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ABSTRACT

Increasingly, computing has moved to large-scale datacenters where application perfor-

mance is critical. Stagnating CPU clock speeds coupled with increasingly higher band-

width and lower latency networking and storage puts an increased focus on the operating

system to enable high-performance.

The challenge of providing high-performance is made more di�cult due to the diversity

of datacenter workloads such as search, video processing, distributed storage, and ma-

chine learning tasks. Our existing general purpose operating systems must sacrifice the

performance of any one application in order to support a broad set of applications.

We observe that a common model for application deployment is to dedicate a physical

or virtual machine to a single application. In this context, our operating systems can be

specialized to the purposes of the application.

In this dissertation, we explore the design of the Elastic Building Block Runtime

(EbbRT), a framework for constructing high-performance, customizable operating systems

while keeping developer e↵ort low. EbbRT adopts a lightweight execution environment

which enables applications to directly manage hardware resources and specialize their sys-

tem behavior. An EbbRT operating system is composed of objects called Elastic Building

Blocks (Ebbs) which encapsulate functionality so it can be incrementally extended or opti-

mized. Finally, EbbRT adopts a unique heterogeneous and distributed architecture where

an application can be split between a server running an existing general purpose operating

system and a server running a customized library operating system. The library operating

iv



system provides the mechanisms for application execution including primitives for event

driven programming, componentization, memory management and I/O.

We demonstrate that EbbRT enables memcached, an in-memory caching server, to

achieve more than double the performance with EbbRT than with Linux. We also demon-

strate that EbbRT can support more full-featured applications such as a port of Google’s

V8 javascript engine and nodejs, a javascript server runtime.
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Chapter 1

Introduction

Operating systems have two primary functions: 1. Securely multiplex hardware resources

across multiple applications and users and 2. Provide common abstractions and routines

which reduce the burden of application development. Operating systems abstractions typ-

ically serve both purposes. Consider threads which, on the one hand enable the operating

system to multiplex a processor across multiple applications, and on the other hides the

hardware parallelism from the application developer. Similarly, virtual memory and sockets

both enable isolation and hide hardware details.

The drawback to these abstractions is that they prevent optimizations which enable

high performance. This has been exacerbated by several recent trends:

1. CPU clock speeds have stalled in comparison to gains in networking speeds (10 Giga-

bit ethernet (GBE) is ubiquitous in datacenters with 50 and 100 GBE on the horizon)

and high-performance storage technologies such as flash and non-volatile RAM. This

puts pressure on the software I/O stack to perform well.

2. Increasingly, computation occurs in large datecenters where small, per-machine per-

formance wins result in substantial savings in aggregate. Developers are willing to

spend significant engineering effort in order to improve the performance of large-scale

applications.

3. Our existing abstractions are a poor fit for the diverse set of hardware that exists:

threads abstract too much of the necessary details in an enviornment with NUMA

and heterogeneous multiprocessors, sockets are a poor fit for RDMA technologies,



2

and new programming paradigms are created to manage accelerators such as GPUs

and FPGAs.

Fundamentally, high performance software is enabled by the ability to customize ap-

plication workloads to the hardware characteristics. Abstractions inherently restrict the

ability for application developers to customize to hardware characteristics. The desire for

high-performance in datacenter software has led to the development of techniques like 1. li-

brary operating systems, where system functionality is linked into the application address

space, 2. hardware virtualization, where hardware enforced isolation enables operating sys-

tems to expose hardware interfaces directly to the application, or 3. kernel bypass, where

applications can interact directly with hardware. These techniques enable applications de-

velopers to customize system functionality and thereby optimize their applications to the

characteristics of the hardware. However, these techniques have not seen widespread use

in application development. An inherent problem is that these techniques put an increased

burden on the application developer to replicate functionality provided by higher-level

abstractions. Furthermore, these techniques do not provide any path for incremental de-

velopment. Applications must be largely rewritten to target low-level interfaces.

Throughout the history of operating systems, this tension between high-level abstrac-

tions which provide rich functionality and and allow for a wide-range of applications to be

developed, and low-level abstractions which enable specialization has existed. Typically,

operating systems support some fixed interface which makes a tradeoff between the perfor-

mance achievable by any one application and the support provided to developers through

high-level abstractions and common functionality. For example, general purpose operating

systems like Linux support a wide-range of applications with relatively high-level abstrac-

tions whereas specialized operating systems like IBM’s CNK [69] target a restricted set

of applications (high-performance computing) and are able to achieve significantly higher

performance.

We do not believe that an operating system must make a static tradeoff between per-
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formance and developer support. Rather, we believe that, with an appropriate design,

system software can be made which is high-performance yet also provides support for a

wide-range of applications. We explore the design of operating systems for datacenter ap-

plications which enable high performance through customization yet encourage the reuse

of existing software and software abstractions in order to reduce developer effort. Specif-

ically, we present the design and implementation of the Elastic Building Block Runtime

(EbbRT), a framework for constructing per-application library operating systems. EbbRT

reduces the effort required to construct and maintain library operating systems without

restricting the degree of specialization required for high performance. We present three

novel contributions which enable EbbRT to achieve its goals.

1. EbbRT is comprised of a set of components, called Elastic Building Blocks (Ebbs),

that developers can extend, replace, or discard in order to construct and deploy a

particular application. This enables a greater degree of customization than a general

purpose system and promotes the construction of reusable software.

2. EbbRT uses a lightweight, event-driven execution environment that allows application

logic to directly interact with hardware resources, such as memory and I/O devices.

3. EbbRT applications are distributed across both specialized library operating systems

and general purpose operating systems. This allows functionality to be offloaded,

which reduces the engineering effort required to port applications.

In the remainder of this chapter we provide additional background and present an

overview of the EbbRT design. In Chapter 2 we discuss related work in the research com-

munity. Chapter 3 presents our low-level execution environment. Chapter 4 presents our

techniques for enabling modularity within EbbRT and in particular describes the Elastic

Build Block. Chapter 5 discusses the manner in which EbbRT provides compatibility with

existing software interfaces and specifically describes our distributed architecture. Chap-

ter 6 presents our experimental evaluation of EbbRT and finally, Chapter 7 concludes and
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discusses potential future work.

1.1 Background

In this section, we provide broader context for this work with a particular focus on ob-

servations of datacenter hardware trends as well as patterns in application development.

These observations motivate the need for both high-performance and reduced developer

effort in the construction of datacenter applications.

1.1.1 Computing in the Datacenter

A subtantial portion of the world’s computation is performed in large datacenters con-

taining thousands of servers with high-bandwidth (10s of gigabits) and low-latency (sub-

millisecond) interconnectivity. Datacenter applications are built to span hundreds of ma-

chines. Application developers must consider new problems at scale such as fault tolerance,

load balancing, sharding, and tail-latency.

The focus of software development is inherently a cost-benefit tradeoff and investments

in performance improvement provide more return at scale. A developers time can be spent

building new software, adding additional features, enhancing software stability or improv-

ing performance. The developer cost to make a five percent performance improvement is

largely independent of the scale at which the application is deployed, whereas the benefit of

performance improvements is obviously dependent on scale. Therefore, we must recognize

that developers are willing to spend significant effort optimizing datacenter applications.

Datacenter applications tend to have high fan-out degree in their communication pat-

terns. In order to process a single web request, a webserver may need to request objects

from a distributed caching service. It is not rare for a single web request to require in-

teracting with hundreds of other servers. The user-perceived latency is therefore heavily

dependent on the tail of the response latency distribution of the backend services. Most

of the time is spent waiting for the slowest of the backend services. One of the most
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significant causes of tail latency is queueing effects. A heavily loaded service may delay

responses simply due to a burst of incoming requests. Queuing is more likely as the request

rate approaches the service rate. In order to cope with this, datacenter services tend to

under-utilize individual servers, forcing internet-scale companies to spent billions of dol-

lars on under-utilized hardware. This is exacerbated by the fact that the power draw of

modern servers is not proportional to their utilization. At 30% utilization, a state of the

art datacenter will still draw 70% of it’s peak power [47]. Therefore, developers are further

incentivized to better utilize datacenter hardware through high-performance software.

In addition to the added value of improving application performance, there are further

opportunities for optimization in a datacenter. Network communication within a data-

center is low latency and high-bandwidth and continuously improving whereas CPU clock

speeds have stagnated. Similarly, disk access latencies and bandwidths have improved

in datacenters. In contrast to early networked systems where I/O costs dominated, now

developers are incentivized to optimize the software which interacts with an I/O device.

Additionally, datacenters tend to be fairly homogeneous platforms. A datacenter will

typically only have a few generations of Intel x86 servers which get replaced within 3–5

years. Compare this to desktop or mobile environments where end-users may have hardware

from many different vendors with drastically different capabilities and are much slower to

upgrade. This enables and incentivizes application developers to optimize applications to

the particular details of the hardware they run on.

In summary, properties of datacenter computation such as scale, platform homogeneity

and tail latency create an increased focus on software performance.

1.1.2 Modern application development

One of the most substantial outcomes of cloud computing is that it has commoditized

the datacenter. Developers and small businesses can get access to and build software for

datacenter hardware just the same as internet-scale companies. This results in a prolifera-

tion of software, making datacenter software much more diverse than other domains such
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as high performance computing. Datacenter software includes workloads such as search,

ads targeting, distributed storage, user-facing webservers, video processing, and machine

learning tasks. These have drastically different performance characteristics and objec-

tives. For example, user-facing webservers and the backend services they depend on are

incredibly sensitive to tail-latency, whereas offline video processing or machine learning is

better served by higher throughput. Webservers tend to have ample available parallelism

due to their request-driven nature, whereas video processing workloads may require sub-

stantial engineering effort to enable sufficient parallelism. This leads us to believe that

per-application optimization is critical to achieving high performance in datacenters.

This is further exacerbated by the fact that application software has become signifi-

cantly less reliant on any single software API. For example, it has become quite rare for

applications to directly write to a POSIX interface. In fact, many applications are written

in managed programming languages such as Java, Go, Python, and PHP which present

drastically different APIs than the lower-level system interfaces which they depend on. Op-

timizing the performance of any one managed programming language provides less value

than optimizing a more common primitive. However, the fact that applications are increas-

ingly being written to high-level interfaces provides a greater opportunity for optimization

without the burden of compatibility with lower-level interfaces.

Another relatively recent shift in application development is the rate at which soft-

ware is developed and deployed. Large internet-scale companies will routinely deploy code

to user-facing services within hours or days of it being written. This rate of develop-

ment and deployment makes performance optimization particularly challenging as such

optimization must occur concurrently with feature development and changes in workload

patterns. Expending developer effort to optimize an application that may look and behave

very differently by the time the optimization is complete is wasteful. Instead, performance

optimization must be a continuous and iterative process. Rewrites of software are rarely

undertaken because the effort invested is so large and the outcome is uncertain.

It is important to also note that not all dependencies of an application are perfor-
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mance critical. Modern applications depend on libraries for auxiliary functionality such as

logging or recording data for ad-hoc analysis. This functionality isn’t critical to the over-

all performance of the application. In the process of optimizing an application, one can

provide suboptimal but otherwise functional behavior for substantial portions of an appli-

cation. In doing so, it may be possible to reduce the effort normally required to optimize

an application.

1.1.3 Summary

These observations lead us to a number of objectives EbbRT should fulfill.

1. The properties of a datacenter both incentivize extreme optimizations. EbbRT should

provide as much ability to customize system software as possible.

2. The existence of such a diverse number of platforms and software APIs makes it un-

realistic to expect applications to be rewritten to new interfaces — therefore EbbRT

must provide compatibility with existing interfaces, at least in part.

3. Finally, application development cannot be put on hold while performance is opti-

mized. EbbRT must encourage incremental optimization of applications.

1.2 Design Overview

This section describes the high-level design of EbbRT. In particular the three elements of

the design discussed are: 1. a heterogeneous distributed structure, 2. a modular system

structure, and 3. a non-preemptive event-driven execution environment.

1.2.1 Heterogeneous Distributed Structure

Common datacenter deployment models enable a single application to be deployed across

multiple machines within an isolated network. In this context, it is not necessary to

run general purpose operating systems on all the machines. Rather, an application can
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be deployed across a heterogeneous mix of specialized library OSs and general purpose

operating systems.

To facilitate this deployment model, EbbRT is implemented as both a lightweight

bootable runtime and a user-level library that can be linked into a process of a general

purpose OS. We refer to the bootable library OS as the native runtime and the user-level

library as the hosted runtime.

The native runtime allows application software to be written directly to hardware in-

terfaces uninhibited by legacy interfaces and protection mechanisms of a general purpose

operating system. The native runtime sets up a single address space, basic system function-

ality (e.g. timers, networking, memory allocation) and invokes an application entry point,

all while running at the highest privilege level. The EbbRT design depends on applica-

tion isolation at the network layer, either through switch programming or virtualization,

making it amenable to both virtualized and bare-metal environments.

The hosted user-space library allows EbbRT applications to integrate with legacy soft-

ware. This frees the native library OSs from the burden of providing compatibility with

legacy interfaces. Rather, functionality can be offloaded via communication with the hosted

environment.

A common deployment of a EbbRT application consists of a hosted process and one

or more native runtime instances communicating across a local network. A user is able to

interact with the EbbRT application through the hosted runtime, as they would any other

process of the general purpose OS, while the native runtime supports the performance-

critical portion of the application.

1.2.2 Modular System Structure

To provide a high degree of customization, EbbRT enables application developers to modify

or extend all levels of the software stack. To support this, EbbRT applications are almost

entirely comprised of objects we call Elastic Building Blocks (Ebbs). As with objects in

many programming languages, Ebbs encapsulate implementation details behind a well-
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defined interface.

Ebbs are distributed, multi-core fragmented objects [27, 64, 75], where the namespace

of Ebbs is shared across both the native and hosted runtimes. An EbbRT application

typically consists of multiple Ebb instances. The framework is composed of base Ebb

types that a developer can use to construct an EbbRT application.

When an Ebb is invoked, a local representative handles the call. Representatives may

communicate with each other to satisfy the invocation. For example, an object providing

file access might have representatives on a native instance simply function-ship requests

to a hosted representative which translates these requests into requests on the local file

system. By encapsulating the distributed nature of the object, optimizations such as

RDMA, caching, using local storage, etc. would all be hidden from clients of the filesystem

Ebb.

Ebb reuse is critical to easing development effort. Exploiting modularity promotes reuse

and evolution of the EbbRT framework. Developers can build upon the Ebb structure to

provide additional libraries of components that target specific application use cases.

1.2.3 Execution Model

Execution in EbbRT is non-preemptive and event-driven. In the native runtime there is

one event loop per core which dispatches both external (e.g. timer completions, device

interrupts) and software generated events to registered handlers. This model is in contrast

to a more standard threaded environment where preemptable threads are multiplexed

across one or more cores. Our non-preemptive event-driven execution model provides a

low overhead abstraction over the hardware. This allows our implementation to directly

map application software to device interrupts, avoiding the typical costs of scheduling

decisions or protection domain switches.

EbbRT provides an analogous environment within the hosted library by providing an

event loop using underlying OS functionality such as poll or select. While the hosted

environment cannot achieve the same efficiency as our native runtime, we provide a com-
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patible environment to allow software libraries to be reused across both runtimes.

Many cloud applications are driven by external requests such as network traffic so the

event-driven programming environment provides a natural way to structure the application.

Indeed, many cloud applications use a user-level library (e.g. libevent[73], libuv[7], Boost

ASIO[2]) to provide such an environment.

Further, we provide interfaces which allows application software to directly manage

memory and I/O devices with little to no abstraction. These low-level interfaces are critical

for enabling performance specialization.



Chapter 2

Related work

This chapter provides the larger context for this work and compares it with past systems

research. In particular, we focus on the historical tension between the desire for operating

systems to 1. Provide protection or isolation between applications and users, 2. Support a

broad set of scenarios and applications, and 3. Enable high performance. This is presented

in a mostly chronological order as most research builds on prior work.

An Overview of the CAL Time-Sharing System [54] This work, published in

1969, describes the construction of CAL-TSS, a time-sharing system for the dual-processor

Control Data 6400. The primary objectives of this system are the construction of a flexible

(in the sense that it can be used to support a broad range of applications) and reliable

system. The author identifies one of the key principles of operating system architecture,

the notion of layering. A system can provide “low-level” primitives on top of which,

“higher-level” facilities can be constructed. It is simpler to guarantee properties (in this

case reliability) of a small set of primitives rather than a large, monolithic system.

One of the key observations made in this work is that low-level primitives need not be

convenient to use, each operation can do very little, but the collection must be powerful

enough to allow for the construction of more convenient abstractions. Furthermore the

author observes that

If a system is to evolve to meet changing requirements, and if it is to be flexible

enough to permit modularization without serious losses of efficiency, it must

have a basic structure which allows extensions not only from a basic system but
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also from some complex configuration which has been reached by several prior

stages of evolution. In other words, the extension process must not exhaust

the facilities required for further extensions. The system must be completely

open-ended, so that additional machinery can be attached at any point.

This particular lesson, that systems extensions should be extensible themselves, is one we

aggressively adopt in the design of EbbRT. Rather than providing extensibility at some

fixed interface, we make the extensibility of EbbRT a first class aspect.

An Open Operating System for a Single-user machine [55] This work, published

in 1979, describes the construction of the operating system for the Xerox Alto. Most

contemporaneous systems targeted a multi-user environment where the interface between

the operating system and the application was strictly defined in order to isolate applica-

tions from each other. This system differs significantly by targeting a single-user machine

and recognizing that there need not be a distinction between system functionality and

application functionality.

Thus the system can reasonably be viewed as a collection of procedures which

implement various potentially useful abstract objects. There is no significant

difference between these system procedures and a set of procedures which the

user might write to implement his own abstract objects. In fact, the system

code is made available as a set of independent subroutine packages, each im-

plementing one of the objects,

An important observation made in this work is that the success of the operating system

as a collection of procedures depends heavily on the design of the procedures themselves.

In particular, the authors recognize that it is a challenge to construct components which

can be made to create a cohesive system and yet are individually useful themselves.

