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We are all aware that the senses can be deceived, the eyes fooled. But how can we 

be sure our senses are not being deceived at any particular time, or even all the time? 

Might I just be a brain in a tank somewhere, tricked all my life into believing in the 

events of this world by some insane computer? And does my life gain or lose meaning 

based on my reaction to such solipsism? 

Project PYRRHO, Specimen 46, Vat 7. Activity recorded M.Y. 2302.22467. 

(TERMINATION OF SPECIMEN ADVISED) 
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ABSTRACT 

Population-level neurocontrol has been advanced predominately through the 

miniaturization of hardware, such as MEMS-based electrodes. However, miniaturization 

alone may not be viable as a method for single-neuron resolution control within large 

ensembles, as it is typically infeasible to create electrode densities approaching 1:1 ratios 

with the neurons whose control is desired. That is, even advanced neural interfaces will 

likely remain underactuated, in that there will be fewer inputs (electrodes) within a given 

area than there are outputs (neurons). A complementary “software” approach could allow 

individual electrodes to independently control multiple neurons simultaneously, to 

improve performance beyond naïve hardware limits. An underactuated control schema, 

demonstrated in theoretical analysis and simulation (Ching & Ritt, 2013), uses stimulus 

strength-duration tradeoffs to activate a target neuron while leaving non-targets inactive. 

Here I experimentally test this schema in vivo, by independently controlling pairs of 

cortical neurons receiving common optogenetic input, in anesthetized mice. With this 

approach, neurons could be specifically and independently controlled following a short 

(~3 min) identification procedure. However, drift in neural responsiveness limited the 
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performance over time.  I developed an adaptive control procedure that fits stochastic 

Integrate and Fire (IAF) models to blocks of neural recordings, based on the deviation of 

expected from observed spiking, and selects optimal stimulation parameters from the 

updated models for subsequent blocks.  I find the adaptive approach can maintain control 

over long time periods (>20 minutes) in about 30% of tested candidate neuron pairs.  

Because stimulation distorts the observation of neural activity, I further analyzed the 

influence of various forms of spike sorting corruption, and proposed methods to 

compensate for their effects on neural control systems.  Overall, these results demonstrate 

the feasibility of underactuated neurocontrol for in vivo applications as a method for 

increasing the controllable population of high density neural interfaces. 
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1 INTRODUCTION 

1.1 Neurocontrol is an Important Aspect of Clinical Neuro-engineering 

Direct electrical interaction with neural tissue underlies a broad array of research 

and clinical applications. Current technology allows insight into brain function by 

“reading out” information with increasingly high specificity (Burridge & Ladouceur, 

2001; Hatsopoulos & Donoghue, 2009; Vidal et al., 2016; Wang et al., 2019). However, 

methods for inducing specific, complex neural activity through stimulation, or “writing 

in” information, lag behind (Wolff & Ölveczky, 2018). Emulating natural activity 

patterns requires the ability to address small populations within larger ensembles, perhaps 

even down to the individual cell level, which is not achievable with current neural 

stimulation methods. Technology underlying techniques such as deep brain stimulation 

(DBS) are probably insufficient for applications such as creating realistic artificial 

percepts, due to the complex activity patterns that may be required to mimic sensory 

stimulation. 

A major approach to increasing neural stimulation selectivity is to increase the 

density of electrodes in the region of interest, in the hopes of gaining finer control over 

which neurons are activated.  Unlike purely recording electrode arrays, such as 

Neuropixels (Jun et al., 2017), bi-directional high density micro electrode arrays, or 

HDMEAs, feature circuitry for both stimulation and recording, and allow high resolution 

control over a neural population (Eversmann et al., 2011; Frey et al., 2010).  However, 

barring a major innovation in electrode technology, a close to 1:1 ratio of electrodes to 

neurons is unlikely to be achieved in dense neural tissue. For the immediate future, 
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controlling neural populations with cell-level specificity remains an under-actuated 

problem, meaning that fewer inputs (electrodes or optical fibers) exist in the system than 

dynamical elements in the plant (neurons) to be controlled. 

 

1.2 Existing Neurocontrol Methods do not Address Underactuation 

Inducing desired activity in the brain is a key step towards generating artificial 

percepts.  It has previously been shown that stimulating sensory areas of the brain leads 

to percepts associated with that region’s function, localized to the area on the body 

represented by the somatic mapping of that region (Ostrowsky et al., 2002; Schmidt et al., 

1996).  However, the application of artificial percepts in these areas is imprecise due to 

the limitations of modern stimulation technologies (Palanker et al., 2005), such as their 

electrode contact density (Zeng, 2017). 

Despite these limitations, several neural control strategies have been proposed and 

successfully implemented, such as a single-cell resolution, activity-guided system using 

two-photon stimulation (Rickgauer et al., 2014), and model-free control systems for 

enforcing both static (Newman et al., 2015) and dynamic (Bolus et al., 2018) firing rate 

targets.  Some studies also address control of larger populations, such as attempting to 

synchronize (Mitchell & Petzold, 2018) or desynchronize (Nabi & Moehlis, 2011) the 

activity of large neuron ensembles using input to only a single neuron in the population.  

Further, closed-loop DBS systems increase the efficacy of Parkinson’s and essential 

tremor treatments, both in simulation (Santaniello et al., 2011) and in vivo (Rosin et al., 

2011), when compared to their open-loop counterparts.  
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This small selection from the large body of the existing neurocontrol literature 

demonstrates the great strides that neuro-stimulation has taken in recent decades.  

However, none of these control strategies were designed to address the under-actuation 

problem due to the limited electrode density of modern stimulation hardware.  While they 

offer various methods to increase the precision of the induced activity level, they do not 

address the specificity of neuron selection.  There is little crossover between works that 

address high resolution stimulation and those that use hardware that is viable for use in 

wearable medical devices. 

Generally, each electrode in an array or probe is able to control a single neuron, or 

the global activity of a single population.  Therefore, the most common approach to 

increase stimulation specificity is to use hardware with higher stimulating electrode 

density, thereby increasing the number of neurons that can be targeted.  However, there is 

a limit to the density with which we can manufacture electrode arrays using modern 

methods, and this limit falls far below the threshold of full actuation, or a 1:1 electrode-

to-neuron ratio.  This motivates a new way of approaching neural control for the purposes 

of inducing complex activity, such as that required for delivering artificial percepts, in 

these underactuated conditions. 

While it has not been a primary focus in the field, some studies directly address 

the issue of underactuated stimulation, by considering oscillating phase models (Li et al., 

2012) or IAF neurons (Ching & Ritt, 2013; Nandi et al., 2017) coupled by a common 

input.  However, translation of these methods from computational to in vivo work has not 

yet been demonstrated.  This transition introduces complications, such as the imprecision 
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of applying a linear neural model to a non-linear biological system, in addition to noise 

and other challenges in electrophysiology recordings.  Therefore, before this method can 

be used in translational applications, issues related to its implementation in vivo must 

first be solved. 

 
1.3 Contributions of this Dissertation 

In this dissertation, I address the need to individually control a number of cells in 

a population beyond limitations in stimulation hardware.  In Chapter 2, I present a 

method for performing underactuated control in vivo, adapting the control scheme 

proposed by Ching & Ritt (2013) from its previous in silico implementation.  In Chapter 

3, I explore some of the observability concerns encountered when performing single unit 

isolation following stimulation, and model worst-case corruption of measured neural 

responses compared to true responses.  Together, these results are a step towards 

feasibility of underactuated control as a method to increase the effective dimensionality 

of high channel-count stimulating neural interfaces. 
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2 IN VIVO APPLICATION OF UNDERACTUATED CONTROL 

2.1 Introduction 

2.1.1 An Underactuated Control Schema Motivated by Neural Dynamics 

To achieve underactuated control on some population of neurons, it must be 

possible to modulate the input(s) to the system in such a way to individually address the 

cells in the population.  This modulation could be spatial, such as illuminating multiple 

areas in different combinations, or temporal, in which the timing of each stimulus or the 

modulation of its amplitude encodes the identity of the neuron to be activated. 

 

Figure 1: Stimulation in an underactuated system 

A common single input (the light from the optical fiber) is shared by each neuron 

within the blue light cone.  Multiple extra cellular electrodes allow the control system 

to record from multiple neurons within the cone simultaneously.  The control system 

will attempt to modulate the single light source to move multiple neurons into the 

desired states simultaneously. 

The control schema proposed by Ching & Ritt (2013) uses temporal encoding, 

using trade-offs between the power and duration of a laser pulse to address a targeted 
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neuron in a population using only a single input, as illustrated in Figure 1.  The 

mechanism behind this encoding relies on the dynamical responses of neurons with 

different membrane properties undergoing identical stimulation.  The control technique 

was devised based on the leaky, noisy, integrate and fire (IAF) neuron model (Dayan & 

Abbott, 2001). 

Suppose 𝑉 is the membrane potential of a neuron, 𝑆(𝑡) is some stimulus, 𝛼 is the 

leakiness of the neuron’s membrane, 𝛽 is the neuron’s sensitivity to the stimulus, 𝜎 is the 

intensity of the intrinsic noise in the membrane potential, 𝑑𝑊 is a standard Weiner 

process, and 𝑉𝑇 is some membrane potential threshold.  The IAF neuron model is 

described by 

𝑑𝑉

𝑑𝑡
= −𝛼𝑉 + 𝛽𝑆(𝑡) + 𝜎𝑑𝑊 (1) 

When 𝑉 = 𝑉𝑇 , 𝑉 → 0, defined as a spike 

 

A sample path of the IAF model is demonstrated in Figure 2. 
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Figure 2: A path of the Integrate and Fire (IAF) neuron model 

An example path of an IAF neuron is shown in black.  The neuron is subject to 

stimulation for the first 5 seconds, indicated by the blue line.  When the path crosses 

the spike threshold at 0.2 mV, the neuron is assumed to have spiked, indicated by the 

vertical purple dotted line.  

Consider an IAF neuron 𝑁𝐴 parameterized by 𝜃𝐴 = [𝛼𝐴, 𝛽𝐴, 𝜎𝐴].  Because the IAF 

model is a linear model, the optimal input 𝑆(𝑡) to cause the neuron to spike in the 

shortest amount of time is an impulse function.  However, when considering a 

physiologically useful model for the input, in which our laser power is limited so that it 

does not damage the tissue, a more reasonable choice of 𝑆(𝑡) is a pulse, parameterized by 

the strength-duration pair [𝐺, 𝑇].  Due to IAF’s linearity, pulse inputs (or a “bang-bang 

control” input) are time optimal (Dorato et al., 1967; Nandi et al., 2017). 

Consider then the situation in which we would like to cause 𝑁𝐴 to spike with 

some probability 𝑃.  For short durations 𝑇, relatively large strengths 𝐺 will be required to 

achieve firing probability 𝑃.  Conversely, for long durations 𝑇, relatively small strengths 
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𝐺 will be required.  There exists a trade-off between the strength and the duration of a 

stimulus that can cause the same firing probability, and this behavior naturally leads to 

the concept of the strength-duration (SD) curve, which I define as the set of all points in 

strength-duration space that cause the neuron to fire with given probability 𝑃.  

Throughout, I will consider the curve generated by choosing 𝑃 = 0.5.  

Suppose now that we have a second neuron 𝑁𝐵 parameterized by 𝜃𝐵 =

[𝛼𝐵, 𝛽𝐵, 𝜎𝐵] that we would like to control simultaneously with 𝑁𝐴 using the common 

input 𝑆(𝑡).  Such control is possible according to the proposed schema if the SD curves 

of the two neurons cross each other, as explained by the following. 

As shown in Figure 3, such a crossing cuts the SD plane into four distinct regions.  

The top region, above both curves, contains stimuli which cause both neurons to spike 

with high probability.  The bottom region, below both curves, contains stimuli which 

induce low spike probability in both neurons.  The interesting pair of regions is between 

the curves, on either side of the intersection point.  One region is “high duration”, and the 

other “low duration”.  A stimulus in either of these regions will cause a spike in one 

(target) neuron with probability 𝑃𝑇 > .5, while the other (non-target) neuron spike 

probability satisfies 𝑃𝑁𝑇 <  .5.  In this way, stimuli may be chosen that can bias activity 

toward either neuron as a target, while the non-target neuron has a lower probability of 

firing. 
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Figure 3: The SD curves of a mutually controllable neuron pair, with stimuli 

designed to bias the neurons’ activity 

Stimuli chosen from the regions between the two curves, to the left or right of the 

intersection point, will bias activity towards one neuron in the pair.  One neuron fires 

more often in response to low duration input (NA), while the other responds more 

often to high duration input (NB). 

2.1.2 Requirements for Mutual Controllability 

This graphical intuition can also be represented in terms of the IAF neural 

parameters.  I assume the neurons have non-identical parameters (i.e. they are 

heterogeneous), and I choose the indices so that neuron 𝑁𝐴 is the unit whose 𝛼 is largest.  

With this convention, Ching & Ritt (2013) showed in the deterministic case (𝜎 = 0) that 

the SD curves of both neurons 𝑁𝐴 and 𝑁𝐵 will cross if and only if 

𝛽𝐴 > 𝛽𝐵 (2) 

𝛼𝐴

𝛽𝐴
>

𝛼𝐵

𝛽𝐵
 (3) 

In 𝛼-𝛽 space, this means that, given some deterministic neuron described by 

[𝛼𝑆, 𝛽𝑆], the values of a mutually controllable deterministic neuron [𝛼, 𝛽] can be at any 

point represented in blue in Figure 4. The mutually controllable region for the stochastic 

case is more limited (Huang, 2019), but the deterministic case is useful as a general rule. 
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𝜶 = 𝜷 

 

Figure 4: Mutual controllability criterion for deterministic neurons 

A deterministic neuron parameterized by [𝜶, 𝜷]  drawn from the gray region is 

mutually controllable with the deterministic neuron parameterized by [𝜶𝑺, 𝜷𝑺], the 

black dot. 

In SD space, we may draw a stimulation from one of the regions between the 

stochastic neurons’ SD curves to bias neural activity.  If a stimulation is drawn from the 

left inter-curve region, it will bias activity towards 𝑁𝐴, and I will call that stimulation 𝑆𝐴.  

If a stimulation is drawn from the right inter-curve region, it will bias activity towards 

𝑁𝐵, and I will call that stimulation 𝑆𝐵.  I will therefore consider the two neurons, 𝑁𝐴 and 

𝑁𝐵, as well as the two stimuli used to bias their activity, 𝑆𝐴 and 𝑆𝐵. 

Due to the convention on the identities of 𝑁𝐴 and 𝑁𝐵, 𝑆𝐴 will always take the form 

of a short but strong stimulation, and 𝑆𝐵 will always take the form of a long but weak 

stimulation.  Throughout this dissertation, 𝑁𝐴 will be represented by blue, and 𝑁𝐵 will be 

represented by red.  Additionally, where appropriate, 𝑆𝐴 will be represented by crosses 

(“X”), while 𝑆𝐵 will be represented by circles (“O”). 

𝜶
 

𝜷 
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2.1.3 Considerations for in vivo Implementation 

Transitioning this schema for underactuated neurocontrol to an in vivo application 

presents a number of challenges that did not need to be considered when testing in silico, 

despite previous efforts incorporating noise, limited controllability, and using only spike 

times as observations (Ching & Ritt, 2013).  Aside from normal instrumentation 

concerns, such as electrical noise in electrophysiology recordings, the primary problems 

faced during the transition to an animal model involved the intrinsic noise of the recorded 

neuron, and the limited observability of its state. 

Observability and controllability are classic cornerstones to effective control 

(Kalman, 1959).  The observability of a system describes the ability to determine the 

system’s intrinsic state using only the outputs of the system in combination with any 

controllable inputs.  It describes how easily the system’s state can be understood based on 

its behavior.  The controllability of a system (or more specifically, the state 

controllability) describes the ability of the system’s inputs to drive the system between 

states.  It describes how effective the inputs to the system are at moving it between states. 

The parameters that underlie the behavior of the system we are trying to control 

are the IAF model parameters, 𝜃 =  [𝛼, 𝛽, 𝜎], which govern a linear approximation of the 

non-linear behavior of a real neuron. 

