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.

知之为知之，不知为不知，是知也。

To know what it is that you know, and to know what it is that you do not

know,----that is understanding.

论语

Analects of Confucius
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ABSTRACT

Investigating mechanisms that regulate genes and the genes’ functions are essen-

tial to understand a biological system. This dissertation is consists of two specific

research projects under these aims, which are for understanding piRNA’s regulation

mechanism and predicting genes’ function computationally.

The first project shows a piRNA regulation landscape in C. elegans. piRNAs

(Piwi-interacting small RNAs) form a complex with Piwi Argonautes to maintain

fertility and silence transposons in animal germlines. In C. elegans, previous studies

have suggested that piRNAs tolerate mismatched pairing and in principle could target

all transcripts. In this project, by computationally analyzing the chimeric reads di-

rectly captured by cross-linking piRNA and their targets in vivo, piRNAs are found to

target all germline mRNAs with microRNA-like pairing rules. The number of target-

ing chimeric reads correlates better with binding energy than with piRNA abundance,
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suggesting that piRNA concentration does not limit targeting. Further more, in mR-

NAs silenced by piRNAs, secondary small RNAs are found to be accumulating at the

center and ends of piRNA binding sites. Whereas in germline-expressed mRNAs, re-

duced piRNA binding density and suppression of piRNA-associated secondary small

RNAs targeting correlate with the CSR-1 Argonaute presence. These findings re-

veal physiologically important and nuanced regulation of piRNA targets and provide

evidence for a comprehensive post-transcriptional regulatory step in germline gene

expression.

The second project elaborates a computational model to predict gene function.

Predicting genes involved in a biological function facilitates many kinds of research,

such as prioritizing candidates in a screening project. Following the “Guilt By Asso-

ciation” principle, multiple datasets are considered as biological networks and inte-

grated together under a multi-label learning framework for predicting gene functions.

Specifically, the functional labels are propagated and smoothed using a label propaga-

tion method on the networks and then integrated using an “Error correction of code”

multi-label learning framework, where a “codeword” defines all the labels annotated

to a specific gene. The model is then trained by finding the optimal projections be-

tween the code matrix and the biological datasets using canonical correlation analysis.

Its performance is benchmarked by comparing to a state-of-art algorithm and a large

scale screen results for piRNA pathway genes in D.melanogaster.

Finally, piRNA targeting’s roles in epigenetics and physiology and its cross-talk

with CSR-1 pathway are discussed, together with a survey of additional biological

datasets and a discussion of benchmarking methods for the gene function prediction.
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Chapter 1

Introduction

Argonaute (AGO) proteins and their engaged small RNAs regulate genes at both

transcriptional and post-transcriptional levels in many species. (Czech and Hannon,

2011; Ghildiyal and Zamore, 2009; Hutvagner and Simard, 2008; Meister, 2013; Siomi

and Siomi, 2009; Thomson and Lin, 2009). Among them, PIWI proteins are members

of the RNaseH-related Argonaute superfamily that engage small RNAs to function

in animal gonad, as a piRNA-induced silencing complexes (piRISCs) (Czech and

Hannon, 2016; Malone and Hannon, 2009; Weick and Miska, 2014). As the two

projects in this dissertation are both aimed at exploring the piRNA pathway, I will

start by introducing this pathway in two model organisms.

Although the genomic origin, sequence features vary a lot in C. elegans and D.

melanogaster, some of their biological functions appear to be shared, such as trans-

poson element silencing and fertility maintenance (Aravin et al., 2001; Batista et al.,

2008; Siomi et al., 2011; Thomson and Lin, 2009). In D. melanogaster, piRNA

originates from long non-coding RNAs precursors called piRNA clusters, with size

up to 200kb in length and serve as the template for thousands of unique piRNAs

(Huang et al., 2017). Once transcribed, the piRNA clusters are exported to cyto-

plasm through nuclear pores and processed into mature 23-29 nt piRNAs through 5’

and 3’ end nucleotide trimming and modifications. In the end, a so-called “ping-pong”

cycle amplifies the amount of piRNAs for silencing.

However in C. elegans (See figure 1.1), piRNAs originate from many small non-
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Figure 1·1: The piRNA’s biogenesis in C. elegans.

coding gene precursors, each with a unique Ruby motif at the gene’s up-stream

(Batista et al., 2008; Weng et al., 2019). Once transcribed, these precursors go

through a similar process that trims the piRNA into 21nt with a signature 5’ uridine

(21U-RNAs). Rather than using the “ping-pong” cycle to amplify silencing signal,

the piRISC targets template RNAs and recruit an RNA-dependent RNA Polimerase

(RdRP) for initiating the synthesis of secondary small RNAs. These secondary RNAs

are typically 22nt long with a 5’ guanosine (22G-RNAs) that engage an expended

group of 12 worm Argonautes (WAGOs) to silence transposons and many endoge-

nous genes.

1.1 piRNA regulation in C. elegans

In C. elegans, previous computational analysis suggests piRNA are targeting with

mismatch tolerances, indicating thousands of endogenous mRNAs can be targeted

2



by them and silenced (Lee et al., 2012). On the other hand, the CSR-1 pathway

is thought to be a “self” recognition pathway that protects endogenous mRNAs,

which serves an anti-silencing mechanism to prevent or reduce the sensitivity of the

piRISC silencing (Seth et al., 2013). CSR-1 also engages RdRP-derived smRNAs

templates from nearly all germline expressed genes (Claycomb et al., 2009). However,

it is unknown whether it directly competes with initial piRISC targeting or with the

downstream WAGO recruitment, as shown in figure 1.2. Thus, direct genomewide

U OCH3
PRG-1

G
WAGO

Silence

G
G

G
G

CSR-1

Protection

?

? mRNA

mRNA

Figure 1·2: Diagram for CSR-1 protection pathway’s potential
cross-talks with piRNA regulation in C. elegans. The diagram
on the right shows the piRNA biogenesis in C. elegans. And the arrows
indicate CSR-1 protection pathway’s potential cross-talk points.

identification of piRNA targets is essential for deciphering the mechanism for both

sequence-directed immunity and germline gene regulations. In chapter 2, I will show

a joint project that directly captured around 200,000 high-confidence piRNA-target

interactions and deciphered the piRNA functioning mechanisms via computational

analysis and experimental validations.
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1.2 The efforts to predict piRNA pathway genes

Dozens of genes are involved in piRNA’s biogenesis, exporting, and maturation pro-

cesses. To further understand its function, it is essential to identify additional gene

components in this pathway. Both computational and experimental efforts have been

made in several model organisms. In C. elegans, Tabach et al. (Tabach et al., 2013)

used a normalized phylogenetic profile to group genes involved in miRNA and siR-

NAs pathways and then experimentally validated around half of the candidates. In

D. melanogaster, large scale RNAi screening projects have been conducted to identify

novel piRNA pathway proteins (Czech et al., 2013). However, these screening projects

are usually not complete, due to experimental limitations. In chapter 3, I will elab-

orate on a novel computational method that aims to predict additional co-functional

genes and its application in predicting piRNA pathway genes in D. melanogaster. To

provide additional view from this second angle, I will also introduce the background

and motivation for the gene function prediction problem in computational biology in

the following sections.

1.3 Computational models to integrate biological data

Understanding and modeling biological systems from a systematic view facilitates

many biological research projects, such as experimental screening for genes in path-

ways and prioritizing disease-related genes testing for candidate biomarkers (Zitnik

et al., 2019). The rapidly developing large-scale and high-throughput methods in re-

cent years enable investigations from multiple aspects, such as cis-regulatory elements,

topologically associated domains, gene expression, protein-protein interactions, and

genetic interactions (Chatr-Aryamontri et al., 2017; ENCODE Project Consortium

et al., 2012; Nora et al., 2012; Szklarczyk et al., 2019). In principle, an integration of

these datasets compensates for the missing data and alleviate the noise in biological

4



datasets. Nevertheless, it also provides a more comprehensive approach for repurpos-

ing publicly available datasets. Several efforts have been made for summarizing these

datasets, such as visAnt and stringDB (Hu et al., 2013; Jeanquartier et al., 2015).

However, many methods are still designed for analyzing a single type of data, avoiding

the different reliability and the inherent systematic bias from different experimental

designs (Hwang et al., 2005).

On the other hand, various approaches were also proposed for integrating biolog-

ical datasets. A recent review (Zitnik et al., 2019) classifies them as three types. As

the first type, early integration methods typically concatenate and transform multi-

ple inputs into one dataset, where feature selection methods or dimension reduction

techniques are usually involved. On the other side, the late integration methods build

separate models for each dataset and then combine their outputs for final predictions,

where the aggregated ranks or p-values can be used. The method I proposed for gene

function prediction is an intermediate integration method under this review. Using

the network view of biological datasets and the “guilt by association” (GBA) princi-

ple, I used a multi-label approach for gene function prediction, which learns a joint

representation of gene functions by optimizing correlations between the known gene

functions and the input datasets. As a result, this learned latent representation can

decode the biological datasets for predicting gene functions.

In the following sections, I will introduce this GBA principle, the biological datasets

as networks, and a label propagation algorithm that propagates the functional labels

on the networks.

1.4 “Guilt by association” (GBA) principle

The GBA principle assume that genes interacting or associated tend to share func-

tions. Under this principle, we can propagate the functional annotation of a gene

5



to its not annotated neighbors on a gene-gene network. As one of the early work

in the field, Schwikowski et al. show that a simple majority vote from physically

interacting neighbors can correctly assign at least one function to 72% of the genes

(Schwikowski et al., 2000). In addition to the physical interactions, other networks

following GBA can also contribute to predicting gene functions. For instance, if

two genes are involved in the same pathway, they may be co-evolving across multiple

species (Pellegrini et al., 1999) and co-express at the same tissue type (Li et al., 2014).

They might also be annotated with related GO terms (Resnik, 1999) and interacting

with each other genetically (Costanzo et al., 2016). In principle, by quantifying these

relationships and join them, we can build up a refined GBA view. And this view can

help in propagating a functional annotation from known genes to others.

1.5 Biological data as “multi-view” networks

One conceptually meaningful way for integrating these GBA based relationships is to

view them as networks, where each node is a gene or functioning element, and each

edge is a quantified association between them. This transition is quite straightforward

for some biological relationships. For instance, they can be discrete numbers from

physical protein-protein interactions captured by experiments. They can also be

continuous values from quantified genetic interaction of genes (Chatr-Aryamontri

et al., 2017). In addition to these straightforward definitions, other biological data can

also be viewed as networks. For instance, genes’ phylogeny across species (Pellegrini

et al., 1999) and their expression in different tissue types or developmental time

points (Carlson et al., 2006) can be quantified as phylogenetic and expression profiles,

respectively. These profiles can then quantify the relationships between genes via

Pearson correlations. Also, using the frequencies of accumulated gene ontology (GO)

annotations in a species, we can define a semantic similarity between genes (Resnik,

6



1999). Taken together, these biological datasets provide a “multi-view” of genes’

functions. I will elaborate more on viewing phylogeny, expression, and GO annotation

as networks below.

1.5.1 Genes’ phylogeny as biological network

Phylogenetic profiling is a powerful way to identify evolutionary and functional asso-

ciations between genes (Pellegrini et al., 1999). It takes advantage of the fact that

nature tends to delete or maintain the whole functional gene set, rather than a ran-

dom part of them. Thus, given a gene in a “center species”, its phylogenetic profile

can be defined as its present/absent pattern across multiple species. If two genes are

sharing a similar pattern, they have a higher chance of co-evolving and co-function

(Figure 1.3).

Genes 
Genes’ present/absent 
pro�les in species 

Correlated pro�les

Present

Absent

Figure 1·3: Diagram for associating similar phylogenetic pro-
files.

In Eukaryotes, Tabach et al. proposed a way to identify small silencing RNA path-

way genes in C. elegans (Tabach et al., 2013). They defined phylogenetic profiles for

genes in C. elegans as their sequence-level similarity to best-matching homologs in 95

other species. These similarities are quantified as the BLASTP bit scores, after nor-

malizing them to sequence length and evolutionary distance (Zscore transformation

for each species). In order to show the rationales behind my computational model,
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and also as a preliminary result, I replicated this method and calculated the profiles

for each D. melanogaster gene, using 52 evolutionarily distant species that are at least

500 million years away from each other (Kumar et al., 2017) (See appendix table 1).

Then, as mentioned previously, the associations between genes are quantified using

their profiles’ Pearson correlation coefficients.

1.5.2 Genes’ expression profile as biological network

Following the GBA principle, co-expression profiles is another approach for grouping

functionally associated genes (Carlson et al., 2006). Similar to phylogenetic patterns,

it assumes co-functioning genes tend to express cooperatively, thus correlated with

each other with a higher Pearson correlation coefficient. Ideker et al. (Ideker et al.,

2001) pioneered this idea by analyzing large-scale mRNA and protein level responses

to 20 perturbations to genes involved in galactose utilization. In this study, they

also showed that genes linked by physical interactions correlated more strongly than

randomly chosen genes, indicating that these biological datasets are following GBA

principle and they can compensate for each other. In 2002, Steffen et al. (Steffen

et al., 2002) utilized co-expression profiles to reconstruct a MAP Kinase signaling

network in yeast, together with its protein interaction map. More relevant to this

work, Karaoz et al. (Karaoz et al., 2004) proposed a model based on a Markov

random field and label propagation, which integrates expression and protein-protein

interaction data for gene function prediction.