Protocol Service Decomposition for High-Performance Networking [63] This

work, published in 1993, describes the design of a networking subsystem for the Mach 3.0
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microkernel. The typical way of implementing networking services in a microkernel involves

a userspace server which controls all network access and provides an interface with which

applications can send and receive network traffic. The authors of this work identify that

such an approach provides flexibility (different network servers can be implemented on top

of the same microkernel) at the expense of performance (data usually must be copied twice

from an application to the userspace server and then from the server to the kernel).

This work identifies that one can achieve both flexibility and performance by imple-

menting network protocols as a library linked into an application. Protection is enforced

by the kernel and connection setup and exceptional conditions are handled by the network-

ing server. However, the performance-critical data path is implemented almost entirely in

the application address space except for low-level packet send and receive (implemented

at the kernel level). Furthermore, this technique allows applications to avoid the standard

socket interface. The authors demonstrate the performance advantages gained by avoiding

a redundant data-copy forced by the socket interface.

This works illustrates an important aspect of EbbRT’s design — by implementing

system functionality as a software library, we can support existing software interfaces effi-

ciently, yet also provide the flexibility needed to customize for the application’s needs.

Extensible Multi-user Operating Systems Spin [25] (1995) explores a way to safely

extend a kernel with per-application behaviors. The observation made by the SPIN authors

is that a primary cause for poor performance in microkernels is that system functionality

is provided by servers which reside in a different address space from the kernel and each

other. The cost of an address space switch prevents fine-grain composition in a microkernel.

Instead, the authors allow for extensions to be linked directly into the kernel address space.

Some modern systems take a similar approach. Linux modules can be dynamically

inserted into the kernel address space. However, a misbehaving kernel module can bring

down the entire system. Therefore kernel modules must only be loaded by trusted users,

limiting the ability to customize OS functionality.
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In SPIN, to prevent extensions from damaging the system, the kernel makes sure all

extensions are written in a type-safe, garbage collected language, Modula-3. All extensions,

therefore, are known statically not to access memory or interfaces they are not allowed to.

VINO (1996) takes a very similar approach to SPIN. Kernel extensions in VINO, called

grafts, are directly linked into the kernel address space as in SPIN. However, grafts can be

written in any language. VINO prevents grafts from accessing invalid memory or executing

unauthorized instructions by static analysis of the binary and inserting dynamic checks into

the graft machine code. The authors note that the use of the typesafe language in SPIN

would have simplified many challenges they ran into. However, they note that

the areas we found most challenging, such as detecting and dealing with re-

source hoarding, identifying malicious extensions and identifying the set of

graft-callable and graft-replaceable interfaces are also challenges for SPIN.

A primary concern of the paper is preventing other potentially damaging actions a

misbehaving graft can perform such as resource hoarding (acquiring a kernel lock and

spinning) and denial of service. To this end, grafts execution within the context of a

transaction. A transaction logs the actions taken by a graft and if a graft needs to be

aborted (e.g, it takes too long), then the log can be used to back out the actions of the

graft. For example, if a graft acquires a lock and spins, the kernel can abort the graft for

taking too long and release the lock. The authors measure the overhead of the transaction

mechanism and show that it can be quite costly indeed, almost tripling the cost of an

unprotected graft in the worst case.

Both SPIN and VINO focus on mechanisms for enabling applications to safely extend

the kernel with new system functionality. In EbbRT, we side step this challenge by adopting

a library operating system approach where the operating system functionality is linked into

the application address space and therefore is free to be modified. Furthermore, both SPIN

and VINO identify the substantial challenge of identifying where to extend the operating

system. As previously discussed, our approach to modularity — in particular, the fact that
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the entire system is composed of Ebbs, enables developers to freely extend the system.

Exokernel: An Operating System Architecture for Application-Level Resource

Management [33] Exokernel, published in 1995, takes a slightly different approach than

the previous systems. Exokernel recognizes the need for customization:

Fixed high-level abstractions hurt application performance because there is no

single way to abstract physical resources or to implement an abstraction that is

best for all applications. In implementing an abstraction, an operating system

is forced to make trade-offs between support for sparse or dense address spaces,

read-intensive or write-intensive workloads, etc.

In contrast to microkernels which attempt to provide minimal abstractions over hard-

ware resources (e.g, address spaces are an abstraction over page tables or a software-

managed TLB), an exokernel securely exposes hardware as directly as possible to applica-

tions. Operating system functionality is then linked directly into the application’s address

space using a Library Operating System.

To accomplish this, the authors argue that an exokernel should expose allocation, allow-

ing a library operating system to request specific resources instead of implicitly allocating

them. In addition, the exokernel exposes physical names, avoiding a level of indirection

and allowing library operating systems to exploit the semantics of a physical name. Finally,

an exokernel makes resource revocation visible, allowing a well-behaved library operating

system to choose which resources to give up.

While the interface the exokernel provides may be less efficient than others (e.g, re-

voking a physical page directly without consulting the application is faster), the ability to

customize outweighs the costs for those applications that demand it. This is an interest-

ing tension, the value of customizability is very dependent on the applications the system

wishes to support. If one wishes to support only read-intensive workloads, then it is more

efficient to optimize for that case rather than provide customizable interfaces. In turn,
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the need for customizability from applications is driven by the hardware. As hardware

bottlenecks are relieved, software will become more significant and applications will have

a greater need for customizability.

EbbRT adopts the library operating system approach described in this work but we

need not rely on an explicit exokernel to multiplex the hardware resources. Instead, iso-

lation is provided by virtualization or network switch programming which allows us to

dedicate a complete physical or virtual machine to our library operating system. Our inde-

pendence from a separate exokernel allows us to more directly expose hardware interfaces

to application developers.

Componentized Operating Systems There have been several efforts to explore com-

ponentization of operating system functionality such as Choices [28], TinyOS [57] and OS-

Kit [37]. Each of these focuses on the construction of operating systems from a collection

of components. In particular OSKit is largely motivated by the observation that a lot of

the effort in constructing a new operating system involves replicating a lot of functionality

from existing operating systems.

One of the observations made by the authors of OSKit is the importance of defining

interfaces. Software components in OSKit strictly define both their interface “above”, the

interface to the service exported by the component as well as their interface “below”, the

dependencies of the component. This allows components to be used in isolation of the rest

of the system. Additionally, OSKit provide a software “glue” layer which wraps device

drivers in existing operating systems such as Linux in such a way that they can be more

easily incorporated into new operating systems.

OSKit also makes a number of design decisions which are incompatible with EbbRT’s

objectives. The method they use to define software components, in particular their use

of dynamic dispatch and a heavy-weight interface definition language (COM), sacrifices

performance in exchange for flexibility. In EbbRT we seek to apply many of the same

lessons learned about the composition of an OS framework, but we wish to do so without
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sacrificing performance.

Cloud Library Operating Systems There has been a recent resurgence in library

operating systems research. In particular, a number of research groups have made the

same observation we have, that isolation provided by virtualization enables one to deploy

library operating systems. MirageOS [62] executes in a single address space with the

application and operating system compiled into a static system image capable of executing

as a Xen virtual machine.

MirageOS focuses on improving system security by using a memory and type-safe pro-

gramming language, OCaml, to define the entire system. At construction time, the ap-

plication and system are compiled into a single immutable system image which prevents

various code injection attacks by construction.

OSv, published in 2014, similar to MirageOS, constructs a single-address space library

operating system for cloud computing applications. Rather than targeting a high-level

language, OSv can run many Linux binaries unmodified. The system contains a dynamic

loader, capable of resolving symbols at boot-time in-order to construct the single-address

space.

OSv focuses on the performance advantages gained by constructing a system explicitly

for a single-address space. For example, context switches between threads need not invali-

date the TLB (and often can avoid saving volatile registers). Furthermore, they allow the

application to influence system behavior in cases of memory pressure.

Both MirageOS and OSv take advantage of the ability to construct single address-

space applications given the common deployment model of cloud applications. They differ

substantially in the degree of compatibility they provide with existing applications as well

as their goals (security and performance, respectively). We adopt a similar approach to

these systems in constructing single address-space library operating systems but take a

much more aggressive approach to per-application specialization.
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2.0.1 Summary

The operating system is responsible for allowing applications to efficiently use the hardware

through a common set of reusable abstractions. No single operating system structure is

best suited for all scenarios. There are many different approaches to building a system with

different trade-offs to be made. Throughout the history of operating systems, the common

themes of protection, extensibility, and performance are at odds with each other. The

“correct” trade-offs are dependent on the goals of the operating system. A system targeted

to a particular workload can achieve better performance than one designed to be extended

to many different applications. Past work has shown that there are many different ways to

make trade-offs within a system.

In our work, we recognize that the concern of protection is largely eliminated in the

domain of datacenter computing where protection is often provided by the hardware di-

rectly or through virtualization. However, we do not believe that a system must make a

static trade-off between performance and extensibility. Instead we believe that, with an

appropriate design, system software can be made which is high-performance and yet also

extensible to a wide-range of applications.



Chapter 3

Execution Environment

An execution environment defines an applications interface to hardware resources. Often

these interfaces are used to provide a level of indirection which the operating system can

use to multiplex hardware resources more freely. For example, the predominant primitive

for computation is a thread of execution which can be preempted to multiplex a CPU. Pro-

gramming languages and their implementations also play a role in defining an application’s

execution environment. For example, Message Passing Interface (MPI) is a programming

language standard where independent computation nodes communicate through explicit

message passing. This is then mapped by the implemented onto a shared-memory multicore

or a distributed system without application modification.

Advances in hardware virtualization and the resulting development of Infrastructure as

a Service clouds has created a situation where the multiplexing provided by our modern

operating systems is no longer a requirement. Therefore, the execution environment of a

new cloud operating system need not provide multiplexing itself. Rather, it can focus on

providing a thin abstraction layer that enables applications to implement their behavior at

lower levels than most systems allow.

EbbRT is designed and implemented to be an extensible framework and so, its base

mechanisms can be used to create a range of different execution environments. The goal is

to enable execution environments that are very different to the base environment explicitly

explored in this dissertation. Our approach is similar in spirit to how one might use the

Unix process model to construct a very different execution environment such as the Java

Virtual Machine or the Go language runtime. Despite the fact that EbbRT is open source
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and freely modifiable, for the purposes of this discussion, we treat the base execution

environment as fixed. This defines an upper bound on the degree of customization possible

within EbbRT. It is important for the base execution environment to not only allow for

high-performance and optimization, but also to provide a broadly applicable environment

for many applications in order to encourage the construction of common software libraries

to be used within the environment.

EbbRT provides two distinct base execution environments (simply referred to as the

EbbRT execution environments from here on). The native environment allows application

code to run as privileged software with minimal abstractions over hardware interfaces.

The hosted environment can be embedded within a process of another operating system.

The hosted environment allows applications to consume functionality provided by existing

operating systems. The two environments have distinct uses, but provide similar interfaces

in order to promote code reuse and interoperability.

In this chapter we describe the design and implementation of both environments. In

particular we focus on describing three key aspects of the execution environment: compute,

memory, and I/O. For each of these aspects, we describe their design and implementation

and then discuss the advantages and limitations.

3.1 Native Environment

The goal of the native execution environment is to provide the basic functionality which

one can use to construct applications. In particular, the execution environment provides

the ability to construct and invoke Ebbs as well as a core set of Ebbs designed to facilitate

direct application access to hardware resources. This provides the basis on top of which

all further Ebbs, applications and libraries are constructed.

The core set of Ebbs may be replaced or modified by users, but they all must exist. For

example, the GeneralPurposeAllocator is used during initialization. The system is not

dependent on its particular implementation, just that it exists and conforms to its defined
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interface.

The native environment of EbbRT is distributed as a modified GNU toolchain (gcc,

binutils, libstdc++) and C library (newlib) which provide an x86 64-ebbrt target. De-

velopers compile application and library code with this toolchain to produce a bootable

ELF linked with the native runtime. This ELF can be booted by any multiboot compatible

bootloader (e.g. GRUB, QEMU, kexec).

In this section we describe the EbbRT native execution environment in three main pieces

1. our abstraction for computation, events 2. memory management 3. and I/O. For each

of these pieces we describe the application programmer API, the default implementation

and the advantages and disadvantages of our approach.

3.1.1 Events

EbbRT has two primary requirements of our execution model. First, the primitives should

provide minimal abstraction over hardware resources in order to support the broadest set

of optimizations. Second, the ability to take advantage of such optimizations should not

preclude the reuse of existing software. In this section, we describe events, our method for

acheiving these objectives.

EbbRT’s execution model is event-driven. Programmers define and specify event han-

dler functions which execute in response to a particular triggering event. In an event-driven

execution model, programmers do not typically write long-lived loops, rather the environ-

ment provides event dispatch loops which monitor for the occurence of events and dispatch

event handlers accordingly.

When the native environment boots, an event loop per core is initialized. Events can

be triggered from timer completions, device interrupts, or through an explicit software in-

terface. While a processor is executing an event, all interrupts are disable. When an event

completes, interrupts are enabled, causing more events to be processed. Such a computa-

tion model where units of computation run to completion is described as non-preemptive.

Our event-driven execution environment can be efficiently implemented directly on top of
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interrupts, providing a low overhead abstraction over the hardware facilities. This allows

application software to run immediately off a device interrupt without the typical costs

of scheduling decisions. In chapter 6 we demonstrate that this can result in 40% latency

improvements in networking microbenchmarks.

Devices can allocate a hardware interrupt from the EventManager and then bind a

handler to that interrupt. When an event completes and the next hardware interrupt fires,

a corresponding exception handler is invoked. Each exception handler execution begins

on the top frame of a per-core stack. The exception handler checks for an event handler

bound to the corresponding interrupt and then invokes it. When the event handler returns,

interrupts are enabled and more events can be processed.

Applications can also Spawn synthetic events on any core in the system. The Spawn

method of the EventManager receives an event handler as a parameter which is invoked

from the event loop. Spawned events are only executed once. If an application wishes to

have a reoccurring event handler invoked, then it may be installed as an IdleHandler. In

order to prevent interrupt starvation, when an event completes the EventManager:

1. Enables then disables interrupts, providing a short window to handle any pending

interrupts

2. Dispatches a single synthetic event (from Spawn), if one exists

3. Invokes all IdleHandlers

4. Enables interrupts and halts.

If any of these steps result in an event handler being invoked, then once the event

handler completes, the process starts again at the beginning. This way, hardware interrupts

and synthetic events are given priority over repeatedly invoked idle handlers.

As an example, a network card driver is able to implement adaptive polling in the follow-
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ing way: An interrupt is allocated from the EventManager and the device is programmed to

fire that interrupt when packets are received. The event handler will then process received

packets to completion and return to the EventManager which will re-enable interrupts. If

the interrupt rate exceeds a configurable threshold then the driver disables the interrupt

(via programming the device) and installs an IdleHandler to process received packets.

The EventManager will then repeatedly call the idle handler, effectively polling the device

for more data. When the packet arrival rate drops below a configurable threshold, the

driver re-enables the interrupt and disables the idle handler to return to interrupt-driven

execution. While the EventManager interface is simple, it provides sufficient functionality

to implement this dynamic behavior.

A common challenge associated with non-preemptive programming occurs when a code

path must be modified to wait for the completion of an asynchronous event (e.g. write a

file). In traditional systems, a thread will block until the event completes and wakes up the

thread to continue. However, in non-blocking systems this is not possible. Instead, all calls

along the path must pass along a continuation to be invoked when the event completes.

Adya et al.[14] refer to this as stack ripping. Given our desire to enable reuse of existing

software, a purely non-blocking system is infeasible. Much existing software relies on

blocking I/O interfaces and modifying these to pass along continuations is often an immense

engineering effort. Instead, EbbRT provides a hybrid model that allows events to explicitly

save and restore event state (the stack and volatile register state) via the EventManager’s

SaveContext method. This has allowed us to quickly port software libraries which require a

blocking system call. At the point where the block would occur, the current event saves its

state and processing of pending events proceeds as previously described. The original event

state can be restored and resumed via the EventManager’s ActivateContext method when

the asynchronous work completes. The save and restore event mechanisms enable explicit

cooperative scheduling between events in order to provide familiar blocking semantics and

interfaces.

Finally, non-preemptive execution also provides for a simple implementation of Read-
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Copy-Update (RCU) [67, 52]. Typically, concurrent data structures are protected by a

reader-writer lock which allows either multiple readers or an exclusive writer to access

shared data. Reader-writer locks have two primary drawbacks. First, the bookkeeping

operations needed to keep track of the number of readers are expensive and may scale

poorly. Second, readers are blocked by any writer which may be detrimental for read-

heavy workloads. RCU is a software technique which allows wait-free reads of a concurrent

data-structure. Simply, readers may execute their critical section without coordination

with other readers and writers, so long as read-side critical sections are short. RCU writers

must make their updates atomically (typically by swapping a pointer from an old version

of the data structure to a newer version), but also. RCU keeps track of quiescent points

where it can be known that all reader critical sections at some previous time must have

completed. Once all active threads have reached a quiescent point, one can be sure that

all readers will see the affect of the writer’s crtical section.

Consider a linked-list; an exclusive writer can remove an element of the linked list by

atomically writing the next pointer of the previous element. With wait-free readers, the

writer cannot just free the memory of the removed element as readers may be concurrently

accessing it. Instead, the writer will wait until the quiescent point following the atomic

write at which point no readers can see the previous element. At this point, the writer is

allowed to reclaim the memory of the previous element.

Linux provides an implementation of RCU where reader critical sections require dis-

abling preemption and it can be known that a thread cannot be in a reader-side critical

section each time it is preempted. This allows readers to avoid coordination at read-time

and defers the necessary bookkeeping to the kernel scheduler. A quiescent point is de-

fined to be a point in time when all threads alive since a previous point in time have been

preempted.

EbbRT provides an RCU interface via the EventManager. System or application soft-

ware can pass an event handler to be invoked when all currently existing readers can be

guaranteed to have completed. As long as readers of RCU protected data structures com-
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plete their reads without relinquishing control of the processor (by blocking their event),

then we can conservatively say that all readers have completed when an event has been dis-

patched on every core. Our default EventManager uses a simple token-passing algorithm

to implement this. Initially the first core holds a token and registers a timer at which

point the core passes the token to another core in a ring. Every time a core receives a to-

ken, it sets aside all RCU event-handlers registered since the previous token was received.

