oblivious Transfer (OT) functionality was defined by

Canetti et al. (Canetti et al., 2002). We recall it in Figure 6·16.

Password-Authenticated Key Exchange. The initial PAKE functionality FpwKE

has been defined by Canetti et al. (Canetti et al., 2005). We recall it in Figure 6·17.

We stress that this functionality immediately leaks the result of the TestPwd-query,

which models explicit authentication; when the adversary tries a password, it learns

whether the guess was correct or not.

In our paper, we start from this functionality to derive the basic functionality

fPAKE, in Section 6.2, after a few changes:

• we consider only two parties — P0 and P1 —, which is enough since universal

composability takes care of ensuring that a two-party functionality remains

secure in a multi-party world;

• we do not allow the adversary to set Pi’s key if P1−i is corrupted but did not

guess Pi’s password. We make this change in order to protect an honest Pi

from, for instance, revealing sensitive information to an adversary who did not

197

The functionality FIC takes as input the security parameter k, and interacts with
an adversary S and with a set of (dummy) parties P1, . . . ,Pn by means of these
queries:
• FIC keeps a (initially empty) list L containing 3−tuples of bit strings and two

(initially empty) sets Csk and Msk for every sk. (The sets are not created until
sk is first used, thus avoiding the need to instantiate exponentially many sets.)
• Upon receiving a query (sid, E, sk,m) (with m ∈ {0, 1}k) from some

party Pi or S, do:
– If there is a 3−tuple (sk,m, c̃) for some c̃ ∈ {0, 1}k in the list L, set
c := c̃.

– If there is no such record, choose uniformly c ∈ {0, 1}k\Csk which is the
set consisting of ciphertexts not already used with sk. Next, it stores
the 3−tuple (sk,m, c) ∈ L and sets both Msk ← Msk ∪ {m} and Csk ←
Csk ∪ {c}.

Once c is set, reply to the activating machine with (sid, c).
• Upon receiving a query (sid,D, sk, c) (with c ∈ {0, 1}k) from some

party Pi or S, do:
– If there is a 3−tuple (sk, m̃, c) for some m̃ ∈ {0, 1}k in L, set m := m̃.
– If there is no such record, choose uniformly m ∈ {0, 1}k\Msk which

is the set consisting of plaintexts not already used with sk. Next, it
stores the 3−tuple (sk,m, c) ∈ L and sets both Msk ← Msk ∪ {m} and
Csk ← Csk ∪ {c}.

Once m is set, reply to the activating machine with (sid,m).

Figure 6·15: Functionality FIC

The functionality FOT is parameterized by a security parameter λ. It interacts
with an adversary S and the players S (the sender) and R (the receiver) via the
following queries:
• Upon receiving a query (Send, sid, x0, x1) from S, where x0, x1 ∈
{0, 1}λ, record the tuple (x0, x1).
• Upon receiving a query (Receive, sid, i) from R:

If there is a record (x0, x1), then send (sid, xi) to R and sid to S, and halt.
Otherwise, ignore the query.

Figure 6·16: Functionality FOT

198

The functionality FpwKE is parameterized by a security parameter k. It interacts
with an adversary S and a set of (dummy) parties P1, . . . ,Pn via the following
queries:
• Upon receiving a query (NewSession, sid,Pi,Pj, pw, role) from

party Pi:
– Send (NewSession, sid,Pi,Pj, role) to S;
– If one of the following is true, record (Pi,Pj, pw) and mark this record

fresh:
∗ This is the first NewSession query
∗ This is the second NewSession query and there is a

record (Pj,Pi, pw′)
• Upon receiving a query (TestPwd, sid,Pi, pw′) from S :

If there is a fresh record (Pi,Pj, pw), then do:
– If pw = pw′, mark the record compromised, and reply to S with correct

guess ;
– If pw 6= pw′, mark the record interrupted, and reply to S with wrong

guess.
• Upon receiving a query (NewKey, sid,Pi, sk) from the S, where
|sk| = k:
If there is a record of the form (Pi,Pj, pw), and this is the first NewKey

query for Pi, then:
– If this record is compromised, or either Pi or Pj is corrupted, then

output (sid, sk) to player Pi;
– If this record is fresh, there is a record (Pj,Pi, pw′) with pw = pw′, a

key sk′ was sent to Pj, and (Pj,Pi, pw) was fresh at the time, then
output (sid, sk′) to Pi;

– In any other case, pick a new random key sk′ of length k and
send (sid, sk′) to Pi.

Either way, mark the record (Pi,Pj, pw) as completed.

Figure 6·17: Functionality FpwKE

199

Challenger Adversary A
f, x←−−−−−−−−−−−−−−−−−−

(F, e, d)← Gb(1λ, f)
X ← En(e, x)

b
$← {0, 1}
If b = 0:

r = Y1−y
If b = 1:

r is chosen at random
(or simulated) F,X, r−−−−−−−−−−−−−−−−−−→b′←−−−−−−−−−−−−−−−−−−

A wins (i.e. the game returns 1) if b′ = b

Figure 6·18: The GOutRandAG (1λ) Game, where y = f(x) ∈ {0, 1}, Yy
is the corresponding garbled output (or output label), and Y1−y is the
other output label.

successfully guess her password, but did corrupt her partner.

6.7 Appendix B: Garbled Output Randomness: A New Yao’s

Garbled Circuit Definition

We refer to Yakoubov (Yakoubov, 2017) for a gentle introduction to Yao’s Garbled

Circuits. Note that the authenticity property implies that, in an output-projective

garbling scheme, if the output is a single bit, the second output label and the sec-

ond token of d are hard for the evaluator to guess (no probabilistic polynomial-time

adversary can guess it with non-negligible probability). However, for our fPAKE con-

struction (Section 6.3), we require a stronger property: not only should the second

output label be hard to guess, but it should be indistinguishable from random. We

call this garbled-output randomness.

Define the adversary A’s advantage in the the garbled-output randomness game

(Figure 6·18) as

GOutRandAdvG(1
λ,A) =

∣∣∣Pr[GOutRandAG (1λ) = 1]− 1

2

∣∣∣.
Definition 30. An output-projective binary output garbling scheme G = (Gb,En,Ev,

De) is garbled-output random if for all sufficiently large security parameters λ, for

200

any polynomial time adversary A,

GOutRandAdvG(1
λ,A) = ν.

In order to achieve this, we modify the scheme of Bal et al. (Ball et al., 2016) to

put the output wire label through the hash function H one more time; the two labels

will thus be Y0 = H(finaloutput,W 0
output) and Y1 = H(finaloutput,W 0

output ⊕R), where

W 0
output and W 0

output ⊕R were the labels in the scheme of Bal et al.

Theorem 15. This modified scheme is garbled-output random (Definition 30) when

the key derivation function H is mixed-modulus circular correlation robust (Definition

1 of Bal et al. (Ball et al., 2016)).

Proof Sketch. Definition 30 requires the indistinguishability of (real garbled circuit

and inputs, real second output label) and (real garbled circuit and inputs, random sec-

ond output label); in shorthand, we want to show that (real, real) ∼ (real, random),

where ∼ denotes computational indistinguishability.

We use the setting (simulated garbled circuit and inputs, random second out-

put label) — (simulated, random) for short — as a hybrid step. We show that

(real, real) ∼ (simulated, random). We do this by having the adversary A (modeled

after the one in Choi et al. (Choi et al., 2012)) compute the second output label

O(finaloutput, 2, 2,W b
output, 1, 0) (using the mixed-modulus circular correlation robust-

ness oracle) and send it to the obliviousness adversary B along with the garbled

circuit and garbled inputs. If the oracle is random, B will see (simulated, random).

Otherwise, B will see (real, real). If B can distinguish between those two, then

A can use that to break mixed-modulus circular correlation robustness. Hence,

(real, real) ∼ (simulated, random).

Because the garbling scheme is oblivious, we know that (simulated, random) ∼
(real, random), since we can always add a random value to the adversary’s view in

the obliviousness game.

Now that we have (real, real) ∼ (simulated, random) and (simulated, random)

∼ (real, random), we can conclude that (real, real) ∼ (real, random).

201

6.8 Appendix C: Proof of Theorem 12

We proceed in a series of games, where no probabilistic polynomial-time environment

can distinguish the view of the adversary A in each game from that in the previ-

ous game. We start with the real execution of the protocol and end with the ideal

execution. Figure 6·19 summarizes the changes made in each game.

Game G0: Real

This is the real execution of ΠRFE where the environment Z runs the protocol

(described in Figure 6·5) with parties P0 and P1, both having access to an ideal

OT functionality FOT, and an adversary A that, w.l.o.g., can be assumed to be

the dummy adversary as shown in (Canetti, 2001, section 4.4.1).

Game G1: Adding Ideal Layout

This is the real game, but with dummy party and ideal functionality nodes

thrown in and all previously existing nodes (except the environment) grouped

into one machine, called the simulator (SRFE, or S for short). Please refer to

Figure 6·20 for the differences between G0 and G1.

Game G2: Adding F ’s Record-Keeping and TestPwd Interface

Modifications to F : We now allow F to do all of the record-keeping described

in Figure 6·4.

F still forwards NewSession queries from the dummy parties in their entirety

(including the pass-string) to SRFE, but also records them. Since this is a matter

of internal record-keeping only, this does not affect A’s view.

Modifications to SRFE: SRFE creates NewKey queries for F from whatever output

the simulated parties produce. In this game, F still simply forwards the keys it

202

Game Functionality F SRFE Property UsedNewSession TestPwd NewKey
Game G0 N/A N/A N/A N/A

Game G1
forwards

inputs to SRFE

forwards
outputs to

dummy parties

runs protocol
for honest

parties

Game G2 records inputs
creates NewKey

queries from
party outputs

b
o
th

p
a
rt

ie
s

h
o
n

es
t Game G3

chooses keys
for both

parties when
d(pw0, pw1) ≤

δ

garbled output
randomness

Game G4

chooses key for
P0 when

d(pw0, pw1) >
δ

garbled output
randomness

Game G5

chooses keys
for both

parties when
d(pw0, pw1) >

δ

garbled output
randomness

Game G6
simulates
F0, X0

obliviousness

Game G7

does not
forward
pw0, pw1

simulates
F1, X1

obliviousness

P
i

h
o
n

es
t,
P

1
−
i

co
rr

u
p

t Game G8

replaces the
malicious
NewSession

input with the
one given by
SRFE

extracts
malicious

pw′1−i from
OT, and tells
F to replace
the malicious
NewSession

input with
pw′1−i

Game G9

chooses key for
Pi when

d(pw0, pw1) >
δ (now fully

implemented)

garbled output
randomness

Game G10

simulates
Fi, Xi using
d(pwi, pw′1−i)

privacy

Game G11
does not

forward pwi

fully
implemented

makes TestPwd

query to set
pw′i

Figure 6·19: A Summary of the Sequence of Games in the Proof of
Theorem 12

203

FOT

P0 P1

A

Z Z

F

S

P0 P1

FOT

A

Figure 6·20: Transition from game G0 (left) to game G1 (right),
showing a setting where both parties are honest.

is given to the dummy parties without modifying them, so this does not affect

A’s view.

Game G3: Allowing F to Choose Keys For Two Honest Parties With

Close Pass-strings

Modifications to F : We now allow F to follow the instructions in Figure 6·4 to

choose the key when P0 and P1 are both honest, and d(pw0, pw1) ≤ δ.

We can use any environment who can distinguish this game from Game G2 to

build an adversary B that can break the garbled output randomness property

(Definition 30, Theorem 15) of our garbling scheme.

Since both parties are honest, in order to use the environment as a distinguisher,

the adversary needs to give the environment a transcript of the parties’ inter-

actions (F0, X0,0, F1, X1,1) as well as the parties’ output keys. Because we are

in the OT hybrid model, the environment sees neither inputs to the OT nor its

outputs.

Our adversary B executes SRFE’s simulation of P0 with the F of Game G2 with

204

some modifications. First, it finds a pass-string pw such that d(pw0, pw) >

δ. (Note that in order for this reduction to work, such a pass-string must

be efficiently computable, which it is by the assumption in the statement of

Theorem 12.) Instead of running Gb, B queries the garbled output randomness

challenger on (f, (pw0, pw)) to obtain (F0, X0, r). Let X0 = (X0,0, X0,1). Note

that F0 and X0,0 are generated by the challenger exactly as they would be by

SRFE, so those values do not change. (X0,1 is different, since pw is different from

pw1, but X0,1 is not visible to the environment.) Since the adversary used a

pass-string pw that is dissimilar to pw1, it uses the value r — corresponding to

the output label not returned by Ev(F0, X0) — as k0,correct. (Ev(F0, X0) would

give k0,wrong.) If b = 0, the challenger will return the actual k0,correct as r, and the

environment’s view will be that of Game G2. If b = 1, the challenger will give a

random value as r. If r is truly random, then so is r⊕ Y1; so, the environment’s

view will be that of Game G3. (Note that we do not change the way in which

P1 generates F1, X1, but we do set P1’s output key to be the same as P0’s.

This will be the key that an honest execution of the protocol would produce if

b = 0, and random otherwise.) The adversary B then returns the environment’s

guess as b′. The advantage of B in the garbled output randomness game will be

exactly the same as that of the environment in distinguishing between Game G2

and Game G3.

Game G4: Allowing F to Choose Keys For One of Two Honest Parties

With Dissimilar Pass-strings

Modifications to F : We now allow F to follow the instructions in Figure 6·4 to

choose the key for P0 when P0 and P1 are both honest, and d(pw0, pw1) > δ.

We can use any environment who can distinguish this game from Game G3 to

build an adversary B that can break the garbled output randomness property

205

(Definition 30, Theorem 15) of our garbling scheme.