In the preliminary result in this chapter, expression profiles for D. melanogaster

are built using normalized gene expression values from the modENCODE project,

which cover mnay tissues types and developmental time points (See appendix tables

2 and 3) (Li et al., 2014).
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1.5.3 Genes’ similarity networks defined using GO annotations

The accumulated gene functional annotations can also define a similarity score be-

tween genes. Intuitively, GO terms enriched for cooccurrence in a species are more

similar to each other. By summarizing the semantic similarities between GO terms,

this similarity between any two genes can be estimated (Lord et al., 2003; Guzzi

et al., 2012). Specifically, given the GO terms’ tree-like structure and their empirical

frequencies in a species, we can quantify the semantic similarity between two GO

terms using their shared parental terms’ frequencies.

transmembrane receptor
GO:0004888 

p=0.0997

photoreceptor
GO:0009881
 p=0.000433

receptor-associated 
protein 

GO:0016962 
p=0.00159

receptor
GO:0004872 

p=0.124

receptor signal protein
GO:0005057 

p=0.0281

ligand
GO:0005102 

p=0.0460

signal transducer
GO:0004871 

p=0.208

chaperone
GO:0003754 

p=0.0102

molecular function
GO:0003674 

p=1

isa

isa

isa

isa

isa

isa

isa

isa

Figure 1·4: Diagram for GO terms’ tree-like structure and
empirical p-values. Orange indicates the two focused GO terms
for similarity calculation. Blue indicates their parental terms. Figure
reproduced using the toy example in Resnik et al (Resnik, 1999).

As shown by Resnik et al. (Resnik, 1999), two specific GO terms such as "trans-

membrane receptor (GO: 0004888)" and "photoreceptor (GO: 0009881)" are more

similar to each other, compared to the most general term (root term) on the tree,

which is "molecular function (GO: 0003674)". As the frequency of the GO term
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monotonically increases from the leave terms to the root, the frequencies are normal-

ized to a set of empirical p-values for each GO term, ranging from 0 to 1, where 1

is the p-value for the root GO term. Then, given the tree structure and p-values for

each GO term, the similarity scores between any two GO terms are defined as the

negative log of the smallest p-value of their shared parental terms.

similarity(c1, c2) = −log(min(p(S)))

Here, S denotes the set of shared parental terms’ p-values (two blue-colored GO

terms in figure 1.4). c1 and c2 denote the two focused terms for similarity calculation

(two orange-colored GO terms in figure 1.4). In figure 1.4, the similarity of the two

focused GO terms is 0.682, according to this definition.

With the GO terms’ similarities defined, the genes’ similarities are defined by

integrating the GO term annotated to them. Various integration strategies have been

proposed and compared (Guzzi et al., 2012). Among them, one simple way is to define

the similarity between genes as the max of all GO term similarities. By considering

each gene as a "node" and their similarities as edges, I generate a network view of

genes based on their GO annotations. In the preliminary results, I calculated the

GO term similarities for the three GO term trees, namely biological process, cellular

component, and molecular function, and integrated them for gene’s similarity scores

using R package GOsemsim (Yu et al., 2010).

1.6 Propagate functional labels on a network

Following the "guilt by association" principle, the label propagation algorithms prop-

agate genes’ functional labels to their neighbors on a network. As an extension of the

simple neighbor majority voting model for the yeast networks (Schwikowski et al.,

2000), Hishigaki et al. (Hishigaki et al., 2001) further propagate the labels to genes

in a radius. However, this approach does not consider local network topology restric-
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tions. Vazquez et al., and Karaoz et al. (Vazquez et al., 2003; Karaoz et al., 2004)

take the topology into account by considering the functional prediction problem as a

multi-way k-cut problem. However, as pointed out by Nabieva et al. (Nabieva et al.,

2005), these methods don’t reward local proximity. To overcome this limitation, they

proposed a FunctionalFlow algorithm that used the idea of network flow, outperform-

ing the methods above for gene function prediction in yeast. It controls the number of

flow iterations with a parameter d, and typically used d = 6 for the yeast interaction

network.

Similar to FunctionalFlow, PRIoritizatioN and Complex Elucidation (PRINCE)

algorithm (Vanunu et al., 2010) is the network propagation method that I integrated

into my computational model (Figure 1.5). It is a "Random Walk with Restart"

g1

g2

g3g4
g5

g6

g7

g8

labeled genes in a network

g1

g2

g3g4
g5

g6

g7

g8

labeled propagated genes
 in the network

g5

g2

g9

Figure 1·5: Diagram for propagating label on a gene-gene net-
work. Blue indicates the labeled genes before and after the label propa-
gation algorithm. In this example, gene g5 and g2 found in the network,
and their associated label values are propagated to their neighbors. Af-
ter reaching a stationary state, genes such as g4 are predicted to have
the same label.

(RWR) approach that iteratively diffuses the label values into a network.

Given a set of co-function genes, the algorithm firstly finds them in a gene-gene
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interaction network, and annotate these genes with a positive value, such as 1. Due

to the network’s topology restriction, they can only connect to a subset of other genes

directly. PRINCE takes advantage of this restriction and iteratively propagates the

label through weighted edges. At each iteration, propagation proceeds from genes

with positive label values to all their neighbors. At the same time, channeled by the

initially mapped genes, more label values are continuously infused into the network,

which "restarts" the label propagations and smooths the distribution of label values.

In PRINCE, a parameter α controls the proportion of restart label values that are

infused at each iteration. In the end, the algorithm will terminate at a steady state

when the amount of total changing label values between genes drops below a thresh-

old. As a result, some previously unlabeled genes are annotated with positive label

values and predicted.

1.7 Rationales for the proposed computational model

Although the mentioned methods following GBA principle are useful, computationally

predict genes’ function using the label propagation algorithms on multiple networks

is challenging for several reasons. Firstly, the genes multi-function nature limit a

model’s prediction power, particularly for networks built following GBA principle. As

multiple labels may co-exist for the same set of genes, it confounds the computational

models that propagate one label at a time to additional genes. Nevertheless, missing

annotations and class imbalance problems are also limiting the method performances.

I will discuss them in detail in this section, with the preliminary results from my

analysis on D. melanogaster ’s networks.

1.7.1 The evolutionary origin of scale-free biological networks

The genes’ multi-function nature might be rooted in the biological networks’ distribu-

tion and evolutionary origin. Though being controversial (Broido and Clauset, 2019),
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biological networks are generally considered to be scale-free, with a “power-law” dis-

tribution. This distribution can be denoted as the following.

P (k) ∼ k−γ

Here, k is the node degree and P (k), the probability of randomly selecting a node

with degree k, is proportional to k−γ (Barabási and Oltvai, 2004; Zhu et al., 2007).

This is a long-tail distribution where genes with high degree are termed “hub” genes.

As discussed previously by Barabasi et al. (Barabási and Oltvai, 2004), the emer-

gence of this scale-free property is probably correlated with gene duplication events,

which produce identical proteins that interact with the same partners. While the orig-

inal gene preserves its function, the network gains new gene functions as the newly

duplicated genes evolve. As a result, genes highly connected in the network have a

higher chance of gaining new interactions and functions.

1.7.2 Multi-function genes limit prediction power

Probably originated from the evolution of networks, the multi-function “hub” genes

are hard cases in gene function predictions, as they typically correlated with a large

number of partners with different functions. In the scenario of label propagation,

it channels the label value to all its neighbors, resulting in a large number of false

positives in prediction.

Here, as an preliminary result, a pathway to pathway relationship network is

generated using iGraph (Csardi and Nepusz, 2006) and KEGG pathway (Kanehisa

and Goto, 2000) annotation for D. melanogaster, where each node is one pathway

and each edge denotes at least one multi-functioning genes is shared between the

connected pathways.

This view indicates that many pathways are sharing genes with others, where
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Figure 1·6: The view of KEGG pathway-pathway relationship
in D. melanogaster . Each node is a KEGG pathay and each edge
indicates that at least one gene is shared between two pathways.

some of them are densely connected. In other words, many genes are multi-funtional

in D. melanogaster. To further support my hypothesis, I also calculated the average

pathway-pathway similarities, using all possible gene pairs between two pathways.

Specifically, To provide a “multi-view” of the pathways relationship from different

views, I calculated genomewide associations or semantic similarities using phylogeny,

co-expression, and GO terms frequencies in D. melanogaster.

In these case studies, similarities to a particular pathway from all pathways are

calculated and used to color the nodes on the KEGG pathway view, including pathway

"dme00020", the citrate cycle (TCA cycle, Krebs cycle), and pathway "dme04392",

the hippo signaling pathway in D. melanogaster (Figure 1.6).

The TCA cycle is one of the "house-keeping" pathways that conserved across

species. As shown in Figure 1.6A, it is highly associated with many other pathways

in terms of co-evolution correlations. As a second example, the hippo signaling path-

way is also correlating with other pathways, though to a lesser extent (Figure 1.6C).

Interestingly, both pathways correlate with more others from the co-expression per-
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Figure 1·7: The view of KEGG pathway similarities to path-
way “dme00020” and “dme04392” in D. melanogaster . Path-
way nodes’ are colored according to their associations to a focus path-
way, which is indicated by a larger sized node. Pathways with lower
associations are in blue, while those with higher associations are in yel-
low. The pathway relationships focusing on pathway "dme00020" and
"dme04392" from phylogenetic profiles’ perspective are shown in A and
C; while those from co-expression profiles are shown in B and D.

spective (Figure 1.6B and 1.6D). Also, their network views from three different GO

term trees are also diverse in their closely associated pathways (See appendix figure

1). This diversity suggests that this multi-view of networks indeed provides different

views following GBA principle, which may compensate each other.

To summarize the case studies for this multi-function phenomenon, the pathway

similarities in D. melanogaster are stratified into five groups based on their short-

est path distances. As shown in Figure 1.8, the pathway similarities decrease as the

pathway distances increase, indicating that they follow the GBA principle. The neigh-

boring pathways with a distance of 1 and 2 do have a higher similarity to each other,
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Figure 1·8: Similarities between KEGG pathways in D.
melanogaster at different distances. A and B are for co-evolution
and co-expression correlations, respectively. Cyan, green, purple, and
blue boxplots are for pathway pair similarities with their shortest dis-
tances as 0, 1, 2, greater or equal to 3, respectively. Red boxplots are
for self similarities of isolated pathways.

comparing to the distant pathways. This indicates that the GBA defined similarities

are less effective in distinguishing the pathway with their neighboring pathways. In

the proposed computational model, these relationships are taken as advantages and

modeled as label dependencies.

1.7.3 Missing labels and highly imbalanced annotations

Since annotating gene function is still an on-going effort even for model organisms,

missing labels are expected in training for gene function prediction algorithms (Liu

and Thomas, 2019). For instance, while the yeast gene annotation can be considered

as completed, human gene annotations are still largely missing.

These missing labels further confound the genome-wide gene functional predic-

tions. And, this might also be the reason for the success of label propagation algo-
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rithms in the past years (Cowen et al., 2017; Nelson et al., 2019; Vanunu et al., 2010;

Nabieva et al., 2005; Karaoz et al., 2004; Vazquez et al., 2003), since label propagation

does require true negative labels for training. As a result, missing negative labels have

a moderate effect on them. However, missing positive labels can erroneously mark a

top prediction as false positive, misleading the hyperparameter tuning process.

In addition to this missing label problem, the number of positive labels for a

pathway is generally much less than the total number of genes in a species, resulting

in a highly imbalanced dataset. In the case of piRNA pathway prediction in D.

melanogaster, the number of known piRNA pathway genes is 33, much less than the

nearly 12,000 genes in the species. In a worst-case scenario, an algorithm can reach

over 99% accuracy by simply predicting all instances to be negative for this pathway.

1.8 Gene function prediction as a multi-label learning prob-

lem

Multi-label learning eases these problems by modeling multiple labels and their de-

pendencies at the same time (Zhang and Zhou, 2014). To show the advantage of this

multi-label learning framework, a toy example of six multi-label genes is prepared

(Table 1.1). As shown in the table, this framework models a larger number of genes

with positive labels, if compared to just 2 genes for each function label. The missing

negative label problem is also reduced by the label dependency modeling process, as

some pathways do not share genes, such as function 1 and 2. They are still not true

negatives to each other, but by modeling the label distribution of the two functions,

the partial negative dependencies can be taken into account. Also, to ease the impact

of missing positive labels in this work, a robust Platt’s scaling procedure is adopted

in my computational model (see chapter 3 for detail).
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Table 1.1: Multi-label learning schema for gene predictions. 1
indicates a gene is annotated with a function.

function 1 function 2 function 3 function 4 function 5
gene 1 1 0 1 1 0
gene 2 0 1 0 0 1
gene 3 0 1 0 0 0
gene 4 1 0 0 1 0
gene 5 0 0 0 0 0
gene 6 0 0 1 0 1

1.9 "Error correction of code" for gene function prediction

Among multi-label learning methods, "Error correction of code" (ECOC) (Dietterich

and Bakiri, 1994; Escalera et al., 2010) is quite straightforward to integrate single

label propagation results, as a "codeword" can be an indicator vector of a gene’

functions. For instance, gene 1 in Table 1.1 can be coded as "10110" for the five

gene functions. Also, this framework corrects errors using repetitive codes, which is

suitable for integrating the "multi-view" datasets in biology.