These event handlers can then be invoked on the following reception of the token which

indicates that all cores have dispatched an event (at least the timer event) since the RCU

event-handlers were registered.

EbbRT Events and Threads: The ISO C++14 standard defines:

A thread of execution (also known as a thread) is a single flow of control within

a program, including the initial invocation of a specific top-level function, and

recursively including every function invocation subsequently executed by the

thread.

Note that this definition does not require that threads be preemptive. From a programming

language perspective, EbbRT events are a valid implementation of C++ threads. This

allows us to map thread interfaces to EbbRT events. For example, thread creation can

be implemented by spawning a synthetic event. We ensure that other interactions with

the language and EbbRT events match the definition of C++ threads. For example, any

C++ exception caught by the EventManager when invoking an event handler results in a

system abort. This mimics the behavior of C++ calling std::terminate when the initial

function of a std::thread throws an exception. Additionally, “thread local” storage (e.g.

pthread key create) is stored as part of each event’s state. Furthermore, a complete

implementation of the pthread interfaces could be implemented on top of EbbRT’s events

— allowing unmodified application code to execute at a low-level context.
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3.1.1.1 Advantages

The most obvious advantage of EbbRT’s events are how immediately they map to hardware

interfaces. An interrupt causes user code to be invoked without the typical overheads

of scheduling and context switching. Much of our evaluation demonstrates the benefits

provided by this approach. In this section, however, we discuss secondary advantages to

this approach.

While EbbRT’s events are analogous to threads, they execute without preemption.

Many Ebbs use per-core data structures to achieve multi-core scalability. In a preemptive

system, accessing per-core data structures would require atomic operations, which can

be expensive even if uncontended [32]. In EbbRT, events cannot be preempted and will

never be migrated across cores. This allows developers to use non-atomic operations to

access per-core data structures. This integrates well with the Ebb model where per-core

representatives are used to hold per-core data.

Another advantage of non-preemptive execution is that saving the state of an event is

performed via an explicit function call, meaning only callee saved registers and the stack

must be saved. Under the x86 64 System V ABI, this only requires saving seven registers

(%rsp, %rbp, %rbx, %r12 through %r15). In comparison, preemption requires preserving

all register state, including all general purpose registers, floating pointer registers, and flag

registers.

Non-preemption helps with the implementation of RCU because no event can be pre-

empted while reading a data-structure. The RCU implementation in Linux, on the other

hand must explicitly disable/enable interrupts around RCU access to ensure that preemp-

tion does not occur. Userspace implementations of RCU [12] must resort to other techniques

like requiring developers to periodically run the RCU subsystem or use SIGALRM and explic-

itly record concurrent reads. As with other operating systems, RCU is used frequently in

EbbRT to construct efficient and scalable data structures such as linked lists and resizable

hash tables. Furthermore, RCU can used as easily in EbbRT application software as in
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lower-level system software.

In summary, EbbRT’s event-driven execution model provides a number of ancillary

benefits such as efficient access to per-core data structures, efficient context-switching, and

a natural implementation of RCU.

3.1.1.2 Limitations

In this section we discuss some of the limitations of EbbRT’s event-driven execution model.

Some of the limitations are an inherent design trade-off necessary to achieve the above

advantages. Other limitations, we believe, can be addressed in future work.

A limitation of the non-preemptive model is that it is difficult to map long-running

threads with no I/O to an event-driven model. If the processor is not periodically yielded,

then event starvation can occur. At present we do not provide a completely satisfactory

solution. There are several alternatives we have not yet explored, each with tradeoffs.

1. Building a preemptive scheduler on top of events similar to Scheduler Activations [16]

would be possible. However, Ebbs designed for non-preemptive execution (such as

those that access per-core data without atomics) would not be usable. Fragmenting

the set of Ebbs into those that depend on non-preemptive execution and those that do

not is not an attractive proposal given our focus on reducing software maintenance.

2. We could dedicate one or more cores to running each long-running thread, as IX[22]

did, and alleviate the need for any preemption. This may be a waste of resources if

the long-running thread is periodic.

3. We could also only allow long-running threads on the hosted system. The most

significant advantages of the native execution environment come from direct access

to hardware. Long-running threads are less likely to see significant advantages by

running on EbbRT’s native environment.

One implication of the shift from purely asynchronous execution to cooperative multi-



28

tasking is the increased potential for deadlock. Consider a deadlock we discovered early on

in the development process. Our ethernet driver was invoked on a packet receive interrupt.

The device will not fire further interrupts until the driver explicitly enables them. The

driver iterates over all received packets, passing each to the network stack to be processed

synchronously. The network stack eventually invoked an application event handler to han-

dle TCP/IP input. The application code then performed some processing and saved its

state to be restored on future TCP/IP input. This caused a deadlock, as the device driver

had not re-enabled future interrupts (or processed any other received packets). Funda-

mentally, the device driver code had an implicit dependency on running to completion (in

order to re-enable interrupts) which was violated by the application software saving the

event.

The general problem is that synchronously invoking logically independent code causes

the invoker to have an execution dependency on the invokee. If the invokee creates a

dependency on the invoker (in this case, waiting for additional network traffic), then a

deadlock may ensue. This leads to two potential solutions. One solution is to prevent the

invokee from creating a dependency on the invoker. Practically, this means restricting the

use of the cooperative multitasking primitives to cases where the execution is completely

known to create no circular dependencies. This seems challenging in general as the primary

motivation for cooperative multitasking is to support porting existing threaded code. For

example, it is difficult to know the execution context of a read call. And even if it was

possible to know that a blocking call could deadlock, there is nothing one can do to resolve

the situation. To maintain the synchronous API, the implementation must block.

This leads us to adopt a solution which puts the onus on the invoker to prevent the

creation of an execution dependency when the invokee might block. To do this, the invoker

should not synchronously call an event handler but instead the event handler should execute

on a separate event. This way the invokee is free to create dependencies on the invoker

without fear of creating deadlocks.

One of the proclaimed benefits of EbbRT is that application event handlers can execute
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directly off an interrupt. However, we now may need to create a new event (or several)

to eventually execute an application event handler. This may add significant costs to the

invocation of an application event handler especially when the expected case is that there

is no blocking. Our solution is an implementation of the Spawn method which stores the

current event’s state on a per-core stack and synchronously switches to the newly spawned

event before the original event completes. When the new event either completes or blocks,

the original event is popped off the per-core stack and resumed. This synchronous Spawn

prevents us from returning to the event-loop in the common case that event handlers do

not block. Coupled with the fact that explicit context switches are cheap, synchronous

event spawns provide an efficient method to avoid deadlocks by breaking a single logical

event into multiple.

EbbRT’s event-driven execution model satisfies two primary goals. First, the primitives

provide minimal abstractions in order to support the broadest set of optimizations. Second,

this ability to customize doesn’t preclude reuse of existing software. Meeting these two

objectives allows applications to be ported to EbbRT with little effort and enable significant

performance gains to be achieved by allowing application software to execute soon after

hardware interrupts. In the next section, we will demonstrate how these two goals are

similarly applied to the EbbRT memory model.

3.1.2 Memory

Typical multi-programmed operating systems, utilize a process model. Processes are pro-

vided with a large, paged, virtual address space which allows the operating system to

transparently multiplex the physical memory resources across multiple isolated program

instances. The EbbRT native execution environment does not support multiprogramming

and therefore provides a significantly different address space layout. Recall that the pri-

mary goal of the EbbRT native execution environment is to provide the flexibility for

application developers to exploit application-specific knowledge and specialize software.

Therefore, the core address space and memory allocation interfaces offer little abstraction



30

over the hardware capabilities. Rather than provide an interface amenable to multiplexing

and isolation, EbbRT’s memory interfaces focus on enabling the development of efficient

applications and libraries through lightweight abstractions and efficient implementations.

GeneralPurposeAllocator

PageAllocator VMemAllocator

Physical Memory

Identity Mapped Virtual Memory User Allocatable Virtual Memory

malloc() free()

Small allocations 
served from 
identity mapped 
memory

Large allocations 
reserve virtual 
memory and map 
physical pages

SlabAllocatorSlabAllocatorSlabAllocator

Figure 3.1: EbbRT Address Space and Allocators

Address Space: The EbbRT address space and associated allocators are depicted in

figure 3.1. EbbRT provides an address space per-core where the lower-half (47 bits on

x86 64) identity maps all available physical memory. A native EbbRT ELF has equivalent

link and load addresses so a symbol (code or data) in the binary has a virtual address

equivalent to the physical address where it is loaded. This means that all static code and

data is accessible from all cores with the same virtual address. Any physical memory that

remains beyond application and system code and data is made available via a power-of-two

PageAllocator Ebb. The PageAllocator is NUMA aware — ensuring that pages are by-
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default allocated from a memory locality closest to the allocating processor. This reduces

memory access latency.

The upper-half of the virtual address space is made available at page granularity from

the VMemAllocator Ebb. Regions of virtual memory can be allocated while providing a

user-specified page fault handler. The VMemAllocator does not back these virtual regions

with physical memory. Rather, it provides utility functions which allow users to estab-

lish their own mappings. Each core has its own page table which allows clients of the

VMemAllocator to provide different mappings for the same virtual address if they wish. In

concert with the PageAllocator, developers can manage portions of the virtual address

space and choose how and when the memory is backed.

The third memory allocator provided by EbbRT is the GeneralPurposeAllocator

which provides arbitrarily sized allocations of memory. Our modified newlib C standard

library implements malloc and free as invocations on the GeneralPurposeAllocator

Ebb. Users of this Ebb may depend on the allocated (virtual) addresses being mapped to

the same physical memory on all cores.

Our default implementation of the GeneralPurposeAllocator uses slab allocators [26]

which divide regions of memory allocated from the PageAllocator into fixed size objects.

The size of objects allocated by the slab allocators need not be a power of two. This

design is based on the SLQB allocator [31]. The GeneralPurposeAllocator maintains a

set of slab allocators each responsible for a particular sized object. When an allocation is

performed, the GeneralPurposeAllocator selects and invokes the slab allocator with the

closest object size greater or equal to the requested size. Allocations larger than the largest

object size (8 MB by default) are satisfied by allocating a virtual memory region from the

VMemAllocator and aggressively backing the region with pages from the PageAllocator.

The individual slab allocators allocate physical pages from the PageAllocator Ebb and

logically divide them into equal sized objects. The slab allocators return virtual addresses

from the lower-half (identity map) which represent the corresponding physical memory.

Given this approach, small allocations are served from dense physical memory that is pre-
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mapped using large pages and larger allocations can sparsely consume physical memory

by mapping lazily on page faults. Given the per-core page table structure, large mappings

require page-faults on each core that access the allocated memory.

To most EbbRT programmers, the details of the memory subsystem are hidden be-

hind the common malloc and free interfaces. However, the manner in which these are

implemented provides several advantages.

3.1.2.1 Advantages

The EbbRT memory subsystem provides three key advantages. The first advantage is the

efficiency gains enabled by using large granularity page mappings. The second advantage is

the flexibility enabled by allowing user-allocatable virtual memory regions and mappings.

The third advantage we discuss is the synergy between the non-preemptive execution and

the per-core memory allocators.

One of the advantages of the design of the memory subsystem is that the lower half of

the virtual address space can be mapped with large pages (2 MB or 1 GB). The physical

pages themselves may be allocated at smaller granularity and then even further divided

as the slab allocators do. Therefore, all static memory (code and data) as well as most

dynamic memory allocations are served by large page mapping. An advantage of this

approach is that EbbRT applications tend to have smaller TLB footprints as compared to

the same applications running on a system which uses small pages by default, such as Linux.

Consider that on x86 64 processors, small pages (4 kB) require a four level page-table walk

to translate. Each page-table is physically addressed. In a virtualized environment, each

page-table address has to be translated from guest-physical to host-physical address which

requires an Extended Page Table (EPT) walk. Using larger page mappings ensures page

walks are less frequent (due to reduced TLB pressure) and also that such walks are shorter:

three levels deep for 2 MB pages and two levels deep for 1 GB pages. As we demonstrate

in our evaluation, the efficiency gains by using large mappings are substantial for memory

sensitive workloads.
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Linux, on the other hand, provides cumbersome and limited support for large pages

that typically require application modifications to take advantage of. First, allocating

large pages can only be done for runtime memory allocations (e.g. through mmap). Due to

interactions with the file-cache, executable code and data can not be mapped with large

pages. Second, large pages must be explicitly reserved — requiring a system administrator

to estimate the portion of memory mappings that can be made with large pages. The

shortcomings in large page support is illustrative of the challenges faced by traditional

operating systems designed and implemented around supporting multiple processes. In the

context of supporting multiple processes concurrently, small pages provides the Linux kernel

with the flexibility to share physical memory resources in a balanced fashion. However,

this architecture is detrimental for single applications wishing to utilize the full resources

of a single machine. EbbRT’s memory subsystem is designed and optimized for just such

a case.

EbbRT’s separation between allocating physical and virtual memory provides devel-

opers the flexibility to optionally use smaller pages if desired. For example, the default

implementation of the EventManager (described in section 3.1.1) allocates event stacks as

8 MB virtual regions and on demand backs the stacks with small, 4 kB pages. In the com-

mon case where events are short lived, we expect stacks to be short and not consume the

entire 8 MB region and by demand paging the region, we ensure that the physical mem-

ory consumption is in accordance with the actual memory consumption. Additionally, the

EventManager can leave the final page of the region unmapped as a guard against stack

overflows. The EventManager does not depend on any special interfaces to implement this

stack management. The interfaces provided by the PageAllocator and VMemAllocator

are sufficient.

Given the absence of preemption, the GeneralPurposeAllocator can service most al-

locations from a per-core cache without any synchronization. Avoiding atomic operations

has proven to be so important that high performance allocators like TCMalloc[38] and

jemalloc[35] use per-thread caches to do so. These allocators, however, require compli-
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cated algorithms to balance the caching across a potentially dynamic set of threads. Given

EbbRT’s execution model which targets a single active event per-core, the default alloca-

tor’s implementation can be simplified given that the number of cores is typically static

and generally not too large.

Additionally, the strict split between process level memory management and kernel

physical page management in a tradional operating system can lead to inefficienies due

to the semantic gap. For example, Facebook discovered that running applications using

TCMalloc for long periods of time caused the system to begin paging out memory despite

the application not increasing its memory usage[34]. The culprit was TCMalloc’s per-

thread caching. From the application’s perspective, memory had been freed, however from

the kernel’s perspective, the memory was still in use because the memory was cached in the

user-level memory allocator and had not been freed to the kernel. The root cause is that

the allocator lacks sufficient knowledge to know how much it should cache. In EbbRT, the

PageAllocator knows when the availability of physical memory is low. We could provide

an interface where clients of the PageAllocator (e.g. slab allocators) could be notified to

flush cached pages. We have not yet explored this, though it remains an option.

3.1.2.2 Limitations

In this section we describe some of the limitations of the EbbRT memory subsystem. In

particular we discuss the drawbacks to forgoing memory protection to implement both

system and application functionality. We also discuss some of the challenges of allowing

applications to handle page faults in a non-preemptive system.

The most apparent limitation to the EbbRT native memory subsystem is that there

is a large, shared address space. Aside from user-managed regions of the virtual address

space, all code and data are accessible at all times and all code executes at the highest

privilege level. This means that malicious code can easily exert the full authority of the

machine (talk to devices, read and write arbitrary memory, etc.). Additionally, there is

limited fault isolation, a bug in application code can cause cascading errors which only
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appear as errors in, say, the network device driver.

Memory isolation has been a hallmark of operating systems functionality for decades in

order to safely share the resources of a machine amongst multiple users and applications.

In EbbRT we relax this requirement by depending on IaaS isolation to multiplex the

resources of a data center. Nonetheless, memory isolation is a key method in constructing

high-integrity systems. This is one of the core tenets of the microkernel vs monolithic

kernel debate. Proponents of microkernels claim that by reducing the authority of system

components, we can build more secure and more correct operating systems [58].

While EbbRT does not enforce memory protection, it can restrict the impact an ap-

plication can have. We can reduce the threat of malicious code by only deploying EbbRT

systems on private networks. This limits the system’s exposure to potentially malicious

inputs and therefore malicious code. We argue that this is a reasonable tradeoff given

the domain EbbRT targets. Most cloud applications are composed of services such as in-

memory data caching or data storage which have high-performance I/O requirements but

are often not publicly accessible. Additionally, most public user requests are front-ended

by load balancers which may filter inputs before forwarding to EbbRT system backends.

In keeping with the goal of EbbRT’s execution environment being a foundation for

customization, one could exploit the existing execution environment to support more re-

stricted sandboxes where user code can be executed with lower privileges. In particular,

it would be possible to construct a ring 3 userspace on top of EbbRT with restricted page

mappings to provide isolation. In general, these sandboxes cannot simply use those Ebbs

which execute under the assumption of full privilege. We have not yet explored the design

of interfaces to support the construction of sandboxes with EbbRT.

A significant source of frustration as a developer of EbbRT is the lack of fault isolation.

On more than one occasion an afternoon has been spent tracking down a bug to its root

cause. The combination of the use of a programming language which doesn’t provide

memory safety (C++) and a single address space makes it easy to create bugs which have

a long-distance effect. We do mitigate these issues in some simple ways. All code is marked



36

as read-only memory and all other memory is marked as no-execute. This is a strategy

employed by many OSs, commonly referred to as WˆX (Write exclusive-or Execute). The

PageAllocator could remove freed pages from the address space to catch references to

freed memory. We do not currently provide this due to the potential overhead but it could

be implemented and enabled only during debug runs.

A more substantial way to address this is the use a memory-safe language. As an

example, MirageOS [62] is a framework for building OCaml library operating systems.

OCaml is a garbage-collected language which prevents access to arbitrary memory. The

major down-side of this approach is that the OCaml runtime has additional overheads,

particularly when latency is a concern (due to garbage collection and entering the runtime

off an interrupt). A promising alternative, then, is a language which promises memory

safety with native performance. Two languages which meet these requirements are Rust [65]

and ATS [29].