Our adversary B executes SRFE’s simulation of P0 with the F of Game G3

with some modifications. Instead of running Gb, B queries the garbled output

randomness challenger on (f, (pw0, pw1)) to obtain (F0, X0, r). Note that F0

and X0 are generated by the challenger exactly as they would be by SRFE, so

these values do not change. If b = 0, the challenger will return the actual

k0,correct as r, and the environment’s view will be that of Game G3. If b = 1,

the challenger will give a random value as r. If r is truly random, then so is

r ⊕ Y1; so, the environment’s view will be that of Game G4. The adversary B

then returns the environment’s guess as b′. The advantage of B in the garbled

output randomness game will be exactly the same as that of the environment

in distinguishing between Game G3 and Game G4.

Game G5: Allowing F to Choose Keys For Both Honest Parties With

Dissimilar Pass-strings

Modifications to F : We now allow F to follow the instructions in Figure 6·4 to

choose the key for P1 as well as for P0 when P0 and P1 are both honest, and

d(pw0, pw1) > δ.

We can use any environment who can distinguish this game from Game G4

to build an adversary that can break the garbled output randomness property

(Definition 30, Theorem 15) of our garbling scheme, exactly as we did in the

reduction above.

Game G6: Simulating F,X for One of Two Honest Parties

Modifications to SRFE: Consider the case when both P0 and P1 are honest. In

this game, the simulator replaces P0’s garbled circuit and input with simulated

ones. SRFE does not need to simulate anything relating to the OT, since the

206

environment cannot observe OT functionality inputs or outputs if both partic-

ipating parties are honest. SRFE uses the obliviousness simulator to generate

F0, X0 (while continuing to generate F1, X1 honestly), and sends the garbled

circuits and the appropriate parts of the garbled inputs between the parties.

SRFE outputs ⊥ bot as both parties’ keys, since the outputs don’t matter - F

takes care of outputting appropriate keys as of a few games ago (Game G3 if

d(pw0, pw1) ≤ δ, and Games G4,G5 otherwise), so this change is not observable

by the environment.

We can use any environment who can distinguish this game from Game G5 to

build an adversary B that can break the obliviousness property of our garbling

scheme. B executes SRFE’s simulation of P0 as in Game G5, but instead of

generating (F0, X0) and (F1, X1) according to the protocol, it queries the oblivi-

ousness challenger on (f, (pw0, pw1)) to obtain (F0, X0). If b = 0, the challenger

will return actual (Fi, Xi) values, and the environment’s view we will be that

of Game G5. If b = 1, the challenger will return simulated values, and the

environment’s view will be that of this game. The adversary B then returns

the environment’s guess as b′. The advantage of B in the obliviousness game

will be exactly the same as that of the environment in distinguishing between

Game G5 and Game G6.

Game G7: Removing Pass-string Forwarding Always

Modifications to F : We now modify F to forward only (NewSession, sid,Pi) to

SRFE (omitting the pass-string pwi) for Pi ∈ {P0,P1} when P0 and P1 are both

honest.

Modifications to SRFE: In Game G6, SRFE started simulating P0’s messages

without using knowledge of pw0. SRFE now also simulates P1’s messages by using

the obliviousness simulator to generate the garbled circuit and input F1, X1.

207

We can use any environment who can distinguish this game from Game G6 to

build an adversary B that can break the obliviousness property of our garbling

scheme. B executes SRFE’s simulation of P1 as in Game G6, but instead of

generating (F1, X1) according to the protocol, it queries the obliviousness chal-

lenger on (f, (pw1, pw0)) to obtain (F1, X1). If b = 0, the challenger will return

actual (F1, X1) values, and the environment’s view we will be that of Game G6.

If b = 1, the challenger will return simulated values, and the environment’s view

will be that of this game. The adversary B then returns the environment’s guess

as b′. The advantage of B in the obliviousness game will be exactly the same

as that of the environment in distinguishing between Game G6 and Game G7.

Game G8: Setting the Malicious Input as in the “Standard Corruption

Model”

Modifications to SRFE: In this game, SRFE sets a corrupt party P1−i’s NewSession

input according to the standard corruption model (Canetti, 2001). It does so as

soon as it sees pw′1−i, when it is given as an input to the ideal OT functionality.

Since F does not currently use pw1−i, this does not affect the environment’s

view.

Game G9: Allowing F to Choose the Key For An Honest Party With a

Pass-string Dissimilar to Its Corrupt Partners’

Modifications to F : We now allow F to follow the instructions in Figure 6·4 to

choose all keys. Note that the only remaining scenario this affects is the one

where only one party Pi ∈ {P0,P1} is honest, and d(pw0, pw1) > δ. If both

parties are corrupt, or if only one party is corrupt and d(pw0, pw1) ≤ δ, F still

simply forwards the output key.

We can use any environment who can distinguish this game from Game G8 to

208

build an adversary B that can break the garbled output randomness property

(Definition 30, Theorem 15) of our garbling scheme. Our adversary B executes

SRFE’s simulation of P0 with the F of Game G8 with some modifications. In-

stead of running Gb first, it waits to see P1−i’s input pw′1−i to the ideal OT

functionality, and then queries the garbled output randomness challenger on

(f, (pwi, pw′1−i)) to obtain (Fi, Xi, r). Note that Fi and Xi are generated by the

challenger exactly as they would be by SRFE, so those values do not change. The

adversary then uses r as ki,correct. If b = 0, the challenger will return the actual

ki,correct as r, and the environment’s view will be that of Game G8. If b = 1,

the challenger will give a random value as r. If r is truly random, then so is

r⊕ Y1−i; so, the environment’s view will be that of Game G9. The adversary B

then returns the environment’s guess as b′. The advantage of B in the garbled

output randomness game will be exactly the same as that of the environment

in distinguishing between Game G8 and Game G9.

Game G10: Simulating Garbled Circuit and Inputs For An Honest Party

With a Corrupt Partner

Modifications to SRFE: In this game, SRFE simulates Fi and Xi when Pi is honest

and P1−i is corrupt.

In more detail, SRFE proceeds as follows on behalf of Pi:

• SRFE postpones step 1.

• In step 2, SRFE:

– Plays an OT sender as follows:

∗ Waits for P1−i to provide their select bits to the OT. As a result,

SRFE learns the pass-string used by P1−i, pw′1−i.

∗ If d(pwi, pw′1−i) ≤ δ sets y = 1, and sets y = 0 otherwise.

∗ Uses the privacy simulator for the garbling scheme to generate

209

(Fi, Xi, di)← SIM(1λ, f, y).

∗ Parses (Xi,i, Xi,1−i)← Xi.

∗ Sends Xi,1−i to P1−i as the OT output.

– Plays an OT receiver honestly.

• SRFE follows the instructions in Figure 6·5 for steps 3-8.

We can use any environment who can distinguish this game from Game G9 to

build an adversary B that can break the privacy property of our garbling scheme.

Our adversary B executes SRFE’s simulation of P0 with some modifications.

Instead of running the privacy simulator SIM, it queries the privacy challenger

on (f, (pwi, pw′1−i)) to obtain (Fi, Xi, di). If b = 0, the challenger will return

actual (Fi, Xi, di) values, and the environment’s view will be that of Game G9;

if b = 1, the challenger return simulated values, and the environment’s view will

be that of this game. The adversary B then returns the environment’s guess as

b′. The advantage of B in the privacy game will be exactly the same as that of

the environment in distinguishing between Game G9 and Game G10.

Game G11: Removing Pass-string Forwarding To An Honest Party With

a Corrupt Partner

Modifications to F :

• If Pi is honest and P1−i is corrupt, then, upon receiving a NewSession

query, F forwards only (NewSession, sid,Pi) to SRFE (omitting the pass-

string pwi).

• F now processes TestPwd queries (which were not issued in any prior game)

according to the instructions in Figure 6·4. Given a (TestPwd, sid,Pi)

query (Pi ∈ {P0,P1}), if d(pw0, pw1) ≤ δ, F sends pwi to SRFE.

Modifications to SRFE: Now that SRFE does not know Pi’s pass-string, it must

210

simulate the honest party’s messages without that knowledge.

In more detail, SRFE proceeds as follows on behalf of Pi:

• SRFE postpones step 1.

• In step 2, SRFE:

– Plays an OT sender as follows:

∗ As in Game G10, waits for P1−i to provide their select bits to the

OT. As a result, SRFE learns the pass-string used by P1−i, pw′1−i.

∗ Makes a (TestPwd, sid,Pi) query to F . If d(pwi, pw′1−i) ≤ δ (that

is, the adversary has approximately guessed Pi’s pass-string), SRFE

learns pwi, and sets pw′i = pwi. Otherwise, it sets pw′i at random

such that d(pw′i, pw′1−i) > δ, and uses pw′i in place of pwi in the

rest of the simulation.

∗ As in Game G10, If d(pwi, pw′1−i) ≤ δ sets y = 1, and sets y = 0

otherwise.

∗ As in Game G10, uses the privacy simulator for the garbling scheme

to generate (Fi, Xi, di)← SIM(1λ, f, y).

∗ As in Game G10, parses (Xi,i, Xi,1−i)← Xi.

∗ As in Game G10, sends Xi,1−i to P1−i as the OT output.

– Plays an OT receiver honestly with pw′i.

• SRFE follows the instructions in Figure 6·5 for steps 3-8.

Nothing could have changed from the point of view of Z. If d(pwi, pw′1−i) ≤ δ,

this game is identical to Game G10. If d(pwi, pw′1−i) > δ, a random pw′i is used

instead of pwi. However, pw′i only affects the OT execution with Pi as receiver,

where P1−i does not receive any outputs anyway. In this case, Pi’s output key

gets set randomly by F as of Game G9, so that does not change.

In Figure 6·21, we show the simulator SRFE for ΠRFE.

211

• Upon receiving (NewSession, sid,Pi) from FPRFE for honest party Pi when P1−i is also honest, SRFE generates
Fi, X1−i using the obliviousness simulator for the garbling scheme, and sends those to P1−i.

• Upon receiving (NewSession, sid,Pi) from FPRFE for honest party Pi when P1−i is corrupt, SRFE does the
following:

– SRFE postpones step 1.
– In step 2, SRFE:

∗ Plays an OT sender as follows:
· Waits for P1−i to provide their select bits to the OT. As a result, SRFE learns the pass-

string used by P1−i, pw′1−i.

· Makes a (TestPwd, sid,Pi) query to F . If d(pwi, pw′1−i) ≤ δ (that is, the adversary has

approximately guessed Pi’s pass-string), SRFE learns pwi, and sets pw′i = pwi. Otherwise,
it sets pw′i at random such that d(pw′i, pw′1−i) > δ, and uses pw′i in place of pwi in the
rest of the simulation.
· If d(pwi, pw′1−i) ≤ δ sets y = 1, and sets y = 0 otherwise.
· Uses the privacy simulator for the garbling scheme to generate (Fi, Xi, di) ←
SIM(1λ, f, y).
· Parses (Xi,i, Xi,1−i)← Xi.
· Sends Xi,1−i to P1−i as the OT output.

∗ Plays an OT receiver honestly with pw′i.
– SRFE follows the instructions in Figure 6·5 for steps 3-8 with pw′i.

Additionally, SRFE forwards all other instructions from Z to A and reports all output of A towards Z. Instructions
of corrupting a player are only obeyed if they are received before the protocol started, i.e., before S received any
NewSession query from FPRFE.

Figure 6·21: Simulator SRFE for ΠRFE

6.9 Appendix D: Proof that sFP
RFE is Enough to Realize FP

fPAKE

In Figure 6·22, we describe a protocol fPAKEYGC which trivially realizes FPfPAKE in the

sFPRFE-hybrid model.

Upon receiving the input (sid, pwi), Pi ∈ {P0,P1} does the following:
• Sends (Init, sid) to sFPRFE;
• Sends (NewSession, sid, pwi) to sFPRFE;
• Waits for k from sFPRFE, and
• Outputs k.

Figure 6·22: Protocol fPAKEYGC realizing FPfPAKE in the sFPRFE-hybrid
model.

Theorem 16. Protocol fPAKEYGC realizes FPfPAKE in the sFPRFE-hybrid model.

Proof. For every efficient adversary A, we describe a simulator SfPAKE in Figure 6·23

such that no efficient environment can distinguish an execution with the real protocol

fPAKEYGC and A from an execution with the ideal functionality FPfPAKE and SfPAKE.

Since the environment does not get any information about the honest parties except

their output, all the simulator needs to do is respond to queries to sFPRFE. Since the

212

honest party does nothing except query the ideal functionality sFPRFE, and its output

gets replaced by values chosen by FPfPAKE, there is nothing to simulate.

SfPAKE responds to queries to sFPRFE as follows:
• Upon getting (Init, sid) fromA on behalf of corrupt party P1−i ∈ {P0,P1},
SfPAKE does nothing.
• Upon getting (Init, sid,Pi, H, sidH) from A, SfPAKE does nothing.
• Upon getting (NewSession, sid, pwi) from A on behalf of honest party Pi ∈
{P0,P1}, SfPAKE does nothing.
• Upon getting (NewSession, sid, pw′1−i) from A on behalf of corrupt party
P1−i ∈ {P0,P1}, SfPAKE:

– Records pw′1−i;
– Sends (TestPwd, sid,Pi, pw′1−i) to FPfPAKE;
– If d(pwi, pw′1−i) ≤ δ, SfPAKE learns pwi.

• Upon getting a (TestPwd, sid,Pi) query from A, SfPAKE responds with the
output of the TestPwd query above.
• Upon getting a (NewKey, sid,Pi, ki) query from A, if Pi is corrupt, SfPAKE

outputs ki to Pi. In any case, SfPAKE forwards (NewKey, sid,Pi, ki) to FPfPAKE.
Additionally, SfPAKE forwards all other instructions from Z to A and reports all
output of A towards Z. Instructions of corrupting a player are only obeyed if
they are received before the protocol started, i.e., before S received any NewKey

query from FPfPAKE.