For a neural system to be observable, it must be possible to infer the system’s 

intrinsic state based on its input and output.  There exist electrophysiology methods that 

support continuous measurement of membrane potential for recorded neurons, such as 

patch clamping (Sakmann & Neher, 1984), but such intracellular methods are infeasible 
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in most in vivo settings, particularly in high density electrode arrays and clinical 

applications.  I use extracellular recording methods that, while comparatively easier to 

implement, give very limited information about the neuron.  These methods effectively 

yield a binary observation of the neuron’s state: whether in any time window it emits an 

action potential or not.  Using methods that will be covered later, it is possible to make 

reasonable estimates for the IAF model parameters, based on how the neuron behaves 

when subjected to various stimuli.  However, it is difficult to make a precise estimate of 

the membrane potential due to the noise intrinsic to the neural system (Meng et al., 2011).  

It is impossible to get a direct reading of the membrane potential of a cell using 

extracellular electrodes.  However, spike times can be recorded.  Therefore, I eliminate 

the membrane potential as a parameter, making the assumption that the neuron is near 

rest potential at the initial condition. 

This noisiness and unpredictability have implications for the controllability of the 

neuron.  The input to the system that I will be considering is the optogenetic light-driven 

input 𝑆(𝑡), as a current across the membrane.  I assume that, over short timespans (over 

one second), the model parameters describing the neuron do not change.  The 

illumination is, however, able to influence the membrane potential, though only in a 

positive direction given the positive reversal potential of the input conductance for ChR2 

(Boyden et al., 2005). 

During single unit control, it is generally desirable to maximize the change in the 

membrane potential 
𝑑𝑉

𝑑𝑡
 by applying a large laser input 𝑆(𝑡).  This increases the influence 

of the deterministic part of the system relative to the stochastic behavior, thereby 
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decreasing both the time to spike and the variance in spike times.  The strength of the 

laser input, and therefore the change in the membrane potential, is generally limited only 

by the laser power that the neural system can tolerate without tissue damage.   

When controlling two neurons simultaneously, information about the membrane 

potential is required to ensure that the target neuron reaches action potential first.  

Because the value of 𝑉 is not observable given the spike times, the more strict output 

requirements in the two-neuron case (requiring one neuron to spike before the other) 

mean that more precise choices for inputs are needed in the system than in a comparable 

one-neuron system. 

Extracellular recording is vulnerable to corruption by background activity, which 

distorts the waveforms of the neuron of interest, making it difficult to observe.  Spike 

sorting is generally used to separate the neuron of interest from other neural activity, but 

spike sorting the responses to broad stimulation presents a specific challenge.  Non-

targeted stimulation, such as electrical stimulation or optogenetic stimulation with a 

broad promotor, tends to activate large volumes of neural tissue simultaneously.  When 

this occurs, the combined activity of the activated tissue sums to produce “hash”: 

amorphous, unpredictable activity that, when of a large enough amplitude, obscures the 

action potential from the neuron of interest.  I will explore some of these issues of spike 

sorting corruption, both from hash interference and from other sources, more fully in 

Chapter 3. 

Hash is a significant obstacle when recording neural activity during stimulation.  

For optogenetic stimulation, genetic methods can be tailored to express opsins in fewer 
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cells.  Alternatively, smaller volumes may be stimulated by using optical focusing.  

However, a simple way to reduce hash is to simply stimulate at lower power.  Control 

may still function normally under these conditions, but using low power inputs biases the 

controlled population towards higher sensitivity neurons, those that will still be active 

when subject to low amplitude input. 

Additionally, neurons with low spontaneous firing rates are easier to work with, 

as they are easier to manually find, characterize, and analyze, because spikes can be 

inferred to have been induced from stimulation, rather than from internal mechanisms. 

For the above reasons, neurons in this study tended to have high light sensitivity 

and low spontaneous firing rate.  When viewed as IAF models, neurons tended to have 

large 𝛽’s, and relatively large ratios 
𝛼

𝜎
. 

 

2.1.4 Pilot Studies 

A natural starting place to test underactuated neurocontrol is to define static 

stimuli 𝑆𝐴 and 𝑆𝐵, apply them to activate the neurons in chosen sequences, and compare 

desired and observed spike responses.  In pilot experiments, 𝑆𝐴 and 𝑆𝐵 were defined 

manually, by fixing stimulus durations 𝑇𝐴 = 1 ms and 𝑇𝐵 = 10 ms, and trying different 

amplitude 𝐺 for both stimuli until a performant choice for both 𝑆𝐴 and 𝑆𝐵 was found 

(different 𝑇 were used if needed).  This approach yielded controls that tended to perform 

well for a short period of time, but then decayed in quality.  This decay was likely due to 

nonstationarity in the tested neurons. 
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Non-stationarity is a significant factor in studies of neuronal spiking activity, and 

can lead to errors for many analysis techniques that assume stationarity (Grün et al., 

2003).  This issue is of particular importance in control systems, where nonstationarity 

can lead to significant deviations between the neural systems state and the controller’s 

estimate.  Possible causes of nonstationarity in neural populations are natural drift or 

overstimulation of the target neurons.  As the parameters change over time, the SD curves 

of both neurons will shift, as in Figure 5.  This means that the outcome of stimulation will 

change, usually decreasing performance.  To deal with this nonstationarity, I developed 

an adaptive approach, that updated 𝑆𝐴 and 𝑆𝐵 periodically over the course of the 

experiment. 

 

Figure 5: Nonstationarity leads to SD Curve drift 

As time goes on, neurons that were once mutually controllable may drift, such as from 

the light shaded curves to the darker curves.  In this case, the neurons are still 

controllable, though performance has degraded.  If continued, neurons may continue 

to drift until they lose controllability entirely. 
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The first step of such an adaptive approach is to define a cost function to optimize 

through choice of 𝑆𝐴 and 𝑆𝐵.  Using this cost function, an algorithm could produce and 

maintain the values of 𝑆𝐴 and 𝑆𝐵.  Next, an optimization algorithm must be chosen.  

Because the stimulation results are stochastic, deterministic gradient-based search 

methods, such as interior-point optimization (Byrd et al., 1997, 2000), are not suitable.  

Therefore, I used a direct search for optimization, based on MATLAB’s 

patternsearch function (adapted from the Global Optimization Toolbox for 

MATLAB, MathWorks Inc., Natick, MA), in which a small number of stimuli were 

tested directly, without calculating derivatives in cost space.  This non-model based 

approach performed reasonably well, but, because of the design of the optimizer, many 

delivered stimuli were suboptimal due to the explore-exploit tradeoff.  Exploration of the 

stimulation space left only about half of the stimuli for exploiting each point that was 

thought to be optimal.  To decrease the effects of this tradeoff, as well as to leverage 

some prior knowledge about the system, I switched to a model-based approach. 

In the final revision of the adaptive optimizer, the parameters of each of the two 

neurons were found by fitting IAF models to the neural responses.  Using the 𝜃 

calculated from the fits, the cost function was optimized for each stimulus with simulated 

results.  Because both the fit and the cost optimizations were deterministic, core 

MATLAB gradient-descent-based optimization functions could be used.  By updating 𝑆𝐴 

and 𝑆𝐵 periodically over the course of the experiment, I was able to compensate for 

nonstationarity of the parameters of the controlled neurons. 
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2.2 Experimental Preparation 

2.2.1 Hardware Setup 

I performed underactuated control experiments using adult (>8 week) Thy1-

ChR2-YFP (Jax 007612, Jackson Labs, Inc, Bar Harbor ME) mice.  I used vaporized 

isoflurane (0.5% – 2.0% in O2) as anesthesia, flow rate was kept near 600–700 
𝑚𝐿

𝑚𝑖𝑛
.  Body 

temperature was maintained using homoeothermic heating system (Harvard Apparatus, 

Holliston MA) (37°C).  The experiment was controlled using a custom MATLAB script, 

responsible for high-level protocol flow and saving information, including stimulus 

parameters and trail metadata.  The script interfaced with a RZ5 digital acquisition and 

signal processing system (Tucker Davis Technologies, Alachua FL) via the system’s 

software server, OpenEx.  The RZ5 hardware was responsible for reading, processing, 

and recording electrophysiology data; controlling the laser; performing all low-level task-

related processing, such as trial timing randomization; and saving all task-related 

information.  A 473 nm, 100 mW laser (Omicron PhoxX 473-100), guided through an 

optical fiber, provided optogenetic stimulation.  A TDT 32-channel PZ5 Neuro-digitizer 

Amplifier and headstage was used to read neural data from a silicon probe with 8 tetrodes 

across 4 shanks (A4x2-tet-5mm-150-200-121-Z32, NeuroNexus, Ann Arbor MI).  Figure 

6 shows a simple schematic of the experimental setup, as well as the desired responses to 

each stimulation. 
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Figure 6: A schematic of the experimental setup 

This schematic shows an optical fiber illuminating an exposed region of cortex.  Each 

stimulation, S 𝑺𝑨  or 𝑺𝑩 , will ideally be able to bias activity towards 𝑵𝑨  or 𝑵𝑩 , 

respectively. 

The laser housing includes a shutter, and the beam was guided through a 9:1 

beamsplitter; the 10% beam was directed towards a photodiode used to measure the laser 

power online, while the remaining 90% of the power was transmitted through a 200 𝜇m 

optical fiber (Thorlabs Inc, Newton, NJ) determined to the brain surface.  At the 

beginning of each experiment, a calibration procedure determined the relationship 

between the control voltage 𝑉𝐶 ∈ (0,5)𝑉 and the output laser power 𝑃: while a series of 

control voltages were applied to the laser, a light meter at the terminal end of the optical 

fiber recorded the output powers.  During the experiment, the control voltage for each 

desired laser power was found by inverting the 4th order polynomial 𝑃 = 𝑓(𝑉𝐶) that best 
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fit the calibration pulses.  Laser powers were converted to irradiances by dividing by the 

area of the fiber optic cable.  

 

2.2.2 Surgical Preparation and Search for Units 

The surgical procedure is as follows.  After induction in a chamber using 

isoflurane, mice were transferred to a nose cone with bite bar on a homoeothermic 

heating pad (Harvard Apparatus, Holliston MA).  The Matrx isoflurane vaporizer 

(Midmark) was set initially to 2% in O2, and gradually reduced to about 1% over the 

course of the surgical preparation, guided by breathing rate and other vital signs.  The fur 

on the top of the head was removed using scissors and hair removal cream (Nair).  The 

skull was stabilized in ear bars, and the scalp resected at the midline.  A craniotomy (~1 

5mm diameter) was formed over barrel cortex (0.5 mm posterior and 3.5 mm lateral of 

bregma).  The dura was removed with Vetbond cyanoacrylate glue (3M, Saint Paul MN).  

A saline well made from a cut section of a 0.5 ml plastic centrifuge tube was glued to the 

skull around the craniotomy.  A ground wire was placed into a burr hole, contralateral to 

the craniotomy. 

The optical fiber and silicon probe were advanced on separate stereotactic arms 

into the well.  The optical fiber was placed at a 45° angle, such that the light was directed 

posteriorly.  The probe was placed at a 20° angle, such that the probe inserted 

approximately perpendicular to the brain’s surface.  Special care was taken to ensure the 

optical fiber was parallel with the probe surface, and on the side opposite to the electrode 

contacts, to minimize light artifacts.  The probe was advanced into the brain about 500 
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𝜇𝑚, and allowed to rest for 5 minutes.  The position of the optical fiber was readjusted as 

needed to ensure that light artifacts had very low amplitude related to the noise floor. 

To find candidate controllable pairs, two preset stimuli were chosen, one at 1 ms 

duration and the other at 10 ms duration.  The strengths were set such that they evoked a 

local field potential deflection on most contacts, and multi-unit activity on some contacts, 

with the amount of activity evoked by both stimuli approximately equal.  These stimuli 

were alternately presented during manual search for putative single units that react to one 

or both stimuli. 

If no responsive single units were found, the probe was advanced ~50 𝜇𝑚 – 100 

𝜇𝑚, followed by a new search. If a responsive single unit was found, the two test stimuli 

were adjusted such that the candidate unit spiked in response to about 70%–90% of both 

stimuli.  The remaining tetrodes were then searched using these adjusted stimuli for any 

candidate units that had a high firing probability in response to one stimulus, and a low 

firing probability in response to the other.  The stimulus strengths were then adjusted 

until it was found that either there exists a set of stimuli such that each neuron could be 

biased to be more active than the other, in which case full testing began, or no such set of 

stimuli was found, and remaining contacts were searched for controllable units.  If no 

candidate pair of units were found, the remaining contacts were searched for identifiable 

units, or if no more were found, the probe was advanced ~50 𝜇𝑚 – 100 𝜇𝑚. 

Once a candidate pair was found, the testing of the pair proceeded as follows.  

Candidate units were isolated online on the RZ5 using SpikePac sorting software (Tucker 

Davis Technologies, Alachua FL).  A characterization step was performed, to first fit 
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each unit to an IAF neuron model, and then calculate a set of optimal stimuli 𝑆𝐴 and 𝑆𝐵.  

The process is described in more detail in 2.4.1 Initial Characterization.  Once the 

optimal stimuli were found, the pair was tested to determine the effectiveness and 

stability of control.  The process is described in more detail in 2.4.2 Adaptive Control. 

 

2.3 Computational Methods 

2.3.1 Table of IAF spike probabilities 

To characterize in vivo neurons, responses were compared to simulated integrate 

and fire (IAF) neurons (Dayan & Abbott, 2001). Pulsatile stimuli were described by their 

strengths 𝐺 and durations 𝑇, and their responses were coded as either 1 (at least one 

spike) or 0 (no spikes).  The probability of firing was determined by numerical solution 

of a Fokker-Planck (FP) equation, given the neural parameterization 𝜃 and stimulus 𝑆 ≡

[𝐺, 𝑇] (Iolov et al., 2017). 

Suppose 𝑃(𝑉, 𝑡) is the probability density function over membrane potential 𝑉 

and time 𝑡 for an IAF neuron.  The evolution of 𝑃(𝑉, 𝑡) as described by the FP equation 

is 

𝑃(𝑉, 𝑡) = −
𝜕

𝜕𝑉
(−𝛼𝑉 + 𝛽𝑆(𝑡))𝑃(𝑉, 𝑡) +

𝜎2

2

𝜕2

𝜕𝑉2
𝑃(𝑉, 𝑡) (4) 

 

This equation was solved using Crank-Nicolson numerical integration with an 

absorbing boundary at the threshold 𝑉𝑇, and a reflecting boundary at a lower boundary 

𝑉𝐿 < 0 (chosen so that a negligible portion of the probability mass would touch the lower 
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boundary). The initial condition was found by finding the membrane potential 

distribution of an unstimulated simulation to come to near steady-state (negligible flow 

out of the absorbing boundary), and multiplying this distribution so that the total mass in 

the domain is 1.  The firing probability 𝑃𝑆𝑝𝑖𝑘𝑒(𝑇) was calculated by finding the fraction 

of the original probability mass that left the domain through the absorbing boundary 𝑉𝑇 

between times 𝑡 = 0 and 𝑡 = 𝑇. For simplification, any simulation for which less than 

𝑃𝑐𝑢𝑡𝑜𝑓𝑓 mass remained within the boundary was coded as 100% spike probability. All 

parameter values used in the FP calculation are shown in Table 1. 
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Parameter Description Value(s) 

𝑉𝑇 Membrane potential threshold for a spike .2 

𝑉𝐿 Lower boundary for membrane potential domain -1.5 

𝑛𝑇 
Number of divisions in the time domain (from 0 to 

𝑡𝑈𝑝𝑝𝑒𝑟) 
5001 

𝑛𝑉 
Number of divisions in the membrane potential domain 

(from 𝑉𝐿 to 𝑉𝑇) 
301 

𝑡𝑈𝑝𝑝𝑒𝑟 Upper limit for the time domain 15 

𝑃𝑐𝑢𝑡𝑜𝑓𝑓 Threshold for assuming zero firing probability 10−4 

Strength Bounds Boundaries of tested stimulation strengths [0 5] 

Duration Bounds Boundaries of tested stimulation durations [0 15] 

𝛼 Bounds Boundaries of tested 𝛼 values [0 .5] 

𝜎 Bounds Boundaries of tested 𝜎 values [. 001 .3] 

𝑛𝑑𝑖𝑣𝑠 Number of values tested within each set of bounds 45 

Table 1: Parameters used during Fokker-Planck integration and associated database 

calculation 

Note that the definition of the firing probability 𝑃𝑆𝑝𝑖𝑘𝑒 in this case is the 

probability that the neuron will fire at least once.  This is represented in the model by 

removing any probability mass from the domain that has crossed the 𝑉𝑇 threshold.  The 

probability of any spike occurring is used (as opposed to the probability of exactly one 

spike) because the stimuli applied to the neurons during the experiment have a natural 
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constraint, that the non-target neuron should not spike.  Because of this constraint, stimuli 

will have relatively low power and will be unlikely to induce multiple independent spikes 

in the target neuron.  Thus the probability of any spike occurring is approximately equal 

to the probability of a single spike occurring, but is easier to calculate. 