Providing user allocatable virtual memory and user managed page faults causes some

challenges with our non-preemptive execution model. Figure 3.2 illustrates a bug we dis-

covered early in the development of EbbRT: The EventManager allocates a 8 MB region

of virtual memory from the VMemAllocator for each event stack. A deadlock could be

triggered in the following case:

1. Application code invokes the PageAllocator

2. The PageAllocator acquires a mutex (for per-NUMA node data)

3. Before releasing the lock, a page fault occurs due a stack access beyond a page

boundary

4. The registered page fault handler executes on a separate exception stack and invokes

the page allocator in order to resolve the page fault

5. The PageAllocator attempts to lock the already held mutex
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Figure 3.2: Deadlock when resolving page fault

The root cause of this issue is that an event’s stack could page fault while executing

arbitrary code. So the page fault handler must ensure that all code it executes is re-

entrant. Most code in EbbRT is not re-entrant due to the common use of per-core data

coupled with a lack of preemption. In this case, we resolved the deadlock by modifying the

PageAllocator to probe the necessary stack space before acquiring the lock. This caused

any stack faults to occur before holding a lock.

This deadlock highlights a more general concern with the VMemAllocator and its clients.

Any code which can cause a page fault must have some relationship with the code which

handles the page fault. For example, arbitrary EbbRT code assumes that the processor

can only be yielded explicitly, so a page fault handler which tries to block the faulting

event may cause an error. The result of this discovery is that either page fault handlers
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must make conservative assumptions about the state of an event when it page faults as in

the case of the EventManager, or the code that can touch faulting virtual memory regions

must be written under the assumptions of what its page fault handler may do (e.g. block

the event).

Therefore, it would be difficult to generally support interfaces like mmap in a manner

which allows file data to be faulted into memory on demand since this may require blocking

an event (e.g. to read from disk). A generally usable mmap interface must aggressively map

in file data before returning. To date, this limitation has not prevented us from porting

applications, though we have not yet explored those applications which make heavy use of

such interfaces.

3.1.3 I/O

The third major component of any execution environment is the manner in which I/O

is performed. Most operating systems provide a system call interface which allows appli-

cations to invoke privileged routines to perform I/O on their behalf. Common examples

include UNIX files (read/write) and BSD sockets. One issue commonly associated with

these interfaces is that they require the system to copy data from kernel memory to appli-

cation memory on receive and vice-versa for transmit. Another concern is the performance

overheads associated with the context switches between kernel and userspace, especially

for low-latency workloads.

The primary issue with the POSIX read and write interfaces is that the application

dictates the memory location of the data by providing a pointer. Alloc Stream [53] presents

an interface where the application receives a location in memory which is filled for reading

or writing. This allows the system to provide a pointer to memory which maps to the in-

memory file cache. For network sockets, this could provide memory which could be mapped

to memory amenable to DMA for transmit or, for reading, map to the in-kernel packet

memory. Copies can be avoided, though there is the drawback of additional virtual memory

operations (mappings, unmappings, and TLB operations). IX [22], a system designed for
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high performance networking applications, similarly provides zero-copy by dedicating a

SR-IOV (hardware virtualized) network device to an application. The application then

has a pool of buffers which can be used for packet reception and transmission. Because

the device is dedicated, the device can DMA directly into the application buffers. One

drawback is the fixed pool of buffers which must be released to receive more data. This is

necessary to avoid virtual memory operations. If an application wishes to have access to

packet data for a substantial period of time, the application must copy the data in order

to release DMA buffers.

The EbbRT interfaces to access compute and memory resources are designed to provide

the ability to construct high-performance I/O paths. To this end, the system does not

mandate how I/O resources are accessed. A software component such as a device driver

can access device MMIO by mapping a virtual region allocated from the VMemAllocator

to the proper physical address. Equivalently, on x86, because all EbbRT software executes

in ring 0, a software component can directly access the I/O address space through the in

and out instructions. These software components can directly allocate physical memory

from the PageAllocator for device DMA access. The EventManager provides an interface

to allocate an interrupt number (32–255 on x86) and install an event handler to be invoked

when that interrupt fires. Alternatively, a device driver can install an IdleHandler to

directly poll a device.

Device drivers are simply implemented as Ebbs with no additional privileges over any

other. Once they execute, they are free to invoke other Ebbs, or spawn additional events,

etc. This gives developers the flexibility to provide a wide range of I/O interfaces with a

variety of implementations.

It should be noted that writing high performance I/O paths is difficult. We do not

expect all application developers to do so. EbbRT is designed to enable the encapsulation

and reuse of I/O components that have been written to take advantage of the features of

EbbRT’s execution environment: Supervisor level privilege, control of physical and virtual

memory, and direct and flexible control of interrupt handling.
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3.1.3.1 Advantages

The default EbbRT network stack highlights several advantages of this approach to I/O.

EbbRT includes a custom network stack for the native environment providing IPv4, UD-

P/TCP, and DHCP functionality. The network stack is designed to provide an event-driven

interface to applications and minimize multi-core synchronization while enabling pervasive

zero-copy. The network stack does not provide a standard BSD socket interface, but rather

enables tighter integration with the application to manage the resources of a network con-

nection. Work to implement a socket interface on top of our existing network interface is

ongoing.

The network device driver is driven either by a device interrupt or by polling (as de-

scribed in Section 3.1.1). For each packet that is received, an event is synchronously created

and invoked to perform network processing. Ethernet, IPv4 and UDP/TCP processing is

performed until, finally, data is provided to the application by invoking a pre-installed

handler. The network stack does not provide any buffering, it will invoke the application

as long as data arrives. Sending data is similarly synchronous; an application invokes the

network stack which processes until a packet is sent by the network card.

Most operating systems have buffers in the kernel which are used to pace connections

(e.g. manage TCP window size, cause UDP drops). In contrast, EbbRT allows the applica-

tion to directly manage its own buffering. In the case of UDP, an overwhelmed application

may have to drop datagrams. For a TCP connection, an application can explicitly set the

window size to prevent further sends from the remote host. Applications must also check

that outgoing TCP data fits within the currently advertised sender window before telling

the network stack to send it or buffer it otherwise. This allows the application to decide

whether or not to delay sending to aggregate multiple sends into a single TCP segment.

Other systems typically accomplish this using Nagle’s algorithm which is often associated

with poor latency [68]. An advantage of EbbRT’s approach to networking is the degree

to which an application can tune the behavior of its connections at runtime. We provide
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default behaviors which can be inherited from for those applications which do not require

this degree of customization.

One challenge with high-performance networking is the need to synchronize when ac-

cessing connection state [74]. EbbRT stores connection state in an RCU [66] hash table

which allows common connection lookup operations to proceed without any atomic op-

erations. Connection state is only manipulated on a single core which is chosen by the

application when the connection is established. Therefore, common case network opera-

tions require no synchronization.

The EbbRT memory system enables pervasive zero-copy throughout the network stack

by providing the ability to allocate physical frames from the PageAllocator. Additionally,

the non-preemptive event-driven execution environment allows the network stack to syn-

chronously process packets from an interrupt up to the application and back without addi-

tional context switches or address space changes. This combination enables significant per-

formance advantages for applications requiring high-throughput and/or low-latency I/O.

We demonstrate these advantages in our evaluation.

The EbbRT network stack is an example of the degree of performance specialization

our design enables. Because of the lack of buffering in our network stack, the application

can be involved in network resource management. This also reduces complexity in our

network stack, as much of the complex policy decisions (sizing of buffers, management

of TCP windows) can be made by the application. Historically, network stack buffering

and queuing has been a significant factor in network performance. EbbRT’s design does

not solve these problems, but instead enables applications to more directly control these

properties and customize the system to their characteristics. The zero-copy optimization

illustrates the value of having all physical memory identity mapped, unpaged, and within

a single address space.
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3.1.3.2 Limitations

The I/O interfaces offer an extreme amount of flexibility by effectively providing no abstrac-

tion over the hardware interfaces (e.g. MMIO, DMA, in/out). However, this flexibility is

in some manner limited by the desire to provide and use higher-level interfaces. For exam-

ple, we provide a network stack interface. While the implementation could be replaced, the

interface is harder to change because other Ebbs have and will continue to depend on it.

One must consider then, how the in-use I/O interfaces restrict the flexibility provided by

the execution environment. Interfaces inherently restrict implementations and each defined

interface has inertia which makes it difficult to modify.

Currently, we strive to ensure that the I/O interfaces that we provide are structured such

that there would be marginal benefit in bypassing them. We provide low-level interfaces

where possible and construct higher-level, more standard interfaces on top (e.g. sockets).

With the low-overhead of Ebb interfaces and our whole-program compilation model, such

a layering approach has little-to-no performance overhead. Particularly for the network

stack, we use a layered approach to enable developers to customize functionality as they

deem necessary (e.g. implement their own buffering logic). This structuring alleviates

our concern of the interfaces ossifying because new implementations can be built on top

of whichever layer a developer chooses without requiring underlying implementations to

change.

3.1.4 Summary

The native execution environment provides interfaces to manage compute, memory and

I/O resources. Our focus on low-level interfaces with little abstraction enables software

specialization for high performance. On the other hand, our interfaces provide enough

flexibility to be suited for a wide range of applications.
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3.2 Hosted Environment

The EbbRT hosted execution environment looks similar to the native execution environ-

ment — it supports Ebbs and an event-driven execution model. This similarity is a con-

sequence of our desire to reduce the need to create and maintain non-performance critical

code rather than an explicit goal. We provide an analagous EventManager Ebb with many

of the same interfaces like Spawn. However, we do not provide an analagous memory sys-

tem. This would require maintaining additional software for little to no gain over merely

using the system malloc implementation.

The hosted environment allows developers to quickly integrate legacy compatible soft-

ware into their EbbRT applications. Rather than porting large amounts of non-performance-

critical software (e.g. POSIX compatible filesystems for configuration or logging libraries)

to the native execution environment, developers can offload functionality to a hosted ex-

ecution environment which runs within a process of a general purpose operating system

such as Linux. Likewise, a large Linux application can integrate the hosted execution

environment to offload performance critical functionality to the native environment.

The hosted execution environment must be extensible — developers should be able

to add, modify, or remove support for legacy functionality as their application dictates.

Note that the need for extensibility within the hosted execution environment mirrors the

need for customizability in the native execution environment. The Ebb model provides a

unifying abstraction which spans both execution environments.

Additionally, the hosted execution environment should allow itself to be usable in a

wide variety of scenarios to broaden its applicability. To this end, we provide the hosted

execution environment as a library which can be linked into existing applications. Fur-

thermore, the execution model is event-driven rather than multi-threaded. This allows

it to be embedded into either event-driven applications (as an event) or multi-threaded

applications (as a separate thread).

It should also be noted that the hosted environment is not a requirement for an
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EbbRT application. For example, our implementation of memcached provides a protocol-

compatible network interface from which clients (Linux or otherwise) can interact with the

EbbRT application. Additionally, an EbbRT application may provide both a network in-

terface as well as rely on a hosted environment. Our implementation of a node.js webserver

provides a standard HTTP interface, but also relies on a hosted implementation for file

I/O.

3.3 Conclusion

Together the EbbRT execution environments enable developers to construct performance-

optimized applications without sacrificing reusability, common libraries, or existing oper-

ating system interfaces and implementations. In our native execution environment, we

adopted an event-driven execution model as the abstraction for compute resources which

enables applications to execute directly off of hardware interrupts. We also allocate phys-

ical and virtual memory resources separately to similarly allow applications more con-

trol over memory resources. Finally, I/O access is not prescribed by EbbRT and allows

application-specific interaction with device hardware. Finally, the hosted execution envi-

ronment supports embedding EbbRT functionality into existing applications by adopting

an event-driven execution environment and similar programming primitives to the native

environment.



Chapter 4

Modularity

In the previous chapter, we introduced the EbbRT execution environment which describes

the core primitives which define the application interface to hardware resources. In order

to expose the raw features and performance of the hardware, our primitives tend to be

at a lower level of abstraction that a typical operating system. For example, UNIX op-

erating systems provide file abstractions upon which operations such as reads and writes

can be performed. While there are other UNIX primitives, almost all resources supporting

by the kernel, both real hardware devices and logical entities, are expected to expose a

file-based interface that hide resource-specific details and features. In constrast, EbbRT

does not provide such higher-level primitives. Instead the base execution environment sim-

ply provides, as discussed, interfaces for efficient per-core event-driven execution, memory

management, and raw I/O device operationg and data transfer. The downside of using

low-level interfaces is that programming can often be more verbose and time-consuming.

Furthermore, existing applications and libraries would have to be ported to target our new

interfaces. We believe that this effort is only worthwhile for performance-critical portions

of an application and so we strive to also support higher-level interfaces without preventing

access to the lower-level interfaces.

Our goal is to support higher-level programming interfaces and environments while

providing some method in which an application can selectively use lower-level interfaces

as needed. EbbRT applications, therefore, are constructed in a modular fashion, where

software components are recursively built of smaller components which can be individually

used to construct more specialized implementations. Modularity is an important property
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of EbbRT and deeply influences the design and implementation of EbbRT.

There are several aspects to pursuing modularity which must be considered:

1. There must be some mechanism by which an interface is defined such that the partic-

ular details of an implementation are hidden from a client. This is classically referred

to as information hiding [72]. Information hiding allows software components to be

more freely changed in isolation from the rest of the system.

2. Interfaces can often restrict implementations. Consider the previously discussed

POSIX read and write interface. The interface makes zero-copy implementations

of I/O impossible. A different interface, like Alloc Stream [53] enables zero-copy im-

plementations without restriction. We refer to this as the flexibility of an interface.

The interfaces should be flexible enough to support a diverse set of implementations

(otherwise the distinction between interface and implementation is moot).

3. To encourage fine-grained decomposition, one would like to minimize overheads in-

curred by modularity (in particular, interface crossings) without concern that the

functionality is “too small” to justify the overheads associated with interface cross-

ings. Otherwise, developers, seeking performance, will be encouraged to create large

modules which, by their nature, are more difficult to modify or replace than smaller

ones.

4. Modularity by itself is insufficient for enabling customization and reuse. Many op-

erating systems can be described as modular in the sense that software components

have defined interfaces and can be developed independently. However, two modules

can have interdependencies which make it impractical to use one without other. For

example, Linux device drivers are clearly modular, but their dependency on all the

interfaces Linux provides makes it difficult for one to reuse a Linux device driver in a

different system. The OSKit[37] authors refer to this as the difference between mod-

ularity and separability. A collection of components which cannot be independently
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used (and therefore, lack separability), is, from the perspective of customizability,

one large component which may be difficult to modify.

In this chapter we present EbbRT’s approach to modularity in two sections. First, we

describe Elastic Building Blocks, the mechanism for defining modules and their interfaces

and invoking them. Next we consider primitives which cross module boundaries and how

they are used in the definition of module interfaces.

4.1 Elastic Building Blocks

EbbRT adopts an object model, Elastic Building Blocks. As with objects in many program-

ming languages, they encapsulate implementation details behind an interface. The names-

pace of Ebbs is shared across all machines in the system (hosted and native). This means

that any Ebb can be referenced from any machine on the system (as opposed to referenced

only on a local machine). Ebbs are distributed, multi-core fragmented objects [27, 64, 75].

When an Ebb is invoked, a local representative handles the call. Representatives may com-

municate with each other to satisfy the invocation. For example, an object providing file

access might have representatives on a native instance simply function-ship requests to a

hosted representative which translates these requests into requests on the local file system.

By encapsulating the distributed nature of the object, optimizations such as the use of

RDMA, caching, and local storage, etc. are all be hidden from clients of the filesystem

Ebb.

Many programming languages such as C++ exploit custom calling conventions in the

construction and implementation of interfaces. As such, methods of C++ objects cannot

be invoked from other languages or address spaces due to the lack of well-specified binary

interfaces. Object models like COM [81] and CORBA [79] define language-agnostic, binary

interfaces for objects in order to enable language-agnostic or cross-address space invocation.

In doing so, every client must serialize data structures for crossing an object boundary.

Therefore local invocations of objects look identical to invocations of objects on remote
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systems or within other address spaces. However, this unnecessarily increases the cost of

all local object invocation.

An alternative approach is to define a binary interface using a data interchange format

like Protobufs [40] or Capnproto [3] and explicitly message (typically remote) endpoints.

Similar to the distributed object models, this requires all invocations to behave as if the

endpoint is remote and does not encapsulate efficient local optimizations like caching.

Developers define an Ebb’s functional interface using a standard C++ class definition.

We refer to this as the Ebb class. Each instance of an Ebb is associated with a system

wide unique identifier, called an EbbId which is obtained from a system object called the

EbbAllocator when an Ebb is instantiated. Invocations on an instance are done through

a reference type, called an EbbRef, that is used to translate an instance’s EbbId to a class-

specific representative that will handle the invocation locally on the machine and core that

the call was made. The conversion of an EbbId to an EbbRef can differe between the native

and hosted environment. Therefore, EbbIds are a global way of identifying an instance

and can be exchanged between machines. Hwoever, EbbRefs are machine specific.

In this section we first discuss the mechanics of the Elastic Building Block primitive

(in particular, invocation, fault handling and communication) and then have a longer

discussion about the outcomes of our design.

4.1.1 Invocation

Ebbs may be invoked on any machine or core within the application by passing around

the EbbId and then casting it to an EbbRef. An EbbRef can be dereferenced to a local

(generally per-core) representative. Therefore, all invocations of an Ebb are handled by

the local representative. Any communication between representatives (whether on separate

cores or separate machines), is encapsulated from the client. One of the benefits of this

approach is that clients do not need to serialize parameters when invoking an Ebb, it is

the responsibility of the Ebb to do so internally if the implementation requires it.

The EbbRT native execution environment reserves a portion of the virtual address
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space for use by the Ebb subsystem. In particular, each EbbId is an offset into this virtual

memory region which contains a reference to the per-core representative. We refer to this

region as the translation memory. This region is large (32 GB of virtual memory) and quite

sparse. An EbbRef is simply an address in the translation memory which holds a pointer

to the per-core representative. Therefore, invoking an Ebb incurs only a single dependent

pointer dereference in addition to a standard C++ object invocation.