Figure 6·23: Simulator SfPAKE for fPAKEYGC.

All that remains to show is that the values produced by FPfPAKE and by sFPRFE are

identically distributed. We describe the outputs of FPfPAKE and sFPRFE in Figure 6·24.

The table enumerates all possible cases in the functionalities. Cases in sFPRFE are

described in terms of the distances between pass-strings: between the honest parties’

pass-strings if no man in the middle attack occurred, and between adversarial and

honest pass-strings if it did. (If the adversary engaged one party but not the other,

only one of the distances is filled in.) Cases in FPfPAKE are described in terms of record

markings (“fresh”, “compromised” or “interrupted”). There is a one-to-one mapping

between the cases in sFPRFE and FPfPAKE such that the outputs for the parties, whether

they are honest or corrupt, are identically distributed. Those outputs are described

in the last three columns of the table, as tuples of values the first of which is output

to P0, and the second of which is output to P1. a, b are adversarially chosen values

(which may or may not be distinct). r, s are independent, uniformly random values.

213

sFPRFE FPfPAKE
outputs in both sFPRFE

and FPfPAKE
distance between
P0’s pass-string

and P1’s
pass-string

d(pw0, pw1), if
MITM didn’t

happen

distance between
P0’s pass-string

and the
adversary’s
d(pw0, pw′1), if

MITM happened

distance between
P1’s pass-string

and the
adversary’s
d(pw′0, pw1), if

MITM happened

P0’s record P1’s record

P0
and
P1

honest

P0
hon-

est, P1
cor-
rupt

P0
and
P1
cor-
rupt

close (≤ δ) fresh fresh r, r a, b a, b
far (> δ) fresh fresh r, s r, b a, b

close (≤ δ) close (≤ δ) compromised compromised a, b a, b a, b
close (≤ δ) far (> δ) compromised interrupted a, s a, b a, b
close (≤ δ) compromised fresh a, s a, b a, b
far (> δ) close (≤ δ) interrupted compromised r, b r, b a, b
far (> δ) far (> δ) interrupted interrupted r, s r, b a, b
far (> δ) interrupted fresh r, s r, b a, b

close (≤ δ) fresh compromised r, b r, b a, b
far (> δ) fresh interrupted r, s r, b a, b

Figure 6·24: Output tables for FPfPAKE and sFPRFE. r, s represent ran-
dom outputs, while a, b represent adversarially chosen outputs.

The transformation of Barak et al. proceeds in two steps. First, links are initial-

ized:

1. Each party generates a signing and verification key pair, and sends the verifi-

cation key to its partner.

2. Each party then signs the key it receives and sends the signature back.

3. Each party verifies the signature it receives on its own verification key using the

verification key it received; if the signature does not verify, it aborts.

Second, the parties run the protocol exactly as they would over authenticated chan-

nels, signing each message with their signing key, and verifying each signature they

receive.

Applying this transformation adds (1) two rounds of communication, and (2) a

hash operation and a signature operation for each message, assuming the hash-and-

sign paradigm is used.

6.10 Appendix E: A Concrete OT

In this section, we recall a concrete UC-secure oblivious transfer protocol due to Chou

and Orlandi (Chou and Orlandi, 2015). While they consider the general case of 1-

out-of-n transfer, we only consider n = 2. Say m 1-out-of-2 OTs are performed. The

214

Sender S Receiver R

a
$← Zp

A = ga
A−−−−−−−−−−−−−−−−−→

T = Aa

m times

let M0,M1 be the let c ∈ {0, 1} be the
current messages current choice bit

b
$← ZpB←−−−−−−−−−−−−−−−−− B = Acgb

k0 = H(A,B,Ba) kc = H(A,B,Ab)
k1 = H(A,B,Ba/T)

e0 ← Ek0(M0)
e1 ← Ek1(M1) e0, e1−−−−−−−−−−−−−−−−−→

Mc = DkR(ec)

Figure 6·25: A Concrete OT (Chou and Orlandi, 2015) to be used in
ΠRFE

protocol requires the sender to compute m + 2 exponentiations, and the receiver to

compute 2m exponentiations, for a total of 3m + 2 exponentiations. Figure 6·25

shows a summary of the protocol. Note that this construction does require a random

oracle.

6.11 Appendix F: Proof of Theorem 13

We proceed in a series of games, starting with the real execution of the protocol and

ending up with the ideal execution, with a simulator. To abbreviate notation, we skip

all role tags used by F`-iPAKE since they are not needed due to the symmetric layout

of the protocol. For convenience, we refer to a query (NewKey, sid,Pi, `′, ki) from the

adversary S as due when:

• Pi is honest

• there is a fresh record of the form (Pi, pwi) in ΛP

• this is the first NewKey query for Pi

• there is a record (P1−i, pw1−i) in ΛP with pwi = pw1−i and P1−i is honest

• a key k1−i was sent to the other party, and (P1−i, pw1−i) was fresh at the time.

215

The functionality F`-iPAKE is parameterized by a security parameter λ and makes use of two initially empty lists
ΛP and ΛL, storing pass-strings and labels, respectively. It interacts with an adversary S and the (dummy)
parties P0 and P1 via the following queries:

• Upon receiving a query (NewSession, sid, pwi, role, `) from party Pi:
– Send (NewSession, sid,Pi, role, `) to S;
– If one of the following is true, record (Pi, pwi) in ΛP and mark this record fresh, and record (Pi, `)

in ΛLunless there already exists a record (Pi, ·) in ΛL.
∗ This is the first NewSession query
∗ This is the second NewSession query and there is a record (P1−i, pw1−i)

• Upon receiving a query (TestPwd, sid,Pi, pw
′
i, `

′) from S :
If there is a fresh record (Pi, pwi) in ΛP , then do:

– If pwi = pw′i, mark the record compromised; else mark it interrupted;
– Record (P1−i, `′) in ΛL, possibly overwriting any existing record (P1−i, ·).

• Upon receiving a query (NewKey, sid,Pi, sk) from S, where |sk| = λ:
If there is a record (P1−i, `) in ΛL, extract ` from it; otherwise set `← ⊥.
If there is a record of the form (Pi, pwi) in ΛP , and this is the first NewKey query for Pi, then:

– If at least one of the following is true, then output (sid, `, sk) to player Pi:
∗ The record is compromised

∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a record (P1−i, pw1−i) with pw1−i =

pwi
– If this record is fresh, both parties are honest, there is a record (P1−i, pw1−i) with pw1−i = pwi,

a key sk′ was sent to P1−i, and (P1−i, pw1−i) was fresh at the time, then output (sid, `, sk′)
to Pi;

– In any other case, pick a new random key sk′ of length λ and send (sid, `, sk′) to Pi.
No matter what, mark the record (Pi, pwi) as completed.

Figure 6·26: Functionality F`-iPAKE

The parties P0 and P1 are running with FCRS,FRO and FIC.
Protocol Steps:

1. When a party Pi, i ∈ {0, 1}, receives an input (NewSession, sid,Pi, pwi, `)
from Z, it does the following:
• chooses x

$← Fq
• sends (sid, crs) to FCRS and receives (sid, (g, q)) back
• sends (sid, E , pwi||`, gx) to FIC and receives (sid,X∗) back
• sends (sid, `,X∗) to P1−i and waits for an answer

2. When Pi, who already obtained an input (NewSession, sid,Pi, pwi, `) and
thus holds (x, (g, q), X∗), receives a message (sid, `′, Y ∗) from P1−i, it
• sends (sid,D, pwi||`, Y ∗) to FIC and receives (sid,X ′) back
• sends (sid,X∗, Y ∗, X ′y) to FRO and receives (sid, ki) back
• outputs (sid, `′, ki) towards Z and terminates the session.

Figure 6·27: A UC Execution of EKE2. We skip the role tags since
they are not needed due to the symmetric layout of the protocol.

216

Game G0: The real protocol execution. This is the real execution where the

environment Z runs the EKE2 protocol (see Figure 6·27) with parties P0 and P1,

both having access to ideal CRS, RO, and IC functionalities, and an adversary

A that, w.l.o.g., is assumed to be the dummy adversary as shown in (Canetti,

2001, section 4.4.1).

FRO FICFCRS

Pi P1−i

A

Z Z

F

SPi P1−i

FRO FICFCRS

A

Figure 6·28: Transition from game G0 (left) to game G1 (right),
showing a setting where P1−i is corrupted.

Game G1: Modeling the ideal layout. We first regroup and create new ma-

chines, similar to Game 1 in the proof of Theorem 14. The new machine S

executes the code of the CRS, RO and IC functionalities as depicted in Fig-

ures 6·13, 6·14, and 6·15.

Game G2: Simulating the ideal functionalities. We modify simulation of FRO

and FIC as follows. We let S implement Figure 6·15 by maintaining a list ΛIC

with entries of the form (k,m, α, E|D, c). S handles encryption and decryption

queries as follows:

217

• Upon receiving (sid, E , k,m) (for shortness of notation, we will also write

Ek(m) for this query), if k /∈ Fp or m /∈ G then abort. Else, if there

is an entry (k,m, ∗, ∗, c) in ΛIC , S replies with (sid, c). Else, S chooses

c
$← G \ {1}. If there already is a record (∗, ∗, ∗, ∗, ∗, c) in ΛIC , S aborts.

Else, S adds (k,m,⊥, E , c) to ΛIC and replies with (sid, c).

• Upon receiving (sid,D, k, c) (or Dk(c), for short), if k /∈ Fp or c /∈ G then

abort. Else, if there is an entry (k,m, ∗, ∗, c) in ΛIC , S replies with (sid,m).

Else, S chooses α← F∗q. If there already is a record (∗, ∗, gα, ∗, ∗, ∗) in ΛIC ,

S aborts. Else, S adds (k, gα, α,D, c) to ΛIC and replies with (sid, gα).

Similarly, let ΛRO denote the list that S maintains upon implementing Fig-

ure 6·14, containing entries of the form (m,h). We let S handle queries to FRO

as follows:

• Upon receiving H(m), if m /∈ {0, 1}∗ × {0, 1}∗ × G3, then abort. Else, if

there is an entry (m,h) in ΛRO, S replies with (sid, h). Else, S chooses

h
$← {0, 1}k. If there already is a record (∗, ∗, h) in ΛRO, S aborts. Else,

S adds (m,h) to ΛRO and replies with (sid, h).

These modifications later allow S to extract unique inputs from values ob-

tained from the two functionalities. Especially, note that ΛIC will never con-

tain (∗, ki, ∗, ∗, E , c), (∗, k1−i, ∗, ∗, E , c) with ki 6= k1−i. The entry α serves S as

a trapdoor for solving discrete-log type problems.

Since q is greater than 2λ, if the oracles are only queried a polynomial number

of times, the birthday problem states that game G1 and game G2 are indistin-

guishable with probability overwhelming in λ.

Game G3: Building FiPAKE. In this game, we start modeling F`-iPAKE. First,

we let F maintain two initially empty lists: ΛP , a list of tuples of the form

218

(Pi, pwi) and ΛL, a list of tuples of the form (Pi, `). Upon receiving a query

(NewSession, sid, pwi, `) from (dummy) party Pi, if this is the first NewSession

query, or if this is the second NewSession query and there is a record (P1−i, pw1−i,

`′), then F records (Pi, pwi) in ΛP and marks this record as fresh. If ΛL does

not contain any record (Pi, ·) so far, F also records (Pi, `) in ΛL. Then, F relays

the query (NewSession, sid, pwi, `) to S. Now that F knows about pass-strings

and labels, we can add a TestPwd interface to F as described in Figure 6·8. We

let S parse outputs (sid, `′, ki) towards F to be of the form (NewKey, sid,Pi, `′, ki)

by adding the NewKey tag and the name of the party who produced the output.

Additionally, we let F translate this back to (sid, `′, ki) and send it to Z via

the dummy party Pi, marking the corresponding record as completed.

None of these modifications changes the output towards Z compared to the

previous game G2.

Game G4: F generates a random session key for an honest, interrupted

session. Upon receiving a query (NewKey, sid,Pi, ki) from S, if Pi is not cor-

rupted and there is a record of the form (Pi, pwi) that is marked as interrupted,

and this is the first NewKey query for Pi, we let F choose a random session key

k∗ of length λ. Additionally, F derives the label as follows: if there is a record

(P1−i, `
∗) in ΛL, extract `∗ from it; otherwise, set `∗ ← ⊥. Then, F outputs

(sid, `∗, k∗) to P .

If there is no such interrupted record, F continues to relay ki and `′.

Since the simulators described in game G3 and game G4 do not make use of the

TestPwd interface, none of the records of F are marked as interrupted and

thus the output towards Z is equally distributed in both games.

Game G5: S handles dictionary attacks against the client P0 using the

219

TestPwd interface. In this game, we will only change the simulation. First

note that the client, the initiator of the protocol, is intended to send the first

message, and we call him P0. If both P0 and P1 are honest, P0 obtained input

and Z advisesA to substitute (sid, `′, Y ∗) with (sid, `Z , Y
∗
Z), or if P1 is corrupted

and produces (sid, `Z , Y
∗
Z) as first flow, then S will proceed simulation of P0

using `Z and Y ∗Z . In this situation, we modify S as follows: upon receiving

(sid, `Z , Y
∗
Z), if there is an entry (pwZ ||ˆ̀, ∗, ∗, E , Y ∗Z) for any ˆ̀ ∈ L in ΛIC

8,

the simulator asks a TestPwd query (TestPwd, sid,P0, pwZ , `Z) to F . S then

proceeds the simulation using pwZ and `Z instead of pw0 and `′9. If there is no

entry (pwZ ||ˆ̀, ∗, ∗, E , Y ∗Z) in ΛIC , S sends (TestPwd, sid,P0, pw0, `Z) to F10.