ECOC is originally from telecommunication community. In this field, it is impor-

tant to minimize the errors in recovering original message while limiting the repetitive

"codeword" length. Multiple coding designs were proposed for this purpose and multi-

label learning, such as adding true negative labels, and randomly choosing additional

label pairs as the repetitive codes (Escalera et al., 2010). Among them, one well-

known schema is called "Turbo code"(Weiss and Freeman, 2001), which embeds a

fixed pattern in the "codeword" during encoding and, upon receiving, decodes the

original "codeword" back by maximizing the likelihood to this pattern through an

iterative process.

For predicting gene functions using the "multi-view" datasets, the optimal design

for transmitting efficiency is not as important as in telecommunications. Instead, it

is important to fill a partially known "codeword" matrix with the help of biological
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datasets. Here, the original codeword is partially known, and the biological datasets

can be considered as the encoded repetitive codes through an unknown design. The

goal is then to learn a coding design that fits both the known codewords and biological

datasets. If it is learned, new function labels can be predicted by decoding the

biological datasets from the same distribution. In chapter 3, I will propose a unified

model that connecting label propagation algorithms and an ECOC based algorithm

(Zhang and Schneider, 2011), which learns the coding design by maximizing the

correlations between "codewords" and biological datasets.
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Chapter 2

A piRNA regulation landscape in C.

elegans

This chapter is based on a joint research project with Dr. Craig Mello’s group in

University of Massachusetts Medical School. Though this is a joint effort with shared

thoughts, I primarily collaborated with Dr. Enzhi Shen, who mainly performed the

experiments while I did the computational analysis (Shen et al., 2018).

As stated in chapter 1, the identification of piRNA targets is essential for deci-

phering the roles of piRNAs in both sequence-directed immunity and more broadly

in the regulation of germline gene expression (Helwak et al., 2013; Van Nostrand

et al., 2016; Vourekas and Mourelatos, 2014). Thus, it is of great interest to directly

capture piRNAs and their targets in vivo. We optimized a crosslinking, ligation,

and sequencing of hybrids (CLASH) protocol to identify piRNAs and its associated

(candidate) target RNA binding sites in C. elegans. As a result, around 200,000

high-confidence piRNA–target site interactions are identified and the overwhelming

majority of them were between piRNAs and mRNAs. The following bioinformatics

analysis of the hybrids revealed that targets are enriched for energetically favorable

Watson-Crick pairing with their associated piRNAs. Specifically, the seed sequence

(i.e., positions 2 to 8) and supplemental nucleotides near the 3’ end (positions 14 to

19) of the piRNA are important determinants of piRNA-target binding and silencing,

suggesting that piRNA targeting resembles miRNA targeting.

We also find the piRNA target sites defined by CLASH show a non-random pattern
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of secondary WAGO 22G-RNAs accumulation, which initiate at both ends and near

the center (position 12) of the piRNA target site, consistent with local recruitment of

RdRP. On the other side, analysis of CLASH hybrids obtained from CSR-1-depleted

animals suggest that CSR-1 directly protects its targets from PRG-1 binding and

WAGO-dependent silencing. These findings reveal that the entire germline mRNA

transcriptome engages piRISC, and suggests how germline Argonaute pathways are

coordinated to achieve comprehensive regulation and surveillance of germline gene

expression.

2.1 PRG-1 CLASH experiment directly identifies piRNA-

target chimeras

As mentioned previously, a modified CLASH approach was used to identify RNAs

associated with the C. elegans PRG-1-piRISC complex. Briefly, CLASH involves the

in vivo cross-linking of RNAs to a protein of interest followed by immunoprecipita-

tion (IP), trimming of RNA ends, ligation to form hybrids between proximal RNAs

within the crosslinked complex, cDNA preparation, library construction, and deep

sequencing. In principle, this procedure should allow the recovery of hybrid-sequence

reads formed when piRNAs are ligated to proximal cellular target RNAs within the

cross-linked PRG-1 IP complex.

Given the strand specific short reads libraries from CLASH experiments, we firstly

identified the chimeric reads with a full length piRNA and then trimmed the piRNA

off the chimeric reads. Then, the remaining part of the short reads are mapped to the

genome via BWT (Langmead et al., 2009) and classified into different groups using

BEDtools (Quinlan and Hall, 2010) with Wormbase annotation (WS230) (Yook et al.,

2012).

In two independent experiments, we found similar distributions of mapped se-
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quence reads (Figure 2.1 and appendix figure 2), where more than 70% of the piRNA

are targeting mRNA in both replicates. The unique piRNA sequences and the tar-

geted mRNA transcripts are highly reproducible in terms of both sequence species

and reads counts (Appendix figure 2).

Tc1
Tc3

miRNA
lincRNA

tRNA
intron

TE
pseudoGene

rRNA
other

mRNA

−2 10 20 30 40 50%
0.03 %
0.05 %
0.09 %
0.12 %
0.54 %
0.59 %
0.87 %
2.24 %
5.4 %

19.42 %
70.65 %

Figure 2·1: piRNA targets classification and abundance. The
dashed line marks the 0% on the x-axis.

Together, these comprised a total of around 21 million reads, including a total

of about 7 million reads corresponding to 17,192 different piRNAs. Most of these

piRNA-containing reads lacked a hybrid sequence (1,083,172), or the hybrid sequences

could not be mapped to the genome because they were too short, or for other reasons

(3,946,162). We obtained 2,106,813 hybrid reads composed of a piRNA sequence and

a genome-mapping sequence, of which around 1.5 million were composed of a single

piRNA sequence fused to an mRNA. In addition to mRNA chimeras, we detected

piRNAs fused to sequences corresponding to rRNA (137,322 reads), tRNA (11,231

reads), pseudogenes (48,208 reads), lincRNA (2,583 reads), miRNA (1,556 reads),

introns (10,529 reads), and transposable elements (19,092 reads) (Figure 2.2).
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 Total reads with piRNA
(7,136,150)

Total genome-mapping
         hybrid reads

(2,106,813)

Total hybrids targeting
             mRNA

(1,527,120)

Total unique piRNA
 /mRNAs identified

(14,307) / (16,731)

Figure 2·2: piRNA targets captured in two wild type experi-
ments.

2.2 CLASH reveals piRNA target sites in germline mRNAs

Because mRNA chimeras were by far the most abundant type of hybrid read, we

chose to focus on mRNA hybrids in the present study. Altogether, a total of 16,385

genes were represented among the piRNA hybrids (Figure 2.2). We found that "soma-

specific" mRNAs were strongly under-represented in the CLASH data (Figure 2.3A)

(Beanan and Strome, 1992; Li et al., 2014), consistent with the idea that CLASH

captures interactions between piRNAs and mRNAs that occur in the germline, and

not interactions that occur in lysates. On the other side, the frequency of recovering

each piRNA by CLASH correlated with its level in the input sample as measured by

small RNA sequencing (Figure 2.3B, r = 0.58, P < 0.005).

The nuclease treatment during the CLASH procedure was optimized to produce

chimeras of approximately 40 nucleotides. Thus, each chimera potentially reflects a

piRNA/target mRNA duplex ligated at, or near, one end of the duplex. We noted,

however, that not all chimeras contained a full-length piRNA and that the recovered

target regions varied in length, indicating some variability in nuclease trimming during
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Figure 2·3: Density for piRNA and their targeting prefer-
ence to soma and germline specific genes. (A) piRNA target-
ting density after normalizing the chimeric read counts to the target-
ted genes’ expression level on “soma-specific,” “germline-specific,” and
other genes, which are indicated in purple, red, and blue, respectively;
(B) piRNA abundance in input small RNA sequencing correlates with
CLASH captures piRNA abundance. * indicate t-test p-value smaller
than 4.7 · e−200 .

the CLASH procedure. Therefore, prior to searching for base-pairing interactions, we

implemented a customized computational protocol to extend the empirically defined

target space by adding nucleotides to each end, using the initial partial piRNA-

mRNA alignments (Figure 2.5B). In this way, we created an "ideal" piRNA/target

RNA pairs.

We next predicted the most energetically favorable piRNA-mRNA interactions

from in silico folding of these "ideal" sequences and compared it with predicted bind-

ing energies in a control data set with randomly matched pairs (Figure 2.4), using

RNAfold in Vienna package (Lorenz et al., 2011). By comparing binding energy distri-

butions of in silico random interactions with CLASH defined interactions at different

abundance, this analysis showed that stable base-pair interactions were strongly en-

riched in the recovered piRNA-mRNAs chimeras. In fact, when normalized for mRNA
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Figure 2·4: Distribution of the most favorable piRNA-mRNA
interactions. Red solid line shows the binding energy distribution of
CLASH defined interactions; Red dashed line shows the distribution of
more stable interactions; The blue line shows the random control.

levels, we further found that hybrid read counts per target site correlated better with

binding energy than with piRNA abundance (Figure 2.5A).

As a secondary validation, chimeras in which the piRNA 3’ end was contiguous

with mRNA sequence were found roughly 20-fold more frequent than chimeras ligated

at piRNA 5’ ends (Figure 2.5B). These findings are consistent with the idea that

piRNA 3’ ends are more available for ligation to their targets. Taken together, these

findings support the idea that CLASH captures proximal mRNAs bound to piRISC

via base-pairing interactions.
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Figure 2·5: CLASH experiment validations by binding energy
distribution and ligation event frequences. (A) Binding energy
distribution of the chimeric reads at different read counts cut-off; (B)
added length distribution of the piRNA 3’ end to mRNA 5’ end ligated
target reads (in blue) vs others (red).

2.3 piRNA targets exhibit a pattern of discrete peaks in

22G-RNA levels

In C. elegans, piRISC recruits RdRP to its targets. Therefore, we wished to examine

the pattern of RdRP-dependent 22G-RNA production near CLASH-defined piRNA

target sites in both WT and prg-1 mutant worms, where prg-1 is the Argonaute

protein that binds to piRNAs. To do this, we implemented a computational pipeline

that normalized the 22G-RNA signal and aggregated their 5’ end counts for a single

base pair resolution. The aggregated 5’ end counts are investigated within a 40-nt

region centered on the piRNA targetting sites defined by CLASH. The 5’ ends of

22G-RNAs are thought to be formed directly from RdRP initiating at C residues

within the target mRNAs. We therefore normalized the 22G-RNA levels initiating

at each position to the frequency of C residues within the CLASH-defined targets at

each position.
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Figure 2·6: Normalized 22G-RNA signal over CLASH defined
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age; Red and blue indicate wild type and prg-1 mutant background, re-
spectively. subsets of target sites defined by binding energy and piRNA
abundance cut-offs are shown in (C), (E), (D), and (F). (G) and (H)
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Because the CSR-1, and WAGO Argonaute pathway are thought to have opposing

functions, resisting and supporting piRNA silencing (Seth et al., 2013; Wedeles et al.,

2013), we separately considered predicted piRNA targets within previously defined

WAGO and CSR-1 targeted mRNAs (Claycomb et al., 2009; Gu et al., 2009). As

a control set, we considered a target region arbitrarily set more than 100 nts away

(within each mRNA) from of the piRNA binding sites identified by CLASH. In WT

animals, 22G-RNA levels were much higher for WAGO targets than for CSR-1 targets,

as expected (Figures 2.6A and B). However, piRNA binding sites within both WAGO

and CSR-1 targets showed a non-random distribution of 22G-RNA levels across the

interval. By contrast, the control regions within the same target mRNAs, but offset

from the hybrid sites, exhibited no such patterns (Figure 2.6G and H). WAGO targets

exhibited a strong central peak, and clusters of peaks at either end of the piRNA target
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sites. To describe these patterns, we refer to the mRNA sequences near the target

site as follows: t1 through t30 includes the presumptive binding site (t1 to t21) plus

9 nucleotides 5’ of the target site (t22 to t30). The mRNA region 3’ of the target site

consists of nucleotides t–1 through t–11. Strikingly, this analysis revealed a prominent

peak in the center of the piRNA complementary region near t12, and smaller peaks

centered at t1 and t21 (Figure 2.6A, C, and E). CSR-1 targets exhibited a cluster of

much smaller peaks near the 3’ end of the predicted target site, with the largest peak

residing in sequences located near t–5 (Figure 2.6B, D, and F). The amplitudes of

22G-RNA levels on both the WAGO and CSR-1 targets correlated positively with the

predicted free energy of piRNA binding and to a lesser extent with piRNA abundance

(Figures 2.6A-F).

The amplitude and position of 22G-RNA peaks differed in prg-1 mutants. For

WAGO targets, the central peak at t12 was completely depleted in prg-1 mutants,

whereas the terminal peaks were reduced. In CSR-1 targets, the prominent peak

located at t–5 disappeared, but new peaks at t1, t6, and t21 became evident (Figure

2.6). This analysis suggests that PRG-1 influences both the precise position, and

the levels of 22G-RNAs on its targets, and that CSR-1 and WAGO targets differ

strikingly in their accumulation of 22G-RNAs in response to piRNA targeting.