It is desirable for initialization of the per-core representatives to happen on-demand. In

the case that an Ebb is short-lived and only accessed on one core, initializing representatives

aggressively on every machine in the system would incur significant overhead. In order to

accommodate on-demand initialization, we consider the translation memory as a cache for

the per-core representatives. Under memory pressure, the system may evict a page.

The caching mechanism works as follows: When an EbbRef is dereferenced, if a non-null

value is stored in the corresponding entry of the translation memory, then that value is a

reference to the per-core representative. Otherwise, a type-specific fault handler is invoked

which must return a reference to a representative or throw a language-level exception.

Typically, a fault handler will construct a representative and store it in the corresponding

translation entry so future invocations will take the fast-path.

Figure 4.1 shows a subset of the EbbRef implementation. Line 2 shows that an EbbRef is

simply a word-sized value which references the translation memory. This can be constructed

from an EbbId by taking the EbbId as an offset into the translation memory (as seen on

line 4). Line 10 shows the check to ensure a reference is cached in the translation memory,

and if not the class specific fault-handler is invoked on line 13.

Treating the translation memory as a cache integrates nicely with the desire to initialize

per-core representatives on demand. An implementation supporting paging can evict a

page of the translation memory and need not persist the page. Rather, on a future access

to the page, it can be backed with a zero page which will cause all invocations to fault

again. Therefore, the fault handler is responsible for locating a reference to a per-core

representative (if one exists) or constructing one.
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1 template <class EbbClass> class EbbRef {

2 uintptr_t ref_ /* Reference into translation memory */

3 public:

4 constexpr explicit EbbRef(EbbId id = 0)

5 : ref_(trans::kVMemStart + sizeof(uintptr_t) * id) {}

6

7 EbbClass& operator*() const { /* Dereference operator */

8 EbbClass *lref = *reinterpret_cast<EbbClass**>(ref_);

9 /* Check if a reference has not been cached */

10 if (unlikely(lref == nullptr)) {

11 EbbId id = (ref_ - trans::kVMemStart) / sizeof(LocalEntry);

12 /* Invoke class-specific fault handler */

13 lref = &(EbbClass::HandleFault(id));

14 }

15 return *lref; /* Dereference to return EbbClass reference */

16 }

17 }

Figure 4.1: EbbRef implementation and dereference operator

We implement an EbbRef as a C++ class which overloads the dereference operator. The

EbbRef class is templated by an Ebb’s functional interface (a C++ class). An EbbRef is

created by casting from an EbbId. On the native environment an EbbRef stores one value,

the address within the translation memory which corresponds to the EbbId from which

the EbbRef was constructed. When an EbbRef is dereferenced, it loads a word from this

address; if it is non-null, then it is treated as a reference to a representative (in particular, a

reference to the template parameter) and returned by the dereference operator. Otherwise,

the fault handler is invoked.

On the hosted environment, we do not have access to per-core virtual memory to

implement the translation memory as we do on the native environment. Rather, we use

a per-thread hash table (keyed by EbbIds). An EbbRef dereference performs a hash table

lookup to find the representative or, if none is found, invoke the fault handler. Thus, thee

overheads of an Ebb invocation is higher in the hosted environment.
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4.1.2 Fault Handling

The static HandleFault method of the Ebb class is invoked with the corresponding EbbId

passed as a parameter. This function returns a reference to a per-core representative which

can then be invoked. The HandleFault method can be defined by the Ebb developer or

inherited from base classes which provide common behavior.

To construct a representative may require data or communication with other repre-

sentatives. EbbRT defines several Ebbs (and provides default implementations) in order

to resolve faults. First, the LocalIdMap provides concurrent access to per-EbbId data

within a machine. This is simply a shared memory hash table keyed by an EbbId. Con-

cretely, the LocalIdMap allows locked read and write access to individual entries based on

the concurrent hash map from Intel’s Threading Building Block library [11]. The value

type is boost::any, a type which can hold values of arbitrary types. A common use of

the LocalIdMap is to persistently store references to per-core representatives. Recall that

the translation memory is merely a cache for per-core representative references. An Ebb

can store a hash table within its LocalIdMap entry. This hash table stores references to

representatives keyed by the core they were constructed for. When a fault occurs, the

fault handler will first check the LocalIdMap to see if the representative has already been

constructed.

Another Ebb, the GlobalIdMap provides system-wide distributed per-EbbId storage.

The current interface provides key-value get and set operations where keys are EbbIds and

values are arbitrary binary data. Given it’s distributed nature, we must define the semantics

around concurrent access and behavior in the face of failures. We define these operations

to have the strongest achievable form of distributed consistency, linearizability [44]. That

is, the result of all operations is the same as if they were reordered to occur at a particular

point on a common (global) timeline subject to the constraint that if the response of an

operation (e.g. a get) preceded an invocation of another operation (e.g. a set) in the

original history, then the first operation still precedes the second in the reordering. This
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strong consistency provides the maximal flexibility to the programmer (those with loose

consistency requirements can still use the GlobalIdMap). However, this comes with the

added overhead required by consensus protocols. The current version of the GlobalIdMap

provides a key-value store interface. We expect this to eventually provide a richer interface

such as Zookeeper [45] in order to better support group services such as synchronization.

With these IdMaps, Ebb creation typically proceeds as follows:

1. Allocate an EbbId from the EbbAllocator. This reserves a system-wide unique EbbId

and also implicitly reserves an entry in each of the IdMap Ebbs.

2. Write necessary configuration to the GlobalIdMap in order to later resolve faults.

3. Upon completion of the write to the GlobalIdMap, the EbbId can be passed around,

and converted to an EbbRef and invoked.

Any future fault should then be able to retrieve the configuration from the GlobalIdMap.

Note that in this scenario, linearizability is necessary. Because we do not track the commu-

nication between machines (and in particular, the passing of EbbIds), linearizable opera-

tions are the only way to ensure that a future read of the GlobalIdMap (on any machine)

will see a previous write.

While we provide both these Ebbs in a standard deployment of EbbRT, developers

are free to create others and use them to satisfy a fault. The IdMap Ebbs are merely

a base upon which other Ebbs can be constructed; the system does not require they be

used by every Ebb. Developers can, for example, provide distributed data store Ebbs with

weaker consistency but higher performance and use that in lieu of (or in addition to) the

GlobalIdMap.

4.1.3 Communication

As all Ebb invocations are inherently local, distributed functionality is provided by repre-

sentatives communicating among themselves. Here, again the IdMap Ebbs may be used just
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as they could be during construction and fault handling. For example, shared data may be

stored in the GlobalIdMap and accessed by any representative. In addition to this, EbbRT

provides a Messenger Ebb which provides point-to-point unidirectional messaging. Clients

specify a NetworkId (under our current implementation this is an IPV4 address) and a stan-

dardized EbbRT buffer object (called an IOBuf, discussed in section 4.2.2) containing data

to be sent. The Messenger will ensure that if the host is available (e.g. the receiver has not

crashed and is not partitioned from the sender), then some representative corresponding to

the invoking Ebb will eventually be invoked on the receiving host. Ebb classes desiring this

functionality should inherit from the Messagable class which requires the implementation

of a ReceiveMessage method which takes two arguments, the sending NetworkId and an

IOBuf containing the message contents. The Messenger ensures that all messages between

two hosts are delivered in FIFO order. Under our current implementation we use TCP to

guarantee both order and lack of corruption.

One interesting aspect of the Messenger Ebb is how it resolves representatives on a

remote host. Recall that Ebbs are not instantiated aggressively on all machines in the

system, so it is often the case that the Messenger Ebb will cause the target Ebb’s fault

handler to be invoked. The challenge here is that the fault handler is a static method of

the Ebb Class, and so the Messenger must be able to dynamically resolve the type of the

target Ebb. We achieve this through inheritance from the Messagable class which causes

all messagable Ebbs to register their class at boot-time which creates a mapping from a

type-specific hash-code (defined for all C++ types) to a function which resolves an EbbId

to the given type. The Messenger Ebb prefixes each message with a header which specifies

the EbbId of the target Ebb as well as the hash-code of the type. This mechanism enables

the Messenger to fault in a representative if needed.

Messages contain arbitrary binary data and Ebbs are free to use their own layout.

EbbRT supports Capnproto [3], a data interchange format and associated C++ stub com-

piler and library which allows one to create rich data objects (containing lists, maps, text,

integers, etc.) with a well-defined serialized binary format. Capnproto is similar to JSON
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(but binary) and Protobufs [40]. The key difference between Capnproto and Protobufs is

that the in-memory format of a Capnproto object is naturally serialized. This means that

there is no additional overhead when an object needs to be written out to the network, or

vice versa, when an object is read from the network. This integrates nicely with the EbbRT

networking and messaging subsystems which support zero-copy. As with many aspects re-

garding Ebbs, developers are free to use their own preferred communication protocol, there

is no requirement to use Capnproto or the Messenger itself.

4.1.4 Advantages

The three key advantages that Ebbs provide are: 1. Location transparency 2. Low overhead

invocations 3. Flexible implementations. In this section, we discuss these advantages in

turn.

The Elastic Building Block model embraces location transparency where, from a client’s

perspective, there is no distinction between local and remote operations. This synergizes

well with our distributed architecture; an Ebb can provide an interface which appears to

it’s client as a local operation (e.g. a filesystem interface) yet a native representative may

function-ship to a hosted representative and use the filesystem on an existing system such

as Linux. The filesystem Ebb can also be replaced with an implementation which uses local

storage, caching or any number of different techniques without requiring changes to the

clients. Developers can build simple, initial implementations of Ebbs and optimize them

later as profiling dictates. This is critical to support our goal of reducing development

effort.

In addition to location transparency, even the lowest levels of the native environment

are modular; Ebbs have lightweight run-time requirements and nearly zero-overhead. For

example, we define the native memory allocator as an Ebb (using per-core representatives

for locality) so that it can be easily replaced by a developer. Concretely, the fast-path Ebb

invocation requires a memory dereference (to load the word stored in translation memory)

and a predictable conditional branch (to check if the fault handler needs to be invoked
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first) on top of the standard C++ object invocation. These overheads are quantified in

chapter 6.

Figure 4.2: Clustered Objects Invocation

Another low-overhead fragmented object-model, Clustered Objects [18], is quite similar

in its implementation. Figure 4.2 illustrates the invocation of a CORef. Cluster Objects

similarly have an area of per-core virtual memory. Unlike Ebbs, Clustered Objects rely on

the common implementation of C++ virtual functions where the first word of an object

is a pointer to a table of function pointers which can be invoked dynamically. Clustered

Objects, like Ebbs, have a fault-handling mechanism which is implemented by initially

replacing the virtual function table pointer (stored in the second word of each translation

memory entry) with a default, capable of resolving faults. Therefore, rather than an explicit

conditional to check if a Clustered Object is initialized, calls go through the indirection
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provided by the virtual function table which may interpose on the invocation to instantiate

a representative. One of the disadvantages of the approach taken by Clustered Objects is

that methods must be virtual. Ebbs can use non-virtual methods which has the advantage

that at a call-site, the compiler can know the concrete implementation of the called method.

Coupled with the fact that we use link-time optimization to enable the compiler to optimize

across the whole binary, this can provide significant performance gains. As an example,

the default EbbRT memory allocator is implemented as a collection of fixed-size memory

allocators (also implemented as Ebbs). Each allocation request is rounded up to the nearest

fixed size and then forwarded to the corresponding allocator. Most memory allocations

are of a fixed size (e.g. the C++ new operator allocates a fixed size object). In such

cases, we witnessed the compiler would inline the implementation of the default allocator

and directly invoke the corresponding fixed size allocator. This was only possible due to

the use of static function dispatch (the implementation was known at the call-site) and

whole-program optimization. Note that this static specialization does not prevent the

construction of polymorphic Ebbs. One can construct an abstract Ebb class with pure

virtual methods. A concrete implementation would, at construction time, store its fault

handler in the LocalIdMap. The abstract class’s fault handler then simply forwards the

fault to the fault handler stored in the LocalIdMap.

In designing Ebbs, we strived to provide as much flexibility as possible. For example,

fault handling is left to be implemented on a per-Ebb class basis using any means a devel-

oper wishes. For example, we provide the LocalIdMap and GlobalIdMap but developers

are under no pressure to use them to implement fault handling. This allows us to construct

these utility Ebbs without concerning ourselves with providing an ideal solution in all cases.

Similarly, we provide the Messenger Ebb to enable inter-represntative communication, but

there is nothing first-class about this Ebb, developers can construct or use any Ebb for

communication.
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4.1.5 Disadvantages

Waldo et al. [49] criticize the approach of location transparency as hiding information

necessary for the client. In particular they list latency, memory access, partial failure, and

concurrency as key differences between local and remote operations which clients must be

aware of.

The first difference, latency, is perhaps the most obvious. The authors claim that

ignoring the latency differences between local and remote operations can lead to designs

with performance problems due to a large amount of communication. Before we can address

this claim, consider the latency differences of various operations listed in Table 4.1. All

CPU operations are based on the Intel Haswell microarchitecture. A minimal function call

and return takes about 3 ns whereas a TCP round trip can take anywhere from 100 000 ns

to 30 000 ns depending on the environment. This represents roughly a 10000 fold latency

increase for a remote operation. However, because Ebbs encapsulate their communication,

the system does not force the use of a particular communication paradigm like TCP.

Should an Ebb be capable of using RDMA over Infiniband, operations can drop to about

1500 ns, only a 500 fold increase over a local operation. This is still quite a significant

difference. But consider that the overhead of an in-core page fault is roughly 500 times the

overhead of a load from the L1 cache. Yet only in extreme cases do programmers concern

themselves with pinning memory to guarantee page faults can’t occur when referencing

memory. In fact, far more common is to solve performance issues (caused by excessive page

faults or otherwise) by profiling an application and tuning it based on this feedback. This

has become particularly important as superscalar, out-of-order processors have become

prevalent which make it difficult to estimate or determine software bottlenecks.

The concerns raised about location transparency: memory access, partial failure, and

concurrency are all addressed by using a fragmented object model where accesses are local

by default, and any data serialization or failure handling is encapsulated by the object.

Clients make local invocations and in the event that a request can be handled by a local
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Table 4.1: Computation Latencies

Operation Latency (ns)

Load from L1 1 [6]
Function Call, Load from L1, Return 3 [6]
Soft Page Fault (Linux) 500 [9]
RDMA Remote Read (Infiniband) 1500 [13]
TCP Round Trip over 10GbE 11000 (IX [22]),

20000 (EbbRT Paravirtualized),
30000 (Linux Paravirtualized)

representative, then no additional overheads are incurred. If a request cannot be handled

locally, then it is the responsibility of the Ebb developers to ensure that, in aggregate, its

representatives can satisfy the interface provided to the client as if it was local.

The most apparent limitation of the Elastic Building Block implementation is a lan-

guage issue. One would like to define an abstract interface to an Ebb separately from

any particular implementation. Then, clients can use the abstract interface and easily be

constructed with a different implementation. In C++, the only way to define abstract inter-

faces on objects is through pure virtual classes. Doing so requires dynamic dispatch, every

invocation looks up the corresponding function pointer in the virtual function table and

invokes it. This is useful when, at runtime, a client wants to use many different implemen-

tations. However, this comes at a performance cost on each dispatch, and often times the

flexibility is unnecessary. This is why we use C++ templates to enable static specialization.

The code is written to support multiple implementations but a single implementation is

chosen at compile time. The limitation, however is that C++ has no mechanism for defin-

ing an interface for a templated type. Best practices are to provide documentation on the

required methods and members of a templated type. Failure to meet the requirements of

the documentation may be caught at compile-time, if a developer is fortunate. Consumers

do not specify what interface a templated class must provide, but rather the interface is

defined by the manner in which the templated class is used. Other programming languages

such as Rust and Haskell take a different approach. Their use of traits and type classes
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respectively require consumers of generic types to completely specify the interface they

require. This allows the compiler to check that an implementation matches an interface

at the invocation site and also forces developers to be explicit about the interfaces they

expect. The C++ standardization committee has been considering various proposals to

add concepts, an analogous language feature to C++ though no such proposal has been

accepted yet.

Another issue with Ebbs is more systemic. A desirable property of object oriented

programming is for everything to be an object. Otherwise, programmers are exposed to

the difference between objects and other, non-object types. This is particularly the case in

EbbRT because C++ already has a mechanism for extending a program through creating

new C++ classes. Everytime a programmer wishes to create a new software component

they must decide whether to make it an Ebb or not. In some cases, such as with a

distributed service, the decision to make the component an Ebb is fairly obvious. In other

cases, the decision is not so clear. Implicit to the definition of an Ebb is that references

(EbbRefs to be specific) may be shared across multiple cores and machines. For some

objects this may not make sense. Consider some object which provides an interface to an

in-memory buffer. To support this interface across multiple cores, this object would have

to synchronize on each access. To support the interface across multiple machines (with

potential fault tolerance concerns), would require replication and/or partitioning of the

data. While one could make all remote requests fail at runtime, the most obvious solution

is not to use an Ebb. One can then use references which cannot be copied, such as C++’s

unique ptr and ensure that concurrent access is disallowed. Nothing prevents developers

from building software which is not an Ebb, but these developers will also want to define

interfaces which enable multiple implementations and flexible application composition.

The root of this problem is that the Ebb primitive has two core responsibilities. First,

it provides a mechanism to define a software component’s interface. Second, it provides

a mechanism to access per-core data and distribute functionality. Sometimes developers

want the first property without the second. An encouraging avenue for further research
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is to explore further decomposing the responsibility of the Ebb primitive into multiple,

orthogonal primitives.

The final limitation with the Ebb model is one common to many modular systems.

How does a developer choose which implementations to use, which versions, and resolve

all dependencies? Under our current implementation, this is a manual process. Ebbs are

built as relocatable object files. To build a final binary, all dependencies must be resolved

by linking all necessary Ebbs together in the final link step. A developer must explicitly

specify dependent Ebbs (and their recursive dependencies) at link-time with (for example)

a Makefile or some equivalent build tool. As Ebb applications grow, this may soon become

unwieldy to maintain.