Regarding the label, observe that S’s NewKey query will contain `Z which was

contained in the output of the honest P0 (cf. Figure 6·27). Since TestPwd

queries overwrite any existing labels, there will be an entry (P1, `Z) in ΛL and

thus, regarding the label, the output towards Z does not change compared to

the previous game. Regarding the session key, we have to analyze different cases

depending on whether Y ∗Z was generated using FIC or not. However, observe

that the only changes of session keys between this and the previous game occur

whenever a TestPwd query of S causes a record to be marked as interrupted.

• There is an entry (pwZ ||ˆ̀, ∗, ∗, E , Y ∗Z) in ΛIC : if pwZ = pw0, the record is

marked compromised and the session key is not changed by F . If pwZ 6=

pw0, on the other hand, the record is marked interrupted and F hands

out a random session key, as opposed to game G4. However, since the

session key is distributed as before, Z can only detect this by reproducing

8This entry is unique due to simulation of FIC as described in game G2.
9Note that, since F does not leak any information at this point, S cannot depend on the outcome

of a TestPwd query.
10Letting S guess a pass-string that he actually knows seems a little artificial. Indeed, the simu-

lation in this case will be changed in game G12 when S becomes oblivious of P0’s pass-string.

220

P0’s input (sid,X∗, Y ∗Z ,CDH(Dpw0||`(X
∗), Dpw0||`Z (Y ∗Z)) to FRO. Lemma 6

(see below) shows indistinguishability of game G4 and game G5.

• There is no entry (∗, ∗, ∗, E , Y ∗Z) in ΛIC : since the TestPwd query will result

in a compromised record, the modified simulation has no impact on the

output towards Z in this case.

The following lemma bounds the probability that an unsuccessful dictionary

attack leads to a non-random looking session key. Since in this case the labels

do not play any role (the encryption keys of the form pass − string||label will

not match regardless of the labels), we ignore them for the sake of simplicity.

Lemma 6. If CDH holds in G, then ∀pw0, Y
∗
Z ← Z, where Y ∗Z is a ciphertext

generated through FIC with some key pwZ 6= pw0, pw0 ∈ Fp, it holds that

Pr
G5

[CDH(Dpw0
(X∗),Dpw0

(Y ∗Z))← Z(X∗)] = negl(λ).

Proof. We create an attacker BCDH given a CDH instance (g, A = ga, B = gb).

BCDH runs Z simulating game G5 as follows: BCDH internally runs all of the

participating machines, i.e. S, F and the dummy parties as in game G5, but

with some modifications. First, BCDH computes X∗ ← Epw0
(A) and updates

ΛIC accordingly, aborting if there already was an entry (pw0, A, ∗, E , ∗). Upon

receiving a query Dpw0
(Y ∗Z), BCDH again aborts if there already is an entry

(pw0, ∗, ∗, E , Y ∗Z). Otherwise, it draws β
$← Fq and sets the answer to this query

to be Bgβ. This can happen multiple times (for different Y ∗Z), and BCDH keeps

track of the pairs (β, Y ∗Z) in a list ΛCDH . The last modification concerns the

part of the simulator’s code of game G5 where a value Z ← Dpw0
(Y ∗)a needs

to be computed, but note that BCDH does not know a. Instead, BCDH just sets

Z ← ⊥.

Finally, BCDH picks a random entry from ΛRO asked by the environment, parses

it as ((pw0, X
∗, Y ∗Z , Z), h), looks for an entry (β, Y ∗Z) in ΛCDH and outputs

Z/(ga)β as a CDH solution.

First, note that if BCDH does not abort, it perfectly emulates Z’s view in

game G5, since A,Bgβ are random in G and the record for P0 will be inter-

rupted, which means that F will output a random session key for P0, overwriting

221

⊥. Second, BCDH only has to abort if there is a collision upon choosing random

values from G.

Assume that Z outputs CDH(Dpw0
(X∗),Dpw0

(Y ∗Z)) with non-negligible proba-

bility. This is only possible if Z asked both corresponding decryption queries.

Existence of (pwZ , ∗, ∗, E , Y ∗Z) with pwZ 6= pw0 in ΛIC ensures that the answer to

Dpw0
(Y ∗Z) can be chosen by BCDH as described above. Thus, BCDH finds a correct

CDH solution with non-negligible probability 1/qZ , where qZ is the number of

hash queries issued by Z.

Game G6: S handles dictionary attacks against the server P1 using the

TestPwd interface. Again, in this game we only change the simulation. Anal-

ogously to game G5, we let S use the TestPwd interface upon receiving adver-

sarially generated X∗Z , `Z upon simulating P1. Observe that the only difference

is due to the order of flows: if S extracts an incorrect pass-string, he produces

Y ∗ using this wrong pass-string. However, Y ∗ will be distributed as before and

again, Z can only detect the change by reproducing P1’s input to FRO, namely

(sid,X∗Z , Y
∗,CDH(Dpw1||`Z (X∗Z), Dpw1||`′(Y

∗)).

Using an analogous argument to Lemma 6, indistinguishability from game G5

follows from the hardness of CDH in G.

Game G7: F aligns session keys. Upon receiving a query (NewKey, sid,Pi, `′, ki)

from S for a session, if this query is due then output (sid, `∗, k∗) to Pi where

k∗ is the session key that was formerly sent to the other party and the label

`∗ is derived as usual: if there is a record (P1−i, `
∗) in ΛL, extract `∗ from it;

otherwise, set `∗ ← ⊥.

We now analyze distinguishability of this game from game G6. If Z tampered

with the transcript, any player that received a modified message will not have

a fresh record anymore (cf. simulation described in games G5 and G6) and the

output of this player towards Z is not changed in this game. On the other hand,

222

if Z does not advise A to tamper with any message, F did not overwrite any

labels and thus `∗ = `′. Additionally, perfect correctness of the EKE2 protocol

ensures that, in case of a due record, ki = k∗.

Note that F still differs from the functionality F`-iPAKE described in Figure 6·8

in some aspects. First, it does not output randomly generated session keys

towards Z for honest sessions. Furthermore, it reports all pass-strings to S. We

will take care of these remaining differences in the next games.

Game G8: In some cases, F generates a random session key when the

other party is corrupted. Upon receiving a NewKey query (NewKey, sid,Pi, `′,

ki) from S, if there is a fresh record of the form (Pi, pwi) in ΛP , and this is the

first NewKey query for Pi, Pi is honest and P1−i corrupted and there is a record

(P1−i, pw1−i) in ΛP with pwi 6= pw1−i, we let F pick a new random key k∗ of

length λ and send (sid, `∗, k∗) to Pi, where `∗, as usual, is taken from the list

ΛL or set to be ⊥.

The simulation ensures that the record (Pi, pwi) is either compromised or in-

terrupted (cf. description of the simulator in games G5 and G6). Thus, the

modification has no effect since it only concerns fresh records.

Game G9: F generates a random session key for an honest session. Upon

receiving a NewKey query (NewKey, sid,Pi, `′, ki) from S, if there is a fresh record

of the form (Pi, pwi) in ΛP , and this is the first NewKey query for Pi, both parties

are honest and the NewKey query is not due, we let F pick a new random key k∗

of length k and send (sid, `∗, k∗) to Pi, where `∗, as usual, is taken from the list

ΛL or set to be ⊥.

In other words, F now generates a random session key upon a first NewKey

query for an honest party Pi with fresh record (Pi, pwi) where the other party

223

is also honest, if (at least) one of the following events happens:

1. There is a record (P1−i, pw1−i) in ΛP with pwi 6= pw1−i;

2. No output was sent to the other party yet;

3. If there was output to the other party, the record (P1−i, pw1−i) in ΛP was

not fresh and thus interrupted or compromised at that time

In all of these cases, S chose a fresh ki following a uniform distribution and `′

was contained in the NewSession query of Pi’s partner, thus `′ = `∗. Regarding

the session key, Z can only notice a difference if it reproduces ki by computing

Pi’s input (sid,X∗, Y ∗,CDH(Dpwi||`(X
∗),Dpwi||`′(Y

∗)) to FRO and sending it to

FRO via the adversary A.

The following lemma bounds the probability that a session key of an unattacked

session does not look random.

Lemma 7. If CDH holds in G, then ∀pw, `, `′ ← Z with pw ∈ Fp and `, `′ ∈ L
it holds that

Pr
G9

[CDH(Dpw||`(X
∗),Dpw||`′(Y

∗))← Z(X∗, Y ∗)] = negl(λ).

Proof. We only sketch the proof since it is similar to the proof of Lemma 6.

Namely, the strategy of embedding (randomized versions of) a CDH challenge

into the simulation of game G9 is done by just encrypting both CDH challenge

elements to obtain X∗ and Y ∗. For the final argument, note that ⊥ is not

seen by Z since it is either replaced using a random session key or a previously

computed key.

It follows that game G8 and game G9 are indistinguishable.

Game G10: F always takes all labels from the list ΛL. We modify F as fol-

lows: if F outputs (sid, `′, ki) towards Pi where `′, ki are taken from a query

(NewKey, sid,Pi, `′, ki) from S, F extracts `∗ from a record (P1−i, `
∗) in ΛL or

224

sets `∗ ← ⊥ if such a record does not exist. F then outputs (sid, `∗, ki) towards

Pi. We additionally modify S to remove the labels from the NewKey queries

altogether.

First observe that we can remove the labels from the NewKey queries because,

in this and the past games, we ensured that F now does not access this label

anymore. However, we still have to argue indistinguishability of the current and

the previous game. The cases where ki of S is relayed by F towards Pi are the

following:

• Pi has a compromised record

• Pi is corrupted

• Pi has a fresh record, its partner is corrupted and has a record with a

matching pass-string

In the first case, we have that `′ = `∗ since the label `′ outputted by Pi was

also contained in a TestPwd query by S and overwrote any existing label send

by Pi’s partner. For the second case, observe that since we restrict to static

corruption, corrupted players will not have records in ΛP and thus this case

will never happen. In the third case, corruption of the partner ensures that S

issued a TestPwd query which overwrote any existing label with `′, so `′ = `∗ as

well.

Observe that now F acts like F`-iPAKE regarding the output of session keys

and labels. The only remaining difference is that the NewSession queries still

contain the pass-strings of the parties. In the next games, we will make the

simulation independent of these pass-strings.

Game G11: Simulate without pw1 if server P1 is honest. In case of receiv-

ing a (NewSession, sid, pw1, `
′) from an honest P1 playing the role of a server,

225

we modify F by forwarding only (NewSession, sid,P1, `
′) to S. We now have

to modify S to proceed simulation without knowing pw1. Upon receiving

(NewSession, sid,P1, `
′) from F for an honest P1, we let S draw uniformly

at random a “dummy” pass-string pwS and proceed the simulation of P1 using

pwS as a pass-string.

We first note that, if at any time S sends a NewKey query to F containing

a session key k1 for P1, this session key is only seen by Z if P1’s record is

compromised. Otherwise, we thus only have to argue indistinguishability of the

transcripts of game G10 and game G11.

• Z sends `Z , X
∗
Z , there is a record (pwZ ||ˆ̀, X, ∗, E , X∗) in ΛIC for some

ˆ̀∈ L and pwZ = pw1: since S will issue a TestPwd query that will result

in a compromised record (cf. simulation described in game G6), nothing is

changed since pwS was never used, and Y ∗ is generated using the correct

pass-string pwZ .

• Z sends `Z , X
∗
Z , there is a record (pwZ ||ˆ̀, X, ∗, E , X∗) in ΛIC for some

ˆ̀ ∈ L and pwZ 6= pw1: since P1 will receive a random session key from

F in this case (the record will be marked interrupted), we only have to

argue indistinguishability of Y ∗ generated with pwZ ||`′ instead of pw1||`′.

Simulation of FIC ensures that Y ∗ is distributed uniformly random as be-

fore. Observe that here it is crucial that even for a corrupted session, an

interrupted record lets the functionality hand out a random session key,

since S has no means to decide whether it has to output a session key for

P1 that matches the session key that Z can compute on behalf of P0 from

the message (`′, Y ∗).

• Z sends `Z , X
∗
Z and no E record: the simulation described in game G6 tells

S to issue a TestPwd query, but now using pwS instead of pw1. If, coinci-

226

dentally, pw1 = pwS , nothing changes. On the other hand, if pw1 6= pwS ,

P1 obtains a random session key from F as opposed to the game before and

Y ∗ is created using pwS ||`′ instead of pw1||`′. This can only be detected if

Z reproduces P1’s input to FRO from game G10, which happens only with

negligible probability according to Lemma 8 (see below).

• both parties honest and no injections: P1 will obtain a uniformly random

session key from F in this case, and thus the only difference is that Y ∗ was

created using pwS ||`′ instead of pw1||`′. Again, this is indistinguishable

since Y ∗ is distributed exactly as before.

The following lemma bounds the probability that an injected X∗ that was not

obtained using encryption leads to a non-random looking session key.

Lemma 8. If CDH holds in G, then ∀pw1, `
′, `Z , X

∗
Z ← Z, where X∗Z was not

generated using FIC, `′, `Z ∈ L and pw1 ∈ Fp, it holds that

Pr
G11

[CDH(Dpw1||`Z (X∗Z),Dpw1||`′(Y
∗))← Z(Y ∗)] = negl(λ).

Proof. Note that the only difference to Lemma 6 is that this time, no record

(∗, ∗, ∗, E , X∗Z) exists so the fact that BCDH is able to embed an element of its

CDH challenge into Dpw1
(X∗Z) is even more obvious. The rest of the proof is

analogously to Lemma 6.

Game G12: Simulate without pw0 if client P0 is honest. In a similar fashion,

we now let F cut the pass-string from NewSession queries to an honest P0.

We again have to modify S to proceed simulation without knowing pw0. Upon

receiving (NewSession, sid,P0, `) from F for an honest P0, we let S draw uni-

formly at random a “dummy” pass-string pwS . S proceeds the simulation of P0

using pwS as a pass-string.