2.4 Patterns of piRNA targeting

Previous studies have revealed features of Argonaute/small RNA guided targeting,

including the importance of "seed" pairing between the target and nucleotides 2 to

8 of the small RNA guide (Bartel, 2009). To explore patterns of piRNA-mediated

targeting, we considered the in silico predicted piRNA-target folding within a high-

confidence group of "ideal" pairs that were identified by at least 5 sequence reads.

To identify preferred base-pairing patterns within this group of hybrids, we built up
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a computational pipeline that convert the RNAfold output to a reduced BEAR RNA

structural representation (Mattei et al., 2014) and then clustered them into clusters

using Affinity Propagation (Frey and Dueck, 2007). This analysis revealed a clearly

preferred interaction at the seed region and distinct base-pairing patterns at the 3’

supplementary region (Figures 2.7A and B).
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Figure 2·7: Heatmap for clustered matching (black) and mis-
matching (white) pattern for piRNA targeting. (A) allowing
non-gapping "Watson-Crick" pairing only; (B) allowing alignment gaps;
and corresponding random controls.

Notably, base-pairing frequencies declined from positions 9 to 13 of the piRNA

and increased from positions 14 to 19 (Figure 2.8). As expected, these patterns were

not enriched in a set of randomized piRNA target RNA pairs (Figure 2.7A-B, and

Figure 2.8). These findings suggest that both seed pairing at positions 2 to 8 and

supplementary pairing at positions 14 to 19 contribute to piRNA-target RNA binding

(Shin et al., 2010; Wee et al., 2012).
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tween piRNA and the targets. Solid line indicates the normalized
pairing and the dashed line indicates the random control.

To further characterize piRNA–mRNA interactions, we analyzed A:U and G:C

base-pair ratios at each position of the piRNA. We found no significant difference

between the two base pair ratios within the seed region, but in other regions, we

found a bias toward G:C pairing (Figure 2.9A). Notably, cytosine was strongly over-

represented in the target strand immediately 3’ of the seed complement opposite the

5’ u, (defined as target strand position 1 cytosine, or "t1C") (Figure 2.9B).

This preference contrasts with t1A preferred by insect PIWI proteins (Wang et al.,

2014) . To account for targeting sequences’ potential composition bias, the “t1C” fre-

quencies are also estimated after scrambling the target sequences via uShuffle (Jiang

et al., 2008), while keeping the di-nucleotide and tri-nucleotide frequencies. In fact,

an analysis of the C frequencies within the 40nt region centered by the CLASH target

sites shows multiple cytosine over-represented positions (Figure 2.11D).

To further investigate the evolutionary conservation of the CLASH defined target

sites, a 7way PhyloP score from multiple sequence alignments of 7 worm genomes

are downloaded from UCSC genome browser (Kent et al., 2002). A following search

covering 9400 genes with full PhyloP score coverage (Pollard et al., 2010) failed to

reveal a preferential conservation for piRNA-mRNA target sites (Figure 2.10).
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Finally, we also separated the CLASH defined sites into WAGO targets and CSR-

1 targets and compared the features of piRNA target interactions on them. The

energetics of piRNA targeting, the patterns of seed and supplementary pairing, and

the average C content along the target region were no different between these groups

(Figure 2.11).

2.5 Seed and 3’ supplementary pairing are required for tar-

get silencing

To determine the importance of base pairing along the length of the piRNA/target

mRNA hybrid for piRNA silencing, we used CRISPR genome editing to systematically

mutate positions 2 to 21 of an anti-gfp piRNA expressed from the 21ux-1 piRNA locus

(See figure 3 in appendix) (Seth et al., 2018). We then assayed the ability of each

21ux-1(anti-gfp) mutant piRNA to silence a single-copy cdk-1::gfp transgene over a

time course of up to 8 worm generations (See appendix figure 4). Strikingly, we found

that individual mismatches in the seed region (i.e., m2 to m8) and 3’ supplemental
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region (i.e., m14 to m21) strongly reduced the ability of 21ux-1(anti-gfp) to silence

cdk-1::gfp, but mismatches at the central region (m9 to m13) had a much more mild

effect. By the F2 generation, when fully matched 21ux-1(anti-gfp) piRNA silences

cdk-1::gfp by 70%, mismatches at positions 2 to 8 or 14 to 21 reduced silencing to

less than 10% and 25% (respectively) of animals scored. By contrast, mismatches at

positions 9 to 13 reduced silencing activity only slightly, to approximately 50% at the

F2 generation. Mismatches at positions 2 or 3 prevented silencing of cdk-1::gfp, even

after 8 generations, demonstrating that pairing at positions 2 and 3 is essential for

piRNA-mediated silencing. Mutants with mismatches at any of the other 18 positions

eventually silenced cdk-1::gfp over the 8 generation time course.

To further test the importance of pairing in these regions, we selectively mutated
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Figure 2·11: Comparison of WAGO and CSR-1 targets. (A)
and (B) show the base-pairing rates at piRNA target sites and random
sites in WAGO and CSR-1 target genes; (C) shows the deltaG distribu-
tion for all target sites on WAGO and CSR-1 target genes; (D) shows
the distribution of C counts at and around piRNA target sites.

positions t3, t15, and t21 of the anti-gfp target site in cdk-1::gfp mRNA to compensate

for anti-gfp piRNA mutations in guide-strand positions, g3, g15, and g21, each of

which strongly diminished silencing. As expected, in the absence of 21ux-1(anti-gfp),

these silent mutations did not affect the level of GFP expression. Strikingly, target

mRNAs with "re-matching" mutations at t3, t15, and t21 were each rapidly silenced

by piRNA strains bearing the corresponding guide mutations. Thus the failure of

the g3, g15 and g21 point mutant piRNAs to silence wild-type cdk-1::gfp was caused

specifically by the mismatches and not by changes in expression or piRISC loading
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of the mutant piRNAs.

Lastly, we analyzed 22G-RNA induction for several 21ux-1(anti-gfp) point mu-

tant strains. As expected, we found that 22G-RNA levels correlated with the degree

of GFP silencing observed (Figure 2.12). Overall, these findings confirm the impor-
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gfp coding region
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Figure 2·12: Schematic of 22G-RNAs targeting gfp in F2, F4
and F8 worms. Accumulated 22G-RNAs signal (red) targeting gfp
gene (green) in F2, F4 and F8 cdk-1::gfp worms with the indicated
single-nucleotide mismatches (m2 = position 2 mismatch, etc.). Po-
sitions from 5’, central, and 3’ regions of the piRNA were randomly
chosen for analysis.

tance of base-pairing within the seed region (nucleotides 2 to 8) and within the 3’

supplemental pairing region (nucleotides 14 to 21) for efficient piRNA targeting.
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2.6 Experimental validation of specific piRNA–mRNA inter-

actions suppressing endogenous mRNA targets

To investigate how the base-pairing rules defined by our bioinformatics and transgene

studies affect targeting of an endogenous mRNA, we edited the 21ux-1 target site,

introducing single mismatches into the predicted 21ux-1/xol-1 target duplex (Fig-
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Figure 2·13: Validating 21ur-4863 and 21ux-1’s suppression by
mutating their target sites on xol-1. (A) indicate the mutations
on xol-1; (B), (C), and (D) validate the xol-1 expression, viability of
progeny and percentage of pseudo males, respectively.

ure 2.13A). XOL-1 is a key regulator of dosage compensation and sex determination

in early zygotes, and xol-1 mRNA was recently shown to be regulated by the X

chromosome-derived piRNA, 21ux-1(Tang et al., 2018). Consistent with our findings

in the transgene studies, single-nucleotide mismatches within the seed and 3’ sup-

plemental pairing regions, but not within the central region, dramatically increased
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expression of XOL-1 (Figure 2.13B). The 21ux-1 mutants with mismatches in the

seed and 3’ supplemental pairing regions were phenotypically similar to 21ux-1 null

mutants and enhanced the dosage compensation and sex determination phenotypes

(decreased brood size and masculinization of hermaphrodites) caused by silencing the

X-signal element sex-1 (Figure 2.13C and D) (Carmi et al., 1998). Thus, mutating a

single nucleotide in 21ux-1 dramatically increases both XOL-1 expression and activity.

Consistent with the observation that most germline mRNAs are targeted by mul-

tiple piRNAs, we identified a total of 166 CLASH hybrids containing xol-1 mRNA

sequences, which are fused to 40 different piRNAs (Figure 2.14). However, given
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Figure 2·14: Distribution of chimeric xol-1 reads (red) iden-
tified by CLASH, and the distribution of xol-1 22G-RNAs
(blue) in prg-1 mutant and WT worms. Locations of 21ur-4863
(upper) and 21ux-1 target sites in xol-1 gene indicated by inverted
black triangles. Sequences and base pairing (right) of 21ur-4863:xol-1
(upper) and 21ux-1:xol-1 (lower) chimeras. piRNA expression level,
number of chimeric reads, and binding energy (kcal/mol) indicated
above each chimera. Distribution of 22G-RNAs at single-nucleotide
resolution shown below each chimera.

the importance of 21ux-1 in regulating xol-1, and the fact that 21ux-1 is the most

abundant piRNA, we were surprised to find that a different piRNA, 21ur-4863, was

recovered in xol-1 chimeras at a frequency greater than twice that of 21ux-1 chimeras.

36



Specifically, we identified 8 reads with 21ux-1 fused to its xol-1 target site and 19 reads

of 21ur-4863 fused to its xol-1 target site. This is consistent with the general observa-

tion that chimeric read abundance correlates better with binding energy, rather than

the piRNA abundance (Figure 2.5A).

We therefore wished to ask if 21ur-4863 is also important for xol-1 regulation.

Strikingly, deletion of 21ur-4863 resulted in the upregulation of both xol-1 mRNA

and protein levels to a degree similar to that observed in 21ux-1 mutants (Figure
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Figure 2·15: Validating 21ur-4863 and 21ux-1’s suppression to
xol-1 by mutating the two piRNAs. (A) Bar graph of xol-1 mRNA
levels in WT, prg-1, 21ur-4863 deletion, and 21ux-1 deletion worms
measured by RT-qPCR. actin mRNA served as the internal control.
Data expressed as mean ± s.d. of three experiments; (B) Western
blot (anti-FLAG) of GFP::FLAG::XOL-1 (top) levels in WT, 21ur-
4863 deletion, and 21ux-1 deletion worms. Alpha-tubulin (bottom)
was probed as a loading control; (C) and (D) are bar graphs of percent
viable and pseudomale progeny of WT, prg-1, and 21ur-4863 deletion
worms treated with sex-1(RNAi). n > 500 per experimental group.
Data expressed as mean ± 2 s.e.m. of three experiments.

2.15A and B). Similar to the 21ux-1 mutant, the 21ur-4863 deletion mutant enhanced
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defects in dosage compensation and sex determination caused by sex-1(RNAi): fewer

progeny and dumpy (Dpy) body morphology (Figure 2.15C and D)(Carmi et al.,

1998) . Thus, 21u-4863 and 21ux-1 are both required for xol-1 silencing, neither is

sufficient, suggesting that piRNAs function cooperatively to silence xol-1.
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Figure 2·16: Analysis of piRNAs targeting fbxb-97 and comt-
3. (A) and (C) are distributions of chimeric reads (red) identified by
CLASH, and the distribution of 22G-RNAs (blue) in prg-1 mutant and
WT worms, on gene fbxb-97 and comt-3, respectively. (D) indicate the
mutations that disrupt 4 piRNA target sites; (B), (E), and (F) show
the two genes’ expression changes in the mutated worms.

We also examined the consequences of piRNA targeting on fbxb-97 and comt-3,
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whose mRNAs are also regulated by PRG-1 (Bagijn et al., 2012; Batista et al., 2008;

Gu et al., 2009; Lee et al., 2012). We identified 70 chimeric reads between 21ur-1563

and fbxb-97 (Figure 2.16A) and found fbxb-97 mRNA levels were upregulated 1.5-fold

in a 21ur-1563 deletion mutant and ˜8-fold in the prg-1 mutant (Figure 2.16B). To

analyze piRNA regulation of comt-3 (Figure 2.16C), we took the alternative approach

of mutating target sequences. We introduced silent mutations into wobble-positions

that maintain the comt-3 open reading frame but disrupt 4 piRNA target sites (Figure

2.16D). comt-3 mRNA levels were markedly increased in the prg-1 mutant and in the

comt-3 quadruple-piRNA target site mutant, but were not elevated in a comt-3 single-

piRNA target site mutant (Figure 2.16E). COMT-3::FLAG (introduced by CRISPR)

was significantly elevated (by 1.5 fold) in the quadruple target site mutant (Figure

2.16F). Taken together, our findings suggest that individual piRNAs exhibit a range of

regulatory effects and that multiple piRNAs cooperatively silence individual targets.