Note that this is no different from the typical manner in which C or C++ applications

are constructed. We feel that this issue of managing many dependencies occurs in many C

and C++ applications. This could be improved on with tooling which provides a central

library package repository as is done in many languages like Javascript’s npm, Haskell’s

cabal and Rust’s cargo. All of these tools allow software libraries to explicitly specify

their dependencies and automatically resolve recursive dependencies of an application (as

well as fetching source or binaries from the internet).

In summary, Ebbs provide little more than a mechanism for information hiding which

we extend to cover both local and distributed component implementations. Our design

allows for low-overhead composition of even small Ebbs and yet provides flexibility for a

wide-range of use-cases. While there are disadvantages, we feel that many of them can be

addressed with further tooling and programming language support.

4.2 Primitives for Interface Construction

While the mechanism for invoking an Ebb must be efficient, it is equally important that

Ebb interfaces permit both flexible and efficient implementations. In order to aide in the

definition of Ebb interfaces, we provide several primitives which satisfy a variety of use
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1 // Route and Send an Ethernet frame

2 Future<void> EthArpSend(uint16_t proto, const Ipv4Header& ip_header,

3 MutableIOBuf buf) {

4 Ipv4Address local_dest = Route(ip_header.dst);

5 Future<EthAddr> future_macaddr = ArpFind(local_dest); /* asynchronous call */

6 return future_macaddr.Then(

7 // continuation is passed in as an argument

8 [buf = move(buf), proto](Future<EthAddr> f) { /* lambda definition */

9 auto& eth_header = buf->Get<EthernetHeader>();

10 eth_header.dst = f.Get();

11 eth_header.src = Address();

12 eth_header.type = htons(proto)

13 Send(move(buf));

14 });

15 }

Figure 4.3: Network code path to route and send an Ethernet frame.

cases yet do not inhibit performance. In this section we discuss the use of C++ lambdas

and EbbRT Futures for structuring potentially asynchronous interfaces. We also discuss

IOBufs which permit the transfer of data in a zero-copy fashion.

4.2.1 Lambdas and Futures

One of the core objectives of EbbRT’s design is reducing development effort. Critics of

event-driven programming point out several properties which place increased burden on the

developer. One concern is that event-driven programming tends to obfuscate the control

flow of the application [80]. For example, a call path that requires the completion of an

asynchronous event will often pass along a callback function to be invoked when the event

completes. The callback is invoked within a context different than that of the original

call path, so it falls on the programmer to construct continuations i.e. control mechanisms

used to save and restore state across invocations. C++ has recently added support for

anonymous inline functions called lambdas. Lambdas can capture local state that can be

referenced when the lambda is invoked. This removes the burden of manually saving and

restoring state, and makes code easier to follow. We use lambdas in EbbRT to alleviate

the burden of constructing continuations.
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Another concern with event-driven programming is that error handling is much more

complicated. The predominant mechanism for error handling in C++ is exceptions. When

an error is encountered, an exception is thrown and the stack unwound to the most re-

cent try/catch block which will handle the error. The automatic stack unwinding skips

intermediate code which may not know how to handle the error. Because event-driven

programming splits one logical flow of control across multiple stacks, exceptions must be

handled at every event boundary. This puts a burden on the developer to catch excep-

tions at additional points in the code and either handle them or forward them to an error

handling callback.

Our solution to this problem is our implementation of Futures. Figure 4.3 illustrates

a code path in the EbbRT network stack. Line 5 issues a lookup into the ARP cache

to translate an IP address to the corresponding MAC address. This may require an

asynchronous ARP request to complete the translation. The ArpFind function returns

a Future<EthAddr>. A future cannot be directly operated on. Instead, a function can

be applied to it using the Then method (line 6). This function is invoked once the value

is produced. The function receives a fulfilled future as a parameter and can use the Get

method (line 10) to retrieve the underlying value. In the event that the MAC address

translation is cached, this function is invoked synchronously.

The Then method of a future returns a new future representing the value to be returned

by the applied function, hence the term monadic. This allows other software components

to chain further functions to be invoked on completion. In this example, the EthArpSend

method returns a Future<void> which merely represents the completion of some action,

and provides no data.

Futures also aid in error processing. Each time Get is invoked, the future may throw an

exception representing a failure to produce the value. If not explicitly handled, the future

returned by Then will hold this exception instead of a value. The only invocation of Then

that must handle the error is the final one, any intermediate exceptions will naturally flow

to the first function which attempts to catch the exception. This behavior mirrors the
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behavior of exceptions in synchronous code. In this example, any error in ARP resolution

will be propagated to the future returned by EthArpSend and handled by higher-level code.

Futures are used pervasively in interface definitions for Ebbs we have developed and

lambdas are used in place of more manual continuation construction. Our experience using

lambdas and futures has been positive. Initially, some members of our group had reser-

vations about using these unfamiliar primitives as they hide a fair amount of potentially

performance sensitive behavior. As we have gained more experience with these primitives,

it has been clear that the behavior they encapsulate is common to many cases. Futures in

particular encapsulate sometimes subtle synchronization code around installing a callback

and providing a value (potentially concurrently). While this code has not been without

bugs, we have more confidence in its correctness based on its use across EbbRT.

Futures are by no means a new programming language primitive. They originated as a

primitive for use in the programming of distributed systems where the pipelining of futures

(e.g. chaining of Then methods) could be used to hide-latency of remote operations [61].

Futures have become much more popular with the recent interest in asynchronous program-

ming in domains such as web development and user interfaces. C++ has an implementation

of futures in the standard library. Unlike our implementation, it provides no Then function,

necessary for chaining callbacks. Instead users are expected to block on a future (using

Get). Other languages such as C# and Javascript do provide monadic futures similar to

ours and there are some implementations for C++ outside of the standard library.

Given the prevalence of event-driven programming in EbbRT, Futures take on a sub-

stantial role. They allow us to construct well-defined interfaces using an event-driven style

while avoiding much of the complexity associated with event-driven programming.

4.2.2 IOBufs

Another common interface construction primitive is one to manage in-memory buffers. To

motivate this primitive, consider the problem of mapping application-level I/O interfaces to

hardware device semantics. As a motivating example, consider memcached, an in memory
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key-value store accessible via network requests. A SET message contains a header (common

to all memcached messages), a key, and a value to be stored. A future GET operation with

the corresponding key, should elicit a reply with the value.

Due to the single address space design, it should be possible for the data to flow from

the network card, through the network stack, and up to the application without copying.

It should also be possible for this zero-copy flow to be used in reverse, from application

down to the network card. In fact, there is no need for the CPU to ever actually load the

value portion of a memcached SET operation.

Virtio Ring

Virtio Descriptor

Physical Address

Length

Flags

Next Descriptor

Most hardware network devices (and storage devices) interact with software through a

ring buffer of descriptors each of which reference a contiguous region of physical memory.

Descriptors can also chain together so that, for example, a single packet can be assembled
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from two distinct contiguous ranges of memory (for example, a header and a payload). Most

modern hardware supports this ability (called scatter/gather) to construct a single logical

element of data (e.g. a packet) from multiple memory regions and vice versa (splitting a

packet across multiple memory regions). As an example, Figure 4.2.2 depicts the Virtio

ring-buffer format. Virtio is a standard for para-virtualized (software implemented) devices,

though it’s interface is similar to a hardware network card. The guest operating system

and the hypervisor communicate through the Virtio Ring, a ring-buffer of descriptors, each

of which reference an extent of memory and potentially an additional descriptor (in order

to create a chain).

To support developers, we created the IOBuf primitive, illustrated in figure 4.2.2. An

IOBuf is a descriptor which manages ownership of a region of memory as well as a view

of a portion of that memory. IOBufs can be chained to support scatter/gather interfaces.

For example, the NIC driver creates an IOBuf and its associated memory and instructs

the NIC to DMA a packet into the region of memory. When the DMA completes, the

driver passes the IOBuf to the network stack. As the network stack processes the packet, it

advances the view past the various headers within the packet and finally passes the IOBuf

up to the application with the view containing only the payload.

When memcached receives a SET message, it advances the view to only contain the

value portion of the message. Then, the IOBuf is stored in a table associated with the

key. Later, when a GET operation occurs, memcached chains the value IOBuf to a new

IOBuf containing a message header. This is sent to the network stack which then chains its

own headers and finally the network card sends the entire chain out as one packet without

copying.

The initial implemention of our IOBufs used reference counting. In this way they were

very similar to existing buffer primitives like Linux’s skbuff and BSD’s mbuf. However,

we found a number of cases where reference counting was unnecessary. For example, a

memcached GET message contains a key to look up in order to construct a reply. The

message can be destroyed as soon as the look up has completed. The IOBuf can be passed
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Packet PayloadHeaders

Length

Capacity

IOBuf
Buffer Address

View Address

Capacity

Length

Next

Previous

from the network driver, through the network stack up to the application synchronously

on a single core. However, to destroy the IOBuf associated with the GET request required

an unnecessary atomic reference decrement. In order to avoid this, we modified IOBufs

to only contain logic for view management and chaining. Memory management is sep-

arately implemented by a number of deriving classes (e.g. UniqueIOBuf, SharedIOBuf,

StaticIOBuf).

Most consumers of IOBufs (e.g. the network stack) only care that as long as they hold

an IOBuf, the memory remains valid regardless of exactly how the memory is managed.

Therefore most interfaces are defined to take the base IOBuf class and memory management

is hidden behind a virtual destructor. This allows consumers like the network stack to be

written to accept any IOBuf and the application chooses how the memory of each network
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payload is managed. An alternative approach is for a buffer consumer (like the network

stack) to explicitly notify a client that it is finished with a buffer via a callback. This is

undesirable because it often requires additional resource tracking by both the consumer

and the client.

IOBufs are a common element of Ebb interfaces. Any Ebb that produces or consumes

large amounts of data such as those associated with networking, messaging, file access,

and the GlobalIdMap use IOBufs to enable pervasive zero-copy I/O. We have also added

additional support for ensuring serial reads and writes to IOBufs. For example, using a

provided interface (called a DataPointer), developers can read or write a chained IOBuf

without concerning themselves with handling data split across multiple chained buffers.

Memcached on Linux issues a separate read call for the message header, key and value

which allows the application to separately manage the memory of each. This interface forces

a data copy — which for Linux is already necessary due to the address space separation.

However in EbbRT we want to encourage the application to continue zero-copy processing

of the data which requires an expressive and ergonomic primitive. Ensuring that all use

cases can be implemented efficiently supports the use of IOBufs throughout the system.

The breadth of situations that they are used in increases reuse and composability of Ebbs.

4.2.3 Conclusion

Table 4.2 presents core system Ebbs provided by EbbRT as well as details about their

implementation such as their use of the primitives described throughout this chapter as

well as their representative structure. Ebbs enable developers to construct a wide-range

of high-performance objects with implementation details hidden behind an interface. Our

pervasive use of primitives such as Futures, Lambdas, and IOBufs simplify the definition

of these interfaces and increases the interoperability of our Ebbs. Together, Ebbs and

the primitives we have thus far developed enable EbbRT to be extended in a fine-grained

fashion. Developers are free to modify the implementations of our existing Ebbs or define

their own. Our primitives encourage succint and performant interfaces when doing so.
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Description

PageAllocator 3 3 3 Power of two physical
page frame allocator

VMemAllocator 3 Allocates virtual address
space

SlabAllocator 3 3 Allocates fixed sized ob-
jects

GeneralPurposeAllocator 3 General purpose memory
allocator

M
e
m
o
ry

EbbAllocator 3 3 Allocates EbbIds
LocalIdMap 3 3 3 Local data store for Ebb

data and fault resolution
GlobalIdMap 3 3 3 3 Application-wide data

store for Ebb data

EventManager 3 3 3 3 Creates events and man-
ages hardware interrupts

O
b
je
c
ts

Timer 3 3 Delay based scheduling of
events

E
v
e
n
t

NetworkManager 3 3 3 3 3 Implements TCP/IP
stack

SharedPoolAllocator 3 3 Allocates network ports
NodeAllocator 3 3 3 3 Allocates, configures, and

releases machines
Messenger 3 3 3 Cross node Ebb to Ebb

communication
VirtioNet 3 3 VirtIO network device

driver

I/
O

Table 4.2: The core Ebbs that comprise EbbRT. A gray row indicates that the Ebb has
a multi-core implementation (one representative per core) while the others use a single
shared representative.



Chapter 5

Compatibility

In the previous chapter we discussed how EbbRT encourages modularity in order to reduce

development effort. In this chapter we discuss how we address compatibility with existing

software and software tooling in order to further reduce application development burden.

Every application has dependencies on software libraries or language runtimes which pro-

vide critical functionality. For example, some applications may make explicit system calls

to invoke functionality provided by the Linux kernel. Others may target software libraries

like the C or C++ standard libraries. Further applications may target managed runtimes

like Java applications which must be executed by a Java Virtual Machine.

If EbbRT can provide compatibility with a broad set of software interfaces and devel-

opment tools while still enabling high performance, we can further reduce developer effort.

By providing compatibility with existing interfaces, developers can more easily port exist-

ing applications and software libraries. While much of EbbRT’s value is derived from the

ability to customize the system to a particular application for the sake of performance, we

recognize that many aspects of an application are not performance-critical. Furthermore,

rewriting an existing application to target novel interfaces is a substantial undertaking,

particularly given the pace of modern application development where requirements and

tradeoffs often change rapidly.

Our objective in supporting compatibility is to enable existing applications to run

(potentially inefficiently) using EbbRT with little effort. Once a developer can integrate

their application with EbbRT, they can selectively optimize their application. In particular,

compatibility enables developers to take advantage of the modularity (to replace Ebbs
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as necessary) and efficient execution environment (to target more efficient abstractions)

provided by EbbRT.

Software Application Programming Interfaces (APIs) provide the core functionality ap-

plications are developed on top of. These can range from low-level operating systems APIs

like POSIX, to higher-level language runtimes like node.js or the Java Virtual Machine.

We recognize that modern datacenter applications are written to wide variety of interfaces,

in many different programming languages with distinct language runtimes. We recognize

that these dependencies have a recursive property — A JVM may be implemented using

the C standard library which is in turn may be implemented using Linux system calls.

One option to provide compatibility for such a varied set of dependencies is to provide

compatibility with some low-level common interface, such as the Linux userspace binary

interface, and rely on the fact that most other APIs and language runtimes target such

an interface. Indeed, this is the approach taken by OSv [50] — a library operating system

targeting cloud workloads. In particular, OSv can link most Linux binaries unmodified.

An outcome of this general approach of providing compatibility at a low-level is that any

individual application relies on some subset of the functionality provided by a low-level

API, but in aggregate, multiple applications rely on quite a broad set of functionality. For

example, Tsai et al. [78] performed a study of the importance of Linux system calls. They

analyzed Ubuntu 15.04 system installations on the Linux 3.20 kernel. This version of the

Linux kernel has 320 system calls. The minimum system calls necessary to run a binary in

the Ubuntu software repository is 40. To support half of the applications in the repository

(weighted by their popularity), one needs to support 145 system calls. Our concern is that

as functionality grows, the structure of the system ossifies. Even if an application doesn’t

use fork, for example, the fact that a system supports it, means the system has to track

memory mappings, create address space isolation, reference count file descriptors, etc. And

this in turn makes it more challenging to customize an application (simply because there

is more unnecessary functionality). With EbbRT, we want to avoid this tension between

customizability and compatibility.
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Instead, we focus on enabling compatibility with a particular interface on a per-instance

basis. For example, some EbbRT library operating systems may provide compatibility with

the Java runtime, without needing to support the complete Linux system call API. Other

instances may provide compatibility with some subset of POSIX. In doing so, we avoid the

pitfalls of trying to build a system compatible with all interfaces simultaneously and yet

preserve the ability to customize EbbRT library operating systems.

In the rest of this chapter, we describe two methods we use to provide compatibility

without inhibiting a developer’s ability to customize for high-performance:

1. First we adopt a heterogeneous distributed architecture which allows us to offload

functionality to and from existing general purpose operating systems while keeping

EbbRT library operating systems lightweight and easy to customize.

2. Second, we provide a compilation model and toolchain which provides standard inter-

faces (e.g. C and C++ standard libraries, sockets) in a manner that does not hinder

the ability for developers to specialize library operating systems to their application.

5.1 Distributed Architecture

An EbbRT application is typically comprised of two binaries, a Linux binary linked to

our provided library (the hosted environment) and a multiboot [8] compatible binary built

using our modified GNU toolchain (the native environment). A user will then run the

Linux binary which is responsible for launching native instances.

Software running on the native environment can communicate with the hosted envi-

ronment in order to offload functionality. We encapsulate such behavior using Ebbs. For

example, when software on the native environment invokes the Filesystem Ebb, a rep-

resentative is faulted in which behaves by simply forwarding all requests to the hosted

environment via the Messenger Ebb. The Filesystem Ebb representative on the hosted

environment handles these messages and makes filesystem calls locally on the Linux sys-

tem and sends the responses back to the native representative. In this way, we can provide
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filesystem interfaces to code running on the native environment with significantly reduced

effort as compared to a complete implementation.

EbbRT is designed around the assumption that the hosted process and native library

OSs can communicate via a logically isolated layer two (Ethernet) network. This assump-

tion allows EbbRT library operating systems to be built to handle only trusted network

traffic and not concern itself with denial of service attacks, malicious inputs, etc. We note

that this isolation is fairly typical of existing datacenter technology. Public clouds like

Amazon’s EC2 and Google’s Compute Engine provide isolated layer two networks using

virtualization. Recent research projects like HIL [43] have demonstrated how this can be

achieved without virtualization, instead providing isolation at the network switch through

VLAN tagging.

The mechanism for allocating and launching new native library operating systems is

provided by the NodeAllocator Ebb. The NodeAllocator has an AllocateNode method

which takes as a parameter, the path to the bootable binary to be launched. The AllocateNode

method returns a NodeDescriptor which includes a network identifier (typically an IP ad-

dress) which can be used to send messages to via the Messenger Ebb.

The interface of the NodeAllocator Ebb is designed to allow EbbRT to be deployed on a

number of different platforms such as commodity clouds (e.g. Google Compute Engine [4] or

Amazon Web Services [1]) as well as hardware provisioning services such as Kittyhawk [17]

or HIL [43]. In particular, the key method is AllocateNode which takes a path to the

library OS binary as well as a hardware configuration (number of CPUs, amount of RAM,

etc.) and launches the given binary on the isolated network. A NodeDescriptor is provided

as a return value which contains a NetworkId suitable for the application to send a message

to. Whether these library operating systems are launched on physical hardware or virtual

machines is an implementation detail.