Additionally, we further change S in case of a dictionary attack against client

P0, i.e., upon receiving `Z , Y
∗
Z from Z. After submitting a TestPwd query with

227

an extracted pwZ , we let S now choose x′
$← FP and add (pwZ ||`, gx

′
, x′,⊥, X∗)

to ΛIC and proceed the simulation of P0 using x′ instead of x.

• Z sends `Z , Y
∗
Z , there is a record (pwZ ||ˆ̀, Y, ∗, E , Y ∗) in ΛIC for some ˆ̀∈

L and pwZ = pw0: S will issue a TestPwd query that will result in a

compromised record (cf. simulation described in game G5), resulting in

a session key that is computed using pwZ instead of pwS . Additionally,

X∗ is generated using the incorrect pass-string pwS . However, adjusting

ΛIC as described above still allows S to know the exponent of DpwZ ||`(X
∗)

and continue the simulation, making it look like pwZ was used from the

beginning. Z’s view is distributed exactly as before since x′, x are both

uniformly random in FP .

• Z sends `Z , Y
∗
Z , there is a record (pwZ ||ˆ̀, Y, ∗, E , Y ∗) in ΛIC for some

ˆ̀∈ L and pwZ 6= pw0: since P0 will receive a random session key from F

in this case (the record will be interrupted), we only have to argue indis-

tinguishability of X∗ generated with pwS |` instead of pw0||`. Simulation

of FIC ensures that Y ∗ is distributed uniformly random as before. Again,

it is crucial here that F helps S by randomizing the session key if needed.

• Z sends `Z , Y
∗
Z and no E record: the simulation described in game G5 tells

S to issue a TestPwd query, but now using pwS ||` instead of pw0||`. If,

coincidentally, pw0 = pwS , nothing changes. On the other hand, if pw0 6=

pwS , P0 obtains a random session key from F as opposed to the game

before and X∗ was created using pwS ||` instead of pw0||`. This can only

be detected if Z reproduces P0’s input to FRO from game G11, which

happens only with negligible probability using an argument very similar

to Lemma 8.

• both parties honest and no injections: P0 will obtain a uniformly random

228

session key from F in this case, and thus the only difference is that X∗

was created using pwS ||` instead of pw0||`. Again, this is indistinguishable

since X∗ is distributed exactly as before.

Observe that in game G12, F = F`-iPAKE
11, and thus the theorem follows. The

complete description of the simulator of game G12 interacting with F`-iPAKE and

Z is given in Figure 6·29.

The simulator S, initialized with a security parameter λ, first runs a group generation algorithm using λto
obtain a cyclic group G with generator g of order q with log2(q) ≥ λ. Then, S initializes the dummy adversary
A. S then interacts with an ideal functionality F`-iPAKE and an environment Z via the following queries:

• Upon receiving a query (NewSession, sid,Pi, `) from F`-iPAKE:
– initialize a party Pi, connect it to A and proceed the UC protocol execution described in Fig-

ure 6·27 using pwS
$← Fp as pass-string and S’s random coins. (Cf. games G0,G11 and G12.)

• Upon receiving a query (sid,m) from any entity: (Cf. games G1 and G2.)
If m /∈ 〈g〉3, then abort. Else:

– if there is an entry (m,h) then reply with (sid, h).

– else, choose h
$← Fq and abort if there already is an entry (∗, ∗, h) in ΛRO. Else, reply with

(sid, h).
• If an internally simulated party Pi produces an output (sid, `′, ki):

Send (NewKey, sid,Pi, ki) to F`-iPAKE. (Cf. game G1.)
• If Z sends (sid, `Z , Z

∗
Z) to an honest party Pi:

– if (pwZ ||ˆ̀, ∗, ∗, E, Z∗Z) ∈ ΛIC for any ˆ̀∈ L, then send (TestPwd, sid,Pi, pwZ , `Z) to F`-iPAKE and
proceed the simulation of Pi with pwZ . (Cf. games G5 and G6.)

– if (∗, ∗, ∗, E, Z∗Z) /∈ ΛIC , then send (TestPwd, sid,Pi, pwS , `Z) to F`-iPAKE. (Cf.
games G5 and G6.)

– if Pi was started with input (NewSession, sid,Pi, `), choose x′
$← FP , add (pwZ ||`, gx

′
, x′,⊥, Z∗)

to ΛIC and proceed as if x′ was the value drawn uniformly random from Fq at the beginning of
the simulation of Pi. (Cf. game G12.)

• Upon receiving a query (sid, Encrypt, k,m) from any entity: (Cf. games G1 and G2.)
If k /∈ Fp or m /∈ G then abort. Else:

– if there is an entry (k,m, ∗, ∗, c) in ΛIC , reply with (sid, c)

– else, choose c
$← G \ {1}. If there already is a record (∗, ∗, ∗, ∗, c) then abort. Else, add

(k,m,⊥, E, c) to ΛIC and reply with (sid, c).
• Upon receiving a query (sid, Decrypt, k, c) from any entity: (Cf. games G1 and G2.)

If k /∈ Fp or c /∈ G then abort. Else:
– if there is an entry (k,m, ∗, ∗, c) in ΛIC , reply with (sid,m).

– else, choose α
$← F∗p. If there already is a record (∗, gα, ∗, ∗, ∗) then abort. Else, add (k, gα, α,D, c)

to ΛIC and reply with (sid, gα).
• Upon receiving a query (sid, crs) from any entity: (Cf. game G1.)

– reply with (sid, (g, q)).
Additionally, S forwards all other instructions from Z to A and reports all output of A towards Z. Instructions
of corrupting a player are only obeyed if they are received before the protocol started, i.e., before S received
any NewSession query from F`-iPAKE.

Figure 6·29: The Simulator S for the EKE2 Protocol

11We note that we can, w.l.o.g, assume that there are no NewSession queries from Z to corrupted
parties. Thus, it is enough to remove the pass-strings from the NewSession queries given as input
from Z to honest parties.

229

6.12 Appendix G: Proof of Theorem 14

For the proof, we describe an honest execution of the protocol fPAKERSS in the UC

framework in Figure 6·30. See (Freire et al., 2014) for a detailed description on how

to execute protocols within the UC framework. This real protocol execution will be

the starting point for our proof. We then proceed in a series of games, to end up

with the ideal execution running with only dummy parties, a simulator and the ideal

functionality FMfPAKE. For convenience, we refer to a received protocol message as

adversarially generated if it was not produced by either P0 or P1. We also refer to a

query (NewKey, sid,Pi, ki) from the adversary S with an honest party Pi as due if

• there is a fresh record of the form (Pi, pwi)

• this is the first NewKey query for Pi

• there is a record (P1−i, pw1−i) with d(pwi, pw1−i) ≤ δ and P1−i is honest

• a key k1−i was sent to the other party while (P1−i, pw1−i) was fresh at the time.

We also define a masking function that reveals the positions of the identical bits:

mskpwpw′ := {i|pwi = pw′i, i ∈ [n]}

Game G0: The real protocol execution. This is the real execution of fPAKERSS

where the environment Z runs the protocol (cf. Figure 6·10) with parties P0

and P1, both having access to an ideal `-iPAKE functionality F`-iPAKE, and an

adversary A that, w.l.o.g., can be assumed to be the dummy adversary as shown

in (Canetti, 2001, section 4.4.1).

Game G1: Modeling the ideal layout. We first make some purely conceptual

changes that do not modify the input/output interfaces of Z. We add one relay

(also referred to as dummy party) on each of the wires between Z and a party.

We also add one relay covering all the wires between the dummy parties and

230

The parties P0,P1 are running with F`-iPAKE.
Protocol Steps:

1. When a party Pi, i ∈ {0, 1}, receives an input
(NewSession, sid, pwi, sender) from Z, it does the following:

• compute (vk, sk)
$← SigGen(1λ)

• query n times F`-iPAKE with (NewSession, sid, (pwi)t, vk), t = 1, ..., n,
receiving back (sid, `t, Kt) as answer

• choose U
$← Fq

• compute C ← Share(U)
• compute E ← C + (Kt)

n
t=1

• compute σE ← Sign(vk, E)
• send (sid, E, σE, vk) to P1−i
• set k← U
• send (sid, k) towards Z and terminate the session.

2. When a party Pi, i ∈ {0, 1}, receives an input
(NewSession, sid, pwi, receiver) from Z, it does the following:
• query n times F`-iPAKE with (NewSession, sid, (pwi)t, ε), t = 1, ..., n,

receiving back (sid, `t, K
′
t) as answer

• if not all `t are equal or `1 6= VK, then abort
3. When Pi, who already obtained an input (NewSession, sid, pwi, receiver)

and thus holds a vector (sid, `t, K
′
t) obtained from F`-iPAKE, receives a mes-

sage (sid, E, σE, vk) from P1−i, it does the following:
• set K ′ := (K ′t)t∈[n]

• abort if vk 6= `1

• abort if Vfy(vk, σE, E) = 0
• compute U ′ ← Reconstruct(E −K ′)
• set k← U ′

• send (sid, k) towards Z and terminate the session.

Figure 6·30: A UC Execution of fPAKERSS

231

real parties and call it F (and let F relay messages according to the original

wires). We group all the formerly existing instances except for Z into one

machine and call it S. Note that this implies that S executes the code of the

`-iPAKE functionality F`-iPAKE. The differences are depicted in Figure 6·20 with

FOT replaced by F`-iPAKE.

Game G2: Building FMfPAKE. In this game, we start modeling FMfPAKE. First,

we let F maintain a list of tuples of the form (Pi, pwi). Upon receiving a

query of the form (NewSession, sid, pwi, role) from party Pi, if this is the first

NewSession-query, or if this is the second NewSession-query and there is a

record (P1−i, pw1−i), then F records (Pi, pwi) and marks this record as fresh.

In any case the query (NewSession, sid,Pi, pwi, role) is relayed to S. Now that

F knows about pass-strings, we can add a TestPwd interface to F as described

in Figure 6·2, using leakage functions LMc , L
M
m and LMf . We let S parse outputs

towards F as (NewKey, sid,Pi, ki) by adding the NewKey tag and the name of the

party who produced the output. Additionally, we let F translate this back to

(sid, ki), send it to Z via Pi and mark the corresponding record as completed.

None of these modifications changes the output towards Z compared to the

previous game G1.

Game G3: F generates a random session key for an interrupted session.

Upon receiving a query (NewKey, sid,Pi, ki) from S, if there is a record of the

form (Pi, pwi) that is marked as interrupted, and this is the first NewKey query

for Pi, we let F output a random session key of length λ to Pi. Otherwise, it

continues to relay ki.

Since the simulators described in game G2 and game G3 do not make use of the

TestPwd interface, none of the records of F are marked as interrupted and

232

thus the output towards Z is equally distributed in both games.

Game G4: S handles dictionary attacks using the TestPwd interface. In

this game, we only change the simulation. Consider the following setting: Pi

obtained input (NewSession, sid, pwi, role) and P1−i is corrupted and already

provided its inputs to F`-iPAKE. In this situation, S will proceed simulation of

Pi as follows:

S assembles pwZ ∈ Fnp from the queries to F`-iPAKE that P1−i issued. S sends

(TestPwd, sid,Pi, pwZ) to F , obtaining either “wrong guess”, “correct guess”

and perhaps also a mask M ⊆ [n] from F . If S does not receive a mask, S is

not modified further. Else, let I := [n] \M the set of mismatching indices, and

d := |I| ≤ γ their number. S sets up keys K,K ′ ∈ Fnq with Kt = K ′t
$← Fq for

the matching indices t ∈M and Kt, K
′
t

$← F2
p for the mismatching indices t ∈ I,

where K ′ denotes the F`-iPAKE output of P1−i. S now continues the simulation

of Pi using K as output of F`-iPAKE.

We have to analyze different cases depending on the different outcomes of

TestPwd. However, note that the modifications only have an impact on the

output ki of Pi if the record gets interrupted, and only affect the transcript if

the answer to the TestPwd query contains a mask. Considering the case where

TestPwd

• outputs ~m and sets the record compromised, i.e. d ≤ γ since the distribu-

tion of K,K ′ only depends on the mask of the pass-strings, the view of Z

is identically distributed in game G4 and game G3;

• outputs “wrong guess” and sets the record interrupted, i.e. d > γ: Pi

will now obtain a randomly chosen session key from F , substituting the key

ki computed by S. If Pi obtained role = sender, the output in game G4

and game G3 is equally distributed since the honest sender outputs a

233

random Fq value according to the protocol description. If Pi obtained

role = receiver, both outputs are indistinguishable with overwhelming

probability due to the smoothness of the RSS, since in game G3 at least

γ + 1 shares are random.

Game G5: Excluding man-in-the-middle attacks. Again, in this game, we

only change the simulation. We now consider the case where Z injects a mes-

sage into a session where both parties are honest. We modify S as follows:

upon receiving an adversarially generated (sid,MZ , σZ , vkZ) from Z intended

for party Pi, S aborts.

Observe that the simulation is only changed compared to the previous game if

it is not aborted due to protocol instructions. This means that both games are

equal unless all checks pass, especially Vfy(vkZ , σZ ,MZ) = 1. Any distinguisher

between game G5 and game G4 can thus be turned into a forger of a valid

message w.r.t the verification key of an honest party. Indinstinguishability thus

follows from the security of the one-time signature scheme.

Game G6: F aligns session keys. Upon receiving a query (NewKey, sid,Pi, ki)

from S, if this query is due then output (sid, k1−i) to Pi where k1−i is the

session key that was formerly sent to the other party.

We now analyze distinguishability of this game from game G5. If Z tampered

with the transcript, the simulation in game G5 ensures that the simulation

aborts and there is thus no NewKey query for Pi. On the other hand, if Z

does not advise A to tamper with any message, perfect correctness of fPAKERSS

protocol ensures that, in case of a due record where the parties hold close pass-

strings pwi, pw1−i with d(pwi, pw1−i) ≤ n − r, the output of F towards Z is

the same as in the previous game G5. Observe that perfect correctness directly

234

follows from the perfect correctness of F`-iPAKE and the r-robustness of the secret

sharing, which is always able to correct up to n− r errors.