2.7 Competition between the CSR-1 and PRG-1 Argonaute

pathways

Previous studies suggested that CSR-1 protects its germline mRNA targets from

piRNA-mediated silencing (Seth et al., 2013; Shirayama et al., 2012; Wedeles et al.,

2013). We sought to test whether CSR-1 protects its targets by preventing PRG-

1 from binding. To do this, we used an auxin-inducible degradation (AID) system

to conditionally deplete CSR-1 in young adult worms (Zhang et al., 2015), and then

performed CLASH on CSR-1 depleted worms in two independent biological replicates.

We compared the number of unique piRNA binding sites on CSR-1 targets from CSR-

1 depleted and wild-type worms. Strikingly, we found that the number of unique

piRNA binding sites significantly increased (about 2 fold) in the CSR-1 depleted

worms compared to wild-type (Figure 2.17A,B). This increase did not result from
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Figure 2·17: Competetion between CSR-1 and piRNA path-
ways. The numbers of both raw and normalized piRNA binding sites
increase on CSR-1 targeted genes at a CSR-1 depleted background.

changes in target mRNA levels, which did not change dramatically during CSR-1

depletion (See figure 5 in appendix). Increased piRNA targeting is illustrated for

dhc-1, whose mRNA levels did not appreciably change (˜1.5 fold), but whose piRNA

targeting was elevated by >3.4-fold in CSR-1depleted worms (Figure 2.18). These

results suggest that, when CSR-1 is depleted, mRNAs normally targeted by CSR-1

become bound by additional piRNAs.
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Figure 2·18: Change in piRNA target density in CSR-1 de-
pleted worms versus wild type for gene dhc-1.

40



To determine whether increased piRNA binding correlates with decreased mRNA

levels, we plotted the fold change in mRNA abundance (CSR-1depleted / WT) versus

the fold change in piRNA-binding density (CSR-1depleted / WT) for 3,820 CSR-1

targets (Figure 2.19A) (Claycomb et al., 2009). We observed a negative correlation

between increased piRNA-binding density and mRNA abundance in CSR-1depleted

worms (r = - 0.44). To clearly visualize this relationship, we split the 3,820 CSR-1

targets into five bins of increasing piRNA binding density and plotted the change in

mRNA abundance in CSR-1depleted versus wild type (Figures 2.19B). This analy-
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Figure 2·19: Change in mRNA abundance between WT and
CSR-1 depleted worms versus the change of piRNA binding.
Scatterplot in (A) shows the change in mRNA abundance between WT
and CSR-1 depleted worms versus the change of piRNA binding density
for 3,820 CSR-1 targets. Boxplot in (B) shows the same trend with
stratified piRNA binding density changes.

sis revealed that, as piRNA binding density increases, mRNA abundance decreases.

These findings support the idea that CSR-1 functions, at least in part, upstream of

PRG-1 to reduce piRNA targeting.
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2.8 Non-mRNA piRNA interactions

Although mRNA target sites accounted for greater than 90% of CLASH hybrid reads,

we also reproducibly identified CLASH reads mapping to a variety of non-coding RNA

species (ncRNAs). For example, over 80,000 CLASH reads and hundreds of different
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Figure 2·20: Distribution of chimeric rrn-2.1 and rrn-3.1 reads
(green) identified by CLASH and genomic locus on the top
(blue).

piRNAs were mapped to ncRNA hybrids, including sequences from a single region

of the 26S rRNA (Figure 2.20). Interestingly, this rRNA region is also targeted

by WAGO 22G-RNAs that were recently reported to downregulate rRNA levels in

response to stress (Zhou et al., 2017). Our studies also identified many interactions

between piRNAs and tRNA species. For example, tRNAGlu(CUC) and 21U-8377

formed highly reproducible chimeras that showed thermodynamically stable base-

pairing (Figure 2.21). Altogether we identified piRNA-tRNA hybrids involving 474

different tRNAs and 1225 different piRNAs. The significance of these findings remains

to be determined, but it is intriguing that in Drosophila, a mutation that leads to

accumulation of misprocessed tRNA results in a collapse of Piwi-mediated transposon
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Figure 2·21: Putative interactions between piRNA and tRNA.
21ur-8377 reproducibly bind to the same region of tRNA-Glu(CUC),
marked blue on the tRNA structure (chrIII. ZK783.t1).

silencing (Molla-Herman et al., 2015; Yamanaka and Siomi, 2015). We also identified

hybrids between piRNAs and other ncRNAs including microRNAs and annotated

long-noncoding, lncRNAs. The identification of these piRNA interactions provides

a new lens through which to explore potential functions and regulation of germline

ncRNA species.
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Chapter 3

A computational model to predict gene

functions

Given a set of co-functioning genes, can we predict their additional functional mem-

bers? In this chapter, I introduce a computational model for answering this question.

As stated in chapter 1, the rationales for this model are “guilt by association” princi-

ple and a multi-label learning framework called “Error correction of code” (ECOC),

which is originally from the telecommunication community. By modeling multiple

labels and their mutual dependencies, this method is more generalized for predicting

labels for multi-function genes. Besides the error correction feature, this “ECOC”

framework also in principle works better for gene function predictions that are highly

imbalanced, as more genes with positive labels are involved in training for tuning

two hyperparameters. To benchmark this method’s performance, I did a comparison

with a state-of-the-art algorithm “Mashup”, using their benchmark dataset on yeast

networks. Also, as a case study, it is used in predicting piRNA pathway genes in D.

melanogaster, with a set of single-cell RNAseq pruned stringDB networks.

3.1 The multi-label learning model

As mentioned in chapter 1, this model uses the error-correcting codewords to repre-

sent the multi-function genes. With annotated codewords for each gene, it directly

learns label dependencies from biological data, using canonical correlation analysis

(CCA) that maximizes projections between these label codewords and the network
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propagated label values. These codewords and the CCA projections form a coding

structure that can be used to encode the gene function labels to biological datasets

and decode the biological data back to labels. Thus, this model is capable of predict-

ing function labels for genes from the same input biological distribution. Figure 3.1

provides an overview of this model.
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Figure 3·1: The multi-label learning framework.
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3.1.1 Multi-label propagation

Firstly, provided with multi-functional genes and edge weight normalized networks,

this model implemented PRINCE (Vanunu et al., 2010) algorithm to propagate the

known genes’ labels to their topologically close genes in a network. Given q known

labels for p genes, the label space is expressed as a p · q matrix Y . In figure 3.2, this

g1

g2

g3g4
g5

g6

g7

g8q labels

p genes

label matrix Y network G with mapped label matrix Y’

one gene in set V

one edge in E

g7
g6
g2
g1

Figure 3·2: Multi-label genes mapped to a network.

known label set is denoted in red and blue. And the label matrix Y can be written

as the following.

Y = {y1,, y2, ... ,yj, ... , yq}

Where each yj is a p element column vector filled with 1s and 0s, denoting whether

a gene is labeled or not. For each of the q label vectors, we can map them to a gene-

gene interaction network and get a newly mapped label vector y′j, which are the

column vectors in the mapped label matrix Y ′.

y′ij = yij=1, if gene in row i is found in network G

This network G is consists of genes as nodes and weighted edges representing the

genes’ associations.
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G = {V,E,W ′}

Here, V denotes the genes in the network, E denotes the edges connecting the

genes. and W ′ is the normalized weights of the edges. This normalization is done by

solving the following equation (Vanunu et al., 2010), where D is the diagonal matrix

and W is the raw edge weights.

W ′ = D−1/2WD−1/2

The next step is to propagate the mapped label matrix Y ′ on the edge weight

normalized networks. Initially, each labeled gene in the network is assigned with

prior value 1. Then, these label values are propagated from labeled genes (such as u)

to their neighbor genes (such as v). These iterations are tuned by a parameter a. As

stated in chapter 1, this parameter balances the influences between the infused label

values from the initial gene and the other label values propagated on the network.

Specifically in this model’s RWR process, (1− a)·y′ additional label values are injected

into the network at each iteration.
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Figure 3·3: Multi-label propagation on a network.

The following equation summarized this iteration process for updating a gene v’s

label value from its neighbors.
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F (v) = a
[∑

u∈Neighbor(v) F (u)w′ (v, u)
]

+ (1− a) y′

Here, y′ is the mapped labels on the network and w′(v, u) denotes the normalized

edge weight. The algorithm continues this iterative process until reaching a maximum

number of iterations or the termination criteria, which checks whether the label values

are distributed at a stationary state on the network. To simplify, the above equation

can also be rewritten in a matrix form.

F t = aW ′F t−1 + (1− a) y′

Here, W ′ is the weight matrix in G and t denotes the number of iterations. After

termination, the final propagated values of a gene function label can be denoted as

a data vector x for each gene in the network. In figure 3.3, this corresponds to the

light red and blue label values at iteration t.

x = F t

3.1.2 Integrating the propagated label values

Then, aiming to model a set of labels on multiple networks, each of the column label

vectors in Y are mapped and propagated on n networks, generating a data vector x.

These vectors are summarized as data matrix X.
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g1...

network 1
network 2

network n

p genes

q · n labels

Figure 3·4: Data matrix summarized from multiple label prop-
agations.
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Probably as a result of different numbers of iterations and different numbers of

the initial known labels, the propagated data vectors are in different scales. Thus,

to facilitate the training process, they are normalized back to a {0,m} scale, where

maximum value is defined as m =
∑
yi/p , which is the proportion of annotated genes

of label i on a network. Here, p is the number of genes in that network. Also, if a

labeled gene is missing in a network, it is filled with this estimated maximum value m

in the data matrix X. And finally, following the error-correcting design, propagation

values from different networks are stacked together as the final data matrix X.

X = (x1, x2, ..., xq�n)

3.1.3 Codeword design and learning process

Following Zhang et al. (Zhang and Schneider, 2011), this model learns a coding

structure by maximizing projections between the codewords Y and the data matrix

X. As shown below, a matrix Z representing this structure is designed as the label

matrix Y with additional label dependency terms (Figure 3.5).

Z = (Y , V T
1 Y, V

T
1 Y, ..., V

T
k Y )

= (y1 , y2, ... , yq , V T
1 Y, V

T
1 Y, ..., V

T
k Y )

Here the V T
k Y denote the label combination which is most predictable using fea-

ture matrix X, so that the projection vector V mainly capture the conditional label

dependency given X. This vector is estimated using Canonical Correlation Anal-

ysis (CCA), which finds the two projection matrices V and U that maximize the

correlation between label matrix Y and data matrix X.

To derive this VY term, the CCA object function can be rewritten as the follow-

ings, which minimizes the sum of squared errors with constraints.

argmin‖XU − Y V ‖2
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st. UTXTXU = 1

st. V TY TY V = 1

We can see that V Y can be expressed as the variable we’d like to predict using

projection matrix U and data matrix X.

V Y = UX

Data matrix X

linear linear

label projections

codeword Y

set of projection
 VY estimated 

q linear models 
for each label

top k projections

Figure 3·5: Code Matrix designed as codeword and additional
dependency terms.

As shown in figure 3.5, each of the q labels can be encoded as data matrix X using

a linear transfermation, which is learned as a linear model.

pj ← learn classifier (xi, zj) , j ∈ 1, ..., q

Each of the k additional V Y variable can be encoded as well, using a Gaussian

regression model.

mj ← learn regression (X, zj) , j ∈ q + 1, ..., q + k
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3.1.4 Decoding process for gene function prediction

The final step is to decode a data matrix X to functional label matrix Y , using

the learned q linear models and k label dependency terms. If this learned structure

decodes a data matrix of functionally unknown genes, it will generate a multi-label

matrix as gene function predictions. Specifically, this model calculates the probability

of assigning each of the labels to a gene, using Bernoulli distributions for the proba-

bility estimated from the linear models and Gaussian potentials for the estimations

from the label dependency terms.
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Figure 3·6: Predicting gene labels from data matrix.

This joint probability P (y) of labeling genes can be summarized using the follow-

ing equation.

logP (y) = −logZ +
∑d

k=1 logψk (y) + λ
∑q

j=1 log φj (yi)

Here, Z is the partition function and λ balances the two types of potentials. As

mentioned, the second term φj (yi) is a Bernoulli distribution for a label yi .

φ (yi) = pj (x)yj (1− pj (x))1−yj , j = 1, 2, ..., q

And the third term ψk (y) is a Gaussian model
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ψk (y) ∼ exp−(V T
k y−mk(x))

2
/2σ2

k, , k = 1, 2, ..., k

As each Gaussian potential ψk (y) usually involves all q labels, I followed Zhang

et al. (Zhang and Schneider, 2011) to use a mean-field approximation of P (y) as the

following.

Q (y) =
∏q

j=1Qj (yj)

It is fully factorized and eachQj (yj) inQ (y) is a Bernoulli distribution on the label

yj. The best approximation Q (y) can be obtained by minimizing the KL divergence

between Q (y) and P (y).

KL (Q(y)|P (y))

Thus the fixed-point equation for updating each Qj (yj) in Q (y) can be written

as the following.

Qj (yj)← 1/Zj + exp{λlogφj (yi) +
∑k

n=1Ey∼Q [logψn (y) |yi]}

3.2 Model specialized for genes function predictions

In addition to the multiple-label learning process introduced above, several algorithms

are also integrated into this model for this gene function prediction problem, which

is unique for several reasons.

Firstly, many gene function labels are rare in a species, making gene stratification

a non-trivial task. For example, a simple random stratification of genes can generate

subsets with no positive instances for some functional labels. It leaves some of the

measures undefined for these labels, such as the area under a precision-recall curve.