Numerical integration of the FP equation is too computationally expensive for 

online use. Because of this, numerical solution was performed offline over a mesh of 

neural parameters 𝛼 and 𝜎, and stimulation parameters 𝐺 and 𝑇 (for IAF neurons, 𝛽 acts 

only as a scale for stimulation strength 𝐺). This produced a large table of firing 

probabilities across a variety of parameter values. The boundaries of each parameter are 

given in Table 1, and 𝑛𝑑𝑖𝑣𝑠 = 45 equally spaced values of each parameter were used. To 

predict the firing probability of an experimentally recorded neuron with fitted parameters 

𝜃 = [𝛼, 𝛽, 𝜎] and stimulus 𝑆 = [𝐺, 𝑇], the table was linearly interpolated. 

Due to the near-linearity of the IAF model, it was assumed that there would be 

very little cumulative increase in firing probability after stimulus offset.  In other words, 

if 5 ms stimulus is applied to the FP model, I assumed that very little probability mass 

would leave through the threshold boundary between 𝑡 = 5 ms and a reasonable upper 

boundary for the post-stimulation window.  I simplified the FP calculation by performing 

integration for each set of [𝐺, 𝛼, 𝜎], up to the maximum considered stimulation time 

𝑇𝑚𝑎𝑥 ≡ 15 ms.  To find the firing probability for any stimulus with duration 𝑇 < 𝑇𝑚𝑎𝑥, 

the firing probability was calculated as above by finding the instantaneous 𝑃(𝑉, 𝑡) that 

has left the domain at the given time point 𝑡.  This leads to a slight underestimation of 

firing probability. 
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2.3.2 Error Function ( Optimization) 

To estimate 𝜃 of an in vivo neuron, an error function was used to compare the 

neuron’s stimulation results with predicted firing probabilities found via table 

interpolation. 

A summed squared error was used as the error function.  Specifically, suppose 

{𝑥1, 𝑥2, … , 𝑥𝑁} are the measured responses of the in vivo neuron to stimuli 

{[𝐺, 𝑇]1, [𝐺, 𝑇]2, … , [𝐺, 𝑇]𝑁}, where 𝑥𝑖 ∈ {0, 1} and 0 means “no-spike” and 1 means 

“spike”, and {𝑦1, 𝑦2, … , 𝑦𝑁} are the firing probabilities of an IAF neuron with parameters 

𝜃, given the same stimuli, where 𝑦𝑖 ∈ [0,1].  The error function 𝑓𝑒𝑟𝑟 is given by 

𝑓𝑒𝑟𝑟 = ∑(𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

  (5) 

 

2.3.3 Cost Function (GT Optimization) 

The choice of stimulation parameters during the characterization and adaptation 

phases was guided by the optimization of a cost function.  Suppose 𝑃𝑇 is the predicted 

firing probability of the target neuron, 𝑃𝑁𝑇 is the predicted firing probability of the non-

target neuron, 𝜆 is a penalty factor for laser power, and G is the power in 
𝑚𝑊

𝑚𝑚2 of the 

chosen stimulus.  The cost 𝑓𝑐𝑜𝑠𝑡 of a stimulation parameter choice was given by 

 

fcost = −𝑃𝑇(1 − 𝑃𝑁𝑇) + 𝜆𝐺2 (6) 

 

Note that 𝑃𝑇  and 𝑃𝑁𝑇 are complicated functions of (𝐺, 𝑇) computed through table 
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lookup, as described above.  Minimizing this function over 𝑆 = (𝐺, 𝑇) yielded a stimulus 

𝑆𝑇 for each neuron to maximize that neuron’s firing probability 𝑃𝑇, balanced against 

minimizing the firing probability of the non-target neuron 𝑃𝑁𝑇. A demonstration of the 

shape of the cost function is in Figure 7, which shows how the cost changes in SD space 

for each stimulus 𝑆𝐴 and 𝑆𝐵 given a pair of IAF neurons that satisfy the mutual 

controllability condition set forth by Ching & Ritt (2013). 

 

Figure 7: Shape of the cost function in SD space 

Evaluation of the cost function at various locations in SD space for each stimulus, 

when using a pair of mutually controllable IAF neurons (𝜽𝟏 = [. 𝟑 . 𝟏𝟐𝟓 . 𝟎𝟓], 𝜽𝟐 =
[. 𝟎𝟓 . 𝟎𝟔 . 𝟎𝟓]).  The “X” and “O” show the optimal SA and SB for this pair neurons, 

respectively. 

The penalty term is included for two reasons: The first reason is that the optimal 

solution 𝑆𝑇 for most neuron pairs lies on the boundaries of the strength-duration space, 

due to the fact that the unpenalized cost function is concave when PT and PNT are neither 
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0 nor 1, so a soft boundary in G was implemented. The second reason is that the 

unpenalized cost is flat across most of SD space (most stimuli either make both neurons 

or neither neuron spike, and the firing probability is monotonic with both G and T), 

which means that the optimization function (MATLAB’s fmincon) cannot calculate a 

gradient in these areas, and therefore cannot continue the optimization. The addition of a 

penalty introduces a gradient towards 𝐺 = 0, which allows the optimization function to 

move from very large G’s back into a space where at least one neuron’s firing probability 

is not 1.  Due to the fact that multiple initial conditions were used as a global 

optimization method, it was unlikely that the optimization function would spend much 

time in the space of low (𝐺, 𝑇)’s, and therefore the space in which neither neuron spikes 

was not a significant issue.  Throughout, 𝜆 = 10−5. 

 

2.4 System Identification and Control 

2.4.1 Initial Characterization 

After each unit was manually identified, they were stimulated until a sufficient 

quantity of waveforms was recorded so that online tetrode sorting could be performed to 

isolate the units of interest.  Then, a characterization step was performed on both units. 

This characterization procedure generated a large buffer of data for each unit by 

stimulating at various positions in SD space. This buffer facilitated calculation of an 

initial estimate for each unit’s 𝜃, and therefore an initial optimal stimulus 𝑆𝑇 for each 

neuron. 
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To produce stimuli that are maximally informative for estimating 𝜃, the 

characterization procedure consisted of cycling through a series of predetermined 

stimulus durations, and, for each duration, attempting to find the strength 𝐺𝑃50that evokes 

a 50% firing probability. Durations were selected from the set (1, 2, 5, 10, 15) ms.  The 

procedure for the characterization is as follows: 

1. The strength upper boundaries were manually chosen for each duration so as not to 

overstimulate the units during characterization. This is done by manually choosing a 

strength (at which both units were found to have a near 100% probability of firing) 

at the lowest and highest durations, 1 𝑚𝑠 and 15 𝑚𝑠. The strength upper boundary 

for the remaining intermediary durations was linearly interpolated between these 

two extremes. The strength lower boundaries for all durations was 0 
𝑚𝑊

𝑚𝑚2. 

2. The 𝐺𝑃50 strength was then found for each duration sequentially. 

a. The duration 𝑇̃ for this round was chosen from the list, starting for the lowest 

duration. 

b. The lower and upper strength boundaries for this duration (𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥, 

respectively) were tested. If a spike occurred on the lower boundary, or no 

spike occurred for the upper boundary, then the characterization was paused 

so that the boundaries could be manually readjusted. Alternatively, if the user 

believed that the result from any of the boundaries was uncharacteristic of 

normal behavior, the procedure could be continued under the assumption that 

the lower boundary did not produce any spike and the upper boundary did 

(this assumption is only used for the purposes of finding 𝐺𝑃50, and not later 
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for calculating 𝜃). 

c. A set of “allowable strengths” were calculated for this duration: a mesh of 

strengths were generated between 𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥 with a step of 𝛥𝐺 = .01. 

d. The procedure alternated between each unit whose 𝐺𝑃50 had not yet been 

found, starting with unit 1. A linear regression of spike response (0 or 1) on 

strength was calculated using all previous stimuli at this duration. 

e. Using the resulting linear regression, a next stimulation strength was found 

as the strength whose firing probability was 0.5 according to the linear 

regression. This value was rounded to the nearest allowable strength, 

becoming the next estimate, 𝐺̃𝑃50. 

f. Two conditions were checked. The first condition was whether both a 

minimum number of stimuli (𝑛 = 15) had been given, and this iteration’s 

𝐺̃𝑃50 was less than 𝑥𝑡ℎ𝑟𝑒𝑠ℎ𝐺𝑚𝑎𝑥 away from the previous iteration’s value 

(where 𝑥𝑡ℎ𝑟𝑒𝑠ℎ = .05).  The second condition was whether a maximum 

number of stimuli (𝑛 = 30) had been given. 

i. If neither of the conditions were met, then the stimulus  [𝐺̃𝑃50, 𝑇̃] was 

applied, and the responses of both neurons recorded.  The process 

then returned back to d, switching which unit was being characterized 

if needed. 

ii. If either of the conditions were met, then 𝐺𝑃50 for this duration and 

unit was set to 𝐺̃𝑃50.  If the other unit’s 𝐺𝑃50 for this duration was not 

yet found, the stimulus [𝐺̃𝑃50, 𝑇̃] was applied, and the results of both 
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units recorded.  The process then returned back to d (to find a new 

𝐺̃𝑃50 for the other unit).  Otherwise, the next duration was selected, 

and the process returned to c, unless all durations were completed.  

An initial estimate of  𝜃 for both units was calculated from 𝑓𝑒𝑟𝑟 using this 

stimulation data, and then an initial 𝑆𝑇 for each unit was found by minimizing 𝑓𝑐𝑜𝑠𝑡. 

 

2.4.2 Adaptive Control 

The structure of stimuli sent during the adaptive control tests were organized into 

a hierarchy: 

1. Stimulus – A single rectangular pulse of the laser, labeled by a given [𝐺, 𝑇], 

classified as either an 𝑆𝐴 or an 𝑆𝐵 stimulation (intended to selectively increase the 

firing probability of 𝑁𝐴 or 𝑁𝐵, respectively). 

2. Sequence – A series of 5 Stimuli administered in a burst, with an inter-stimulation 

interval of 100 ms. The stimuli in a Sequence were composed of either 3𝑆𝐴 + 2𝑆𝐵 

stimuli, or 2𝑆𝐴 + 3𝑆𝐵 stimuli, for a total of 20 possible unique Sequences. 

3. Run – A collection of 20 Sequences. A Run consisted of one of each possible unique 

Sequence that can be constructed from 3𝑆𝐴 + 2𝑆𝐵 and 2𝑆𝐴 + 3𝑆𝐵 Stimuli. Each unit 

pair was tested using a session of 20 Runs. Across each run, Latin Squares 

randomization was used to ensure that each unique Sequence was found at the 

beginning, middle, and end of a run an equal number of times, to randomize any 

Run-ordering effects.  
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4. Block – Used exclusively for the update step of the adaptation, a block was 

composed of 10 Sequences (one half of a Run). Because of this, there was no 

guaranteed distribution of 𝑆𝐴 and 𝑆𝐵 Stimuli. 

The two optimal stimuli found during the initial characterization step (one for 

each unit) were used during the first block of the adaptive control period. The adaptation 

algorithm, described below, found updated 𝜃’s for both unit using only information from 

the first block (not from the initial characterization), and two updated optimal stimuli. 

Stimulation resumed using these new stimuli, until they were reevaluated after 

completing the following block. The adaptation protocol maintained a buffer of stimuli 

and responses from the previous (at most) 4 blocks (𝑁𝐵𝑢𝑓 = 200 stimuli). The buffer 

started filling at the onset of the adaptation control procedure (i.e. no initial 

characterization stimuli were used).  Adaptive control iteratively alternated two steps: 

1. Using the procedure in Section 2.3.2 Error Function ( Optimization), the 

parameters for each unit were estimated. 

Using the procedure in Section  

2. 2.3.3 Cost Function (GT Optimization), the optimal stimulus was found for each 

unit, given their current estimated parameters. 

This procedure continued throughout the adaptive control procedure.  A summary 

of the procedure, include all steps taken before adaptive control began, is shown in Figure 

8. 
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Figure 8: An outline of the characterization and optimization protocol 

Once testing concluded, the depth of the silicon probe was recorded, and the 

probe was advanced to begin searching for the next candidate pair. 

 

2.5 Data Analysis Methods 

2.5.1 The Response Fraction 

Efficacy of control was evaluated according to a number of related metrics.  The 

first metric was the response fraction (RF), or the fraction of stimulus presentations that 

evoked at least one spike.  The RF serves as an estimate of the firing probability of each 

unit.  The true positive (TP) response fraction was defined as the response fraction 

limited to stimulus presentations targeting that unit: 

𝑇𝑃 = 𝑚𝑒𝑎𝑛(𝑥𝑇|𝑆𝑇) (7) 
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where 𝑥𝑇 is the target unit response coded at 0 for no spikes and 1 otherwise.  In contrast, 

the false alarm (FA) response fraction is the response fraction of a unit when subject to 

stimulus presentations that do not target it: 

𝐹𝐴 = 𝑚𝑒𝑎𝑛(𝑥𝑁𝑇|𝑆𝑇) (8) 

TP is an estimate of the probability of target unit firing, 𝑃(𝑁𝑇 , |𝑆𝑇) ≡ 𝑃𝑇, while 

FA is an estimate of the probability of the non-target unit firing, 𝑃(𝑁𝑁𝑇|𝑆𝑇) ≡ 𝑃𝑁𝑇.  The 

response fractions can also be thought of as the elements of a confusion matrix, as in 

Table 2. 

  Stimulus Type 

  𝑆𝐴 𝑆𝐵 

Spike 

Response 

𝑁𝐴 TPA FAB 

𝑁𝐵 FAA TPB 

Table 2: Definitions of the Response Fractions 

By definition, stimuli that produce large TP and small FA are more effective.  

However, each pair of stimuli (𝑆𝐴 and 𝑆𝐵) will produce four response fractions 

(𝑇𝑃𝐴, 𝑇𝑃𝐵, 𝐹𝐴𝐴, 𝐹𝐴𝐵), that must be further compared to produce a single metric by which 

overall control efficiency can be evaluated. 

The cost function defined in section  

2.3.3 Cost Function (GT Optimization) is a natural evaluation metric.  However, it 

does not capture all features one might desire, such as a direct interpretation in terms of 

biasing towards the target unit.  For example, suppose a certain stimulus produces [TP, 
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FA] = [1, 0.75] and another stimulus produces [TP, FA] = [0.5,0.5].  Both of these 

stimuli have a cost 𝑓𝑐𝑜𝑠𝑡(1, 0.75) = 𝑓𝑐𝑜𝑠𝑡(0.5, 0.5) = −0.25 (ignoring the penalty term), 

but the first stimulus induces some biasing towards the target unit while the second does 

not.  An alternative evaluation metric is a simple difference of the response fractions for 

each stimulus.  For each stimulus (𝑆𝐴 and 𝑆𝐵), this response fraction difference (RFD) is 

defined as 

𝑅𝐹𝐷 = 𝑇𝑃𝑇 − 𝐹𝐴𝑁𝑇 (9) 

where 𝑇𝑃𝑇 is the true positive response fraction of the stimulus’s target neuron, and 

𝐹𝐴𝑁𝑇 is the false alarm response fraction of the stimulus’s non-target neuron.  It has the 

beneficial property that 𝑅𝐹𝐷 = 0 is a natural boundary between biasing toward or away 

from the target unit. 

The 𝑅𝐹𝐷 (or rather, −𝑅𝐹𝐷) was not used as the cost function online because, 

being a simple difference, it does not incorporate a penalty for extreme spike 

probabilities.  The cost 𝑓𝑐𝑜𝑠𝑡 punishes any stimulus which has FA close to 1 or TP close 

to 0, and has a gradient that points towards the 𝑇𝑃 = 1 − 𝐹𝐴 line in those regions.  