Our default NodeAllocator implementation uses the Docker [5] containerization plat-

form to launch EbbRT library operating systems. A Docker container provides an isolated

process, network and file space for an application. Multiple containers can run on the same



73

kernel, merely providing an isolated userspace. When the NodeAllocator is initialized it

allocates a new layer two network for the process and it’s library operating systems. In the

default deployment of Docker, these networks are Linux bridges which are NATed to the

external network of the host server. However, with Docker Swarm (a distributed version of

Docker), these are overlay networks which can span multiple hosts. The current implemen-

tation of these overlay networks sends layer two data between hosts via UDP. Docker also

has has experimental support for VLANs. The rest of EbbRT is not tied to this particular

implementation of the NodeAllocator.

5.1.1 Advantages

Function offloading using a distributed architecture is not a new technique. Two systems

which motivated our approach are the Bluegene/P supercomputer [30] and the Libra library

operating system [15]. The Bluegene/P supercomputer runs a Compute Node Kernel which

is a lightweight kernel, highly optimized for executing supercomputing workloads and in

particular, applications written to the Message Passing Interface (MPI). For example, the

compute node kernel does not handle any interrupts and simply maps the network device

buffers into userspace. Non-performance critical operations like reading a file are offloaded

to other machines running a modified Linux kernel called the I/O node kernel. Libra

is a lightweight library operating system for the Java Virtual Machine. An instance of

Libra executes in a virtual machine on the Xen [20] virtual machine monitor and offloads

functionality to a Linux instance executing in a virtual machine on the same host. The

Linux instance provides networking and file access which allows Libra to be more optimized

for the JVM. The main difference between these approaches, and EbbRT’s is that both

Libra and Bluegene target a fixed interface for compatibility (the JVM and a subset of

POSIX, respectively). On the other hand, our objective in EbbRT is to allow developers to

provide compatibility as required by their application. The first advantage of our approach

is that our method for providing compatibility is part of the EbbRT programming model.

Rather than provide compatibility with any fixed interface, we provide a general method
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for doing so and allow developers to extend functionality as necessary.

The second advantage of this distributed architecture is that it allows us to offload

functionality from EbbRT’s native execution environment to an existing operating sys-

tem for compatibility. For example, we constructed the Filesystem Ebb which provides

standard POSIX filesystem operations (e.g. open, stat, read, write). The default imple-

mentation of this Ebb creates native representatives which simply forward all requests to

the hosted implementation using the Messenger Ebb. The hosted representative issues the

corresponding system call which is served by the Linux kernel. The response is then sent

back (via the Messenger to the native representative which fulfills the original invocation.

This is useful, not as an interface for local disk access (which we would rather provide

lower-level interfaces for) — but for compatibility with non-performance critical filesystem

access such as reading of configuration or logging messages.

This code is simple to write and allows us to rapidly develop applications which depend

on filesystem access. A functionally complete POSIX filesystem requires more than just

data management, but also users, groups, and permissions. By offloading the functionality

through the hosted environment, file access occurs with the authority of the user executing

the hosted process. Furthermore, an application which does not require file access, can

simply not include the Filesystem Ebb.

This leads to the third and final advantage of this architecture which is that we are able

to reuse Ebbs to address compatibility. We use Ebbs to encourage developers to customize

their application for performance. However in this scenario, we use Ebbs to extend the

functionality of EbbRT for compatibility. The fact that Ebbs provide a shared mechanism

to achieve both compatibility and customizability is what allows us to incrementally op-

timize applications. We can provide a trivial implementation of an Ebb for the sake of

compatibility and then incrementally optimize the implementation of that Ebb for a par-

ticular application or use-case. Because of the encapsulation provided by an Ebb interface,

this optimization can be done independently from the rest of the application.

Conversely, one can view our hybrid distributed architecture as providing a manner in
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which to incrementally accelerate existing applications. An application can be accelerated

by linking with the hosted library and launching specialized library operating systems

to perform some function of the application. This is analagous to the use of GPUs to

accelerate heavily data-parallel portions of an application. Similarly, in both instances

developers must balance the computation speedup with the communication overheads.

To demonstrate the advantages of this approach, we extended Sage [10]. Sage is an open

source mathematics environment similar to Matlab. It provides many common math library

routines and objects through a Python interface (typically accessed via an interactive shell).

We used EbbRT to transparently distribute and accelerate particular matrix operations

within Sage.

EbbRT EbbRT EbbRT

EbbRTEbbRTEbbRT

SAGE

LINUX

EbbRT MatrixEbb

Figure 5.1: EbbRT Sage Matrix Integration.

We created a Python module which can be dynamically loaded into the Sage environ-

ment. This module links with the EbbRT Linux library and provides a python matrix

object which simply wraps a matrix Ebb. When this python matrix is instantiated at the

command line, an instance of the matrix Ebb is constructed to back it. When calls are

made to the python matrix object, they are forwarded to the matrix Ebb which may inter-

nally distributed its functionality to satisfy its interface. Figure 5.1 illustrates the realized

runtime structure.

In our particular matrix Ebb implementation, the representative running within the
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Sage process on Linux allocates nodes from the NodeAllocator booted with an EbbRT

library OS designed to hold a fixed tile of the matrix values and perform the core com-

putations on that matrix tile. The matrix Ebb links with the Boost uBLAS library to

provide local matrix operations. Nodes are allocated lazily, when an operation requires a

particular portion of the matrix for the first time. This structure allows for matrix opera-

tions to be done both lazily and in parallel. For example, as matrix elements are set, the

Linux representative will allocate nodes as necessary to store the tile of the matrix that

the element belongs to. Operations of the matrix Ebb such as element-wise randomization

can naturally be done in parallel across the tiles. Our matrix Ebb implements a number

of matrix operations such as summation, multiplication, element-wise randomization, and

element access.

An EbbRT library OS is well suited for offloading computationally expensive function-

ality because it allows the application complete control of the hardware. For example,

interrupts are disabled which prevents context switches from causing cache pollution to

slow down the computation. Additionally, complete control over memory allows the use of

large pages to reduce TLB contention. Such optimizations are similar to those explored in

the construction of operating systems for high performance computing like CNK [69] and

FusedOS [71].

From the perspective of a user at the Sage console, the matrix behaves just as any other

python object. In fact, if an instance of the matrix object is garbage collected (perhaps due

to the python variable going out of scope), the underlying Ebb is destroyed and any nodes

that were allocated are freed to the NodeAllocator. This is a feature of the particular

matrix ebb implementation. A different implementation may colocate matrices on the

same nodes in which case its destruction logic would encapsulate the dependency. Ebb

encapsulation ensures that such differences in implementation would not impact Sage or

the python module.

In summary, the EbbRT distributed architecture allows developers to extend the func-

tionality of a library operating system for compatibility or, vice-versa, to accelerate the
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functionality of existing applications. This is all encapsulated behind Ebbs which allows

for incremental development.

5.1.2 Disadvantages

One disadvantage of our distributed architecture is that our deployment model assumes the

existence of some system capable of allocating isolated networks and (virtual) machines.

At the outset of this project, this deployment model was limited to a small number of

virtualized cloud environments like Amazon Web Services (AWS) or vCloud [51]. When

we initially started development on this model, we had to develop a service with these ca-

pabilities which we could run on our local development server. In the time since we started,

this model of deployment has become substantially more popular with the development of

container systems like Docker and Kubernetes. With the ubiquity of public and private

clouds (using virtualization, containers, or a combination) — we feel EbbRT’s distributed

architecture applies to a broad set of datacenter environments.

The second major disadvantage of our approach is that not all compatibile interfaces

can be easily offloaded. Consider UNIX signals which provide an asynchronous notification

to notify a process that an event has occurred. For example, a program can request that

the SIGALARM signal fires after a specified number of seconds elapses by making the alarm

system call. EbbRT’s events are non-preemptible so there is no way to interrupt an event

to invoke a signal handler. It is not particularly challenging to develop preemptible threads

on top of EbbRT’s events which can then provide a compatible implementation of signals.

However, functionality offload does not provide any help in implementing signals — the

challenge is particular to the execution model of the EbbRT native execution environment,

the functionality itself is fairly rudimentary.

The final disadvantage of our distributed architecture is that when offloading function-

ality, implementors must consider new challenges like scalability and an expanded fault

domain. For example, consider the behavior of a file read be if the machine where the

hosted environment executes crashes. It is not clear that EbbRT needs distribution to
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provide function offloading. For example, FusedOS [71] and mOS [82] both adopt an ap-

proach where the resources on a single machine can be partitioned across light-weight

kernels and full-weight kernels. For example, one can run a fully functional Linux kernel

across some set of cores of a machine and then run a custom, light-weight kernel on other

cores. These can communicate via some form of message passing or shared memory in

order to provide function offloading. Similarly, Dune [21] provides Linux system calls to

hardware-virtualized environments where one can run custom operating systems. All of

these approaches provide many of the same advantages of our distributed architecture, but

the functionality offloading is performed to the local host.

5.2 Compilation model

In addition to providing compatibility by function offloading through our distributed ar-

chitecture, EbbRT also directly provides compatibility with many existing libraries and

build systems through our compilation model.

EbbRT is distributed as a software library (libebbrt) and a modified GNU toolchain.

The software library can be built to target Linux and linked to existing Linux applications.

The native toolchain builds a sysroot where EbbRT is installed as a library. The compiler

is modified to implicitly link against libebbrt and use a custom linker script which ensures

the address layout as EbbRT expects. Therefore, building new libraries or applications

just requires compiling with the x86 64-ebbrt target of our modified compiler. In effect,

libraries and applications are cross-compiled to EbbRT — but produce a bootable ELF

linked with the runtime. Given that nearly all build systems provide some support for

cross-compilation, integrating new libraries and applications with EbbRT often requires no

build-system changes.

The toolchain provides a port of the newlib C standard library. The C standard library

has a number of functions which require runtime support, for example printf requires some

form of I/O. Newlib reduces this support to 22 functions (e.g. open, read, malloc, etc.)
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which the target operating system provides. We define these symbols, but the default

implementation of many of these methods will cause a system abort. Applications which

need such functionality must override these methods as neccessary.

We also provide libstdc++, the GNU C++ standard library. All of the runtime de-

pendencies are provided by the C standard library. However, C++ requires some runtime

support for language features such as scoped static variable initialization (which requires

locking to ensure only one thread initializes the variable at a time) and exceptions (which

requires stack unwinding). We provide the necessary functionality. For flexibility, these

can be overriden at link-time.

With the C and C++ toolchain we are able to adopt many common libraries in the

construction of EbbRT library operating systems. For example, we make use of the Boost

C++ libraries and the Intel Threading Building Blocks (TBB) library in several Ebbs as

shown in Table 4.2.

5.2.1 Advantages

The decision to distribute a toolchain with a custom system target is not an obvious one.

Most kernels provide their own build system which produces a single artifact (the kernel)

and headers necessary to construct applications that utilize and interact with the kernel.

Even extensible systems often create an assumption about the manner in which it must be

extended. Consider the way a Linux kernel module is built. One must invoke the kernel’s

Makefile when building a module. We initially started down a similar path, each library

or application we sought to use within EbbRT had to include our own Makefile. We found

that this would not scale to large applications which already have their own complicated

build systems.

Furthermore, most operating systems do not integrate with the C or C++ standard

libraries. Rather, they require a limited subset of this functionality which is typically

reimplemented within each operating system. Given our desire to integrate with existing

software, we had to adopt the C and C++ standard libraries. We found that this greatly
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simplified the development of system functionality - for example the SlabAllocator Ebb

uses Boost’s intrusive data structures library.

The general advantage of our compilation model is that our approach closely mirrors

the standard way of constructing C and C++ applications rather than the approach taken

by many operating systems. This enables us to reuse existing software libraries and makes

application developers much more comfortable developing on EbbRT. Our approach has

the added advantage that it makes it simpler to develop system functionality.

5.3 Conclusion

One of the primary ways EbbRT reduces development effort is by providing compatibility

with existing applications, software interfaces and build tooling. Our compatibility does

not come at the expense of the ability to specialize the system for high performance. In

particular, we use function offloading with our distributed architecture to cleanly isolate

rich functionality necessary for compatibility from performance critical functionality. We

also adopt a standard compilation model which brings application development practices to

the construction of library operating systems. Together, these approaches enable developers

to execute full-featured applications on top of the same base system which enables a high

degree of optimization.



Chapter 6

Evaluation

One goal of EbbRT is to enable the construction of high-performance library operating

systems. To evaluate this, we compare the performance of EbbRT library operating systems

primarily with the Linux general purpose operating system. The other goal of EbbRT is

to enable this degree of performance without inflicting a large burden on developers. We

evaluate EbbRT based on indicators of development and maintenance effort. This primarily

involves describing code complexity, component reuse, and opportunities for offloading

functionality.

Through evaluating EbbRT we aim to affirm that our implementation fulfills the fol-

lowing three objectives: 1. supports high-performance specialization, 2. provides support

for a broad set of applications, and 3. simplifies the development of application-specific

systems software.

We run our evaluations on a cluster of servers connected via a 10GbE network and

commodity switch. Each machine contains two 6-core Xeon E5-2630L processors (run at

2.4 GHz), 120 GB of RAM, and an Intel X520 network card (82599 chipset). The machines

have been configured to disable Turbo Boost, hyper-threads, and dynamic frequency scal-

ing. Additionally, we disable IRQ balancing and explicitly assign NIC IRQ affinity. For

the evaluation, we pin each application thread to a dedicated physical core.

Each machine boots Ubuntu 14.04 (trusty) with Linux kernel version 3.13. The EbbRT

native library OSs are run as virtual machines, which are deployed using QEMU (2.5.0)

and the KVM kernel module. In addition, the VMs use a virtio-net paravirtualized

network card with support of the vhost kernel module. We enable multiqueue receive flow



82

steering for multicore experiments. Unless otherwise stated, all Linux applications are run

within a similarly configured VM and on the same OS and kernel version as the host.

The performance evaluations are broken down as follows: 1. micro-benchmarks de-

signed to quantify the base overheads of the primitives in our native environment and

2. macro-benchmarks that exercise EbbRT in the context of real applications. While the

EbbRT hosted library is a primary component of our design, it is not intended for high-

performance, but rather to facilitate the integration of functionality between a general

purpose OS process and native instances of EbbRT. Therefore, we focus our performance

evaluation on the EbbRT native environment.

6.0.1 Microbenchmarks

The first micro-benchmark evaluates the direct cost of Ebb invocation as compared to other

function call overheads. The seconds micro-benchmark evaluates the memory allocator and

aims to establish that the overheads of our Ebb mechanism do not preclude the construction

of high-performance components. The third set of micro-benchmarks evaluate the latencies

and throughput of our network stack and exercise several of the system features we’ve

discussed, including idle event processing, lambdas, and the IOBuf mechanism.

6.0.1.1 Ebb Invocation

Figure 6.1 shows the overhead of Ebb dispatch as compared to standard C++ object

dispatch. The microbenchmark measures 1000 invocations of an object with an empty

function. The “Inline” row shows the cost of a C++ inlinable method invocation. The

“No Inline” row shows the cost where inlining of the method is explicitly disallowed. The

“Virtual” row shows the cost when the method is declared as virtual and compiler devir-

tualization is disabled. The final row shows the cost of an Ebb dereference and dispatch

to an inlinable method.

These results demonstrate that Ebb usage does not significantly hinder performance.

They can be used for a fine-grained decomposition without concern. The usage of a virtual
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Figure 6.1: Object dispatch costs for 1000 invocations

memory region to enable lookup for per-core representatives as well as allowing inlining

ensures the primitive is efficient.

We also measured the cost of invoking an Ebb within our hosted environment which

cannot use a virtual memory region and instead must do a lookup into a per-core hash

table. We found Ebb dereference and invocations under Linux to be roughly 19 times

the cost. This is not a significant concern as the hosted environment is largely used for

compatibility and not performance-critical software.

These results highlight an additional important benefit of the EbbRT approach to

library OSs. Unlike OSs that provide an ABI and use runtime linking, EbbRT code paths

get statically integrated and optimized along with the application code by the compiler;

this allows the compiler to create higher quality end-to-end code paths. Unlike library
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OSs that purely target binary compatibility, EbbRT enables developers to maximize the

benefits of customization.

6.0.1.2 Memory Allocation

K42 [52] did not define its memory allocator as a fragmented object because the invocation

overheads (e.g., virtual function dispatch) were thought to be too expensive. A goal for

the design of our Ebb mechanism is to provide near-zero overhead so that all components

of the system can be defined as Ebbs.

The costs of managing memory is critical to the overall performance of an application.

Indeed, custom memory allocators have shown substantial improvements in application

performance [24]. We ported threadtest from the Hoard [23] benchmark suite to EbbRT in

order to compare the performance of the default EbbRT memory allocator to that of the

glibc 2.2.5 and jemalloc 4.2.1 allocators.

In threadtest, each thread t allocates and frees N
t 8 byte objects. This task is repeated

for i iterations. Figure 6.2 shows the cycles required to complete the workload across

varying amounts of threads. We run threadtest in two configurations. In configuration I.,

the number of objects, N , is large, while the number of iterations is small. In configuration

II. the number of objects is smaller and the iteration count is increased. The total number

of memory operations is the same across both configurations.

In the figure we see EbbRT’s memory allocator scales competitively with the production

allocators. Our scalability advantage is in part due to locality enabled by the per-core Ebb

representatives of the memory allocator and our lack of preemption which remove any syn-

chronization requirements between representatives. The jemalloc allocator achieves similar

scalability benefits by avoiding synchronization through the use of per-thread caches.

This comparison is not intended to establish the EbbRT memory allocator to be the

best in all situations, nor is it an exhaustive memory allocator study. Rather, we aim

to demonstrate that the overheads of the Ebb mechanism do not preclude us from the

construction of high-performance components.
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Figure 6.2: Hoard Threadtest. I.) N = 100, 000, i = 1000; II.) N = 100, i = 1000000

The EbbRT memory allocator is defined as an Ebb using per-core representatives for

locality. Due to the lack of pre-emption, the per-core data does not require synchronization.