Also, to further facilitate potential biological experiments, it is essential to calibrate

the calculated probabilities and to define an optimal threshold for the predicted con-

fidence scores, in addition to a ranked gene list. They are described in detail in the

following sections.
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3.2.1 Second order iterative stratification

A second-order iterative stratification (SOIS) procedure (Szymański and Kajdanow-

icz, 2017; Sechidis et al., 2011) is implemented in this model for stratifying the train-

ing and testing datasets. In addition to the measure definition problems mentioned,

additional cautions are also necessary for multi-label learning. Specifically, the data

subsetting procedure should also preserve the label relationships, especially for these

imbalanced gene labels. This SOIS procedure iteratively distributes the gene in-

stances using criteria that estimate the most demanding multi-label genes for each

subset at each iteration and evenly distribute them. This stratification procedure

also distributes genes with fewer labels by minimizing label dependency differences

between the subsets and the whole dataset.

As mentioned, two hyperparameters exist in this model, which are the number of

label dependency terms k and λ that balances the estimated probabilities from the

linear model and the label dependency terms. They are also estimated via a nested

SOIS cross-validation procedure in this model.

3.2.2 Robust probability calibration using Platt’s scaling

Transferring the output scores of a classifier to reliable probabilities is also not a

trivial task, as machine learning methods tend to produce skewed probability distri-

butions (Platt, 1999). In the case of multi-label learning, the differences in probability

distributions can bias the metrics for benchmarking the algorithm performances and

hyperparameter tuning.

To account for this problem, I implemented a modified version of Platt’s scaling

for this model, according to the pseudocode from Hsuan-Tien Lin et al (Lin et al.,

2007). Platt’s scaling is a simple probability calibration method that uses logistic

regression to calibrate the probabilities, using known positive and negative labels in
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training (Platt, 1999). Also, as stated in chapter 1, missing positive labels in the

training dataset may confuse the calibrating process. To ease this potential problem,

a further modification that removes a fraction of top scores before Platt’s scaling is

used, which alleviates the effect of high probabilities assigned to false-negative genes

in calibration (Rüping, 2006).

3.2.3 Finding the optimal threshold using F-score

In addition to the probability calibration, my model also finds an optimal threshold for

separating positive and negative predictions, which is the probability that maximizes

F-score along a precision and recall curve. It firstly records the cut-offs that maximizes

F-score in the training dataset (Fan and Lin, 2007). Then, it estimates the probability

distribution in testing data and rescales the optimal cut-off accordingly (Zou et al.,

2016). As the β value for F-score is adjustable, the optimal threshold can be tuned

for either a better precision or recall.

3.3 Highly customizable implementation

To facilitate users building up their own functional prediction pipelines, this method

is implemented in GO with a command-line interface and hosted on Github1 with an

open-source MIT license, which is easy to distribute and install on all major operating

systems. As it supports simple plain text tab-delimited matrix as inputs, it is also

highly customizable for the choice of input networks, label definition, with a built-in

automatically hyperparameter tuning procedure.

1https://github.com/chenhao392/ecoc
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3.4 Benchmarking on the yeast neworks and labels

The method performance is benchmarked by comparing to a state-of-art algorithm

Mashup (Cho et al., 2016), which also integrate multiple biological networks for gene

function prediction. Rather than using a multi-label learning framework, it “mashes

up” the networks into one joint representation and predict one label at a time using

a radius SVM kernel.
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Accuracy microF1 microAupr

*
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Figure 3·7: Model performance compared with "Mashup".
Barplot for comparson between this gene function prediction method
(red) and "Mashup" (cyan). The performace is compared using the
fraction of correct top prediction for each gene (accuracy), the harmonic
mean of precision and recall for all labels (microF1) and microAupr for
all labels. * indicates t-test p-value < 0.05 from 10 random hold-outs.

To compare with this mehod, the exact same benchmark dataset for level 1 MIPS

annotations in yeast is generated, using Mashup’s Matlab implementation downloaded

from their website. As shown in Figure 3.7, my multi-label learning method performs

equally well with Mashup. Specifically, my model outperformed Mashup in predic-

tion accuracy but performed worse in microAupr. Here, the accuracy, microF1 and

microAupr metrics are defined in the same way as they are used in "Mashup". Specif-

ically, accuracy measures the percentage of correctly predicted top label for each gene;

microF1 calculated the overall F1 score after keeping top 3 predictions for each gene;
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and microAupr calculate the area under the precision and recall Curve after stacking

all predicted probabilities together.

3.5 Benchmark by predicting piRNA pathway genes in D.

melanogaster

As stated in chapter 1, piRNA silences transposon activities in fly’s gonad. Given

the publicly available single cell RNA-seq dataset in recent years, it is possible to

dissect tissue-specific networks out of the general networks for specific pathway gene

prediction problems. As an case study, I pruned the publicly available stringDB

networks (Szklarczyk et al., 2019) into testis specific ones using a recently published

scRNA-seq dataset (Witt et al., 2019). Specifically, I only kept genes expressed in the

early spermatogonia stage in the stringDB networks, as most known piRNA pathway

genes peak their expression at this stage (Figure 3.8). As an result, a set of much

smaller networks are generated specifically for piRNA pathway gene prediction (Table

3.1).

network # genes # stage genes # interactions # stage genes
co-expression 12,173 5,991 1,330,835 718,685

database 5,128 2,904 128,517 65,196
experimental 11,280 5,543 749,503 310,226

fusion 3,973 1,735 7,643 2,216
neighborhood 3,512 1,742 205,801 86,836
cooccurence 2,344 1,024 30,603 4,560

Total 11,828 6,121 1,298,440 812,196

Table 3.1: Stage-specific networks for predicting piRNA path-
way genes.

To model the piRNA pathway with other associated labels, a g:profiler (Raudvere

et al., 2019) based GO enrichment analysis was performed using these genes. Then, to

avoid numerical difficulties in training, GO terms containing the exact same set genes

were grouped and only the term with a smallest in-group p-value is selected. Also,
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Figure 3·8: Heatmap for piRNA pathway gene expression in differ-
ent developmental time at the single cell resolution. Darker red color
indicates higher gene expression values. each row is a gene and each
column is a tissue type or developmental stage.

further p-value ( e−6) and target size (25) cut-offs were used to remove unnecessary

redundancies. As an result, 29 GO terms were selected as the associated labels (See

appendix table 4). The model for piRNA pathway gene prediction is then trained on

these pruned stringDB networks, using a multi-label definition consist of 30 labels.

After making predictions (See appendix table 5 and 6), they are benchmarked by a

large-scale experimental screening effort for the piRNA pathway components, where

genes’ expression is knocked down (Czech et al., 2013). As the piRNA pathway

is known to silence transposon activities, the possibilities for genes functioning in
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piRNA pathway are indicated by four transposons’ activities in this screen, namely

HeTA, THARE, blood, and burdock. As shown in figure 3.9, the top 50 predictions

have a significantly enriched transposon up-regulation, compared to the transposons’

activities for all screened genes as background distribution.
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Figure 3·9: Transposon activities after knocking down known
piRNA pathway genes and predicted genes. Empirical cumula-
tive distribution for transposon activities after knocking down known
piRNA pathway genes (blue), top 50 predictions (green), and all genes
as background (red) for 4 transposons. * indicates t-test p-value <
0.001 when compared with background genes.

piRNA pathway genes are known to be fast-evolving (Sarkies et al., 2015). How-

ever, it also contains evolutionarily conserved genes such as UAP56 and THO complex

(Zhang et al., 2018) in D. melanogaster. Aiming for a secondary validation, I cal-

culated the genome-wide Ka/Ks ratio of between D. melanogaster and the other

11 Drosophila species available in FlyBase (Thurmond et al., 2019), using FlyBase

defined ortholog groups and a genomewide Ka/Ks ratio calculation pipeline (Wang

et al., 2010; Zhang et al., 2013).

Interestingly, the same top 50 predicted genes have significantly lower Ka/Ks
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Figure 3·10: Ka/Ks ratio for known piRNA pathway genes
and predicted genes. Boxplots for known piRNA pathway genes
(blue), top 50 predictions (green), and all genes as background (red)
between (A) D. melanogaster and D. simulans ; and the average ratio
between (B) D. melanogaster and 11 Drosophila species.

ratios between D. melanogaster and the other 11 species, including its most close

relative D. simulans, compared to all genes’ ratios as the background (Figure 3.10).

Taken together, the two benckmarks indicate that this multi-label framework captures

more conserved multi-function components in piRNA pathway.
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Chapter 4

Discussion and future direction

As reported in previous chapters, piRISC binds to its target with a matching rule

similar to miRNAs, though its supplementary pairing region (position 15-18) shift

around 2 nucleotides towards the 3’ end. With this binding preference, they densely

covered many genes’ CDS regions, such as xol-1, fbxb-97, comt-3 and dhc-1. Mutating

one of the many piRNAs targeting these genes can de-silence them, indicating these

piRNAs are silencing genes cooperatively. Also, cytosines are found to be enriched in

the first target position and throughout the target sites in both WAGO and CSR-1

target mRNAs. This preference for C may help to trigger the secondary 22G-RNAs

amplification, using the targeted RNAs as templates.

Previous studies have shown that PIWI, WAGO and CSR-1 pathways propagate

the epigenetic memories of gene expression states across generations. Our multi-

generation validation experiments further indicate the importance of the 2nd and 3rd

target position, as they are still important for silencing the GFP target genes at F9

generation. Also, it is interesting to find the enrichment of 22G-RNAs at both ends

of piRNA target sites persists in a prg-1 mutant background, though to a less extent,

indicating an independent silencing mechanism does not require piRNA.

Our analysis also shows that CSR-1 pathway directly competes with piRNA bind-

ing, consistent with the finding that CSR-1 protects its targets. However, it is also

known that CSR-1 can regulate its target by slicing. Surprisingly, our further exper-

iment for WAGO IP at the csr-1 catalytic mutant background shows enrichment of
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WAGO binding at presumably CSR-1 target genes’ 3’ UTR. In the future, it is of great

interest to investigate the WAGO and CSR-1 targeting preference and mechanism,

following this lead at the csr-1 catalytic mutant background.

In chapters 1 and 3, I introduced a computational model for gene function predic-

tion. To be consistent with previous publications, I chose to use the same benchmark

data and measures as in "Mashup". Alternatively, it is also possible to validate these

predictions through organized consortiums’ efforts or through orthogonal datasets,

such as GWAS cohorts for diseases. Also, following the GBA principle, additional

biological datasets, such as genes’ genomic collinearity and their expression pattern

at a single-cell resolution, can be integrated into the model. It is of great interest

to see how this computational model performs in these consortiums’ settings and to

what extent that these additional biological datasets can further help the prediction.

I will also discuss these in detail in this chapter.

4.1 Rules governing piRNA Targeting

As shown in chapter 2, our analysis of the CLASH chimeric reads suggests that ani-

mal PIWI and AGO-clade Argonautes have broadly similar patterns of base-pairing.

As previously described for miRNA RISC, we find that pairing in the seed region is

important for piRISC to function, and to a lesser extent in 3´ supplemental region

(Shin et al., 2010). The most notable difference we observe is a shift in 3´ supple-

mentary pairing. It is from positions 13 to 16 in miRISC, while it is from positions

15 to 18 in PRG-1 piRISC (Grimson et al., 2007), perhaps consistent with structural

differences between miRISC and piRISC (Matsumoto et al., 2016).

In addition to base-pairing interactions, both AGO and Piwi Argonautes make

direct contact with their target RNAs, including specific amino acid contacts with

the t1 nucleotide. Human AGO2 and insect Piwi proteins (i.e., Siwi and Aubergine)
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exhibit a strong preference for adenosine at t1 (t1A), which differs from our finding

that PRG-1 prefers t1C. This preference for C may help ensure that PRG-1 target

sites often have optimal positioning of a C residue that can serve as a start site for

RdRP-dependent amplification of 22G-RNAs. A comparison of the region in PRG-

1 that corresponds to the t1 binding pocket in other Argonautes suggests a possible

structural basis for this discrimination for t1C. Whereas the polar hydrophobic amino

acid Thr640 in Siwi and Aubergine is thought to bind t1A (Matsumoto et al., 2016),

the corresponding position in PRG-1 is a non-polar hydrophobic leucine.

Using a sensitive epigenetic silencing assay, we were able to directly validate the

importance of pairing at each position of the seed and 3’ supplemental pairing regions.

Silencing was most sensitive to the loss of pairing at positions 2 and 3, suggesting that

targeting is initiated by the first half of the seed region. Remarkably, with the excep-

tion of positions 9 to 13, which had very little effect on silencing, single nucleotide

substitutions at any other location from positions 2 to 8 or 14 to 21 dramatically re-

duced silencing over the first several generations. Mutants with mismatches in the 3’

supplementary pairing region eventually silenced the target in later generations, but

mutants with mismatches in the seed region, especially at g2 and g3, never exhibited

full silencing of the target. Thus, seed and 3’ supplementary pairing are of key im-

portance to piRNA targeting. Even single-nucleotide changes dramatically reduced

targeting and extended the number of generations required for penetrant silencing.