However, the – 𝑅𝐹𝐷 function has a gradient ∇𝑅𝐹𝐷 = [1, −1] at all points.  This has the 

undesirable property of encouraging movement towards the boundaries of the TP-FA 

space. 

 

2.5.2 The Control Quality Metric 

A control quality metric (CQ) was defined as the minimum of the mean RFD’s of 

the two stimuli over a session 
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𝐶𝑄 = min(𝑅𝐹𝐷𝐴
̅̅ ̅̅ ̅̅ ̅, 𝑅𝐹𝐷𝐵

̅̅ ̅̅ ̅̅ ̅̅ ) (10) 

𝐶𝑄 ∈ [−1,1], and 𝐶𝑄 = 1 represents perfect control.  From this definition 

naturally follows a minimum controllability criterion for each session.  I defined any unit 

pair such that 𝐶𝑄 > 0 as having met the minimum controllability criterion.  Additionally, 

I define any pair in which at least one stimulus has 𝑅𝐹𝐷 > 0 as having met the one-way 

controllability criterion, meaning that activity can be biased towards at least one neuron.  

To determine confidence intervals for the metric, I considered the 95% high density 

region (HDR) (Hyndman, 1996) of the distribution of 𝐶𝑄.  Assuming that 𝑅𝐹𝐷𝐴 and 

𝑅𝐹𝐷𝐵 are Gaussian distributed random variables, we can derive the distribution of 𝐶𝑄 

and its HDR. 

Suppose two Gaussian random variables 𝑋1 and 𝑋2 are parameterized by means 

(𝜇1, 𝜇2) and variances (𝜎1
2, 𝜎2

2), with correlation coefficient 𝜌.  The PDF of 𝑀 is 

𝑃𝐷𝐹𝑀(𝑥) =
1

𝜎1
𝜙 (

𝑥 − 𝜇1

𝜎1
) × Φ ((

𝜌(𝑥 −  𝜇1)

𝜎1√1 −  𝜌2
) − (

𝑥 −  𝜇2

𝜎2√1 −  𝜌2
)) 

+
1

𝜎2
𝜙 (

𝑥 −  𝜇2

𝜎2
) × Φ ((

𝜌(𝑥 −  𝜇2)

𝜎2√1 −  𝜌2
) − (

𝑥 −  𝜇1

𝜎1√1 −  𝜌2
)) (11) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal 

distribution (Nadarajah & Kotz, 2008). 

I assumed that the correlation coefficient between the two RFD’s was 𝜌 = 0, 

corresponding to the independence of the two stimuli.  I found the HDR of 𝑃𝐷𝐹𝐶𝑄 using 

a numerical watershed method: the boundaries of the HDR (𝑥𝑙, 𝑥𝑢) were found such that 
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they intersect 𝑃𝐷𝐹𝐶𝑄 at the same y-value, and ∫ 𝑃𝐷𝐹𝐶𝑄
𝑥𝑢

𝑥𝑙
= .95.  The convexity of 

𝑃𝐷𝐹𝐶𝑄 ensured that the HDR is continuous.  I considered any session whose 𝐶𝑄 HDR 

was entirely greater than zero to have met the minimum controllability condition. 

 

2.5.3 Confirmation of Driving Responses Towards Targets 

I used a shuffling approach to test the selectivity of the stimulus pair, defined as a 

tendency of observed response fractions towards their desired values that cannot be 

explained by chance. 

I conducted 𝑁 = 20,000 random shuffles of the stimulus labels (𝑆𝐴, 𝑆𝐵) for each 

session, and calculated 𝐶𝑄 for each shuffle.  This produced a distribution of 𝐶𝑄’s for 

each session.  The selectiveness metric was calculated as the z-score of the session’s true 

𝐶𝑄 relative to the shuffled 𝐶𝑄 distribution.  Z-scores that are far to the right (higher 𝐶𝑄) 

from the shuffled distribution indicate that the control designed performed as well as it 

did because the stimulation did in fact push target firing probabilities up and non-target 

probabilities down. 

 

2.6 Results 

2.6.1 Summary of Results 

24 mice were tested, and candidate unit pairs were found in 15 of the mice.  In 

these 15 mice, 29 total candidate pairs were found.  8 of these pairs met the minimum 

controllability criterion.  Every pair that was tested met the one-way controllability 
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threshold. The 𝐶𝑄 distribution across pairs is shown in Figure 9.  All results shown are 

for online sorted units. 

 

 

Figure 9: 𝑪𝑸 for each tested pair (n=29) 

8 pairs were found whose 𝑪𝑸 is larger than 0.  This means they met the minimum 

controllability criterion, such that both stimuli induced more activity in their target 

unit than their non-target unit. 

Out of the 29 candidate pairs, in 27 cases units responded highly selectively to the 

two stimuli.  In these cases, the stimuli were able to drive the units towards their targets, 

if not all the way to meet minimum controllability.  As seen in Figure 10, most pairs 

responded to stimuli with selectivity well above chance. 
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Figure 10: Out of the n=29 pairs tested, 27 responded with high selectivity to 

the stimulus. 

A histogram of the selectivity of each tested pair, in terms of z-score.  Bin widths are 

𝒘 = 𝟏. 𝟔𝟒𝟓. 

2.6.2 Example of a Controllable Pair 

An example of a controllable pair can be seen in Figure 11.  The RF’s, 𝐶𝑄, cost, 

stimulation parameters [𝐺, 𝑇], and both sets of neural parameters 𝜃 = [𝛼, 𝛽, 𝜎] are shown.  

The mean 𝐶𝑄 for the pair shown in Figures 11/12 is 0.1780, and its selectivity has a z-

score of 23.10.  



 

 

3
9
 

 
Figure 11: The results of an example controllable pair 

The RF’s (panels A/B), 𝑪𝑸 (panel C), stimulus parameters (panel D), and 𝜽 (panel E), plotted over the full course of the 

experiment for both 𝑵𝑨 and 𝑵𝑩.  Each point represents a single block of 50 stimuli.  𝑺𝑨 and 𝑺𝑩 were updated after each block. 
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Figure 12: Spike waveforms of an example controllable pair 

Spike waveforms are shown for both neurons in a controllable pair (same as Figure 

11).  All waveforms that were categorized as spikes are shown for all four electrodes 

of each tetrode associated with the neurons. 

The RF’s for 𝑆𝐵 show that the stimulus was able to cause 𝑁𝐵 (red circles) to fire 

at a higher probability than 𝑁𝐴 (blue circles) for each block.  𝑆𝐴 was able to bias the 𝑁𝐴 

(blue crosses) firing probability to be higher than that of 𝑁𝐵 (red crosses) for most blocks, 

though control failed in a few places.  Because of the controller’s ability to recover 

control quickly, it is likely that drops in performance were due either to random 

fluctuations in unit responses, or small changes in fitted parameters leading to momentary 

poor choices of stimulation parameters. 

The RF’s for this pair, and therefore its 𝐶𝑄, are relatively stable over time, 

showing few long-term trends after the first 3 minutes or so.  However, despite the long-
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term stability, there is a large variance.  This variance in RF and 𝐶𝑄 likely originates 

from the variance in both units’ 𝜃 fits.  While 𝛽 appears to have very little jitter, both 𝛼 

and 𝜎 show significant variance, though there do not appear to be any large scale trends 

over the course of the experiment for either. 

The controller appears to tolerate this variance, still managing to produce 

response fractions that exceed the minimum controllability condition in many blocks, but 

increased stability will likely be important for using this method in applications.  The 

estimate of θ might be stabilized by increasing 𝑁𝐵𝑢𝑓, widening the sliding window to 

smooth out the results.  The size of the buffer 𝑁𝐵𝑢𝑓 was initially chosen to allow the 

controller to update its values at a pace near the rate of change of unit parameters, which, 

based on manual observation, appeared to change on about a 2-minute timescale.  A 

different type of sliding window might also be used, such as a Hann window instead of 

the current boxcar method, to suppress discontinuities caused by dropping blocks from 

the buffer, and smooth transitions between blocks. 

It was noted in this pair, as in most of the pairs tested, that the estimate for β tends 

to decrease gradually over time.  While this does not necessarily mean that the true β for 

both units does in fact decrease, it does mean that the controller finds that the optimal fit 

is that of a continually less sensitive unit as time goes on.  There are a number of reasons 

that the neuron could become less sensitive over time, such as neural plasticity or 

channelrhodopsin dynamics.  It is difficult to tell if this change was due to over-

stimulation or intrinsic variation across time, because in the presented work, stimulus 

count and elapsed time are confounded. 
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2.6.3 Common Failure Modes During the Experiment 

As can be inferred by the small number of candidate pairs found per mouse (~1.2 

pairs), there were a number of failure modes that could prevent a pair of neurons from 

being considered control candidates.  Beyond standard surgical and anesthetic issues, the 

first failure mode concerns the expression level of the rhodopsin.  In earlier pilot 

experiments (not shown), a different promotor, Emx1 (Jax 005628, Jackson Labs, Inc, 

Bar Harbor ME) (Madisen et al., 2012), was used that expressed ChR2 more densely than 

the Thy1 promotor.  While this increases the number of possible candidate neurons, the 

large number of light sensitive cells meant that each stimulus caused a very large 

population response.  This population response made separating the neuron of interest 

from the background activity substantially more difficult.  It also amplified the possibility 

of introducing network effects that could affect the neurons of interest in unknown ways. 

Another common outcome was finding one isolated neuron at a given probe 

position, but not being able to find a second unit with which it could be mutually 

controlled.  In pilot experiments, a pair of carbon fiber glass electrodes (Kation Scientific 

Carbostar) on independent stereotactic arms were used to search for units.  The 

movement of the electrodes relative to each other often caused unit to change their 

behavior when subject to stimulation, often times irreversibly.  This motivated use of the 

single 8 tetrode silicon probe, which did not require movement during the process of 

matching units for control.  While the lack of movement stabilized the activity of the 

initial unit while a matching unit was sought, the limited number of tetrodes meant that 

the search space was limited, meaning that many isolatable units were rejected when no 



 

 

43 

match could be found on the other tetrodes. 

Earlier theoretical work showed that one might expect about a 25% probability 

that any two units will be mutual controllable (Ching & Ritt, 2013).  Despite this 

estimate, many units were rejected because they did not satisfy the controllability 

condition with the initial neuron.  This discrepancy may be due to the bias in neurons 

chosen for control in this study, towards those with high sensitivity and low spontaneous 

firing rate (2.1.4 Pilot Studies).  Additionally, many units were rejected because their 

behavior was erratic, either due to a large amount of intrinsic or pre-synaptic noise, or a 

large degree of nonstationarity.  These units appeared to change their behavior too rapidly 

to be consistently controlled. 

Another issue that prevented neurons from being controlled was online spike 

sorting.  Due to the nature of the experiment, which requires recording neural responses 

directly after stimulation, waveform sorting was significantly more difficult than sorting 

spontaneous activity.  Waveforms were embedded in a “hash” response that occurs when 

a large volume of tissue is activated simultaneously.  Online spike sorting was able to 

separate the unit of interest in many cases, but there were others in which the corruption 

was too high.  In these cases, the unit usually was abandoned.  The effects of various 

types of spike sorting errors will be explored further in Chapter 3. 

In addition to failure modes that prevented units from being considered for control 

candidacy, other failure modes occurred after characterization, whereby a candidate 

controllable pair lost controllability over the course of the session.  There were four 

general modes of failure that occurred after characterization, and many pairs were 
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affected by multiple.  The first and most common was that the unit pair could be biased 

towards some target activity with one stimulus, but could not be biased with the other.  

This occurred in about 14 pairs.  In these cases, one stimulus was generally able to 

produce good performance (a positive RFD), while the other performed poorly (a 

negative or zero RFD).  In general, it was common to find a pair for which one stimulus 

would bias responses but the other would not, which is expected as this will occur any 

time two neurons’ SD curves do not perfectly overlap.  The trivial case was that of a 

particularly light sensitive unit paired with another with low sensitivity.  One unit would 

always respond given a stimulus, while the other almost always stayed quiescent.  

Therefore, for any two stimuli, the stimulus targeting the highly sensitive neuron would 

have a positive RFD while the other would have a negative RFD. 

The second mode of failure occurred when one or both stimuli would cause both 

units to fire with about equal probability (RFD = 0).  This case occurred in about 5 pairs, 

and was common in the early pilot experiments. 

A third mode of failure was general instability in the controlled system, which 

occurred in about 5 pairs.  In these cases, the stimulus responses of each unit would tend 

to vary rapidly in such a way that could not be predicted and therefore the adaptive 

optimizer could not compensate.  This was generally uncommon after a pair was 

characterized, but this instability was a major factor in disqualifying units from being 

control candidates. 

The final fourth mode of failure for units was for the pair to start as controllable, 

and then fall out of the controllable region in 𝛼/𝛽 space over the course of the session, 
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thereby leading to poor performance.   About 4 of the pairs that failed minimum 

controllability experienced this mode of failure.  Some pairs appeared to be controllable 

during the characterization stage, but started the session with poor performance, then 

regained control sometime later in the session.  Often in these cases, performance would 

be good for some time during the session, but would then fluctuate or remain poor for the 

rest of the session.  The 𝐶𝑄 measure is designed to detect sustained controllability, so it 

does not identify units controllable only for short periods of time, as 𝐶𝑄 is calculated as a 

mean over the entire session.  Temporary controllability is not as valuable as long term 

controllability, but it is worth noting.  Transient control may still be useful in a clinical 

setting: fluctuating into and out of controllability may not be useful at an individual 

neuron level, but may have implications for controllability of a large population that can 

be tracked simultaneously.  It may be the case that the neurons to be controlled are 

selected from some large, clinically relevant population, and while pairwise 

controllability may change on a short time scale, some fraction of the population might 

remain controllable at any given time. 

 

2.7 Discussion 

2.7.1 Comparison to Other Neurocontrol Studies 

The work in this dissertation expands control to an underactuated system of two 

neurons, as well as adding an adaptive recalibration component.  The addition of an 

adaptive component allows the controller to leverage more information than if only a 

single epoch of data was used, which both increases the accuracy of the model and allows 
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it to evolve with the system. 

Previous work has shown successful control of single units using extracellular 

recording electrodes, both in simulation and in vivo.  For example, closed loop control 

has also been shown to drive single unit spike rates towards both constant and sinusoidal 

targets using PI control (Bolus et al., 2018; Newman et al., 2015).  Earlier methods also 

successfully drove single neurons towards arbitrary spike trains in continuous time 

(Ahmadian et al., 2011).    The work presented by (Iolov et al., 2014) demonstrates a 

robust in silico method for producing arbitrary spike trains in single neurons.  Like the 

work above, it uses a method to characterize an IAF neuron using only spike-times, then 

produces a continuous-time stimulus, though the calculation cannot be done online.  

Other systems have been designed explicitly for use in clinical applications, using 

optimal system identification to inform a closed-loop controller (Yang et al., 2018).  Each 

of these techniques works in continuous time, producing spike trains or spike rates that 

are not limited by discretization.  This is unlike the work shown in this dissertation, 

which considered only if more than one spike was produced after each stimulus.  

However, no previous work has explicitly addressed the underactuation problem in vivo. 

Other work presents solutions to similar problems, leading to various potential 

paths forward for medical neural interfaces.  For example, a deep learning, model-free 

approach has been shown to induce physiologically meaningful states in simulated 

networks of neurons with underactuated stimulation (Mitchell & Petzold, 2018).  While 

such model-free approaches tend to require more training data and tuning than model-

based approaches, they also have the potential to exert more exact control over the neural 
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population of interest. 

A final approach is to avoid the problem of underactuated control by changing the 

formulation of the problem.  Instead of attempting to control a greater number of neurons 

than there are electrodes in a volume, a single unit may be used to influence overall 

activity of a globally connected neural population (Nabi & Moehlis, 2011).  This 

reformulation has some problems that must be addressed before implementation, such as 

the requirement of targeting individual members of populations, but it also relaxes some 

other stimulation requirements.  Alternatively, stimuli can be designed to affect many 

neurons simultaneously, which can be used for population entrainment (D. Wilson et al., 

2015).  While the goal is still precise control over a large number of neurons, the problem 

is simpler because the target state is common across all cells. 