Note that F still differs from the functionality FMfPAKE in some aspects. First,

it does not output randomly generated session keys towards Z for honest ses-

sions. Furthermore, it reports all pass-strings to S. We will take care of these

remaining differences in the next games.

Game G7: In some cases, F generates a random session key when the

other party is corrupted. Upon receiving a NewKey query (NewKey, sid,Pi, ki)

from S, if there is a fresh record of the form (Pi, pwi), and this is the first

NewKey query for Pi, Pi is honest and P1−i corrupted and there is a record

(P1−i, pw1−i) with d(pwi, pw1−i) > δ, we let F pick a new random key k from

Fq and send (sid, k) to Pi.

The simulation ensures that the record (Pi, pwi) is either compromised or inter-

rupted (cf. description of the simulator in game G4). Thus, the modification

has no effect since it only concerns fresh records.

Game G8: F generates a random session key for an honest session. Upon

receiving a NewKey query (NewKey, sid,Pi, ki) from S, if there is a fresh record

of the form (Pi, pwi), and this is the first NewKey query for Pi, both parties are

honest and the NewKey query is not due, we let F pick a new random key k

from Fq and send (sid, k) to Pi.

In other words, F now generates a random session key upon a first NewKey query

for an honest party Pi with fresh record (Pi, pwi) where P1−i is also honest, if

(at least) one of the following events happen:

1. There is a record (P1−i, pw1−i) with d(pwi, pw1−i) > δ; then, the probability

that ki was already random in game G7 is overwhelming due to the r− 1-

235

smoothness of the RSS on random secrets. Note that to apply this property

it is crucial that both parties are honest and thus the value U is randomly

chosen.

2. No session key was sent to P1−i yet; we just have to consider the case where

there is a record (P1−i, pw1−i) with d(pwi, pw1−i) ≤ δ since we already dealt

with the other case in the first event. Due to the r-robustness of the RSS,

the session key in the previous game was U , which is distributed uniformly

random in Fq.

3. If there was a session key sent to P1−i, the record (P1−i, pw1−i) was not

fresh and thus interrupted or compromised at that time; since our simu-

lation never issues TestPwd queries for honest sessions (in fact, game G5

states that S aborts upon man-in-the-middle attacks with overwhelming

probability), this event can not happen in our simulation.

Game G9: Simulating without pass-string if both parties are honest. In

case of receiving a (NewSession, sid, pwi, role) from an honest Pi, we modify F

by forwarding only (NewSession, sid,Pi, role) to S. We now have to modify S

to proceed simulation without knowing pw. Upon receiving (NewSession, sid,Pi,

role) from F for an honest Pi, we let S draw uniformly at random a “dummy”

pass-string pwS and proceed the simulation of Pi using pwS as a pass-string.

We first observe that Z is oblivious of ki contained in the (NewKey, sid,Pi, ki)

query that S will eventually send to F during the simulation (since F never lets

the simulator determine ki for an honest session). We thus only have to consider

the case where Pi has role = sender. We show that Z, knowing pwi, pw1−i

and seeing two transcripts, cannot tell which one was generated using pwi, pw1−i

and which one was generated using pwS , pw1−i with a random pwS unknown to

Z. But this is trivial since the distribution of the values U,K does not depend

236

on the pass-strings: U is randomly chosen from Fq. F`-iPAKE ensures that K is

randomly chosen from Fnq .

Game G10: Simulating without pass-string if someone is corrupted. Upon

receiving (NewSession, sid, pwi, role) from Pi where P1−i is corrupted, we mod-

ify F to only relay (NewSession, sid,Pi, role) to S. Additionally, we let S draw

uniformly at random a “dummy” pass-string pwS and proceed the simulation

of Pi using pwS as a pass-string. Note that due to the simulation described

in game G4, S will ask a TestPwd query, and after this query the simulation

described in that game is already independent of pwi except when F ’s reply

does not contain a mask, i.e., d(pwi, pw1−i) > γ. In this case, we now let S set

the output of F`-iPAKE towards Pi to be a random K
$← Fnq .

Regarding indistinguishability, first note that in any case the input of Pi to

F`-iPAKE does not impact any values and thus we only have to argue further in

case S is modified. Thus, Pi’s record will get interrupted and Pi will obtain a

uniformly random session key from F , meaning that we only have to consider

the case where Pi has role = sender and argue indistinguishability of E, σE, vk

generated with either K depending on pwi (as in the previous game) or K
$← Fnq

(as in the current game). Opposed to the situation in game G9, note that now

Z knows K ′.

Since d(pwi, pw1−i) > γ = n− t− 1, at most t components of K ′ are the same

as K in G9 with large probability 1− n−t
q

, and thus w.h.p. Z learns at most t

components of C. Hence the transcript of the current and previous games are

indistinguishable due to the strong t-privacy of the RSS.

Observe that now F is equal to FMfPAKE and S is equal to the simulator described

in Figure 6·31. The theorem thus follows.

237

The simulator S, initialized with a security parameter λ, initializes the dummy
adversary A. S emulates an ideal labeled iPAKE functionality F`-iPAKE as
depicted in Figure 6·26 for all calling entities in the systema. Additionally, S
interacts with an ideal functionality FMfPAKE and a distinguisher, the environment
Z, via the following queries:

• Upon receiving a query (NewSession, sid,Pi, role) from FM
fPAKE: ini-

tialize a party Pi and connect it to A.
– If P1−i is honest, S proceeds the UC protocol execution as described

in Figure 6·30 using pwS
$← Fp as pass-string for Pi. (Cf. game G9.)

– If P1−i is corrupted, then S waits until P1−i submitted n queries
to F`-iPAKE and then assembles pwZ ∈ Fnp from them. S sends
(TestPwd, sid,Pi, pwZ) to FMfPAKE. If S receives back a mask M , let
I := [n] \M , and S sets up n Fq-keys K with Kt = K ′t ∀t ∈ I and

Kt
$← Fp 6= K ′t ∀t ∈ M , where K ′ denotes the output of F`-iPAKE to-

wards P1−i. S now continues the simulation of Pi using K as outputs
of F`-iPAKE. (Cf. game G4.) If S does not receive a mask, S sets the

output of F`-iPAKE towards Pi to be K
$← Fnq . (Cf. game G10.)

• If an internally simulated party Pi produces an output (sid, ki):
Send (NewKey, sid,Pi, ki) to FMfPAKE.
• If Z sends (sid,MZ , σZ , vkZ) to an honest party Pi: if P1−i is honest,
S aborts after the Vfy step in the protocol, regardless of its outcome. (Cf.
game G5.)

Additionally, S forwards all other instructions from Z to A and reports all output
of A towards Z. Instructions of corrupting a player are only obeyed if they are
received before the protocol started, i.e., before S received any NewSession query
from FMfPAKE.

aAn entity is any internally simulated ITM such as parties or the real-world adversary as
well as ITMs outside S such as the distinguisher Z.

Figure 6·31: The Simulator S for fPAKERSS

6.13 Appendix H: A Natural (But Failed) Approach to fPAKE

A natural idea for building a fPAKE is the use of a fuzzy extractor (Dodis et al., 2004;

Boyen, 2004), that allows to extract a common secret from two strings close enough,

and to compose it with a regular PAKE. This approach was introduced in (Boyen

et al., 2005) (Section 4). Their protocol uses the code-offset construction of a fuzzy

238

P0(pw ∈ Fnq) P1(pw′ ∈ Fnq)

w
$← Fkq , c← Share(w) ∈ Fnq

s← c+ pw
s−−−−−−−−−−−−−−−−−→ c′ ← s+ pw′

w′ ← Reconstruct(c′)
K

PAKE(w,w′)←−−−−−−−−−−−−−−−−→ K ′

sk← K sk′ ← K ′

Figure 6·32: A First Natural Construction (with code-offset fuzzy
sketch and PAKE)

sketch (Dodis et al., 2004), a.k.a. fuzzy commitment (Juels and Wattenberg, 1999), to

implement a fuzzy-extractor as a two-party primitive. It is presented in Figure 6·32.

Theorem 17. The construction from Figure 6·32 cannot securely realize FPfPAKE.

Proof. Consider the following attack by Z. Z sends a randomly chosen pw as input

to an honest P0 and obtains a sketch s from A. It then computes c ← s − pw and

outputs 1 if c is in the image of Share. In the real world, this happens with probability

1. Now assume there is a simulator S outputting a simulated sketch s̃ in the ideal

world. Since S does not get to learn pw unless it succeeds at a TestPwd query, observe

that this output may not depend on pw except with some small (but non-negligible)

probability p, namely the probability of guessing a pass-string that makes FPfPAKE

output pw. Thus, with probability 1− p ≈ 1, c̃ := s̃− pw is randomly distributed in

Fnq and lies in the image of Share only with probability 1/qmn−l. More formally, the

probability that Z outputs 1 in the ideal world is

Pr[c̃ ∈ Im(Share)] = Pr[c̃ ∈ Im(Share)|S depends on pw] · p
+ Pr[c̃ ∈ Im(Share)|S does not depend on pw] · (1− p)
≤ p+ 1/qmn−l(1− p) ≈ p.

239

References

Abdalla, M., Catalano, D., Chevalier, C., and Pointcheval, D. (2008). Efficient two-
party password-based key exchange protocols in the UC framework. In Malkin, T.,
editor, CT-RSA 2008, volume 4964 of LNCS, pages 335–351. Springer, Heidelberg.

Afshar, A., Hu, Z., Mohassel, P., and Rosulek, M. (2015). How to efficiently evaluate
RAM programs with malicious security. In Oswald, E. and Fischlin, M., edi-
tors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 702–729. Springer,
Heidelberg.

Ananth, P. and Vaikuntanathan, V. (2019). Optimal bounded-collusion secure func-
tional encryption. In TCC 2019, Part I, LNCS, pages 174–198. Springer, Heidel-
berg.

Ateniese, G., Camenisch, J., Joye, M., and Tsudik, G. (2000). A practical and
provably secure coalition-resistant group signature scheme. In Bellare, M., editor,
CRYPTO 2000, volume 1880 of LNCS, pages 255–270. Springer, Heidelberg.

Au, M. H., Tsang, P. P., Susilo, W., and Mu, Y. (2009). Dynamic universal ac-
cumulators for DDH groups and their application to attribute-based anonymous
credential systems. In Fischlin, M., editor, CT-RSA 2009, volume 5473 of LNCS,
pages 295–308. Springer, Heidelberg.

Badrinarayanan, S., Goyal, V., Jain, A., and Sahai, A. (2016). Verifiable functional
encryption. In Cheon, J. H. and Takagi, T., editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 557–587. Springer, Heidelberg.

Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin,
K., and Yakoubov, S. (2017). Accumulators with applications to anonymity-
preserving revocation. IACR Cryptology ePrint Archive, 2017:43.

Baldimtsi, F., Canetti, R., and Yakoubov, S. Universally composable accumulators.

Ball, M., Malkin, T., and Rosulek, M. (2016). Garbling gadgets for Boolean and
arithmetic circuits. In Weippl, E. R., Katzenbeisser, S., Kruegel, C., Myers, A. C.,
and Halevi, S., editors, ACM CCS 2016, pages 565–577. ACM Press.

Barak, B., Canetti, R., Lindell, Y., Pass, R., and Rabin, T. (2005). Secure compu-
tation without authentication. In Shoup, V., editor, CRYPTO 2005, volume 3621
of LNCS, pages 361–377. Springer, Heidelberg.

240

Bari, N. and Pfitzmann, B. (1997). Collision-free accumulators and fail-stop signature
schemes without trees. In Fumy, W., editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 480–494. Springer, Heidelberg.

Beaver, D., Micali, S., and Rogaway, P. (1990). The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press.

Bellare, M., Hoang, V. T., and Rogaway, P. (2012). Foundations of garbled circuits.
In Yu, T., Danezis, G., and Gligor, V. D., editors, ACM CCS 2012, pages 784–796.
ACM Press.

Bellare, M., Pointcheval, D., and Rogaway, P. (2000). Authenticated key exchange
secure against dictionary attacks. In Preneel, B., editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 139–155. Springer, Heidelberg.

Bellovin, S. M. and Merritt, M. (1992). Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In 1992 IEEE Symposium on Security
and Privacy, pages 72–84. IEEE Computer Society Press.

Benaloh, J. C. and de Mare, M. (1994). One-way accumulators: A decentralized
alternative to digital sinatures (extended abstract). In Helleseth, T., editor, EU-
ROCRYPT’93, volume 765 of LNCS, pages 274–285. Springer, Heidelberg.

Bennett, C. H., Brassard, G., and Robert, J.-M. (1988). Privacy amplification by
public discussion. SIAM Journal on Computing, 17(2):210–229.

Bitansky, N., Canetti, R., Kalai, Y. T., and Paneth, O. (2014). On virtual grey
box obfuscation for general circuits. In Garay, J. A. and Gennaro, R., editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 108–125. Springer, Heidel-
berg.

Blanton, M. and Hudelson, W. M. (2009). Biometric-based non-transferable anony-
mous credentials. In Information and Communications Security, pages 165–180.
Springer.

Borisov, N., Goldberg, I., and Brewer, E. (2004). Off-the-record communication, or,
why not to use PGP. In Proceedings of the 2004 ACM workshop on Privacy in the
electronic society, pages 77–84. ACM.

Boudot, F. (2000). Efficient proofs that a committed number lies in an interval.
In Preneel, B., editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444.
Springer, Heidelberg.

Boyen, X. (2004). Reusable cryptographic fuzzy extractors. In Atluri, V., Pfitzmann,
B., and McDaniel, P., editors, ACM CCS 2004, pages 82–91. ACM Press.