4.2 The physiology of piRNA targeting

In most animals, PIWI mutants are completely sterile, likely due at least in part,

to loss of transposon regulation. In worms, most transposons appear to be silenced

by epigenetic mechanisms—i.e., WAGO 22G-RNAs and heterochromatin pathways—

that maintain transgenerational silencing downstream of PRG-1 (Ashe et al., 2012;
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Bagijn et al., 2012; Gu et al., 2009; Lee et al., 2012; Shirayama et al., 2012). This

additional layer of epigenetic silencing may explain why prg-1 mutants exhibit rela-

tively minor transposon activation and fertility defects during early generations, but

exhibit declining fertility over multiple generations (i.e., a mortal germline phenotype)

(Simon et al., 2014).

PRG-1 is nevertheless constantly required to maintain silencing at some loci.

Transgenes exposed to both positive (i.e., CSR-1-dependent) and negative (i.e., piRNA-

dependent) signals can achieve a balanced state of regulation, where PRG-1 target-

ing becomes essential to maintain silencing (Seth et al., in press). At least a few

hundred endogenous mRNAs are significantly up-regulated in prg-1 mutants, with a

concomitant loss of robust 22G-RNAs levels. One such gene, xol-1, is silenced in the

hermaphrodite germline by an X-chromosome expressed piRNA, 21ux-1(Seth et al.,

2018; Tang et al., 2018). Silencing of xol-1 ensures that hermaphrodite offspring re-

spond robustly to signals that initiate dosage compensation and sex determination

in the early embryo. Although 21ux-1 is by far the most abundant piRNA species,

a piRNA with average abundance (21ur-4863) binds xol-1 more efficiently based on

the frequency of CLASH hybrid identification. 21ur-4863 is predicted to bind xol-1

with higher binding energy than predicted for 21ux-1, highlighting the importance of

binding energy rather than abundance in driving piRNA targeting. Surprisingly, both

21ur-4863 and 21ux-1 are required to maintain xol-1 silencing, suggesting that they—

and perhaps other—piRNAs cooperatively silence xol-1. Consistent with this idea,

the pattern of 22G-RNA induction along xol-1 extends beyond the regions proximal to

these two piRNA target sites, suggesting that additional piRNAs likely contribute to

the cooperative regulation of xol-1 mRNA. Indeed, our CLASH experiments identified

40 piRNAs that target different sites in xol-1 mRNA. Similarly, because we tagged the

endogenous prg-1 gene with GFP and FLAG to permit tandem-affinity purification,
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we were able to identify 92 different piRNAs that target sites distributed along the

length of gfp. Cooperative targeting by these piRNAs could explain why 22G-RNA

accumulation occurs broadly along silenced gfp transgenes (Shirayama et al., 2012;

Seth et al., 2018). Remarkably, even though multiple piRNAs regulate xol-1, chang-

ing a single nucleotide within the seed or 3’ supplementary pairing regions of 21ux-1

can disrupt silencing of xol-1 and thus affect the regulation of dosage compensation

and sex determination.

In summary, our findings show that piRNAs target the entire germline transcrip-

tome. Together with findings from previous and parallel studies our findings also

suggest that piRNAs are remarkably versatile in their control of gene expression.

piRNAs can act decisively in one generation to initiate epigenetic silencing that per-

sists for multiple generations without need for further piRNA targeting. piRNAs

can act cooperatively to silence germline mRNAs (e.g., xol-1) that would otherwise

reactivate in each generation. And finally, piRNAs can act gradually, over multiple

generations, to progressively silence a germline mRNA. Understanding how piRNAs

achieve these nuanced modes and tempos of regulation may shed light on whole new

vistas of post-transcriptional and epigenetic regulation in animal germlines.

4.3 Molecular cross-talk between germline Argonaute path-

ways

As shown chapter 2, we took the unbiased approach of directly cross-linking piRNAs

to target RNAs in vivo. The resulting transcriptome-wide snap-shot of piRNA/target-

RNA interactions reveals that all germline mRNAs undergo piRNA surveillance. Our

findings are consistent with a model for germline gene regulation where mRNAs un-

dergo comprehensive post-transcriptional scanning by Argonaute systems. More than

10,000 distinct piRISCs access hundreds of thousands of target sequences on germline
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mRNAs. Our finding that binding energy was better correlated with hybrid formation

than was piRNA abundance, suggests that, for most piRNAs, piRISC concentration is

not limiting. Thus surveillance by piRISC is both transcriptome-wide and remarkably

efficient. Perhaps as yet unknown features of the enigmatic P-granules, where piRISC

resides and presumably functions, create an environment that facilitates this seem-

ingly daunting task of comprehensive mRNA surveillance (See figure 7 in appendix;

see also (Seth et al., 2018)).

Previous genetic studies have revealed interactions between the Piwi pathway

and two Argonaute pathways that propagate epigenetic memories of gene expression

states: the WAGO pathway, which targets silenced genes, and the CSR-1 pathway,

which targets expressed genes. Targeting by WAGO and CSR-1 Argonautes is readily

apparent since both engage 22G-RNAs templated directly from the target RNA by

RdRP. Therefore, the comprehensive identification of PRG-1/piRNA target sites af-

fords an opportunity to explore how piRNA targeting correlates with 22G-RNA levels

across annotated WAGO and CSR-1 targeted mRNAs. A striking and unanticipated

pattern of 22G-RNA levels emerged from this analysis. On WAGO-targeted mRNAs,

piRNA target sites were correlated with three predominant 22G-RNA peaks, one in

the center at t12, and one on each side of the targeted site. Interestingly, the central

peak at t12 was completely dependent on PRG-1, while the flanking peaks were much

less dependent on PRG-1. The flanking peaks that persist in prg-1 mutants may re-

flect piRNA-initiated 22G-RNAs that function in WAGO-mediated trans-generational

silencing. Consistent with this idea, analyses of data from published WAGO IP ex-

periments indicate that 22G-RNAs at these somewhat prg-1-independent flanking

sites associate with Argonautes required for propagating piRNA-induced epigenetic

silencing (WAGO-1 and WAGO-9) (See figure 7 in appendix). Interestingly, the

strongly prg-1-dependent 22G-RNAs generated at t12 associate with WAGO-1 only.
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Thus, it will be interesting to learn why WAGO-1 but not WAGO-9 binds these t12-

associated species and whether their biogenesis depends on PRG-1-dependent mRNA

slicing which is predicted to occur between t10 and t11.

Our findings also shed light on the relationship between PRG-1 and CSR-1 tar-

geting. Depletion of CSR-1 resulted in an increase in both unique and total piRNA

hybrid reads on mRNAs targeted by CSR-1. These findings are consistent with ge-

netic findings that CSR-1 protects its targets from PRG-1-induced silencing (Seth

et al., 2013; Wedeles et al., 2013). Moreover, piRNA target regions on CSR-1 target

mRNAs exhibit a pattern of 22G-RNA accumulation that is strikingly different from

that observed on WAGO-targeted mRNAs. Instead of a central peak and twin flank-

ing peaks, as in WAGO targets, a small but reproducible 22G-RNA peak, positioned

just 5 nucleotides 3’ of the piRNA target site (See figure 7 in appendix), was evident

in CSR-1 target mRNAs. The 22G-RNA distribution around piRNA target sites in

CSR-1 mRNAs remained unchanged after the short period of CSR-1 depletion. This

finding suggests that the effect of CSR-1 depletion on patterns of WAGO 22G-RNA

accumulation, if any, is less rapid and perhaps less direct than its effect on piRNA

targeting of these mRNAs. Unfortunately, depletion of CSR-1 leads to adult sterility,

precluding a longer-term multi-generational analysis of 22G-RNA patterns. Taken

together, our findings suggest that CSR-1 protects its targets from piRNA silencing

in two ways; first by reducing the frequency of PRG-1 piRISC binding, and second,

perhaps more indirectly, by preventing 22G-RNA accumulation at t12 and flanking

regions correlated with WAGO-1 and WAGO-9 targeting.
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4.4 On-going investigation on WAGO and CSR-1 pathway

interactions

Both CSR-1 and WAGOs are Argonautes proteins that engage 22G-RNAs to silence

their RNA targets by slicing their targets. As shown in chapter 2, we found the

CSR-1 pathway directly competes with piRNA binding while the WAGO silencing

pathway can be triggered by the piRNA targeting. We also found a CSR-1 22G-RNA

signal at the upstream of the piRNA binding sites, indicating a potential correlation,

though to a less extent. Surprisingly, a further experiment at the CSR-1 catalytic

mutant background shows an enriched WAGO 22G-RNAs at genes’ 3’ end UTR on

the CSR-1 target genes, while the 22G-RNA abundances in WAGO targets are not

changing. This phenomenon indicates the WAGO pathway can compensate CSR-1’s

post-transcriptional regulation roles, particularly at their regulatory targets’ 3’ end

UTRs. It is of great interest to investigate how WAGO Argonautes target these

regions, instead of the whole gene body, as they are known to target the mRNAs of

more than 1000 endogenous WAGO target genes (Gu et al., 2009).

4.5 Benchmarks for gene function prediction methods

A fair benchmark is essential to compare algorithms. However, it is not easily achiev-

able for gene function prediction methods, as the fundamental validation is originated

from biological experiments. As an alternative approach, we can stratify the whole

datasets into training and testing subsets, where the algorithm’s performance can

be measured via cross-validation and leave-one-out settings. However, these settings

are sometimes not consistent with each other, resulting in debates between research

groups and confusions to users (Murali et al., 2006). Cautions are also necessary for

developing benchmark datasets, as the annotations from different sources may overlap

significantly. For instance, stringDB networks are already optimized to KEGG anno-
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tations (von Mering et al., 2005). If a benchmark dataset is prepared using KEGG

annotation with stringDB networks, algorithms are likely to overfit, rather than being

correctly benchmarked.

In order to avoid these problems and to be consistent with previous methods, I

reproduced the same stratified subsets used by Mashup, which are consist of GO term

annotations for genes in stringDB. I also used the same measures that are used by

Mashup and GeneMania (Cho et al., 2016; Mostafavi et al., 2008), which are accuracy

for top prediction to each gene, microF1 for top three predictions for each gene, and

microAupr for all predictions. While accuracy measures the top prediction, microF1

and microAupr measure the correctness in predicting multiple labels for the same

gene.

Alternative approaches are also used in recent years for benchmarking. In the most

recent Dialogue for Reverse Engineering Assessments and Methods (DREAM) chal-

lenge for disease module identification (Choobdar et al., 2019), the predicted modules

are tested using a collection of 180 genome-wide association studies (GWAS). This

approach avoids any potential cross-talk between annotation databases since GWAS

datasets were not used for gene function annotations. Also, as a community ap-

proach, the Critical Assessment of protein Function Annotation (CAFA) consortium

holds the submitted predictions for several months. It then uses the accumulated new

gene annotations during this period for testing. As random walk based algorithms

have appeared in the DREAM challenges for module detection and CAFA consortium

also provides a fair method benchmark, it is of great interest to participate in these

challenges in the future for benchmarking this multi-label learning model.
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4.6 Additional datasets following “guilt by association” prin-

ciple

In chapter 1 and 3, I introduced a multi-label learning framework that uses multiple

biological networks for gene function prediction. Specifically, following the GBA prin-

ciple, phylogenetic profiles, co-expression profiles, protein-protein interaction, genetic

interactions, and semantic similarity from GO annotations are introduced. Though

not mentioned directly, fusion genes and neighborhood genes are also summarized in

stringDB (Szklarczyk et al., 2019), which are used as part of the benchmark dataset

in Mashup (Cho et al., 2016).

If focusing on more specific species, additional biological datasets are also avail-

able, such as defined operons and syntenic regions. For instance, in microbial genomes,

Zheng et al predicted operon structures using a graph representation for pathways

(Zheng et al., 2002). Though to much less extend on higher-order organisms, operon

and syntenic regions can associate co-functioning genes. For instance, 15% genes

are believed to function as operons in C. elegans (Blumenthal and Gleason, 2003;

Guiliano and Blaxter, 2006). In 2012, Proost et al found that conserved collinearity

regions between close Eukarotes species are functional coherence (Proost et al., 2012).

In recent years, other datasets are also emerging at the genomic scale, such as the

topologically associated domain, and cis-regulatory elements (ENCODE Project Con-

sortium et al., 2012; Nora et al., 2012). These regulatory elements can be integrated

into GBA based networks as nodes, with the co-regulation association as edges (Zhu

et al., 2007). For example, Tian et al. suggested a MOCHI algorithm (Tian et al.,

2020) to identify heterogeneous interactome modules, representing a set of gene loci

that contain in co-regulated genes.