 



 

 

48 

3 CONTROL WITH CORRUPTION 

3.1 Introduction 

3.1.1 The Importance of Observability During Neurocontrol 

A spike sorter’s effectiveness is typically scored by the degree to which it is able 

to isolate a neuron from its background activity, much like other classifiers, by 

calculating its precision and recall (or its false-positives and false-negatives) (Hill et al., 

2011).  However, considering the fact that the role of spike sorting when used in a control 

system is to identify meaningful information for the controller, a different metric to 

evaluate the sorter emerges.  The spike sorter’s performance can be measured not just by 

how well it classifies spikes, but by its downstream effects: how well the controller 

performs using the information that the spike sorter provides.  It is possible that poor 

spike clustering will still allow good control, or that great clustering will lead to poor 

control.  As with all closed-loop control systems, performance is dependent on the 

accuracy of observations, but the quality of observation does not necessarily directly 

correlate to quality of control, nor does it necessarily act as a limitation.  Many factors 

contribute to a system’s ability to exploit good observations or tolerate poor ones, such as 

the observable variables’ sensitivity to changes in the state (observability), the system’s 

sensitivity to movement in the input space (controllability), and the inherent noise present 

in both the system and observations. 

By choosing to use control accuracy as the metric by which to evaluate clustering, 

I assert that we do not require high accuracy from the classifier, but simply good synergy 

between it and the controller.  Adjusting the classifier (and surrounding systems) towards 
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this goal means that effort is not wasted on improving classifier accuracy when that effort 

would produce greater returns if directed towards better control. 

The goal of this study is to explore the relationship between classifier accuracy 

and control performance when a system is faced with a source of classifier corruption.  

This will be done by formulating a model neural system to be controlled, along with 

various models of observational corruption.   

 

3.1.2 Types of Spike Sorting Corruption 

In general, spike sorters attempt to maximize isolation of an individual neuron 

based on clustering of features extracted from the neuron’s spike waveform.  A perfect 

sorter will include all spikes from the target neuron into the cluster (perfect recall), and 

will reject all spikes from non-target neurons (perfect precision).  False positives occur 

when non-target neuron spikes are included in the cluster (“spike addition”), and false 

negatives occurs when target neuron spikes are not included in the cluster (“spike 

exclusion” or “spike deletion”).  Additions and exclusions/deletions from the cluster can 

occur due to a number of different reasons.  I will focus first on how cluster definitions 

affect error rates, and later on how spike collisions can lead to false negatives regardless 

of the sorter’s settings. 

The three cases I consider are spike exclusion, spike addition, and spike deletion.  

Consider a target neuron, NA, whose spikes we are attempting to isolate from background 

activity using a sorter. The process of identifying clusters inherently involves trade-offs 

between precision and recall, and while precision is affected by the characteristics of 
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nearby non-targets (how different they are from NA, and therefore how easily they are 

excluded from the cluster), recall is determined only by how restrictive the cluster’s 

boundaries are.  The simplest form of corruption, spike exclusion, stems from the case 

tightness of the cluster’s boundaries lead to poor recall.  This means that the unit isolated 

by the spike sorter, denoted by NAP, exhibits a lower firing probability than the true 

neuron NA. 

For the other two cases, consider a permissive spike sorter, such the recall is high.  

A side-effect of making the spike sorter more permissive is that precision will generally 

decrease.  Spike addition, occurs when the sorter includes spikes from non-target neurons 

in the cluster. 

In addition to the target neuron NA, consider an additional neuron NC, which acts 

as a corrupting signal.  Spike addition can occur if NC has spike waveforms that are 

similar enough to NA’s spike waveforms that the sorter includes them in the cluster.  

Addition is a function of NC spike waveforms, but not their timing.  The result is that the 

isolated unit NAP exhibits a higher firing probability than the true neuron NA. 

The final case, spike deletion, is largely insensitive both to the settings of the 

spike sorter and the fine details of spike waveforms.  Spike deletion occurs when any 

other waveform, from either single neuron spikes or multi-neuron “hash”, temporally 

collides with target neuron spikes.  Deletion is not a function of the corrupting 

waveform’s shape, but rather of its timing and amplitude.  This can cause the target 

waveform to be significantly and unpredictably altered by the corrupting waveform. 

Because the target waveform becomes corrupted, its extracted features no longer lie 
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within the cluster boundaries, and the spike is “deleted”, or not recorded.  This means that 

the isolated unit NAP has a lower firing probability than true neuron NA. 

 

3.2 Methods 

3.2.1 Rescaling of the Integrate and Fire Model to Explore Corruption 

As in Chapter 2, the model system is a pair of stochastic Integrate and Fire (IAF) 

neurons whose characteristics satisfy sufficient conditions for underactuated control, as 

described by Ching & Ritt (2013).  Those conditions are that the IAF parameters satisfy 

the relationships 𝛼𝐴 >  𝛼𝐵, 𝛽𝐴 > 𝛽𝐵, and 
𝛼𝐴

𝛽𝐴
>

𝛼𝐵

𝛽𝐵
 , for leak 𝛼 and input strength 𝛽.  

Under these conditions in the deterministic case, a pair of rectangular stimuli SA and SB 

can be chosen to activate the neurons individually in any arbitrary sequence.  I assume 

that the noise and neural parameters are such that this outcome continues to hold 

approximately in the stochastic case (for example, with small noise and wide margins on 

the inequalities).  As a convention, the neuron with larger leak 𝛼 will be denoted NA, and 

called the “fast” neuron, due to the fact that its internal dynamics occur on a faster 

timescale.  The fast neuron is more likely to fire in response to high amplitude, short 

duration stimuli.  The “slow” neuron, NB, is more likely to fire in response to low 

amplitude, long duration stimuli.  The stimuli are characterized by their strength G in 

𝑚𝑊

𝑚𝑚2 
 and duration T in 𝑚𝑠, and chosen such that SA will bias towards NA activity, and SB 

will bias towards NB activity. 

Because there is no time reference external to the neural system, the IAF equation 
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can be time rescaled to normalize the rate constant 𝛼 of one of the neurons.  I define one 

of the neurons as the “standard bearer” neuron, parameterized by 𝜃𝑆 = [𝛼𝑆, 𝛽𝑆, 𝜎𝑆].  I then 

rescale the IAF equation by defining 𝜏 =  𝛼𝑆𝑡, and 𝑑𝑊𝜏 = √𝛼𝑆𝑑𝑊𝑡.  For convenience, I 

also define 𝛾 =
𝛽𝑆

𝛼𝑠
 and 𝜖 =

𝜎𝑆

√𝛼𝑆
.  The system then becomes 

𝑑𝑉 = (−𝑟𝛼𝑉 +  𝑟𝛽𝛾𝑆(𝜏)) dτ + 𝑟𝜎𝜖𝑑𝑊𝜏 (12) 

where either neuron can be parameterized by the ratios 𝑟𝜃 = [𝑟𝛼, 𝑟𝛽 , 𝑟𝜎] = [
𝛼

𝛼𝑆
,

𝛽

𝛽𝑆
,

𝜎

𝜎𝑆
] 

between the neuron’s true parameters and the standard bearer’s parameter.  A neuron 

parameterized by 𝑟𝜃 is controllable with the standard bearer neuron if either 

𝑟𝛼 > 1, 𝑟𝛽 > 1,
𝑟𝛼

𝑟𝛽
> 1 (13) 

or 

𝑟𝛼 < 1, 𝑟𝛽 < 1,
𝑟𝛼

𝑟𝛽
< 1 (14) 

3.2.2 A Probability-Based Framework for Modeling Corruption  

Observations of the neurons in the system will be modeled by the probability of 

observing a target spike given some stimulus.  This true firing probability will then be 

modulated according to one of the three corruption cases. 

I first describe a probability-based framework for the three cases, and study how 

corruption changes the observed response characteristics of a recorded neuron.  I then 

explore how these corruption types may lead to erroneous conclusions about the system 

being controlled. 

I use three separate models spike exclusion, spike addition, and spike deletion.  
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(15) 

For all cases, I assume that the spike sorting process is not affected by stimulation, 

specifically that neither the waveforms from a given neuron nor the probabilities of 

corruption change with different values of stimulation strength or duration.  Further, I 

define the firing probability as the probability that at least one spike is recorded from the 

neuron of interest in some small time window starting at stimulus onset.  In my 

experimental application, stimulation power is minimized to avoid activating the non-

target neuron, so that typically either one or zero target spikes will occur. 

 

3.2.3 Spike Exclusion 

The first case to be considered is spike exclusion, in which the spike sorter is too 

restrictive, and each true target spike has some chance of being “missed”.  Define PP as 

the observed firing probability of NA, A as the event an NA spike occurred, and EEx as an 

exclusion corruption event.  The exclusion case can be modeled by 

𝑃𝑃 = 𝑃(𝐴 ∩ ¬𝐸𝐸𝑥) 

= 𝑃𝐴 𝑃(¬𝐸𝐸𝑥|𝐴) 

= 𝑃𝐴(1 − 𝑃𝐸𝐸𝑥
) 

where 𝑃 ≡ 𝑃(𝐴) and 𝑃𝐸𝐸𝑥
≡ 𝑃(𝐸𝐸𝑥).  The first equation is the statement that the 

observed firing rate is the probability of an NA spike occurring and an exclusion event not 

occurring.  The second equation expands the joint probability by conditioning, and the 

third applies the assumed independence of the probability of corruption from the 

probability of spiking. 
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3.2.4 Spike Addition 

For the two cases, I make two simplifications.  First, I assume that no NA spikes 

are lost, meaning that 𝑃𝐸𝐸𝑥
 is 0.  Second, I assume the presence of one or more corruption 

neurons, which are represented as either a single neuron NC or as “hash”.  For spike 

addition, I assume that NC has spike waveforms similar enough to NA’s waveforms that 

the spike sorter has some probability 𝑃𝐸𝐼𝑛𝑐
 of erroneously including NC’s spikes in the 

cluster.  I assume that NA’s and NC’s spike probabilities are conditionally independent 

given the stimulation strength and duration, which is a biologically plausible assumption 

in the absence of a fast synaptic coupling, either between NA and NC, or with a common 

pre-synaptic neuron. 

Define C as the event a NC spike occurs, and EInc as a corruption event in which 

an NC spike is erroneously included in the NA cluster.  The model for this spike addition 

case is 

𝑃𝑃 = 𝑃(𝐴 ∪ (𝐶 ∩ 𝐸𝐼𝑛𝑐)) 

= 𝑃𝐴 + 𝑃(𝐶 ∩ 𝐸𝐼𝑛𝑐) − 𝑃𝐴𝑃(𝐶 ∩ 𝐸𝐼𝑛𝑐) 

= 𝑃𝐴 + 𝑃𝐶𝑃𝐸𝐼𝑛𝑐
(1 − 𝑃𝐴) 

where 𝑃𝐶 ≡ 𝑃(𝐶) and 𝑃𝐸𝐼𝑛𝑐
≡ 𝑃(𝐸𝐼𝑛𝑐).  The first equation is the statement that an 

observed firing event requires that a true NA spike occurred, or that a true NC spike 

occurred and an inclusion corruption event occurs.  The second equation expands the 

union of events and uses the assumed independence of NA and NC.  The third equation 

asserts that inclusion corruption events are independent from NC spiking.  For this case, I 

assume that no spike collision occurs even if spike timings are similar. 
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3.2.5 Spike Deletion 

Spike deletion occurs when waveforms are distorted by electrical hash; resulting 

from non-specific background activity of many neurons.  This collective population 

activity is considered differently from individual neuron activity because as the energy of 

the stimulus pulse increases, higher population recruitment occurs, and there is a higher 

probability of interference occurring during the post-stimulation window.  For this case, I 

consider hash whose activity is modeled logistically.  If this activity is large enough, and 

it occurs temporally close to the target neuron’s activity, then target spikes may be 

disrupted by the hash’s activity, causing the spike sorter to “miss” them.   

Define 𝐸𝐻𝑎𝑠ℎ as an event in which hash occurs in the post-stimulation window, 

and 𝐸𝐷𝑒𝑙 as a corruption event in which an NA spike is missed by the spike sorter due to 

waveform distortion.  The probability of observing an NA spike is given by 

𝑃𝑃 = 𝑃(𝐴 ∩ ¬(𝐸𝐻𝑎𝑠ℎ ∩ 𝐸𝐷𝑒𝑙)) 

= 𝑃𝐴𝑃(¬(𝐸𝐻𝑎𝑠ℎ ∩ 𝐸𝐷𝑒𝑙)|𝐴) 

= 𝑃𝐴(1 − 𝑃𝐸𝐻𝑎𝑠ℎ
𝑃𝐸𝐷𝑒𝑙

) 

The first equation is a statement that an observed spike occurs when NA spikes 

and either no hash occurs, or such hash does not have the shape or timing to significantly 

distort the NA waveform.  The second line expands the joint probability by conditioning.  

The third equation asserts that neither the probability of hash occurrence nor the 

probability of hash being large enough to delete an NA spike is dependent on whether or 

not NA fires.  It also asserts that the recruitment of hash and its distorting effects are 

independent from each other. 



 

 

56 

(18) 

3.2.6 Neuron and Hash Models 

A Fokker-Planck (FP) implementation of the IAF model was used to calculate 

spiking probabilities of neurons given their parameterizations 𝑟𝜃 = [𝑟𝛼, 𝑟𝛽 , 𝑟𝜎] and a 

stimulus 𝑆 = [𝐺, 𝑇].  The FP integration was implemented in the same way as in Chapter 

2.  In particular, because numerical integration of the FP equation is computationally 

expensive, a table of pre-calculated firing probability was interpolated for computations 

below.  I chose parameters for a pair NA and NB of neurons to control, as well as a neuron 

NC that corrupted the simulated spike sorting through spike addition.   

For the spike addition case, a set of 3 corrupting neuron instances NC were tested, 

with different values for 𝑟𝜃𝐶
= [𝑟𝛼𝐶

, 𝑟𝛽𝐶
, 𝑟𝜎𝐶

] selected to explore addition corruption 

across various relationships between NA and NC.  The parameterizations shared the same 

𝑟𝛼 and 𝑟𝜎 as NA, but the value of 𝑟𝛽𝐶
, representing sensitivity to stimulation, was varied.  

The sensitivity 𝑟𝛽𝐶
 for each instance of NC was found by first defining NC’s ideal firing 

probability 𝑃𝐼𝑑𝑒𝑎𝑙 in response to certain stimuli along NA’s SD curve, and then 

calculating a value for 𝑟𝛽 that would come closest to matching that firing probability.  To 

find each 𝑟𝛽𝐶
, I first fixed a set of 𝑛 = 100 equally spaced stimulation durations, 𝑇𝑁𝐶

, in 

the interval 𝐵𝑁𝐶
= [0, 15] ms.  The strength-duration (SD) curve was then calculated for 

both NA and NB, denoted by 𝐺𝐶𝑢𝑟𝑣𝑒𝐴
 and 𝐺𝐶𝑢𝑟𝑣𝑒𝐵

 respectively.  The SD curve is defined 

as the set of strengths 𝐺𝐶𝑢𝑟𝑣𝑒 that cause a neuron to fire at some probability 𝑃𝑆𝐷.  I will be 

considering the curves generated by 𝑃𝑆𝐷 = 0.5 throughout.  The SD curves of both 

neurons were found by calculating 
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𝐺𝐶𝑢𝑟𝑣𝑒𝑋
= argmin

𝑆
∑(𝑃(𝑁𝑋|𝐺𝑖, 𝑇𝑖, 𝑟𝜃) − 𝑃𝑆𝐷)2

𝐷𝑁𝐶

 

where 𝐺𝐶𝑢𝑟𝑣𝑒𝑋
 is the SD curve of neuron 𝑁𝑋, 𝑃(𝑁𝑋|𝐺𝑖 , 𝑇𝑖, 𝑟𝜃) is the firing probability of 

neuron 𝑁𝑋 given some stimulus duration 𝐷𝑖, stimulus strength 𝑆𝑖, and neuron 

parameterization 𝑟𝜃. 

For each instance of NC, a desired firing probability was determined, 𝑃𝐼𝑑𝑒𝑎𝑙 = [.5,

.85, .15].  For each of these desired firing probabilities, 𝑟𝛽𝐶𝐾
 was found by minimizing 

the sum squared error between the firing probability of the FP model given 𝑟𝜃𝐶
 with 

variable 𝑟𝛽𝐶
 and each 𝑃𝐼𝑑𝑒𝑎𝑙 value, on the domain [𝐺𝐶𝑢𝑟𝑣𝑒𝐴

, 𝑇𝑁𝐶
]. 