241

Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., and Smith, A. (2005). Secure remote
authentication using biometric data. In Cramer, R., editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 147–163. Springer, Heidelberg.

Boyko, V., MacKenzie, P. D., and Patel, S. (2000). Provably secure password-
authenticated key exchange using Diffie-Hellman. In Preneel, B., editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 156–171. Springer, Heidelberg.

Brostoff, S. and Sasse, M. (2000). Are passfaces more usable than passwords?: A
field trial investigation. People and Computers, pages 405–424.

Cachin, C., Micali, S., and Stadler, M. (1999). Computationally private informa-
tion retrieval with polylogarithmic communication. In Stern, J., editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 402–414. Springer, Heidelberg.

Camacho, P. (2009). On the impossibility of batch update for cryptographic accu-
mulators. Cryptology ePrint Archive, Report 2009/612. http://eprint.iacr.

org/2009/612.

Camacho, P. and Hevia, A. (2010). On the impossibility of batch update for crypto-
graphic accumulators. In Abdalla, M. and Barreto, P. S. L. M., editors, LATIN-
CRYPT 2010, volume 6212 of LNCS, pages 178–188. Springer, Heidelberg.

Camacho, P., Hevia, A., Kiwi, M. A., and Opazo, R. (2008). Strong accumulators
from collision-resistant hashing. In Wu, T.-C., Lei, C.-L., Rijmen, V., and Lee, D.-
T., editors, ISC 2008, volume 5222 of LNCS, pages 471–486. Springer, Heidelberg.

Camenisch, J., Casati, N., Groß, T., and Shoup, V. (2010). Credential authenticated
identification and key exchange. In Rabin, T., editor, CRYPTO 2010, volume 6223
of LNCS, pages 255–276. Springer, Heidelberg.

Camenisch, J., Drijvers, M., and Tackmann, B. (2019). Multi-protocol UC and its
use for building modular and efficient protocols. IACR Cryptology ePrint Archive,
2019:65.

Camenisch, J., Kohlweiss, M., and Soriente, C. (2009). An accumulator based on
bilinear maps and efficient revocation for anonymous credentials. In Jarecki, S. and
Tsudik, G., editors, PKC 2009, volume 5443 of LNCS, pages 481–500. Springer,
Heidelberg.

Camenisch, J., Krenn, S., and Shoup, V. (2011). A framework for practical univer-
sally composable zero-knowledge protocols. In Lee, D. H. and Wang, X., editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 449–467. Springer, Heidelberg.

Camenisch, J. and Lysyanskaya, A. (2002). Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Yung, M., editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer, Heidelberg.

242

http://eprint.iacr.org/2009/612
http://eprint.iacr.org/2009/612

Camenisch, J. and Lysyanskaya, A. (2003). A signature scheme with efficient proto-
cols. In Cimato, S., Galdi, C., and Persiano, G., editors, SCN 02, volume 2576 of
LNCS, pages 268–289. Springer, Heidelberg.

Camenisch, J. and Michels, M. (1999a). Proving in zero-knowledge that a number
is the product of two safe primes. In Stern, J., editor, EUROCRYPT’99, volume
1592 of LNCS, pages 107–122. Springer, Heidelberg.

Camenisch, J. and Michels, M. (1999b). Separability and efficiency for generic group
signature schemes. In Wiener, M. J., editor, CRYPTO’99, volume 1666 of LNCS,
pages 413–430. Springer, Heidelberg.

Camenisch, J. and Stadler, M. (1997). Efficient group signature schemes for large
groups (extended abstract). In Kaliski Jr., B. S., editor, CRYPTO’97, volume
1294 of LNCS, pages 410–424. Springer, Heidelberg.

Camenisch, J. and Van Herreweghen, E. (2002). Design and implementation of the
idemix anonymous credential system. In Atluri, V., editor, ACM CCS 2002, pages
21–30. ACM Press.

Canetti, R. (2001). Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press.

Canetti, R. (2004). Universally composable signature, certification, and authentica-
tion. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004),
28-30 June 2004, Pacific Grove, CA, USA, page 219. IEEE Computer Society.

Canetti, R. (2007). Obtaining universally compoable security: Towards the bare
bones of trust (invited talk). In Kurosawa, K., editor, ASIACRYPT 2007, volume
4833 of LNCS, pages 88–112. Springer, Heidelberg.

Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., and Wee, H. (2012). Effi-
cient password authenticated key exchange via oblivious transfer. In Fischlin, M.,
Buchmann, J., and Manulis, M., editors, PKC 2012, volume 7293 of LNCS, pages
449–466. Springer, Heidelberg.

Canetti, R. and Fischlin, M. (2001). Universally composable commitments. In
Kilian, J., editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer,
Heidelberg.

Canetti, R., Fuller, B., Paneth, O., Reyzin, L., and Smith, A. D. (2016). Reusable
fuzzy extractors for low-entropy distributions. In Fischlin, M. and Coron, J.-
S., editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 117–146.
Springer, Heidelberg.

243

Canetti, R., Halevi, S., Katz, J., Lindell, Y., and MacKenzie, P. D. (2005). Uni-
versally composable password-based key exchange. In Cramer, R., editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Heidelberg.

Canetti, R., Lindell, Y., Ostrovsky, R., and Sahai, A. (2002). Universally composable
two-party and multi-party secure computation. In 34th ACM STOC, pages 494–
503. ACM Press.

Catalano, D. and Fiore, D. (2013). Vector commitments and their applications. In
Kurosawa, K. and Hanaoka, G., editors, PKC 2013, volume 7778 of LNCS, pages
55–72. Springer, Heidelberg.

Chang, T. Y. (2011). An id-based multi-signer universal designated multi-verifier
signature scheme. Inf. Comput., 209(7):1007–1015.

Chaum, D. (1996). Private signature and proof systems. US Patent 5,493,614.

Choi, S. G., Katz, J., Kumaresan, R., and Zhou, H.-S. (2012). On the security of the
“free-XOR” technique. In Cramer, R., editor, TCC 2012, volume 7194 of LNCS,
pages 39–53. Springer, Heidelberg.

Chou, T. and Orlandi, C. (2015). The simplest protocol for oblivious transfer. In
Lauter, K. E. and Rodŕıguez-Henŕıquez, F., editors, LATINCRYPT 2015, volume
9230 of LNCS, pages 40–58. Springer, Heidelberg.

Chow, S. S. M. (2006). Identity-based strong multi-designated verifiers signatures.
In Public Key Infrastructure, Third European PKI Workshop: Theory and Practice,
EuroPKI 2006, Turin, Italy, June 19-20, 2006, Proceedings, pages 257–259.

Chow, S. S. M. (2008). Multi-designated verifiers signatures revisited. I. J. Network
Security, 7(3):348–357.

Cramer, R., Damg̊ard, I. B., Döttling, N., Fehr, S., and Spini, G. (2015). Linear
secret sharing schemes from error correcting codes and universal hash functions.
In Oswald, E. and Fischlin, M., editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 313–336. Springer, Heidelberg.

Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., and Yakoubov, S.
(2019). Stronger notions and constructions for multi-designated verifier signatures.
Cryptology ePrint Archive, Report 2019/1153. https://eprint.iacr.org/2019/

1153.

Damg̊ard, I. and Jurik, M. (2003). A length-flexible threshold cryptosystem with
applications. In Safavi-Naini, R. and Seberry, J., editors, ACISP 03, volume 2727
of LNCS, pages 350–364. Springer, Heidelberg.

244

https://eprint.iacr.org/2019/1153
https://eprint.iacr.org/2019/1153

Damg̊ard, I. and Triandopoulos, N. (2008). Supporting non-membership proofs with
bilinear-map accumulators. Cryptology ePrint Archive, Report 2008/538. http:

//eprint.iacr.org/2008/538.

Daugman, J. (2004). How iris recognition works. Circuits and Systems for Video
Technology, IEEE Transactions on, 14(1):21 – 30.

Derler, D., Hanser, C., and Slamanig, D. (2015). Revisiting cryptographic accumu-
lators, additional properties and relations to other primitives. Cryptology ePrint
Archive, Report 2015/087. http://eprint.iacr.org/2015/087.

Diffie, W. and Hellman, M. E. (1976). New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654.

Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., and Smith, A. (2012). Robust fuzzy
extractors and authenticated key agreement from close secrets. IEEE Transactions
on Information Theory, 58(9):6207–6222.

Dodis, Y., Ostrovsky, R., Reyzin, L., and Smith, A. (2008). Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing, 38(1):97–139.

Dodis, Y., Reyzin, L., and Smith, A. (2004). Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In Cachin, C. and Camenisch,
J., editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer,
Heidelberg.

Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., and Yakoubov, S. (2018). Fuzzy
password-authenticated key exchange. In Nielsen, J. B. and Rijmen, V., editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 393–424. Springer,
Heidelberg.

Ellison, C., Hall, C., Milbert, R., and Schneier, B. (2000). Protecting secret keys
with personal entropy. Future Generation Computer Systems, 16(4):311–318.

Fazio, N. and Nicolosi, A. (2003). Cryptographic accumulators: Definitions, con-
structions and applications.

Fiat, A. and Shamir, A. (1987). How to prove yourself: Practical solutions to
identification and signature problems. In Odlyzko, A. M., editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Heidelberg.

Freire, E. S. V., Hesse, J., and Hofheinz, D. (2014). Universally composable non-
interactive key exchange. In Abdalla, M. and Prisco, R. D., editors, SCN 14,
volume 8642 of LNCS, pages 1–20. Springer, Heidelberg.

245

http://eprint.iacr.org/2008/538
http://eprint.iacr.org/2008/538
http://eprint.iacr.org/2015/087

Fujisaki, E. and Okamoto, T. (1997). Statistical zero knowledge protocols to prove
modular polynomial relations. In Kaliski Jr., B. S., editor, CRYPTO’97, volume
1294 of LNCS, pages 16–30. Springer, Heidelberg.

Garman, C., Green, M., and Miers, I. (2014). Decentralized anonymous credentials.
In NDSS 2014. The Internet Society.

Gassend, B., Clarke, D. E., van Dijk, M., and Devadas, S. (2002). Silicon physical
random functions. In Atluri, V., editor, ACM CCS 2002, pages 148–160. ACM
Press.

Gasti, P., Sedenka, J., Yang, Q., Zhou, G., and Balagani, K. S. (2016). Secure, fast,
and energy-efficient outsourced authentication for smartphones. Trans. Info. For.
Sec., 11(11):2556–2571.

Gennaro, R., Halevi, S., and Rabin, T. (1999). Secure hash-and-sign signatures
without the random oracle. In Stern, J., editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 123–139. Springer, Heidelberg.

Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., and Triandopoulos, N.
(2016). Zero-knowledge accumulators and set algebra. In Cheon, J. H. and
Takagi, T., editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages
67–100. Springer, Heidelberg.

Gorbunov, S., Vaikuntanathan, V., and Wee, H. (2012). Functional encryption with
bounded collusions via multi-party computation. In Safavi-Naini, R. and Canetti,
R., editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer, Hei-
delberg.

Goyal, V., Jain, A., Koppula, V., and Sahai, A. (2015). Functional encryption for
randomized functionalities. In Dodis, Y. and Nielsen, J. B., editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 325–351. Springer, Heidelberg.

Han, J., Chung, A., Sinha, M. K., Harishankar, M., Pan, S., Noh, H. Y., Zhang, P.,
and Tague, P. (2018). Do you feel what i hear? Enabling autonomous IoT device
pairing using different sensor types. In IEEE Symposium on Security and Privacy.

Han, J., Harishankar, M., Wang, X., Chung, A. J., and Tague, P. (2017). Convoy:
Physical context verification for vehicle platoon admission. In 18th ACM Interna-
tional Workshop on Mobile Computing Systems and Applications (HotMobile).

Hofheinz, D. and Müller-Quade, J. (2004). Universally composable commitments
using random oracles. In Naor, M., editor, TCC 2004, volume 2951 of LNCS,
pages 58–76. Springer, Heidelberg.

246

Huang, Y., Katz, J., and Evans, D. (2012). Quid-Pro-Quo-tocols: Strengthening
semi-honest protocols with dual execution. In 2012 IEEE Symposium on Security
and Privacy, pages 272–284. IEEE Computer Society Press.

Huang, Y., Katz, J., and Evans, D. (2013). Efficient secure two-party computa-
tion using symmetric cut-and-choose. In Canetti, R. and Garay, J. A., editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 18–35. Springer, Heidelberg.

Jakobsson, M., Sako, K., and Impagliazzo, R. (1996). Designated verifier proofs and
their applications. In Maurer, U. M., editor, EUROCRYPT’96, volume 1070 of
LNCS, pages 143–154. Springer, Heidelberg.

Juels, A. and Wattenberg, M. (1999). A fuzzy commitment scheme. In Motiwalla,
J. and Tsudik, G., editors, ACM CCS 99, pages 28–36. ACM Press.

Katz, J. and Vaikuntanathan, V. (2011). Round-optimal password-based authenti-
cated key exchange. In Ishai, Y., editor, TCC 2011, volume 6597 of LNCS, pages
293–310. Springer, Heidelberg.

Kolesnikov, V., Mohassel, P., and Rosulek, M. (2014). FleXOR: Flexible garbling
for XOR gates that beats free-XOR. In Garay, J. A. and Gennaro, R., editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 440–457. Springer, Heidel-
berg.

Kolesnikov, V. and Rackoff, C. (2008). Password mistyping in two-factor-authenticated
key exchange. In Aceto, L., Damg̊ard, I., Goldberg, L. A., Halldórsson, M. M.,
Ingólfsdóttir, A., and Walukiewicz, I., editors, ICALP 2008, Part II, volume 5126
of LNCS, pages 702–714. Springer, Heidelberg.