In addition to these “horizontal” approaches that integrate biological datasets,

“vertical” strategies that prunes the GBA datasets into the context-specific subsets
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are also emerging (Zitnik et al., 2019). For example, Kotlyar et al. pruned the

tissue-specific databases for model organisms (Kotlyar et al., 2016). As a case study

in chapter 3, additional piRNA pathway gene are predicted using a set of testis-

specific networks in D. melanogaster. As the number of single-cell datasets is rapidly

increasing in recent years (Svensson et al., 2019), this context-specific approach is

promising for many customized pathway prediction problems.
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Appendix A

Appendices

Species

Ajellomyces Dermatitidis Giardia Intestinalis

Amphimedon Queenslandica Globodera Pallida

Aplysia Californica Haemonchus Contortus

Arabidopsis Thaliana Hydra Vulgaris

Arthroderma Otae Ixodes Scapularis

Ascaris Suum Leishmania Major

Babesia Bovis Lodderomyces Elongisporus

Bison Bison Malassezia Globosa

Bombus Impatiens Microplitis Demolitor

Bombus Terrestris Neosartorya Fischeri

Bos Mutus Nippostrongylus Brasiliensis

Brugia Malayi Panagrellus Redivivus

Bursaphelenchus Xyliphilus Penicillium Chrysogenum

Camelina Sativa Phaeodactylum Tricornutum

Candida Glabrata Plasmodium Falciparum

Chlamydomonas Reinhardtii Pristionchus Pacificus

Ciona Intestinalis Pyrus X

Ciona Savignyi Romanomermis Culicivorax

Clavispora Lusitaniae Saccoglossus Kowalevskii

Coprinopsis Cinerea Scheffersomyces Stipitis

Crassostrea Gigas Schizosaccharomyces Japonicus

Cryptosporidium Parvum Schizosaccharomyces Pombe

Dictyostelium Discoideum Strongylocentrotus Purpuratus

Entamoeba Histolytica Tarenaya Hassleriana

Erythranthe Guttata Theileria Annulata

Fopius Arisanus Trichinella Spiralis

Table A.1: Species for building phylogenetic profiles of genes
in D. melanogaster . 52 Eukaryotes species that are differentiated
at least 500 million years ago with D. melanogaster and also 500 mil-
lion years away from each other are used for building the phylogenetic
profiles of D. melanogaster.
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Time course libraries

Embryo0-2h Embryo20-22h Prepupae+24h

Embryo2-4h Embryo22-24h Prepupae+2d

Embryo4-6h L1 Prepupae+3d

Embryo6-8h L2 Prepupae+4d

Embryo8-10h L3+12h Male+1d

Embryo10-12h L3PS1-2 Male+5d

Embryo12-14h L3PS3-6 Male+30d

Embryo14-16h L3PS7-9 Female+1d

Embryo16-18h Prepupae Female+5d

Embryo18-20h Prepupae+12h Female+30d

Table A.2: modENCODE time course libraries for building
gene expression profiles in D. melanogaster .

Tissue cell libraries

(Embryo) 1182-4H TestesMatedMale+4d (L3 wing disc) ML-DmD16-c3

(Embryo) GM2 FatL3 (L3 prothoracic leg disc) CME L1

(Embryo) Kc167 FatPrepupae (L3 eye-antennal disc) ML-DmD11

(Embryo) S1 FatPrepupae+2d (L3 haltere disc) ML-DmD17-c3

(Embryo) S3 SalivaryGlandsL3 (L3 mixed imaginal discs) ML-DmD4-c1

(Embryo) Sg4 SalivaryGlandsPrepupae CarcassL3

HeadsVirginFemale+1d ImaginalDiscsL3 CarcassMixedMaleFemale+1d

HeadsVirginFemale+4d CNSL3 CarcassMixedMaleFemale+4d

HeadsVirginFemale+20d CNSPrepupae+2d CarcassMixedMaleFemale+20d

HeadsMatedFemale+1d (L3 wing disc) CME W2 (Tumorous blood cells) MBN2

HeadsMatedFemale+4d (L3 wing disc) ML-DmD8 AccessoryGlandsMatedMale+4d

HeadsMatedFemale+20d (L3 wing disc) ML-DmD9 DigestiveSystemL3

HeadsMatedMale+1d (L3 wing disc) ML-DmD21 DigestiveSystemMixedMaleFemale+1d

HeadsMatedMale+4d (L3 wing disc) ML-DmD32 DigestiveSystemMixedMaleFemale+4d

HeadsMatedMale+20d (L3 CNS) ML-DmBG1-c1 DigestiveSystemMixedMaleFemale+20d

OvariesMatedFemale+4d (L3 CNS) ML-DmBG2-c2

Table A.3: modENCODE tissue cell libraries for building gene
expression profiles in D. melanogaster .
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GO term P-value Target size Description

GO:0003724 4.55e-7 42 RNA helicase activity

GO:0031047 8.89e-23 86 gene silencing by RNA

GO:0035194 2.43e-14 64 posttranscriptional gene silencing by RNA

GO:0007281 1.34e-13 754 germ cell development

GO:0022412 3.45e-13 912 cellular process involved in reproduction

GO:0048477 1.62e-12 627 oogenesis

GO:0030717 2.26e-11 31 oocyte karyosome formation

GO:0010608 4.57e-11 225 posttranscriptional regulation of gene expression

GO:0010629 1.63e-10 690 negative regulation of gene expression

GO:0048519 4.92e-10 1637 negative regulation of biological process

GO:0051321 5.25e-10 272 meiotic cell cycle

GO:0006403 5.28e-10 208 RNA localization

GO:0010467 7.46e-10 2526 gene expression

GO:0010468 1.207e-9 1704 regulation of gene expression

GO:0010605 2.283e-9 936 negative regulation of metabolic process

GO:0090304 1.15e-8 2318 nucleic acid metabolic process

GO:0016070 1.19e-8 2099 RNA metabolic process

GO:0071427 2.55e-8 41 mRNA-containing ribonucleoprotein complex

GO:0009994 3.32e-8 163 oocyte differentiation

GO:0060255 6.03e-8 2254 regulation of macromolecule metabolic process

GO:0046843 1.48e-7 52 dorsal appendage formation

GO:0034641 1.63e-7 3114 cellular nitrogen compound metabolic process

GO:0048599 2.55e-7 141 oocyte development

GO:0016246 7.30e-7 35 RNA interference

GO:0007315 8.37e-7 66 pole plasm assembly

GO:0043186 5.23e-30 38 P granule

GO:1990904 1.59e-11 655 ribonucleoprotein complex

GO:0043232 6.08e-9 1755 intracellular non-membrane-bounded organelle

GO:0044424 7.74e-7 6846 intracellular part

Table A.4: GO terms selected as piRNA associated labels in
D. melanogaster.
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Gene probability HeTA THARE blood burdock

CG6418 1.000 -1.127 -1.581 -0.748 -1.409

CG10333 0.943 -1.413 -0.443 -1.019 -1.492

Dbp45A 0.927 0.020 -0.606 0.333 -0.218

CG6227 0.913 -1.020 0.426 -0.145 -0.959

Rm62 0.901 -0.864 -0.651 -2.154 -1.892

Art1 0.871 0.725 0.744 1.345 0.311

Cpsf73 0.859 -0.390 -0.190 -0.609 -1.364

RpII140 0.852 -1.024 0.902 -0.535 -0.668

l(2)37Cb 0.845 -1.378 -0.554 -1.371 -0.683

Prpk 0.833 -0.453 -0.487 -0.398 -0.294

RpII18 0.824 -1.135 -0.606 -1.177 -0.885

Rpb5 0.815 -1.151 1.184 -0.573 -1.510

Rbp1 0.805 -0.627 -0.857 -0.297 -0.525

Chd3 0.799 -0.435 0.343 0.149 0.150

IntS11 0.793 -3.995 -4.524 -0.697 -0.822

Gem3 0.785 0.348 0.961 -1.441 -0.828

mle 0.778 0.398 -0.029 0.441 0.184

Tbp 0.773 -0.086 0.007 -0.580 0.438

CG10907 0.764 0.903 0.397 0.016 0.502

Art3 0.754 0.004 0.539 -0.479 -0.915

CG7878 0.750 -0.888 -1.797 0.296 -1.478

CG5800 0.743 -0.372 0.005 -1.400 -0.800

RpII15 0.738 -1.327 0.758 -1.220 -2.072

CG9344 0.732 -1.072 0.152 -1.757 -0.950

Rs1 0.727 -1.827 -0.599 -1.823 -1.456

Table A.5: Top 25 piRNA pathway gene prediction in D.
melanogaster.
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Gene probability HeTA THARE blood burdock

CG9630 0.722 -0.255 1.170 -0.856 -0.177

CG14683 0.714 0.290 0.366 0.273 0.122

SF2 0.710 1.434 0.921 0.225 0.684

CG17266 0.705 0.055 -0.493 0.183 0.056

cyp33 0.700 -0.579 0.476 -0.549 -0.303

Cypl 0.697 0.212 0.433 0.160 -0.095

RpII33 0.693 -1.752 -1.273 -1.692 -1.762

hrg 0.691 -0.994 -0.747 -1.553 -2.056

CG32344 0.687 -1.241 0.010 -1.292 -1.404

Aos1 0.684 -2.722 -2.359 -1.427 -0.928

x16 0.682 -0.257 0.467 -0.695 -1.613

SC35 0.680 0.157 0.628 0.195 0.109

tra2 0.678 0.945 0.360 0.680 0.267

CG3645 0.674 0.274 0.142 0.143 0.288

CG4338 0.672 0.141 -0.059 0.546 0.160

Rpt5 0.670 -1.763 0.281 -2.066 -2.355

Rpt3 0.668 -0.538 0.097 -0.573 -1.819

Dis3 0.666 -2.247 -0.152 -2.148 -2.376

CG3225 0.664 0.412 1.362 -0.770 2.139

Dbp73D 0.661 -0.911 0.079 -0.831 -1.137

me31B 0.658 0.180 -0.178 0.095 0.447

Rpt6 0.652 -0.803 -0.785 -1.626 -1.444

Pabp2 0.647 -3.765 -0.099 -2.430 -1.113

CG7747 0.645 2.369 -0.647 3.440 0.071

pont 0.642 -1.535 -0.310 -0.385 -0.102

Table A.6: piRNA pathway gene prediction ranked 26-50 in
D. melanogaster.
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Figure A·1: The view of KEGG pathways in D. melanogaster
from GO terms’ semantic similarities. the pathway nodes’ are
colored according to their average gene associations to genes in a fo-
cus pathway, which is indicated by a larger node. Pathways with
lower associations are in blue, while with higher associations are in
yellow. The pathway relationships focusing on pathway "dme00020"
and "dme04392" from biological process are shown in (A) and (B);
those from cellular components are shown in (C) and (D); and those
from molecular functions are shown in (E) and (F).
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Figure A·2: piRNA targets classification, abundance, and
overlapping in two independent CLASH experiments. (A) dis-
tribution of piRNA targets in percentages; and (B) reproducbility for
piRNA species and their mRNA targets.
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Figure A·3: Seed and 3’ supplementary pairing are required
for silencing. anti-gfp piRNA (red) and single-nucleotide mismatches
(blue) from positions 2 to 21 on the piRNA target site in cdk-1::gfp
(black).
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Figure A·4: CRISPR experiments validate the piRNA target
rule in C. elegans across multiple generations. Eight plots show
the effect of piRNA de-silencing for F2 to F9 offsprings. Each plot shows
the ratio of CDK-1::GFP turned-on worms with single-base mutations
on the piRNA, from t2-t21.
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Figure A·5: piRNA targeting density on CSR-1 targets and
corresponding gene expression levels in WT and CSR-1 deple-
tion backgrounds. (A), (B), and (C) show the number of CLASH
defined target sites on CSR-1 target genes in the two backgrounds;
(D), (E), and (F) show the gene expression levels of these genes in both
backgrounds.
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Figure A·7: 22G-RNAs distribution at CLASH defined
piRNA target sites in small RNAseq, WAGO and CSR-1 IP li-
braries. Solid lines show the normalized 5’G counts at and around the
piRNA target sites while the dash lines show the average; Red and blue
indicate wild type and prg-1 mutant background, respectively. subsets
of target sites defined by binding energy and piRNA abundance cut-
offs are shown in (E), (F), (G), and (I). small RNAseq Replicates are
shown in (A) - (F); WAGO-1 and WAGO-9 IP libraries are shown in
(G) - (J); CSR-1 IP library is shown in (K) and (L).
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Blüthgen, N., Dekker, J., and Heard, E. (2012). Spatial partitioning of the regula-
tory landscape of the X-inactivation centre. Nature.

Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., and Yeates, T. O.
(1999). Assigning protein functions by comparative genome analysis: protein
phylogenetic profiles. Proceedings of the National Academy of Sciences of the
United States of America.

Platt, J. C. (1999). Probabilistic Outputs for Support Vector Machines and Compar-
isons to Regularized Likelihood Methods. In ADVANCES IN LARGE MARGIN
CLASSIFIERS.

Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R., and Siepel, A. (2010). Detection
of nonneutral substitution rates on mammalian phylogenies. Genome research.

Proost, S., Fostier, J., De Witte, D., Dhoedt, B., Demeester, P., Van de Peer, Y.,
and Vandepoele, K. (2012). i-ADHoRe 3.0–fast and sensitive detection of genomic
homology in extremely large data sets. Nucleic acids research.

Quinlan, A. R. and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics.

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J.
(2019). g:Profiler: a web server for functional enrichment analysis and conversions
of gene lists (2019 update). Nucleic acids research.

Resnik, P. (1999). Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. J Artif Intell
Res(JAIR).
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