𝑟𝛽𝐶𝐾
= argmin

𝑟𝛽

∑(𝑃(𝑁| 𝐺𝐶𝑢𝑟𝑣𝑒𝐴
 𝑇𝑁𝐶

, [𝑟𝛼𝐶
 r𝛽 r𝜎𝐶

]) − 𝑃𝐼𝑑𝑒𝑎𝑙𝐾
)

2
 (19) 

The “firing rate” of hash, that is, the probability of a significant amplitude of hash 

occurring following a stimulus with parameters 𝑆 = [𝐺, 𝑇], was modeled logistically as a 

function of the energy 𝐺𝑇 of the stimulus, via 

𝑃𝐻𝑎𝑠ℎ =
1

1 + 𝑒−𝑘(𝐺𝑇−𝐸𝐻𝑎𝑙𝑓)
 (20) 

The probability is characterized by the two parameters: 𝐸𝐻𝑎𝑙𝑓, the stimulation 

energy in 
𝑚𝑊 𝑚𝑠

𝑚𝑚2  required to produce a 50% occurrence probability for the hash, and 𝑘, 

the sensitivity of the probability to stimulus energy.  As in the spike addition case, three 

parameterizations of the hash were considered.  They were chosen to behave similarly to 

the NC instances described above.  A maximum of 5 ms was used to weight the fit 

towards low stimulation durations, so that the hash would have similar behavior to NC in 

the duration regime in which NA’s control stimulus SA would most likely lie. 
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I defined a subset THash of 𝑇𝑁𝐶
, containing equally spaced stimulation durations in 

the interval 𝐵𝑇𝐻𝑎𝑠ℎ
= [0, 5] ms, 𝑛𝐻𝑎𝑠ℎ = 34.  I then defined a subset 𝐺𝐶𝑢𝑟𝑣𝑒𝐶𝐻𝑎𝑠ℎ

 as the 

stimulation strengths in 𝐺𝐶𝑢𝑟𝑣𝑒𝐶
 that correspond to the durations in THash.  The parameter 

𝐸𝐻𝑎𝑙𝑓 was calculated for each hash instance by finding the mean stimulation power 

𝐸𝐻𝑎𝑙𝑓 =
𝑇𝐻𝑎𝑠ℎ  𝐺𝐶𝑢𝑟𝑣𝑒𝐶𝐻𝑎𝑠ℎ

𝑛𝐻𝑎𝑠ℎ
 

where 𝑛𝐻𝑎𝑠ℎ = 34 is the number of durations in 𝑇𝐻𝑎𝑠ℎ.  A set of 𝑛𝐻𝑎𝑠ℎ equally spaced 

stimulation strengths SHash was then generated with the bounds 𝐵𝑆𝐻𝑎𝑠ℎ
=

[0 2 max(𝐺𝐶𝑢𝑟𝑣𝑒𝐴
)], where 𝐺𝐶𝑢𝑟𝑣𝑒𝐴

 is the set of strengths that define the strength-

duration curve for NA on the domain THash.  The parameter 𝑘 was calculated for each hash 

instance by minimizing the sum squared error between the logistic model parameters and 

the spike probabilities of the corresponding instance of NC on the grid of all 

[𝐺𝐻𝑎𝑠ℎ , 𝑇𝐻𝑎𝑠ℎ]. 

 

3.3 Results 

3.3.1 Exploration of Corruption Paradigms 

To build an intuition for the effects of the various corruption cases, I examined 

the differences in observed strength-duration curves from their true values.  The strength-

duration curve is a simple metric to characterize a neuron’s response characteristics.  For 

example, if the spike sorter adds spikes, the estimated curve will move down and/or left 

in strength-duration space, because weaker stimuli will appear to produce a spike 

probability of 𝑃𝑆𝐷 = 0.5. 
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All simulations used a fixed parameterization 𝑟𝜃𝐴
= [1, 1, 1] and 𝑟𝜃𝐵

= [0.071,

0.571, 1] for NA and NB, which are mutually controllable according to necessary and 

sufficient conditions in Ching & Ritt (2013). In all cases, observations of NB are 

uncorrupted; corruption occurred in the sorting of NA.  The parameter values for NC 

during the spike addition case varied according to Table 3.  In the first simulation, NC has 

identical parameters to NA.  In the other simulations, NC is either more or far less 

sensitive to stimulation than NA, represented by changes to βC.  The parameterization of 

the multi-unit activity in the spike deletion case is given by Table 4.  Each instance of 

hash is modeled to behave similarly to the corresponding instance of NC. 

 𝛼 𝛽 𝜎 

Simulation 1 1 1 1 

Simulation 2 1 1.38 1 

Simulation 3 1 0.66 1 

Table 3: IAF parameters for the corrupting neuron NC 

 K EHalf 

Simulation 1 .628 7.435 

Simulation 2 .783 5.388 

Simulation 3 .424 11.284 

Table 4: Logistic parameters for the corrupting hash 
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3.3.2 Exploration of Spike Exclusion 

In the excluded spikes case, as the corruption level increases, the apparent 

sensitivity of the neuron decreases.  This means that the observed strength-duration curve 

rises, as can be seen in Figure 13.  As expressed in the corruption equation Eq 15, the rise 

in the SD curve is proportional across all stimulation durations, and increases 

monotonically with the corruption level.  Clearly, if 𝑃𝐸𝐸𝑥
= 0, then PP = PA, since in the 

absence of corruption the observed firing probability is equal to the true firing 

probability.  Also, if 𝑃𝐸𝐸𝑋
= 1, indicating that every spike is lost, PP = 0.  In particular, 

above a certain value of 𝑃𝐸𝐸𝑥
, the level of corruption will be so great that 𝑁𝐴𝑃

 will not 

appear to spike for half of the stimuli presented, regardless of their strengths.  SD curves 

in this paper are defined at the 50% firing probability level.  Therefore, for high values of 

corruption, the SD is undefined.  In the limit as the corruption level goes to some critical 

value, the SD curve will approach infinity.  For this reason, only a subset of SD curves 

(depending on the specific properties of the neuron(s)) will be plotted for the deletion 

corruption cases. 
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(22) 

 

Figure 13: The SD curves of a neuron under exclusion corruption, with lines 

colored by their value of 𝑷𝑬𝑬𝒙
 

 Values of 𝑷𝑬𝑬𝒙
 logarithmically approach .5.  No SD curve is defined for 𝑷𝑬𝑬𝒙

≥ . 𝟓. 

3.3.3 Exploration of Spike Addition 

In the spike addition case, as expected, small amounts of corruption yield 

observed SD curves that are very similar to NA.  In the first simulation neuron NA and NC 

have identical parameterization (𝜃𝐴 = 𝜃𝐶).  In this case, corruption level has a relatively 

small impact on the location of the SD curve, as seen in Figure 14.  For high values of 

corruption (𝑃𝐸𝐼𝑛𝑐
= 1), the observed firing probability (Eq. 16) becomes  

𝑃𝑃 = 𝑃(𝐴 ∪ 𝐶) 

=  𝑃𝐴 + 𝑃𝐶 − 𝑃𝐴𝑃𝐶  

= 2𝑃𝐴 − 𝑃𝐴
2 
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Figure 14: The SD curves of a neuron under addition corruption from 

another neuron with identical parameters, with lines colored by their value 

of 𝑷𝑬𝑰𝒏𝒄
. 

A dashed curve representing the SD curve of NC is shown, but obscured by the blue 

SD curve. 

The high corruption case is represented by the red curve in Figure 14.  There is 

very little change in the SD curve in this instance because the firing probability is the 

probability of either NA or NC firing.  For the inclusion case, the firing probability is 

dominated by the more sensitive neuron, as I will show in the next two cases later.  This 

is due to the fact that there is no increase in firing probability when both neurons fire, as 

compared to only one neuron firing.  When both neurons have the same firing 

probability, it is more likely that an observed NA spike will be recorded, but only by a 

small amount. 

Despite the small change, this may lead to worse control, since corruption 

increases the apparent sensitivity of NA, leading to a higher rate of false alarms under 

stimulus SB.  As seen in Figure 14, the estimated SD curve lowers as corruption 
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increases, until possibly violating the necessary condition for control with neuron B.  It is 

worth noting that SD curves may change by small amounts in SD space, but lead to large 

changes in the calculated optimal stimuli, which could lead to significant decreases in 

controller performance. 

The second simulation demonstrates a case in which NC has a significantly higher 

sensitivity than NA (𝑟𝛽𝐶
> 𝑟𝛽𝐴

).   A loss of control also occurs as corruption level 

increases, with a faster increase in apparent sensitivity relative to the level of corruption 

than in the 𝜃𝐴 = 𝜃𝐶  case (Figure 15).  This is due to the fact that spike-addition 

corruption is a function of both the probability that NC fires within the post-stimulation 

window, and the probability that such a spike would be misclassified as an NA spike.  

Because of the increased firing probability of NC, more spikes are “available” to be 

added. A similar effect would occur if C had a high spontaneous firing rate (large σ and 

relatively small α), regardless of sensitivity to the stimulus.  As PC increases to 1, the 

corruption equation (Eq. 16) reduces to  

𝑃𝑃 = 𝑃(𝐴 ∪ 𝐸𝐼𝑛𝑐) 

= 𝑃𝐴 + 𝑃𝐸𝐼𝑛𝑐
(1 − 𝑃𝐴) 

Therefore, in the case of corruption by a neuron that is highly sensitive or that has a high 

spontaneous firing rate, the observed firing rate will increase linearly as a function of the 

error rate of the spike sorter.  In this case, the specificity of the spike sorter may have 

direct implications on the quality of control, as the probability of sorting errors will 

directly increase the estimated firing probability of NA. 

(23) 
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Figure 15: The SD curves of a neuron under addition corruption from 

another neuron that has higher sensitivity, with lines colored by their value 

of 𝑷𝑬𝑰𝒏𝒄
. 

The dashed curve shows the SD curve of NC. 

The third addition-corruption simulation assumes that NC has a significantly lower 

sensitivity to the stimulus than NA (𝑟𝛽𝐶
< 𝑟𝛽𝐴

).  In this case, NC has a significantly lower 

firing probability than NA.  Therefore, the probability of NC spikes being added to the 

cluster is low, regardless of 𝑃𝐸𝐼𝑛𝑐
, and, as seen in Figure 16, the estimated SD curve 

changes very little.  This case has the smallest likely impact on control, as it is unlikely 

that NC will spike at all.  As PC decreases to 0, the framework’s corruption equation 

reduces to PP = PA, so that the estimated firing rate becomes identical to the neuron’s true 

firing rate, regardless of the spike sorter’s performance. 
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Figure 16: The SD curves of a neuron under addition corruption from 

another neuron that has lower sensitivity, with lines colored by their value of 

𝑷𝑬𝑰𝒏𝒄
. 

The dashed curve shows the SD curve of NC. 

3.3.4 Exploration of Spike Deletion 

In the spike deletion case, the estimated firing probability is  

𝑃𝑃 = 𝑃𝐴 (1 −
𝑃𝐸𝐷𝑒𝑙

1 + 𝑒−𝑘(𝐺𝑇−𝐸𝐻𝑎𝑙𝑓)
) (24) 

Small amounts of corruption 𝑃𝐸𝐷𝑒𝑙
 yield SD curves that are similar to the 

uncorrupted SD curve.  As the level of corruption 𝑃𝐸𝐷𝑒𝑙
 increases, the likelihood of hash 

being high enough amplitude to delete an existing NA spike increases.  This increase in 

corruption leads to a decrease in the apparent sensitivity of 𝑁𝐴, manifesting as a rise in 

the SD curve (Figure 17).  This hash model has some non-zero probability of hash 

occurrence even with 𝐺 = 0 (a “sham” stimulus), although k and EHalf are chosen such 

that this probability is small (𝑃𝐻𝑎𝑠ℎ𝑆ℎ𝑎𝑚
< .015 for all tested parameterizations).  At a 
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given stimulus energy level, it may happen that a high enough corruption probability 

𝑃𝐸𝐷𝑒𝑙
 pushes the apparent spike probability below ½, even if 𝑃𝐴 = 1.  This phenomenon 

is similar to the exclusion case, and means that some corruption levels will have a 

partially defined SD curve, and others may have no SD curve. 

For the first spike deletion case, the corrupting hash has an occurrence probability 

that is generally similar to NA’s firing probability at various stimulation energies.  As can 

be seen in Figure 17, non-zero levels of corruption will lead to an apparent decrease in 

sensitivity of NA, and therefore a rise in the SD curve.  Unlike the exclusion case, the 

impact is now non-uniform across SD space.  

 

Figure 17: The SD curve of a neuron under deletion corruption by hash with 

comparable sensitivity to the neuron, with lines colored by their value of 

𝑷𝑬𝑫𝒆𝒍
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(25) 

In the second spike deletion case, the corrupting hash is significantly more 

sensitive than NA.  This manifests itself as undefined SD curves above a corruption level 

of 𝑃𝐸𝐷𝑒𝑙
=  .5, due to the fact that the hash given by the logistic model will fire nearly 

100% of the time that NA fires.  This case produces an apparent firing probability that 

reduces to 

𝑃𝑃 = 𝑃𝐴 (1 −
𝑃𝐸𝐷𝑒𝑙

1 + 𝑒−𝑘(𝐺𝑇−𝐸𝐻𝑎𝑙𝑓)
) 

≈ 𝑃𝐴(1 − 𝑃𝐸𝐷𝑒𝑙
) 

This is very similar to the spike exclusion equation, which is seen in the similar 

way in which SD curves change across corruption levels (Figure 18).  As the corruption 

level increases, eventually the apparent response is unable to produce a 50% firing 

probability for stimuli above a certain energy.  This is due to the fact that the interfering 

hash has become active enough that most NA spikes are deleted before they are recorded 

by the spike sorter. 
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Figure 18: The SD curve of a neuron under deletion corruption by hash with 

high sensitivity, with lines are colored by their value of 𝑷𝑬𝑫𝒆𝒍
.  No SD curve 

is defined for high levels of corruption 

In the third spike deletion case, the corrupting hash is less sensitive than NA for 

most stimuli.  Thus, an SD curve can be defined for higher levels of corruption than with 

more sensitive hash (Figure 19).  However, high duration stimuli of any strength will still 

produce enough corruptive hash events that above a certain duration, the SD curve could 

be undefined. 
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Figure 19: The SD curve of a neuron under deletion corruption by hash with 

low sensitivity, with lines colored by their value of 𝑷𝑬𝑫𝒆𝒍
.  No SD curves (or 

only partial SD curves) are defined for high levels of corruption. 

The partial SD curves do not simply terminate, however.  Because these SD 

curves represent isolines of firing probability curves over SD space, which is continuous, 

the SD curves themselves must also be continuous.  The apparent firing probability in the 

deletion case takes the form  

𝑃𝑃(𝑆) = 𝑓(𝑆)(1 − 𝑔(𝑆)) (26) 

where 𝑆 = [𝐺, 𝑇].  𝑃𝑃 is thus a surface of two dimensional strength-duration space, and 

the SD curves are the level curves for 𝑃𝑃 =
1

2
.  For a given duration, as strength increases 

from zero, so does firing probability due to increased NA spiking (represented by 𝑓).  

However, eventually a maximum apparent firing probability could be encountered, due to 

the effect of the hash through 𝑔(𝑆), after which the firing probability begins decreasing.  
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Therefore, the full SD plot for the deleted spikes case can include a “doubled” SD curve, 

as seen in Figure 20.  This case can lead to very poor control if the controller is not 

properly designed, because cases in which stimuli are powerful enough to push PP 

beyond its maxima will cause significant overdriving of NA on the “high” branch of the 

apparent SD curve. 

 

Figure 20: The SD curve of a neuron under deletion corruption by hash with 

high sensitivity, including the “doubled” SD curves. 

The firing rate starts decreasing as strength increases due to an increased number of 

hash collisions.  Lines are colored by their value of 𝑷𝑬𝑫𝒆𝒍
. 