Kolesnikov, V. and Schneider, T. (2008). Improved garbled circuit: Free XOR gates
and applications. In Aceto, L., Damg̊ard, I., Goldberg, L. A., Halldórsson, M. M.,
Ingólfsdóttir, A., and Walukiewicz, I., editors, ICALP 2008, Part II, volume 5126
of LNCS, pages 486–498. Springer, Heidelberg.

Laguillaumie, F. and Vergnaud, D. (2004). Multi-designated verifiers signatures. In
López, J., Qing, S., and Okamoto, E., editors, ICICS 04, volume 3269 of LNCS,
pages 495–507. Springer, Heidelberg.

Laguillaumie, F. and Vergnaud, D. (2007). Multi-designated verifiers signatures:
anonymity without encryption. Inf. Process. Lett., 102(2-3):127–132.

Li, J., Li, N., and Xue, R. (2007a). Universal accumulators with efficient nonmem-
bership proofs. In Katz, J. and Yung, M., editors, ACNS 07, volume 4521 of
LNCS, pages 253–269. Springer, Heidelberg.

247

Li, Y., Susilo, W., Mu, Y., and Pei, D. (2007b). Designated verifier signature: Def-
inition, framework and new constructions. In Ubiquitous Intelligence and Com-
puting, 4th International Conference, UIC 2007, Hong Kong, China, July 11-13,
2007, Proceedings, pages 1191–1200.

Lindell, Y. (2013). Fast cut-and-choose based protocols for malicious and covert
adversaries. In Canetti, R. and Garay, J. A., editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 1–17. Springer, Heidelberg.

Lindell, Y. and Pinkas, B. (2011). Secure two-party computation via cut-and-choose
oblivious transfer. In Ishai, Y., editor, TCC 2011, volume 6597 of LNCS, pages
329–346. Springer, Heidelberg.

Lindell, Y. and Pinkas, B. (2015). An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. Journal of Cryptology, 28(2):312–350.

Lindell, Y. and Riva, B. (2014). Cut-and-choose Yao-based secure computation in
the online/offline and batch settings. In Garay, J. A. and Gennaro, R., editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 476–494. Springer, Heidel-
berg.

Lipmaa, H. (2003). On diophantine complexity and statistical zero-knowledge argu-
ments. In Laih, C.-S., editor, ASIACRYPT 2003, volume 2894 of LNCS, pages
398–415. Springer, Heidelberg.

Lipmaa, H. (2012). Secure accumulators from euclidean rings without trusted setup.
In Bao, F., Samarati, P., and Zhou, J., editors, ACNS 12, volume 7341 of LNCS,
pages 224–240. Springer, Heidelberg.

Marlinspike, M. (2013). Advanced cryptographic ratcheting.

Maurer, U. M. (1997). Information-theoretically secure secret-key agreement by NOT
authenticated public discussion. In Fumy, W., editor, EUROCRYPT’97, volume
1233 of LNCS, pages 209–225. Springer, Heidelberg.

Mayrhofer, R. and Gellersen, H. (2009). Shake well before use: Intuitive and secure
pairing of mobile devices. IEEE Transactions on Mobile Computing, 8(6):792–806.

McEliece, R. J. and Sarwate, D. V. (1981). On sharing secrets and Reed-Solomon
codes. Commun. ACM, 24(9):583–584.

Micali, S., Rabin, M. O., and Vadhan, S. P. (1999). Verifiable random functions. In
40th FOCS, pages 120–130. IEEE Computer Society Press.

Miers, I., Garman, C., Green, M., and Rubin, A. D. (2013). Zerocoin: Anony-
mous distributed E-cash from Bitcoin. In 2013 IEEE Symposium on Security and
Privacy, pages 397–411. IEEE Computer Society Press.

248

Ming, Y. and Wang, Y. (2008). Universal designated multi verifier signature scheme
without random oracles. Wuhan University Journal of Natural Sciences, 13(6):685–
691.

Mohassel, P. and Franklin, M. (2006). Efficiency tradeoffs for malicious two-party
computation. In Yung, M., Dodis, Y., Kiayias, A., and Malkin, T., editors,
PKC 2006, volume 3958 of LNCS, pages 458–473. Springer, Heidelberg.

Monrose, F., Reiter, M. K., and Wetzel, S. (2002). Password hardening based on
keystroke dynamics. International Journal of Information Security, 1(2):69–83.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

Namecoin (https://www.namecoin.org/). Namecoin.

Ng, C. Y., Susilo, W., and Mu, Y. (2005). Universal designated multi verifier sig-
nature schemes. In 11th International Conference on Parallel and Distributed
Systems, ICPADS 2005, Fuduoka, Japan, July 20-22, 2005, pages 305–309.

Nguyen, L. (2005). Accumulators from bilinear pairings and applications. In
Menezes, A., editor, CT-RSA 2005, volume 3376 of LNCS, pages 275–292. Springer,
Heidelberg.

Nielsen, J. B. and Orlandi, C. (2009). LEGO for two-party secure computation. In
Reingold, O., editor, TCC 2009, volume 5444 of LNCS, pages 368–386. Springer,
Heidelberg.

Nisan, N. and Zuckerman, D. (1993). More deterministic simulation in logspace. In
25th ACM STOC, pages 235–244. ACM Press.

Pappu, R., Recht, B., Taylor, J., and Gershenfeld, N. (2002). Physical one-way
functions. Science, 297(5589):2026–2030.

Pinkas, B., Schneider, T., Smart, N. P., and Williams, S. C. (2009). Secure two-party
computation is practical. In Matsui, M., editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 250–267. Springer, Heidelberg.

Pöhls, H. C. and Samelin, K. (2014). On updatable redactable signatures. In
Boureanu, I., Owesarski, P., and Vaudenay, S., editors, ACNS 14, volume 8479 of
LNCS, pages 457–475. Springer, Heidelberg.

Renner, R. and Wolf, S. (2004). The exact price for unconditionally secure asymmet-
ric cryptography. In Cachin, C. and Camenisch, J., editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 109–125. Springer, Heidelberg.

249

Reyzin, L. and Yakoubov, S. (2016). Efficient asynchronous accumulators for dis-
tributed PKI. In Zikas, V. and De Prisco, R., editors, SCN 16, volume 9841 of
LNCS, pages 292–309. Springer, Heidelberg.

Roth, R. (2006). Introduction to Coding Theory. Cambridge University Press, New
York, NY, USA.

Sander, T. (1999). Efficient accumulators without trapdoor extended abstracts. In
Varadharajan, V. and Mu, Y., editors, ICICS 99, volume 1726 of LNCS, pages
252–262. Springer, Heidelberg.

Seo, S., Hwang, J. Y., Choi, K. Y., and Lee, D. H. (2008). Identity-based universal
designated multi-verifiers signature schemes. Computer Standards & Interfaces,
30(5):288–295.

Shailaja, G., Kumar, K. P., and Saxena, A. (2006). Universal designated multi verifier
signature without random oracles. In 9th International Conference in Information
Technology, ICIT 2006, Bhubaneswar, Orissa, India, 18-21 December 2006, pages
168–171.

Shamir, A. and Tauman, Y. (2001). Improved online/offline signature schemes. In
Kilian, J., editor, CRYPTO 2001, volume 2139 of LNCS, pages 355–367. Springer,
Heidelberg.

Shoup, V. (2001). A proposal for an ISO standard for public key encryption. Cryp-
tology ePrint Archive, Report 2001/112. http://eprint.iacr.org/2001/112.

Slepak, G. (2013). Dnschain + okturtles. http://okturtles.com/other/dnschain_

okturtles_overview.pdf.

Suh, G. E. and Devadas, S. (2007). Physical unclonable functions for device au-
thentication and secret key generation. In Proceedings of the 44th annual Design
Automation Conference, pages 9–14. ACM.

Tian, H. (2012). A new strong multiple designated verifiers signature. IJGUC,
3(1):1–11.

Tuyls, P., Schrijen, G. J., Skoric, B., van Geloven, J., Verhaegh, N., and Wolters,
R. (2006). Read-proof hardware from protective coatings. In Goubin, L. and
Matsui, M., editors, CHES 2006, volume 4249 of LNCS, pages 369–383. Springer,
Heidelberg.

Vergnaud, D. (2006). New extensions of pairing-based signatures into universal des-
ignated verifier signatures. In Bugliesi, M., Preneel, B., Sassone, V., and Wegener,
I., editors, ICALP 2006, Part II, volume 4052 of LNCS, pages 58–69. Springer,
Heidelberg.

250

http://eprint.iacr.org/2001/112
http://okturtles.com/other/dnschain_okturtles_overview.pdf
http://okturtles.com/other/dnschain_okturtles_overview.pdf

Wang, X., Ranellucci, S., and Katz, J. (2017). Authenticated garbling and efficient
maliciously secure two-party computation. In Thuraisingham, B. M., Evans, D.,
Malkin, T., and Xu, D., editors, ACM CCS 2017, pages 21–37. ACM Press.

Woodage, J., Chatterjee, R., Dodis, Y., Juels, A., and Ristenpart, T. (2017). A
new distribution-sensitive secure sketch and popularity-proportional hashing. In
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 682–710. Springer.

Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journali,
54.

Yakoubov, S. (2017). A gentle introduction to Yao’s garbled circuits. http://web.

mit.edu/sonka89/www/papers/2017ygc.pdf.

Yakoubov, S., Fromknecht, C., and Velicanu, D. (2014). Certcoin: A namecoin based
decentralized authentication system.

Yao, A. C.-C. (1986). How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press.

Yu, M.-D. M. and Devadas, S. (2010). Secure and robust error correction for physical
unclonable functions. IEEE Design & Test, 27(1):48–65.

Zahur, S., Rosulek, M., and Evans, D. (2015). Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Oswald, E. and Fischlin,
M., editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250.
Springer, Heidelberg.

Zhang, Y., Au, M. H., Yang, G., and Susilo, W. (2012). (strong) multi-designated
verifiers signatures secure against rogue key attack. In Network and System Secu-
rity - 6th International Conference, NSS 2012, Wuyishan, Fujian, China, November
21-23, 2012. Proceedings, pages 334–347.

Zheng, Y. (1997). Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost(encryption). In Kaliski Jr., B. S., editor, CRYPTO’97,
volume 1294 of LNCS, pages 165–179. Springer, Heidelberg.

Zviran, M. and Haga, W. J. (1993). A comparison of password techniques for multi-
level authentication mechanisms. The Computer Journal, 36(3):227–237.

251

http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf

Chapter 7

Curriculum Vitae

252

253

254

	Introduction
	Advances in Accumulators
	Advances in Designated Verifier Signatures
	Advances in PAKE

	Universally Composable Accumulators
	Introduction
	Accumulator Applications

	Revisiting Classical Accumulator Definitions
	Notation and Algorithms
	Security Definitions

	Ideal Functionality for Accumulators
	Modeling Decentralized Management
	Modeling Non-Adaptive Soundness
	Adding Privacy Properties
	Discussion: Incorrect Accumulator and Witness Values

	Equivalence Argument
	Appendix A: Universally Composable Signatures
	Appendix B: Universally Composable Zero-Knowledge
	Appendix C: The RSA Accumulator

	Accumulators with Applications toAnonymity-Preserving Revocation
	Introduction
	Outline

	Modular Accumulator Constructions
	Leveraging Accumulators with Different Functionalities
	Leveraging Less Secure Accumulators

	Braavos: A Communication-Optimal Adaptively Sound Dynamic Accumulator
	CLRSAB: A Communication-Optimal Non-Adaptively Sound Dynamic Accumulator
	Adding Zero Knowledge to Braavos

	BraavosB: Another Communication-Optimal Adaptively Sound Dynamic Accumulator
	Range-RSA: A Dynamic Negative Accumulator
	Range-RSA Accumulator Algorithms
	BraavosB Soundness
	Adding Zero Knowledge to BraavosB

	Comparison with Other Constructions
	Appendix A: Lower Bound on Total Communication in Negative Accumulators

	Efficient Asynchronous Accumulators for Distributed PKI
	Introduction
	Definitions
	Building Distributed Accumulators
	Construction
	Infrequent Membership Witness Updates
	Limited Dynamism
	Appendix 1: Algorithms
	Accumulator Algorithms
	Batch Witness Updates

	Stronger Notions and Constructions for Multi-Designated Verifier Signatures
	Introduction
	A Motivating Example for MDVS
	Flavors of Multi-Designated Verifier Signatures
	Our Contributions

	Multi-Designated Verifier Signatures
	Standard Primitive-Based MDVS Constructions
	New Primitive: Provably Simulatable Designated-Verifier Signatures (PSDVS)
	Standard Primitive-Based MDVS Construction
	Standard Primitive-Based PSDVS Construction
	DDH and Paillier-Based PSDVS Construction
	Sketch of a PSDVS Scheme Based on Prime Order Groups

	FE-based Construction
	Functional Encryption
	The MDVS Construction

	Appendix A: Instantiation of Non-Interactive ZK Proofs

	Fuzzy Password Authenticated Key Exchange
	Introduction
	Our Contributions

	Security Model
	General Construction Using Garbled Circuits
	Building Blocks
	Construction
	An Efficient Circuit f for Hamming Distance

	Specialized Construction For Hamming Distance
	Building Blocks
	Construction
	Security of fPAKE RSS
	Further Discussion: Removing Modeling Assumptions

	Comparison of fPAKE Protocols
	Appendix A: Ideal UC Functionalities
	Appendix B: Garbled Output Randomness: A New Yao's Garbled Circuit Definition
	Appendix C: Proof of Theorem 12
	Appendix D: Proof that sFRFEP is Enough to Realize FfPAKE P
	Appendix E: A Concrete OT
	Appendix F: Proof of Theorem 13
	Appendix G: Proof of Theorem 14
	Appendix H: A Natural (But Failed) Approach to fPAKE

	References
	Sophia Yakoubov: Curriculum Vitae