This result is not intended to establish that the EbbRT memory allocator is the best in all

situations. Rather, we demonstrate that the general Ebb mechanisms allow us to define

an Ebb interface to the memory allocator and the overhead of these mechanisms doesn’t

preclude the construction of high-performance components.

6.0.1.3 Network Stack

To evaluate the performance of our network stack we ported the NetPIPE [76] and iPerf [77]

benchmarks to EbbRT. NetPIPE is a popular ping-pong benchmark where a client sends a

fixed-size message to the server, which is then echoed back after being completely received.
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In the iPerf benchmark, a client opens a TCP stream and sends fixed-size messages which

the server receives and discards. With small message sizes, the NetPIPE benchmark illus-

trates the latency of sending and receiving data over TCP. The iPerf benchmark confirms

that our run-to-completion network stack doesn’t preclude high throughput applications.

An EbbRT iPerf server was shown to saturate our 10GbE network with a stream of 1 kB

message sizes.

Figure 6.3 shows NetPIPE goodput achieved as a function of message size. Two EbbRT

servers achieve a one-way latency of 24.53 µs for 64 B message sizes and are able to attain

4 Gbps of goodput with messages as small as 100 kB. In contrast, two Linux VMs achieve

a one-way latency of 34.27 µs for 64 B message sizes and required 200 kB sized messages to

achieve equivalent goodput.
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Figure 6.3: NetPIPE performance as a function of message size. Inset shows small message
sizes.
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With small messages, both systems suffer some additional latency due to hypervisor

processing involved in implementing the paravirtualized NIC. However, EbbRT’s short

path from (virtual) hardware to application achieves a 40% improvement in latency with

NetPIPE. This result illustrates the benefits of a non-preemptive event-driven execution

model and zero-copy instruction path. With large messages, both systems must suffer a

copy on packet reception due to the hypervisor, but EbbRT does no further copies, whereas

Linux must copy to user-space and then again on transmission. This explains the difference

in Netpipe goodput before the network becomes the bottleneck.

Across a series of iPerf runs, we observed on average a 1.8 increase in achievable through-

put on EbbRT (9.49 Gbit/sec with 8kb messages) compared to a Linux VM (9.32 Gbit/sec

with 8kb messages. The iPerf results demonstrate that the EbbRT network performance

does not preclude the use of high-throughput applications.

EbbRT: 9.49 Linux VM: 9.32

Table 6.1: Throughput Gbits/sec (standard iPerf client, 8kb messages)

6.0.2 Memcached

We evaluate memcached[36], an in-memory key-value store that has become a common

benchmark in the examination and optimization of networked systems. Previous work

has shown that memcached incurs significant OS overhead[48], and hence is a natural

target for OS customization. Rather than port the existing memcached and associated

event-driven libraries to EbbRT we re-implemented memcached, writing it directly to the

EbbRT interfaces.

Our memcached implementation is a multi-core application that supports the standard

memcached binary protocol. In our implementation, TCP data is received synchronously

from the network card and passed up to the application. The application parses the client

request and constructs a reply, which is sent out synchronously. The entire execution

path, up to the application and back again, is run without pre-emption. Key-value pairs
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Request/sec Inst/cycle Inst/request LLC ref/cycle I-cache miss/cycle

EbbRT 379387 0.81 5557 0.0081 0.0079

Linux VM 137194 0.71 13604 0.0098 0.0339

Table 6.2: Memcached CPU-efficiency metrics

are stored in an RCU hash table to alleviate lock contention, a common cause for poor

scalability in memcached. Our implementation of memcached totals 361 lines of code. We

lack some features of the standard memcached (namely authentication and some of per-key

commands such as queue operations), but are otherwise protocol compatible. Functionality

support has been added incrementally as needed by our workloads.

We compare our EbbRT implementation of memcached, run within a VM, to the stan-

dard implementation (v.1.4.22) run within a Linux VM, and as a Linux process run natively

on our machine. We use the mutilate[56] benchmarking tool to place a particular load

on the server and measure response latency. We configure mutilate to generate load rep-

resentative of the Facebook ETC workload[19], which has 20 B–70 B keys and most values

sized between 1 B–1024 B. All requests are issued as separate memcached requests (no

multiget) over TCP. The client is configured to pipeline up to four requests per TCP

connection. We dedicate 7 machines to act as load-generating clients for a total of 664

connections per server.

Figure 6.4 presents the 99th percentile latency as a function of throughput for single

core memcached servers. At a 500 µs 99th percentile Service Level Agreement (SLA),

single core EbbRT is able to attain 1.88× higher throughput than Linux within a VM.

EbbRT outperforms Linux running natively by 1.15×, even with the hypervisor overheads

incurred. Additionally, we evaluated the performance of OSv[50], a general purpose library

OS that similarly targets cloud applications run in a virtualized environment. OSv differs

from EbbRT by providing a Linux ABI compatible environment, rather than supporting

a high-degree of specialization. We found that the performance of memcached on OSv

was not competitive with either Linux or EbbRT with a single core. Additionally, OSv’s

performance degrades when scaled up to six cores (omitted from figure 6.5) due to a lack
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Figure 6.4: Memcached Single Core Performance

of multiqueue support in their virtio-net device driver.

Figure 6.5 presents the evaluation of memcached running across six cores. At a 500 µs

99th percentile SLA, six core EbbRT is able to attain a 2.08× higher throughput than Linux

within a VM and 1.50× higher than Linux native. To eliminate the performance impact

of application-level contention, we also evaluated memcached run natively as six separate

processes, rather than a single multithreaded process (“Linux (process)” in Figure 6.5).

EbbRT outperforms the multiprocess memcached by 1.30× at 500 µs 99th percentile SLA.

To gain insight into the source of EbbRT’s performance advantages, we examine the

CPU-efficiency of the memcached servers. We use the Linux Kernel perf utility to gather

data across a 10 second duration of a fully-loaded single core memcached server run within a

VM. Table 6.2 presents these statistics. We see that the EbbRT server is processing requests
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Figure 6.5: Memcached Multicore Performance

at 2.75× the rate of Linux. This can be largely attributed to our shorter non-preemptive

instruction path for processing requests. Observe that the Linux rate of instructions per

request is 2.44× that of EbbRT. The instructions per cycle rate in EbbRT, a 12.6% increase

over Linux, shows that we are running more efficiently overall. This can be again observed

through our decreased per-cycle rates of last level cache (LLC) reference and icache misses,

which, on Linux, increase by 1.21× and 4.27×, respectively.

The above efficiency results suggest that our performance advantages are largely achieved

through the construction of specialized system software to take advantage of properties of

the memcached workload. We illustrate this in greater detail by examining the per-request

latency for EbbRT and Linux (native) broken down into time spent processing network

ingress, application logic, and network egress. For Linux, we used the perf tool to gather



91

Ingress Application Egress Total

EbbRT 0.89 µs 0.86 µs 0.83 µs 2.59 µs

Linux 1.05 µs 1.30 µs 1.46 µs 3.81 µs

Table 6.3: Memcached Per-Request Latency

Inst/cycle LLC ref/cycle TLB miss/cycle VM exit Hypervisor time Guest kernel time

EbbRT 2.48 0.0021 1.18e-5 5950 0.33% N/A

Linux VM 2.39 0.0028 9.92e-5 66851 0.74% 1.08%

Table 6.4: V8 JavaScript Benchmark CPU-efficiency metrics

stacktrace samples over 30 seconds of a fully loaded, single core memcached instance and

categorized each trace. For EbbRT, we instrumented the source code with timestamp coun-

ters. Table 6.3 presents this result. It should be noted that, for Linux, the “Application”

category includes time spent scheduling, context switching, and handling event notification

(e.g. epoll). The latency breakdown demonstrates that the performance advantage comes

from specialization across the entire software stack, and not just one component.

By writing to our interfaces, memcached is implemented to directly handle memory

filled by the device, and can likewise send replies without copying. A request is handled

synchronously from the device driver without pre-emption, which enables a significant

performance advantage. EbbRT primitives, such as IOBufs and RCU data structures, are

used throughout the application to simplify the development of the zero-copy, lock-free

code.

In the past, significant effort has gone into improving the performance of memcached

and similar key-value stores. However, many of these optimizations require client mod-

ifications [59, 70] or the use of custom hardware [60, 46]. By writing memcached as an

EbbRT application, we are able to achieve significant performance improvements while

maintaining compatibility with standard clients, protocols, and hardware.

6.0.3 Node.js

It is often the case that specialized systems can demonstrate high performance for a par-

ticular workload, such as packet processing, but fail to provide similar benefits to more
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full-featured applications. A key objective of EbbRT is to provide an efficient base set of

primitives on top of which a broad set of applications can be constructed.

We evaluate node.js, a popular JavaScript execution environment for server-side appli-

cations. In comparison to memcached, node.js uses many more features of an operating

system, including virtual memory mapping, file I/O, periodic timers, etc. Node.js links

with several C/C++ libraries to provide its event-driven environment. In particular, the

two libraries which involved the most effort to port were V8[42], Google’s JavaScript engine,

and libuv[7], which abstracts OS functionality and callback based event-driven execution.

Porting V8 was relatively straightforward as EbbRT supports the C++ standard li-

brary, on which V8 depends. Additional OS functionality required such as clocks, timers,

and virtual memory, are provided by the core Ebbs of the system. Porting libuv required

significantly more effort, as there are over 100 functions of the libuv interface which re-

quire OS specific implementations. In the end, our approach enables the libuv callbacks

to be invoked directly from a hardware interrupt, in the same way that our memcached

implementation receives incoming requests.

The effort to port node.js was significantly simplified by exploiting EbbRT’s model

of function offloading. For example, the port included the construction of an application-

specific FileSystem Ebb. Rather than implement a file system and hard disk driver within

the EbbRT library OS, the Ebb calls are offloaded to a (hosted) representative running

in a Linux process. Our default implementation of the FileSystem Ebb is näıve, sending

messages and incurring round trip costs for every access, rather than caching data on local

representatives. For evaluation purposes we use a modified version of the FileSystem Ebb

which performs no communication and serves a single static node.js script as stdin. This

implementation allows us to evaluate the following workloads (which perform no file access)

without also involving a hosted library.

One key observation of the node.js port is the modest development effort required to

get a large piece of software functional, and, more importantly, the ability to reuse many

of the software mechanisms used in our memcached application. The port was largely
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completed by a single developer in two weeks. Concretely, node.js and its dependencies

total over one million lines of code, the majority of which is the v8 JavaScript engine. We

wrote about 3000 lines of new code in order to support node.js on EbbRT. A significant

factor in simplifying the port is the fact that EbbRT is distributed with a custom toolchain.

Rather than needing to modify the existing node.js build system, we specified EbbRT as a

target and built it as we would any other cross compiled binary. This illustrates EbbRT’s

support for a broad class of software as well as the manner in which we reduce developer

burden required to develop specialized systems.

6.0.3.1 V8 JavaScript Benchmark

To compare the performance of our port to that of Linux, we launch node.js running

version 7 of the V8 JavaScript benchmark suite [41]. This collection of purely compute-

bound benchmarks stresses the core performance of the V8 JavaScript engine. Figure 6.6

shows the benchmark scores. Scores are computed by inverting the running time of the

benchmark and scaling it by the score of a reference implementation (higher is better).

The overall score is the geometric mean of the 8 individual scores. The figure normalizes

each score to the Linux result.

EbbRT outperforms Linux run within a VM on each benchmark, with a 5.1% improve-

ment in overall score. Most prominently, EbbRT is able to attain a 30.3% improvement

in the memory intensive Splay benchmark. As we’ve made no modification to the V8

software, just running it on EbbRT accounts for the improved performance.

We further investigate the sources of the performance advantage by running the Linux

perf utility to measure several CPU efficiency metrics. Table 6.4 displays these results.

Several interesting aspects of this table deserve highlighting. First, EbbRT has a slightly

better IPC efficiency (3.76%), which can in part be attributed to its performance advan-

tage. One reason for decreased efficiency of the Linux VM is simply having to execute

more instructions, such as additional VM Exits and extraneous kernel functionality (e.g.,

scheduling). Second, the additional interactions with the hypervisor and kernel on Linux
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increase the working set size and cause a 33% increase in LLC accesses. Third, Linux suf-

fers nearly 9× more TLB misses than EbbRT. We attribute our TLB efficiency to our use

of large pages throughout the system. Finally, we observe that even in a compute-bound

task, the Linux VM spends a non-negligible amount of time in the kernel.
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Figure 6.6: V8 JavaScript Benchmark

6.0.3.2 Node.js Webserver

Lastly, we evaluate a trivial webserver written for node.js, which uses the builtin http

module and responds to each GET request with a small static message totaling 148 bytes. We

use the wrk[39] benchmark to place moderate load on the webserver and measure mean and

99th percentile response-time latencies. EbbRT achieved 91.1 µs mean and 100.0 µs 99th

percentile latencies. Linux achieved 103.5 µs mean and 120.6 µs 99th percentile latencies.

The node.js webserver running on Linux has a 13.61% higher mean latency than the same

webserver run on EbbRT. 99th percentile latency is 20.65% higher on Linux over EbbRT.

These results suggest that an entire class of server-side application written for node.js

can achieve immediate performance advantages by simply running on top of EbbRT. Similar

to our memcached evaluation, the ability for node.js to serve requests directly from hard-
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ware interrupts, without context switching or pre-emption, enables greater network per-

formance. The non-preemptive run-to-completion execution model particularly improves

tail latency. Our V8 benchmark results show that the use of large pages and simplified

execution paths increases the efficiency of CPU and memory intensive workloads.

Finally, our approach opens up the application to further optimizations opportunities.

For example, one could modify V8 to directly access the page tables to improve garbage

collection[21]. We expect that greater performance can be achieved through continued

system specialization.



Chapter 7

Conclusions and Future Work

As more businesses and users gain access to datacenter resources through cloud computing,

resource efficiency becomes increasingly important. Stagnating CPU clock speeds and

increasingly heterogeneous hardware makes it challenging for our existing general purpose

operating systems to provide good performance for a diverse set of applications.

Rather than addressing the challenge of providing high performance in a general pur-

pose operating system, this dissertation explores an alternative approach of providing high

performance by constructing customized operating systems for individual applications. The

challenge with this approach is enabling developers to build these custom operating systems

with reasonable effort. To this end, we construct and evaluate a framework, the Elastic

Building Block Runtime (EbbRT). EbbRT is described in detail through three sections:

• Chapter 3 describes the EbbRT execution environment. We discuss the non-preemptive,

event-driven execution model, the identity mapped physical memory as well as the

user-allocatable virtual memory, and finally the direct access to I/O devices, inter-

rupts and DMA into application memory.

• Chapter 4 focuses on the programming primitives supported by EbbRT which pro-

mote the construction of reusable software. This chapter particularly focuses on the

Elastic Building Block (Ebb) abstraction which encapsulates software components

that can span both hosted and native execution environments. This chapter also

discusses our use of lambdas, futures and IOBufs.

• Chapter 5 discusses how EbbRT provides compatibility with existing software. Specif-
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ically, we describe the distinction between the hosted execution environment and the

native execution environment and how EbbRT applications are constructed and de-

ployed. We focus on the acceleration and offload enabled by this approach to either

accelerate existing applications or rapidly develop new applications.

We evaluate EbbRT on two primary criteria: 1. The performance attainable by con-

structing custom library operating systems using EbbRT, and 2. The effort required to

construct these library operating systems and the degree of reuse enabled by EbbRT. We

evaluate the framework using a large collection of microbenchmarks and three different ap-

plications, memcached, node.js, and SageMath. This evaluation demonstrates that EbbRT

library operating can significantly out perform existing, general purpose systems with only

modest effort required.

7.0.1 Future Work

Much of the promise of EbbRT can only be truly evaluated as it scales to many developers

and applications. Future work attempting to gain adoption of EbbRT would be valuable.

EbbRT was developed over a number of years by a very small team (2 full-time, mostly

junior developers at any one time). We explicitly avoided investing time and effort into

aspects of the system that would have increased adoption (e.g. documentation, tutorials,

tooling). Instead, we grappled with our own experience with the system and had more

freedom to rapidly change the system; EbbRT was completely rewritten at least three

times. The system has recently reached a level of maturity where it seems feasible to gain

adoption beyond the small research group which built it. Often, adoption is looked at

as an orthogonal property to other, more measurable, research properties such as perfor-

mance, security, reliability, etc. However, we have argued throughout this dissertation that

reducing developer effort is critical to the system success. Along with greater adoption

comes a larger set of components that a developer can choose from and so adoption is an

important property of a successful framework. Future work can explore which design de-
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cisions in EbbRT, while enabling high performance, can encourage adoption by a broader

community.

In the same vein as achieving adoption, enabling a broader set of applications to be

more easily deployed on EbbRT would have significant value. For example, a pthread and

sockets implementation would allow non event-driven networking applications to be ported

to EbbRT without modification. This may not provide the same degree of performance as

the native EbbRT interfaces, but providing a path to optimization rather than wholesale

redevelopment is important. Furthermore, providing tooling and guidance towards which

portions of an application warrants optimizing would be an interesting direction for future

work.

One of the least explored areas of the EbbRT research agenda has been the construction

of distributed applications and the primitives required to support them. While Ebbs can

span multiple machines and communicate through the use of Ebbs such as the Messenger

and GlobalIdMap, these feel like very low-level primitives to construct a distributed compo-

nent. Future work should look into ways to construct higher-level primitives and methods

to construct distributed components.

7.0.2 Summary

Operating systems have historically been responsible for multiplexing the resources of a

computer and providing abstractions to enable applications to be developed. The advent

of cloud computing and the use of hardware virtualization has caused a renewed interest

amongst the OS research community in library operating systems and other techniques

which enable system functionality to be implenmented in userspace. We believe that for

these techniques to be widely embraced, developers must be able to balance their desire

to customize functionality with the need to reuse existing software. This dissertation

has proposed a framework which allows developers to construct application-specific library

operating systems. The Elastic Building Block Runtime has been demonstrated to improve

performance of existing applications with relatively modest effort.
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