However, while this case is pathological, it is easily avoided in practice.  The 

“upper branch” of the SD curve will be ignored for the remainder of this dissertation, as 

this double-SD curve artifact can be rejected by using a governor on the spike sorter that 

tracks total threshold crossings or estimated SD-curves.  If a large number of unsorted 

threshold crossings occur in a given post-stimulation window, then there may be a large 

amount of hash corrupting a signal, despite seeing one or zero NA spikes as classified by 
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the spike sorter.  Furthermore, a well-designed system may also trigger an error if the 

firing probability of a neuron appears to decrease as stimulation strength increases.  Such 

behavior may be physiologically possible, such as if stimulating the recorded neuron 

indirectly via an inhibitory presynaptic cell, but, due to the expected rarity of such a 

physiological case and the ease with which “doubled” SD curves can be rejected in 

practice, I restrict study below to the lower branch of SD curves, for which spike 

probability 𝑃𝑃 monotonically increases with stimulus strength. 

 

3.3.5 Boundaries in neural parameter space 

Using the intuition from the previous section about how each neuron’s SD curve 

tends to change, one can study trade-offs between the parameters used in the corruption 

models.  The framework that I use, underactuated control of a pair of neurons, implicitly 

defines both lower and upper limits on the firing probability of the two neurons when 

subject to the chosen stimuli.  For example, when NA (the neuron in the pair whose 𝛼 and 

𝛽 are larger, also called the fast neuron) is subject to the short duration stimulus, it is the 

target neuron, so it must have a higher firing probability than NB, as seen in Figure 21.A.  

Said another way, at some chosen short duration, NA’s SD curve must be lower than NB’s 

curve, implying that it is more likely to fire at lower strengths.  This means that, at the 

strength on NB’s curve at that low duration, NA must have a firing probability 𝑃𝐴 > 0.5.  

Conversely, at the strength on NB’s curve at a high duration, as seen in Figure 21.C, NA 

must have a firing probability 𝑃𝐴 < 0.5.  If these two conditions are met, then the neuron 

pair is controllable.  
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Figure 21: The thresholds of losing controllability due to corruption 

affecting either the fast (blue) or slow (red) neuron.  

Each panel’s title indicates the neuron type affected and the type of corruption.  When 

the SD curve of the affected neuron appears to cross the red dot due to corruption, 

then the pair will appear to lose controllability. 

There are two categorical ways in which corruption may “fool” a control system: it may 

cause the system to believe that the pair is not controllable when it is, or that the pair is 

controllable when it is not.  Each corruption type will either raise or lower the SD curve, 

based on whether spikes are erroneously being removed from or added to the cluster.  For 

the case in which the neural system is in fact controllable, corruption may cause observed 

uncontrollability in two ways.  Corruption may cause the measured SD curves to uncross 

on one side, meaning that no choice of stimuli will allow both neurons to be selectively 

activated.  Alternatively, even if the corrupted curves appear to meet controllability 

conditions, shifts in those SD curves may cause the estimated optimal stimuli to leave the 
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controllability zone of the true SD curves.  This effect is dependent on the choice of cost 

function.  A stimulus leaving the control region will cause either the target neuron to fire 

at below 50% probability, or the non-target neuron to fire above 50% probability.  Figure 

22 demonstrates the case in which corruption causes the estimated SD curves to uncross 

each other. 

 

Figure 22: A demonstration of the two control failure modes during 

corruption 

The dark blue curve represents an uncorrupted neuron that is controllable with the 

red neuron.  The cyan curve shows the observed SD curve of the blue neuron under 

a given amount of exclusion corruption, and the diamonds show the calculated 

optimal GT.  On the left side, the corrupted neuron appears to “uncross” with the red 

neuron, apparently losing its controllability condition.  On the right side, the neurons 

stay crossed, but the optimal GT value moves above the blue neuron’s SD curve. 

For the case in which the neural system is not controllable, corruption may cause 

apparent controllability.  This may happen if the corruption causes the estimated SD 

curves of the neurons to cross, thereby satisfying the controllability condition.  This can 
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happen only if a highly sensitive neuron is subject to subtractive corruption, or an 

insensitive neuron is subject to additive corruption. 

To assess the interplay between the parameters in a given type of corruption, the 

maximum tolerable corruption probability 𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
 was found for a variety of NA, NB 

pairs.  𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
 is defined as the largest probability of corruption that can be tolerated by 

the system without causing the control system to incorrectly classify the pair’s 

controllability.  It can be used to test for both observed gain and loss of controllability, 

because it is a local test; for some neuron and stimulus parameterization, it will find the 

corruption level at which the curves will appear to switch their order (which neuron will 

fire first as stimulation strength increases, or which curve is above the other). 

Because the 𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
 calculation tests for both gain and loss of controllability, I 

simplify the study and consider only a neuron pair that is controllable, with corruption 

that makes them appear uncontrollable.  Further, full analysis of the case of true 

controllability but misestimated stimuli requires choosing a cost function to define 

optimal stimuli, as well as analytically calculating the movement of the SD curve, which 

is challenging for the IAF neuron as there is no known closed form expression for the 

firing probability.  Because of this, I will only be examining the case of appearing to lose 

controllability due to corruption through SD curve uncrossing. 

The effect of addition corruption will be considered only for non-target neurons, 

as corruption increases the estimated firing probability (Figure 21.C and Figure 21.D).  

Thus, addition may make an inactive neuron appear active, but not lead to other errors.  

When analyzing the strength 𝑆𝐶𝑢𝑟𝑣𝑒𝑇
 on the target neuron’s SD curve at the target 
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neuron’s preferred duration 𝑇𝑇 (the red dots in Figure 21), the non-target’s firing 

probability must be below the target’s firing probability.  In other words, if the neuron 

pair appears to be controllable, it must be true that at the point [𝐺𝐶𝑢𝑟𝑣𝑒𝑇
, 𝑇𝑇], 𝑃𝑇 >

𝑃𝑁𝑇𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑
, so 0.5 > 𝑃𝑁𝑇𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑

(𝐺𝐶𝑢𝑟𝑣𝑒𝑇
, 𝑇𝑇).  Therefore, the maximum tolerable 

probability 𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
 of corruption is the level of addition corruption that will cause the 

non-target neuron to appear to fire above 50% probability.  Therefore, 𝑃𝑇(𝐺𝐶𝑢𝑟𝑣𝑒𝑇
, 𝑇𝑇) =

0.5 and 𝑃𝑁𝑇𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑
(𝐺𝐶𝑢𝑟𝑣𝑒𝑇

, 𝑇𝑇) must be within the bounds [0 .5). 

By similar logic, it must be true for a controllable pair that at the point 

[𝐺𝐶𝑢𝑟𝑣𝑒𝑁𝑇
, 𝑇𝑇], 𝑃𝑇𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑

> 𝑃𝑁𝑇, so 𝑃𝑇𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑
(𝐺𝐶𝑢𝑟𝑣𝑒𝑁𝑇

, 𝑇𝑇) >  0.5.  𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
 for 

deletion or exclusion corruption (corruption which will affect the neuron when it is the 

target of stimulation) is the level of corruption that will cause the target neuron to fire 

below 50% probability.  In this case, the strength is on the non-target neuron’s SD curve, 

at a duration the target prefers.  This is demonstrated in Figure 21, panels A and B.  

Therefore, 𝑃𝑁𝑇(𝐺𝐶𝑢𝑟𝑣𝑒𝑁𝑇
, 𝑇𝑇) = 0.5, 𝑃𝑇𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑

(𝐺𝐶𝑢𝑟𝑣𝑒𝑁𝑇
, 𝑇𝑇) must be within the bounds 

(. 5 1]. 

To explore the controllability of a neuron pair where one neuron is corrupted, I 

will examine the change in the corrupted neuron’s apparent SD curve behavior.  This 

examination will be done at a fixed stimulus.   The stimulus will be chosen such that it 

lays along the SD curve of the non-corrupted neuron in the pair, at both a short and long 

duration. 



 

 

76 

3.3.6 Parameter Boundaries of Spike Exclusion 

For the exclusion case, a number of corruption target neurons were tested.  For the 

pair to appear to be controllable, it must follow that 

𝑃𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑃𝑇 (1 − 𝑃𝐸𝑥𝑐  ) >  .5 

𝑃𝐸𝑥𝑐 < 1 −
. 5

𝑃𝑇
  

If this is true for any parameterization of the target neuron under some corruption 

probability 𝑃𝐸𝑥𝑐, then the pair will still appear to be controllable.  The maximum 

tolerable exclusion 𝑃𝐸𝑥𝑐𝑀𝑎𝑥
 can then therefore be defined as 

PExcMax
= 1 −

. 5

PT
 (28) 

Note that as the true firing probability increases, so too does 𝑃𝐸𝑥𝑐𝑀𝑎𝑥
. 

An ensemble of target neurons was defined on a 100x100 grid of [𝑟𝛼𝑇
, 𝑟𝛽𝑇

], in the 

range of [.5, 2], with 𝑟𝜃 = 1.  The maximum tolerable corruption probability 𝑃𝐸𝑥𝑐𝑀𝑎𝑥
 was 

then found between each corrupted target neuron and the standard bearer neuron.  The 

value of 𝑃𝐸𝑥𝑐𝑀𝑎𝑥
 was calculated at two stimuli on the standard bearer neuron’s SD curve, 

one long duration and one short.  Note that some tested target neurons do not meet the 

necessary and sufficient controllability conditions with the standard bearer neuron, but 

are included in the dataset regardless. 

(27) 
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Figure 23: The maximum 𝑷𝑬𝒙𝒄, indicated by color, that can be tolerated by a 

neuron parameterized by 𝒓𝜽𝑻
= [𝜶𝑻, 𝜷𝑻, 𝟏] when being controlled with a 

standard bearer neuron. 

The top panel is for a corrupted red neuron under a long stimulus, 𝑮𝑻 = [𝟑. 𝟓, 𝟏𝟒. 𝟐] 
(on the SD curve of a “fast” neuron).  The bottom panel is shown for a corrupted blue 

neuron under a short stimulus, 𝑮𝑻 =  [𝟐𝟔. 𝟔, 𝟏. 𝟏]  (on the SD curve of a “slow” 

neuron).  The boundaries shown on each panel indicate the area representing neurons 

that are fully controllable with the standard bearer neuron, indicated by the dot at 

[1, 1].  The white area on the left indicates neurons that fire at less than 50% firing 

probability at the tested GT, and therefore cannot tolerate exclusion corruption 

because they are not controllable with the standard bearer to begin with.  The colored 

area indicates neurons that fire above 50% firing probability at the tested GT, and 

therefore can tolerate some amount of exclusion corruption. 

 As seen in Figure 23, 𝑃𝐸𝑥𝑐𝑀𝑎𝑥
 is proportional to the firing probability of the target 

neuron 𝑃𝑇, which increases with 𝛽 and decreases with 𝛼, for a given stimulus.  It is worth 



 

 

78 

(29) 

noting that the 𝛼 leakiness parameter plays a more significant role in determining firing 

probability for longer duration stimuli, whereas the 𝛽 sensitivity influences the firing 

probability at any stimulation duration. 

For any given parameterization, a higher value of 𝛽 or a lower value of 𝛼 leads to 

a higher firing probability, and therefore a higher tolerance for exclusion corruption.  

This is true for both fast and slow neurons.  This therefore means that, to make any given 

neuron more tolerant to exclusion corruption, 𝛽 should be increased and/or 𝛼 should be 

decreased. 

 

3.3.7 Parameter Boundaries of Spike Addition 

For the addition case, the corrupted neuron is the non-target neuron.  For the pair 

to appear to be controllable, it must follow that 

𝑃𝑃 = 𝑃𝑁𝑇 + 𝑃𝐶𝑃𝐼𝑛𝑐 − 𝑃𝑁𝑇𝑃𝐶𝑃𝐼𝑛𝑐 <  .5 

𝑃𝐶  𝑃𝐼𝑛𝑐 <
. 5 − 𝑃𝑁𝑇

1 − 𝑃𝑁𝑇
 

If this inequality holds, then the neuron pair will appear to be controllable.  The 

maximum tolerable corruption can then be defined as 

𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
= 𝑃𝐶𝑃𝐼𝑛𝑐𝑀𝑎𝑥

=
. 5 − 𝑃𝑁𝑇

1 − 𝑃𝑁𝑇
 (30) 

Two non-target neuron instances were tested, one that is faster than the standard 

bearer and one that is slower.  For both of these instances, the stimulus in which the 

neuron is the non-target (the long stimulus 𝑆𝐵 for the fast neuron, and the short stimulus 

𝑆𝐴 for the slow neuron) was used.  For both neurons, 𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
 was calculated as a 
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function of the true non-target neuron firing probability.  A 100x100 grid of the 

corruption neuron parameters [𝑟𝛼𝐶
, 𝑟𝛽𝐶

] were tested in the range of [.5, 2].  For each 

corruption neuron instance, the firing probability PC was calculated at the given stimuli.  

The maximum tolerable inclusion corruption 𝑃𝐼𝑛𝑐𝑀𝑎𝑥
 was calculated as 𝑃𝐼𝑛𝑐𝑀𝑎𝑥

=

𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥

𝑃𝐶
.   

Figure 24 shows that the maximum tolerable inclusion corruption is a function 

primarily of how likely it is for the corruption neuron to fire, which increases as 𝛽 

increases and 𝛼 decreases.  At low firing probabilities, such as those given by low 𝑟𝛽𝐶 

and/or high 𝑟𝛼𝐶, significantly more corruption is tolerable before the corrupted neuron is 

observed to be uncontrollable.  While these plots are quantitatively different, the 

difference in shape between the two is due primarily to the difference in stimulus 

duration, because 𝑟𝛼𝐶
 affects firing probability more during long duration stimuli. 
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Figure 24: The maximum 𝑷𝑰𝒏𝒄 that can be tolerated by a non-target neuron, 

across parameterizations of the corruptor neuron, when being controlled 

with a standard bearer neuron. 

The top panel is shown for a corrupted blue non-target neuron with 𝒓𝜽𝑵𝑻
=

[𝟏. 𝟓, 𝟏. 𝟐𝟓, 𝟏] and 𝑮𝑻 = [𝟑. 𝟓, 𝟏𝟒. 𝟐] (on the SD curve of a “slower” standard bearer 

neuron).  The bottom panel is shown for a corrupted red non-target neuron with 

𝒓𝜽𝑵𝑻
= [. 𝟔𝟕, . 𝟖𝟑, 𝟏] and 𝑮𝑻 = [𝟐𝟔. 𝟔, 𝟏. 𝟏] (on the SD curve of a “faster” neuron).  

The white area on the left indicates corruption neurons that never cause the non-

target corrupted neuron to appear to fire at greater than 50% firing probability at 

the tested GT, and therefore can tolerate any value of 𝑷𝑰𝒏𝒄 because the corrupted 

neurons always appears controllable with the standard bearer.  The colored area 

indicates corruption neurons that may cause the non-target corrupted neuron to 

appear to fire at greater than 50% probability, and can therefore tolerate only the 

indicated amount of 𝑷𝑰𝒏𝒄 without appearing to lose controllability. 
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(31) 

3.3.8 Parameter Boundaries of Spike Deletion 

For the hash deletion case, the corrupted neuron is the target neuron, as in the 

excluded spikes case.  For the pair to appear to be controllable, it must follow that 

𝑃𝑃 = 𝑃𝑇(1 − 𝑃𝐷𝑒𝑙𝑃𝑂𝑐𝑐𝑢𝑟) >  .5 

𝑃𝐷𝑒𝑙𝑃𝑂𝑐𝑐𝑢𝑟 < 1 −
. 5

𝑃𝑇
 

If this inequality holds, then the neuron pair will appear to be controllable.  The 

maximum tolerable corruption may therefore be defined as 

𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
= 𝑃𝑂𝑐𝑐𝑢𝑟𝑃𝐷𝑒𝑙𝑀𝑎𝑥

= 1 −
. 5

𝑃𝑇
 (32) 

Like the addition case, two neuron instances were tested, but the stimulus in 

which the neuron was the target (the short stimulus 𝑆𝐴 for the fast neuron, and the long 

stimulus 𝑆𝐵 for the slow neuron) was used.  𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥
 was calculated as a function of the 

true target neuron firing probability, and a 100x100 grid of the hash occurrence function 

parameters [𝑘, 𝐸𝐻𝑎𝑙𝑓] were tested, in the range 𝑘 = [0, 5] and 𝐸𝐻𝑎𝑙𝑓 = [0,
𝐸𝑀𝑎𝑥

2
] where 

𝐸𝑀𝑎𝑥 is the maximum energy stimulus that I will reasonably expect to administer, 

𝐸𝑀𝑎𝑥 = 2 max(𝐺𝐶𝑢𝑟𝑣𝑒𝑆
) ∗ 𝑇𝑀𝑎𝑥 = 55

𝑚𝑊 𝑚𝑠

𝑚𝑚2 , where 𝐺𝐶𝑢𝑟𝑣𝑒𝑆
 is the set of strengths that 

represent the SD curve of the standard bearer neuron and 𝑇𝑀𝑎𝑥 is the duration of the 

maximum strength stimulus on the SD curve 𝑆𝐶𝑢𝑟𝑣𝑒𝑆
.  For each hash instance, the 

maximum tolerable hash deletion corruption 𝑃𝐷𝑒𝑙𝑀𝑎𝑥
 was found, by 𝑃𝐷𝑒𝑙𝑀𝑎𝑥

=
𝑃𝐶𝑜𝑟𝑟𝑀𝑎𝑥

𝑃𝑂𝑐𝑐𝑢𝑟
. 

Unlike the other corruption types, deletion corruption is defined analytically since 

the hash function is defined as a logistic function, which allows easier analysis of 
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parameter relationships.  According to the definition of 𝑃𝑂𝑐𝑐𝑢𝑟, the parameter 𝐸𝐻𝑎𝑙𝑓 acts 

as an offset for the logistic curve, changing the overall sensitivity of the hash to 

stimulation.  As 𝐸𝐻𝑎𝑙𝑓 increases, the stimulus power required to elicit a response 

increases, meaning that the hash is less likely to fire for some given stimulus S.  The 

parameter 𝑘 is a gain for the logistic curve.  As 𝑘 goes up, the occurrence probability 

curve becomes sharper with respect to 𝐸𝐻𝑎𝑙𝑓.  As can be seen in Figure 25, low hash 

occurrence regions lead to higher maximum tolerable 𝑃𝐻𝑎𝑠ℎ.  The energy of the stimulus 

being applied shifts the occurrence probability, and therefore 𝑃𝐻𝑎𝑠ℎ, while maintaining 

the same general shape.  Higher energy stimuli yield higher occurrence probabilities for 

all hash parameterizations (except where 𝑘 = 0), in effect shifting the surface of 𝑃𝐻𝑎𝑠ℎ to 

the right, as can be seen in Figure 25.A which represents the longer duration and higher 

energy stimulus. 
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Figure 25: The maximum 𝑷𝑯𝒂𝒔𝒉, indicated by color, that can be tolerated by 

a target neuron, controlled with the standard bearer neuron, at a given GT, 

with different parameterizations of the hash 

Panel A is shown for corrupted red target neuron 𝒓𝜽𝑻
= [. 𝟔𝟕, . 𝟖𝟑, 𝟏]  and 𝑮𝑻 =

[𝟑. 𝟓, 𝟏𝟒. 𝟐] (on the SD curve of a “faster” standard bearer neuron).  Panel B is shown 

for a corrupted blue target neuron 𝒓𝜽𝑻
= [𝟏. 𝟓, 𝟏. 𝟐𝟓, 𝟏] and 𝑮𝑻 = [𝟐𝟔. 𝟔, 𝟏. 𝟏] (on the 

SD curve of a “slower” standard bearer neuron).  The white areas indicate hash 

parameterizations that never cause the target corrupted neuron to appear to fire at 

lower than 50% firing probability at the tested GT, and therefore can tolerate any 

value of 𝑷𝑯𝒂𝒔𝒉 because the corrupted neuron always appears controllable with the 

standard bearer.  The colored area indicates hash parameterizations that may cause 

the target corrupted neuron to appear to fire at lower than 50% probability, and can 

therefore tolerate only the indicated amount of 𝑷𝑯𝒂𝒔𝒉  without appearing to lose 

controllability. 

3.4 Discussion 

3.4.1 The Use of Spike Sorting in Neurocontrol 

Clinical neurocontrol systems are currently used for administering artificial 

percepts, such as in cochlear implants (B. S. Wilson & Dorman, 2008; Zeng, 2017).  If a 

patient needs a neuro-prosthetic of some kind, the range of activity that prosthetic is able 

to induce informs the design and parameters of the sensory feedback system.  For the 

cochlear implant, the patient’s cochlea is stimulated at a variety of spatial locations and 

A 
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patterns, and the patient’s sensory response to these stimuli is recorded and used to 

program the speech processor.  In the future, populations of neurons may be stimulated 

and characterized through direct neural stimulation and recording, and a mapping can be 

developed between stimuli and their intended results.  In both of these cases, the exact 

identities of the neurons being stimulated have clinical importance.  However, in the 

direct stimulation and recording case, corruption in the feedback signal to the controller 

may have direct implications about its performance.  Because of this, the ability to 

diagnose and reduce the effects of corruption may have application to future clinical 

devices, and could be valuable for ensuring high quality control. 

One possible solution to the problem of corruption during spike sorting is to 

simply not use spike sorting.  Previous work has shown that motor brain machine 

interfaces that include no spike sorting can provide decoding with comparable 

performance to systems that use spike sorting (Christie et al., 2015; Fraser et al., 2009).  

It is worth noting, however, that use of a system without spike sorting has different 

implications when used as part of a stimulating control system.  As mentioned 

previously, the neurons of interest in a sensory control system will likely have been 

identified as important for the induction of artificial percepts during the system 

characterization step.  This is different from the motor control case due to the fact that, 

while individual neurons carry significant information about motor intention, so too does 

the population activity.  However, it may not be the case that general population activity, 

as would be achieved with a sensory control system without spike sorting, would be 

valuable for inducing percepts.  Individual neuron control may or may not be required for 
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an effective neurocontrol interface.  If it is required, however, then cluster cutting likely 

will be required for the implementation of that interface, and spike sorting corruption 

may be a central challenge. 

 

3.4.2 Detecting and Compensating for Corruption 

The models above show an idealistic view on the effects of corruption, but they 

offer insights into how these general types of corruption might be identified in 

electrophysiology recordings, as well as how technicians might compensate for them.  

Corruption may be difficult to identify, particularly in systems where spike sorting is 

done automatically (Hill et al., 2011), such as those with large electrode counts.  Without 

human intervention, it is often difficult to differentiate between two similar spike 

waveforms that belong to different sources.  Even with humans in the loop, such a 

problem is still difficult to solve. 

The first insight that these models provide is identifying systems that may be 

vulnerable to corruption, and how that corruption may present itself.  For example, to 

make any neuron in a pair more tolerant to apparent loss of control via exclusion 

corruption, the neuron’s firing probability should be increased, which means β should be 

increased and/or α should be decreased.  However, this is not viable as a strategy for 

selecting neuron parameterizations for robust control.  The tolerance of the pair to 

exclusion corruption, as demonstrated by the maximum tolerable corruption (Figure 23), 

is expressed as a ratio between the α’s and β’s of each neuron. Therefore, one cannot 

adjust both neurons’ in the same way and achieve higher tolerance against corruption.  
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This implies a tradeoff between the [α, β] parameterization of each neuron; both neurons 

cannot robustly tolerate exclusion corruption simultaneously.   

In a clinical application, the technician would not be able to select the 

parameterizations of each neuron.  Therefore, the value in this framework is that it 

provides intuition about how tolerant a system is to corruption given its parameterization.  

For example, if the β values of both neurons are similar, then this framework implies that 

the fast neuron (the neuron whose β is larger) is vulnerable to exclusion corruption, due 

to the fact that a small decrease in its observed firing probability could cause a qualitative 

shift in apparent controllability. 

Tracking the responses of a unit of interest to various stimuli across SD space 

may also allow the controller to build a model for the neuron.  For example, a unit may 

be fit to an IAF model, but as the experiment goes on, future stimuli may eventually have 

a low model likelihood.  This can happen for a number of reasons.  The first may be that 

the neuron’s stimulation response has changed, meaning that the IAF parameters must be 

updated.  However, other behaviors may show that no IAF implementation would explain 

the observations, which means that corruption may be playing a role. 

Corrupted clusters may behave significantly differently from uncorrupted units, 

and this behavior may present itself in a number of ways.  For example, if no stimulus, 

regardless of power, is able to cause the neuron to fire with probability above 50%, then 

it is possible that the cluster is being subject to exclusion corruption.  When some fraction 

of a target neuron’s spikes is excluded, the controller will estimate that the neuron is 

significantly less sensitive than it actually is.  To counteract, the controller will likely 
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increase the energy of stimulus, in an attempt to increase the firing rate of the target 

neuron.  The controller might over drive the target neuron, particularly if it is attempting 

to induce a high firing probability.  Countering this issue could require tracking the total 

number of threshold crossings (Christie et al., 2015; Fraser et al., 2009), and using this 

information to detect if the firing probability as a function of stimulation strength is 

approaching an asymptote below 1.  If a relationship that asymptotes below 1 is detected 

in the cluster’s firing probability, but the model firing probability as a function of 

threshold crossings reaches to 1, it may reveal the existence of excluded spikes, 

indicating that the clusters should be redefined. 

An underutilized opportunity is that the spike sorter has access to more 

information when used in a control system than when used as a passive sorter, such as the 

properties of stimuli that trigger neural activity, or the ability to use optogenetics to tie 

waveforms to genetic identification (Lima & Miesenböck, 2005).  Additionally, 

information about the quality of clustering can be fed to the controller, for example, in 

the form of an L-ratio.  This information can be used to gauge the likeliness of corruption 

for each cluster.   

The models may also offer insight into how corruption can be minimized once 

detected.  One response is to try to improve the spike sorter.  Different metrics could be 

employed, or different automated systems (Lewicki, 1998) such as automatic sorting 

using k-means clustering (Salganicoff et al., 1988) may increase the capability and 

autonomy of spike sorters.  The primary challenge is that stimulation tends to 

simultaneously activate a region of tissue around the electrode, leading to hash.  This 
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unpredictable, high amplitude background noise can make it difficult to isolate units of 

interest from the collision of waveforms.  Information from the spike sorter can be used 

to modify the clusters this, or other forms of corruption.  For example, the controller can 

use information on how restrictive the cluster is to gauge which type of corruption is 

more likely.  This is because exclusion corruption and addition corruption are 

functionally opposites due to the fact that exclusion corruption tends to occur when 

generating overly restrictive clusters in an attempt to reduce the effects of addition 

corruption.  Using this information, the spike sorter can decide to expand or contract a 

cluster to reduce corruption while conserving the signal from the neuron of interest. 

Care must be taken while interpreting the implications of uncommon responses.  

The plateauing effect, for example, where stimulation is not able to increase a unit’s 

observed firing probability above a certain level, and may lead to decreases of firing 

probability with stimulus power increases, may be the result of corruption.  However, it 

may also be the result of normal physiology, where the unit of interest is part of an 

inhibitory network that is sensitive to the stimulus (due to high opsin expression, or 

proximity to an electrode).  Only information about the region of interest, context, and 

goal of the control system can be used to make a final decision about whether an 

observation is physiological or corruptive in nature. 
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4 DISCUSSION 

4.1 Limitations of the Current Study 

In this dissertation, I present a demonstration of 1:2 underactuated control, in 

which one input (laser stimulation) controls two outputs (neurons) simultaneously.  

Additionally, I explore various obstacles to accurate identification of the system, as well 

as their effects on estimates of the system’s state and ability to be controlled. 

The stimulation and modeling had a number of limitations, a primary example 

being the simplicity of the neural model, the IAF neuron.  While the model is convenient 

because it has few parameters and is analytically tractable, more complex neural models 

could be used to capture more sophisticated dynamics and in turn suggest more strategies 

for control.  The stimuli used throughout this study were rectangular pulses, parameterized 

only by their strengths and durations [𝐺, 𝑇], though this limitation is a direct result of the 

time optimality of bang control on linear systems such as the IAF model (Nabi & Moehlis, 

2012).  Removing this limitation may significantly increase the controllability of neuron 

populations.  However, when leaving the IAF model, requirements for control become less 

clear, and model fitting more challenging due to the increased number of parameters.  

While it is possible to produce control inputs for other models, such as Hodgkin-Huxley 

(HH) neurons (Ullah & Schiff, 2009), it is likely that novel approaches like machine 

learning will be required to develop robust and general control strategies (Liu et al., 2018; 

Narayanan et al., 2019). 

The 1:2 control presented in this work is likely near the upper limit of control 

ratios for which this control schema is feasible.  At higher ratios it could be difficult to 
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find neurons that jointly satisfy the prerequisite control conditions.  For any 𝑁 

deterministic neurons to be pairwise controllable, their parameters must satisfy the IAF 

relation (Ching & Ritt, 2013) 

𝛼1 > 𝛼2 > ⋯ > 𝛼𝑁 

𝛽1 > 𝛽2 > ⋯ > 𝛽𝑁 

𝛼1

𝛽2
>

𝛼2

𝛽2
> ⋯ >

𝛼𝑁

𝛽𝑁
 

𝛼1 −  𝛼0

𝛽1 − 𝛽0
>

𝛼2 − 𝛼1

𝛽2 − 𝛽1
> ⋯ >

𝛼𝑁 − 𝛼𝑁−1

𝛽𝑁 − 𝛽𝑁−1
 

An example of the SD curves of a simulated triplet of neurons that satisfy these 

relations can be seen in Figure 26.  When considering the logistical difficulties of 

performing this kind of control in vivo, including biasing towards neurons that have high 

sensitivity and a low spontaneous firing rate (large 𝛽 and a large 
𝛼

𝜎
 ratio), and that an 

average of about 1.2 candidate pairs of neurons were found per mouse (with only about a 

third of these candidates satisfying control), the probability of finding neurons that satisfy 

the requirements for 𝑁 > 2 appears small.  It is worth noting, however, that lifting some 

of the limitations of this study, such as by using nonrectangular stimuli, may make it 

easier to perform control at higher ratios of neurons to inputs. 
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Figure 26: A set of three simulated neurons that are mutual controllable 

While such control is theoretically possible, limitations on instrumentation and 

physiology make it unlikely that such configurations will be feasible for control in 

clinical settings. 

Lower control ratios may also be possible, by increasing the number of inputs.  

For example, a 2:3 system may be easier to control than a 1:2 system due to a smaller 

demand placed on each input.  I expect that controllability will become significantly 

better with each additional input added to the system, due to exploitable interactions 

between the inputs.  These systems may take a number of different forms.  Spatial 

distributions may be used, such that the two inputs each activate unique neural 

populations on their own, and are able to activate a third when the inputs are in unison 

(Figure 27.A).  Bidirectional inputs may be used by expressing both an excitatory and an 

inhibitory rhodopsin in the neural population (Figure 27.B).  The cells may be stimulated 

with two wavelengths of light, one each for excitation and inhibition, which can be used 

in unison to address individual cells in the population.  The two approaches might be 

used simultaneously to combinatorially increase the dimensionality of the input. 
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Figure 27: A system which uses spatial encoding to address multiple cells in 

an underactuated system 

In the setup shown in panel A, each cell expresses ChR2 (or some other excitatory 

rhodopsin), and spatial differences allow each input to activate different neural 

populations individually, or a third when both are used in unison.  In the setup shown 

in panel B, each cell expresses both an excitatory rhodopsin (such as ChR2, activated 

by blue light) and an inhibitory rhodopsin (such as NpHR, activated by yellow light).  

The two inputs activate one rhodopsin each. 

Success with any level of underactuated control, whether it is the 1:2 control 

demonstrated here or a future lower ratio control schema, has relevance for high density 

electrode arrays.  Even small increases in the dimensionality of control on a large array 

may significantly increase the number of independently controllable neurons. 

A 
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4.2 Implications for Clinical Neuro-control 

It is unlikely that wearable neuro-stimulation hardware will allow 1:1 or few-to-

one ratios between stimulation electrodes and target neurons for the foreseeable future, so 

control techniques that leverage the full available control space may have clinical 

relevance for some time to come.  Other methods to increase stimulator dimensionality, 

such as using current steering techniques to aid in deep brain stimulation (Barbe et al., 

2014; Butson & McIntyre, 2008) or cochlear implants (Firszt et al., 2007), have been 

studied for some time.  Underactuated control methods are yet another technique to take 

advantage of the full control space, and may lead to further developments for artificial 

percepts and other neuro-stimulation applications. 
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APPENDIX 

Code to reproduce the data analysis and figures found in this dissertation can be 

found in the following GitHub repository. 

https://github.com/samuelgbrown/Acute_Control 
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